Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Template:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

'ExplorationTechnique' template. To define a new Exploration 'ExplorationTechnique' template. To define a new Exploration Technique, please use the Exploration Technique Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - ParentExplorationTechnique - parent technique for relationship tree LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

2

Category:Exploration Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Exploration page? For detailed information on Geothermal Exploration, click here. Category:Exploration Techniques Add.png Add a new Exploration Technique Subcategories This category has the following 9 subcategories, out of 9 total. D [+] Data and Modeling Techniques‎ (2 categories) 2 pages [+] Downhole Techniques‎ (5 categories) 10 pages [+] Drilling Techniques‎ (2 categories) 4 pages F [+] Field Methods‎ (1 categories) [+] Field Techniques‎ (2 categories) 4 pages G [+] Geochemical Techniques‎ (1 categories) 1 pages G cont. [+] Geophysical Techniques‎ (4 categories) 5 pages L [+] Lab Analysis Techniques‎ (2 categories) 4 pages R [+] Remote Sensing Techniques‎ (2 categories) 2 pages

3

Property:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

ExplorationTechnique ExplorationTechnique Jump to: navigation, search Property Name ExplorationTechnique Property Type Page Description The ExplorationTechnique used in the Exploration Activity. Use the form ExplorationTechnique to create new exploration technique pages. Subproperties This property has the following 1 subproperty: A Aeromagnetic Survey At Crump's Hot Springs Area (DOE GTP) Pages using the property "ExplorationTechnique" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + 2-M Probe Survey + 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + 2-M Probe Survey + 2-M Probe At Black Warrior Area (DOE GTP) + 2-M Probe Survey + 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) + 2-M Probe Survey +

4

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

5

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

6

Data Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Data Techniques: The collection, processing, and interpretation of data from various methods so accurate interpretations can be made about the subject matter. Other definitions:Wikipedia Reegle Introduction Data techniques are any technique where data is collected and organized in a manner so that the information is useful for geothermal purposes. The

7

Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geochemical Techniques Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Techniques: No definition has been provided for this term. Add a Definition Related Techniques Geochemical Techniques Geochemical Data Analysis Geothermometry Gas Geothermometry Isotope Geothermometry Liquid Geothermometry Cation Geothermometers Multicomponent Geothermometers Silica Geothermometers Thermal Ion Dispersion

8

Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geophysical Techniques Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Techniques Details Activities (2) Areas (1) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: may be inferred Stratigraphic/Structural: may be inferred Hydrological: may be inferred Thermal: may be inferred Dictionary.png Geophysical Techniques: Geophysics is the study of the structure and composition of the earth's interior. Other definitions:Wikipedia Reegle Introduction Geophysical techniques measure physical phenomena of the earth such as gravity, magnetism, elastic waves, electrical and electromagnetic waves.

9

Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Electrical Techniques Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the electrical resistivity of the

10

Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Techniques Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Techniques Details Activities (0) Areas (0) Regions (0) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Magnetotelluric Techniques:

11

Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(10) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

12

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

13

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

14

Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Bulk and trace element analysis of rocks, minerals, and sediments. Identify and document surface geology and mineralogy. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Locates active faults in the area of interest. Map fault and fracture patterns, kinematic information. Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

15

Formation Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Formation Testing Techniques Formation Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Formation Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Formation Testing Techniques: No definition has been provided for this term. Add a Definition References No exploration activities found. Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Formation_Testing_Techniques&oldid=601973" Categories: Downhole Techniques Exploration Techniques

16

Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

17

Template:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search This is the 'ExplorationGroup' template. To define a new Exploration Technique, please use the Exploration Group Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

18

Gravity Techniques | Open Energy Information  

Open Energy Info (EERE)

Gravity Techniques Gravity Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

19

Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Remote Sensing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Remote Sensing Techniques: Remote sensing utilizes satellite and/or airborne based sensors to collect information about a given object or area. Remote sensing data collection methods can be passive or active. Passive sensors (e.g., spectral imagers) detect natural radiation that is emitted or reflected by the object or area

20

Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

22

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

23

Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data and Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, and fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

24

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

25

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

26

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques (Redirected from Electromagnetic Sounding Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

27

Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Active Seismic Techniques Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

28

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

29

Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques Borehole Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Borehole Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation Thermal: High temperatures and pressure impact the compressional and shear wave velocities

30

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

31

Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Passive Seismic Techniques Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

32

Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Lab Analysis Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Lab Analysis Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Water rock interaction; Rapid and unambiguous identification of unknown minerals; Bulk and trace element analysis of rocks, minerals, and sediments; Obtain detailed information about rock composition and morphology; Determine detailed information about rock composition and morphology; Cuttings are used to define lithology; Core analysis is done to define lithology

33

Property:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search Property Name ExplorationGroup Property Type Page Description Exploration Group for Exploration Activities Pages using the property "ExplorationGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Field Techniques + A Acoustic Logs + Downhole Techniques + Active Seismic Methods + Geophysical Techniques + Active Seismic Techniques + Geophysical Techniques + Active Sensors + Remote Sensing Techniques +, Remote Sensing Techniques + Aerial Photography + Remote Sensing Techniques + Aeromagnetic Survey + Geophysical Techniques + Airborne Electromagnetic Survey + Geophysical Techniques + Airborne Gravity Survey + Geophysical Techniques + Analytical Modeling + Data and Modeling Techniques +

34

Category:Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electrical Techniques page? For detailed information on Electrical Techniques as exploration techniques, click here. Category:Electrical Techniques Add.png Add a new Electrical Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [+] Direct-Current Resistivity Survey‎ (2 categories) 3 pages E [+] Electromagnetic Techniques‎ (1 categories) 2 pages Pages in category "Electrical Techniques"

35

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

36

Category:Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on Geophysical Techniques as exploration techniques, click here. Category:Geophysical Techniques Add.png Add a new Geophysical Techniques Technique Subcategories This category has the following 4 subcategories, out of 4 total. E [+] Electrical Techniques‎ (2 categories) 5 pages G [×] Gravity Techniques‎ 3 pages M [×] Magnetic Techniques‎ 3 pages S [+] Seismic Techniques‎ (2 categories) 2 pages Pages in category "Geophysical Techniques" The following 5 pages are in this category, out of 5 total. D DC Resistivity Survey (Mise-Á-La-Masse) E Electrical Techniques G Gravity Techniques M Magnetic Techniques

37

Template:ExplorationActivity | Open Energy Information  

Open Energy Info (EERE)

ExplorationActivity ExplorationActivity Jump to: navigation, search This is the 'ExplorationActivity' template. To define a new Exploration Activity, please use the Exploration Activity Form. Parameters Name - The name of the activity (typically a combination of the techniques and location, ex. Water Sampling at McCredie Hot Springs) Technique - The exploration technique used in this activity SpectralSensor - The spectral imaging sensor used in this activity Place - The name of the exploration field or location of the activity Notes - General notes about the activity (optional) Outcome - A short description of the benefit or usefulness of the activity Reference_material - The reference material documenting the activity ExpActivityDate - Date or year activity started ExpActivityDateEnd - Date or year activity ended

38

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

39

Genability Explorer | Open Energy Information  

Open Energy Info (EERE)

Genability Explorer Genability Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Genability Explorer Agency/Company /Organization: Genability Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Website Website: www.genability.com Country: United States Web Application Link: explorer.genability.com/explorer/index.jsp Cost: Paid OpenEI Keyword(s): Green Button Apps Northern America Coordinates: 37.790383°, -122.393054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.790383,"lon":-122.393054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Category:Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Techniques page? For detailed information on Field Techniques as exploration techniques, click here. Category:Field Techniques Add.png Add a new Field Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [×] Data Collection and Mapping‎ 5 pages F [+] Field Sampling‎ (2 categories) 4 pages Pages in category "Field Techniques" The following 4 pages are in this category, out of 4 total. D Data Collection and Mapping F Field Sampling H Hand-held X-Ray Fluorescence (XRF) P Portable X-Ray Diffraction (XRD) Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Techniques&oldid=689815"

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

42

Compilation of geothermal information: exploration  

DOE Green Energy (OSTI)

The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

Not Available

1978-01-01T23:59:59.000Z

43

Category:Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geochemical Techniques page? For detailed information on exploration techniques, click here. Category:Geochemical Techniques Add.png Add a new Geochemical Techniques Technique Subcategories This category has only the following subcategory. G [×] Geochemical Data Analysis‎ 3 pages Pages in category "Geochemical Techniques" This category contains only the following page. G Geochemical Data Analysis Retrieved from "http://en.openei.org/w/index.php?title=Category:Geochemical_Techniques&oldid=689823"

44

Property:ExplorationBasis | Open Energy Information  

Open Energy Info (EERE)

ExplorationBasis ExplorationBasis Jump to: navigation, search Property Name ExplorationBasis Property Type Text Description Exploration Basis Why was exploration work conducted in this area (e.g., USGS report of a geothermal resource, hot springs with geothemmetry indicating electrical generation capacity, etc.) Subproperties This property has the following 1 subproperty: M Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Pages using the property "ExplorationBasis" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey At Coso Geothermal Area (1977) + Compare directly shallow temperature results with standard geothermal exploration techniques. 2-M Probe Survey At Coso Geothermal Area (1979) + Correct previously analyzed 2-m probe data

45

Category:Gravity Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques page? For detailed information on Gravity Techniques, click here. Category:Gravity Techniques Add.png Add a new Gravity Techniques Technique Pages in category "Gravity...

46

Exploration and Development Techniques for Basin and Range Geothermal...  

Open Energy Info (EERE)

Council, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal...

47

Category:Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole Techniques as exploration techniques, click here. Category:Downhole Techniques Add.png Add a new Downhole Techniques Technique Subcategories This category has the following 5 subcategories, out of 5 total. B [×] Borehole Seismic Techniques‎ 2 pages F [×] Formation Testing Techniques‎ O [×] Open-Hole Techniques‎ W [×] Well Log Techniques‎ 17 pages [×] Well Testing Techniques‎ 8 pages

48

Geothermal exploration techniques: a case study. Final report. [Coso geothermal area  

DOE Green Energy (OSTI)

The objective of this project was to review and perform a critical evaluation of geothermal exploration methods and techniques. The original intent was to publish the work as a handbook; however, the information is not specific enough for that purpose. A broad general survey of geothermal exploration techniques is reported in combination with one specific case study.

Combs, J.

1978-02-01T23:59:59.000Z

49

Property:ExplorationSubGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationSubGroup ExplorationSubGroup Jump to: navigation, search Property Name ExplorationSubGroup Property Type Page Description Exploration sub groups for exploration activities Pages using the property "ExplorationSubGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Data Collection and Mapping + A Acoustic Logs + Well Log Techniques + Active Seismic Methods + Seismic Techniques + Active Seismic Techniques + Seismic Techniques + Active Sensors + Active Sensors + Aerial Photography + Passive Sensors + Aeromagnetic Survey + Magnetic Techniques + Airborne Electromagnetic Survey + Electrical Techniques + Airborne Gravity Survey + Gravity Techniques + Analytical Modeling + Modeling Techniques + Audio-Magnetotellurics + Electrical Techniques +

50

Category:Exploration Activities | Open Energy Information  

Open Energy Info (EERE)

Activities Activities Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Exploration Activities Geothermalpower.jpg Looking for the Exploration Activities page? For detailed information on Exploration Activities, click here. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "Exploration Activities" The following 200 pages are in this category, out of 1,574 total. (previous 200) (next 200) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) 2-M Probe At Black Warrior Area (DOE GTP) 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) 2-M Probe At Flint Geothermal Area (DOE GTP)

51

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

52

Category:Data Techniques | Open Energy Information  

Open Energy Info (EERE)

Data Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data Techniques page? For detailed information on Data Techniques...

53

Neutron Imaging Explored as Complementary Technique for Improving Cancer  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast tumor (black color in top image of monitor screen) using the software to visualize in color the various intensities of neutron transmissions through the breast tissue. ORNL and University of Tennessee collaboration now analyzing first results from neutron radiographs of cancerous tissue samples Today's range of techniques for detection of breast and other cancers include mammography, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and optical imaging. Each technology has advantages and disadvantages, with limitations either

54

An Exploration of the Market for Traffic Information  

E-Print Network (OSTI)

for Traffic of the Market Information by MatthewMalchowproviders then market their information to broadcastAn Exploration of the Market for Traffic Information Shirley

Chan, Shirley; Malchow, Matthew; Kanafani, Adib

1997-01-01T23:59:59.000Z

55

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

56

Innovative Exploration Techniques for Geothermal Assessment at Jemez  

Open Energy Info (EERE)

Exploration Techniques for Geothermal Assessment at Jemez Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This collaborative project will perform the following tasks to fully define the nature and extent of the geothermal reservoir underlying the Jemez Reservation: - Conduct 1-6,000-scale geologic mapping of 6 mi2 surrounding the Indian Springs area. - Using the detailed geologic map, locate one N-S and two E-W seismic lines and run a seismic survey of 4 mi2; reduce and analyze seismic data using innovative high-resolution seismic migration imaging techniques developed by LANL, and integrate with 3-D audio-frequency MT/MT data acquired at the same area for fault and subsurface structure imaging and resource assessment.

57

Exploring underwater target detection by imaging polarimetry and correlation techniques  

E-Print Network (OSTI)

1 Exploring underwater target detection by imaging polarimetry and correlation techniques M *Corresponding author: ayman.al-falou@isen.fr Underwater target detection is investigated by combining active. This experimentally study illustrates the potential of polarization imaging for underwater target detection and opens

Paris-Sud XI, Université de

58

Form:ExplorationActivity | Open Energy Information  

Open Energy Info (EERE)

Form Edit History Facebook icon Twitter icon Form:ExplorationActivity Jump to: navigation, search Input a name below to add an "Exploration Activity'. If the activity already...

59

Category:Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data and Modeling Techniques page? For detailed information on Data and Modeling Techniques as exploration techniques, click here. Category:Data and Modeling Techniques Add.png Add a new Data and Modeling Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [×] Data Techniques‎ 3 pages M [×] Modeling Techniques‎ 5 pages Pages in category "Data and Modeling Techniques" The following 2 pages are in this category, out of 2 total. D Data Techniques M Modeling Techniques Retrieved from "http://en.openei.org/w/index.php?title=Category:Data_and_Modeling_Techniques&oldid=689801"

60

Definition: Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search Dictionary.png Electromagnetic Profiling Techniques Electromagnetic profiling techniques map lateral variations in subsurface resistivity.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic) to measure the physical properties of rocks, and in particular, to detect

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Category:Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques page? Borehole Seismic Techniques page? For detailed information on Borehole Seismic Techniques as exploration techniques, click here. Category:Borehole Seismic Techniques Add.png Add a new Borehole Seismic Techniques Technique Pages in category "Borehole Seismic Techniques" The following 2 pages are in this category, out of 2 total. S Single-Well And Cross-Well Seismic V Vertical Seismic Profiling Retrieved from "http://en.openei.org/w/index.php?title=Category:Borehole_Seismic_Techniques&oldid=601962" Category: Downhole Techniques What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

62

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

63

Geographic Information Systems- Tools For Geotherm Exploration...  

Open Energy Info (EERE)

that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly...

64

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

65

Property:ExplorationOutcome | Open Energy Information  

Open Energy Info (EERE)

ExplorationOutcome ExplorationOutcome Jump to: navigation, search Property Name ExplorationOutcome Property Type String Description The outcome of an Exploration Activity. Allows Values could be useful with more improvements;useful;not indicated;not useful;useful regional reconnaissance Pages using the property "ExplorationOutcome" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Black Warrior Area (DOE GTP) + not indicated + 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) + useful +

66

Category:Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Remote Sensing Techniques page? For detailed information on remote sensing techniques used as a geothermal exploration technique, click here. Category: Remote Sensing Techniques Add.png Add a new Remote Sensing Technique Subcategories This category has the following 2 subcategories, out of 2 total. A [+] Active Sensors‎ (1 categories) 2 pages P [×] Passive Sensors‎ 13 pages Pages in category "Remote Sensing Techniques" The following 2 pages are in this category, out of 2 total. A Active Sensors L Long-Wave Infrared Retrieved from "http://en.openei.org/w/index.php?title=Category:Remote_Sensing_Techniques&oldid=594055"

67

U.S. Open Labs - Exploring Resources | Open Energy Information  

Open Energy Info (EERE)

U.S. Open Labs - Exploring Resources Jump to: navigation, search Where can I find information about the renewable energy resource potential in my country? Renewable energy resource...

68

Geophysical Exploration Technologies | Open Energy Information  

Open Energy Info (EERE)

Geophysical Exploration Technologies Geophysical Exploration Technologies Jump to: navigation, search Geothermal ARRA Funded Projects for Geophysical Exploration Technologies Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

69

Category:Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Well Log Techniques page? For detailed information on Well Log Techniques as exploration techniques, click here. Category:Well Log Techniques Add.png Add a new Well Log Techniques Technique Pages in category "Well Log Techniques" The following 17 pages are in this category, out of 17 total. A Acoustic Logs C Caliper Log Cement Bond Log Chemical Logging Cross-Dipole Acoustic Log D Density Log F FMI Log G Gamma Log I Image Logs M Mud Logging N Neutron Log P Pressure Temperature Log R Resistivity Log Resistivity Tomography S Single-Well and Cross-Well Resistivity Spontaneous Potential Well Log Stoneley Analysis

70

Evaluation of the mercury soil mapping geothermal exploration techniques  

Science Conference Proceedings (OSTI)

In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrations of mercury are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Noya, Japan. Zones containing high-mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations of mercury and high-measured geothermal gradients strongly suggests that relatively low-cost soil mercury geochemical sampling can be effective in identifying drilling targets within high-temperature areas.

Matlick, J.S.; Shiraki, M.

1981-10-01T23:59:59.000Z

71

Definition: Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Geophysical Techniques Jump to: navigation, search Dictionary.png Geophysical Techniques Geophysics is the study of the structure and composition of the earth's interior.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic)

72

Phase II - Resource Exploration and Confirmation | Open Energy Information  

Open Energy Info (EERE)

Phase II - Resource Exploration and Confirmation Phase II - Resource Exploration and Confirmation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase II: Resource Exploration and Confirmation GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation Phase III - Permitting and Initial Development

73

Property:ExplorationTimePerMetric | Open Energy Information  

Open Energy Info (EERE)

ExplorationTimePerMetric ExplorationTimePerMetric Jump to: navigation, search Property Name ExplorationTimePerMetric Property Type String Description the unit ratio denominator for exploration time Allows Values job;10 mile;10 stn;100 mile;sq. mile;foot Subproperties This property has the following 121 subproperties: A Active Seismic Methods Active Seismic Techniques Active Sensors Analytical Modeling B Borehole Seismic Techniques C Cation Geothermometers Chemical Logging Compound and Elemental Analysis Conceptual Model Core Holes Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array) Data Collection and Mapping Data Techniques

74

The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents  

Science Conference Proceedings (OSTI)

The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

Thomas Chidsey

2008-09-30T23:59:59.000Z

75

The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents  

SciTech Connect

The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

Thomas Chidsey

2008-09-30T23:59:59.000Z

76

An Exploration of Axiomatic Approaches to Information Retrieval  

E-Print Network (OSTI)

An Exploration of Axiomatic Approaches to Information Retrieval Hui Fang Department of Computer prin- cipled retrieval methods that are effective, robust, and ef- ficient. Although many information University of Illinois at Urbana-Champaign ABSTRACT Existing retrieval models generally do not offer any guar

Zhai, ChengXiang

77

Property:ExplorationCostPerMetric | Open Energy Information  

Open Energy Info (EERE)

ExplorationCostPerMetric ExplorationCostPerMetric Jump to: navigation, search Property Name ExplorationCostPerMetric Property Type String Description the unit ratio denominator for exploration cost Allows Values 100 feet cut;30 foot core;compound;day;element;foot;hour;mile;point;process;sample;sq. mile;station;Subject;well Subproperties This property has the following 107 subproperties: A Active Seismic Methods Active Seismic Techniques Active Sensors Analytical Modeling B Borehole Seismic Techniques C Cation Geothermometers Chemical Logging Conceptual Model Core Holes Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array)

78

Simple Nonparametric Techniques for Exploring Changing Probability Distributions of Weather  

Science Conference Proceedings (OSTI)

Anthropogenic influences are expected to cause the probability distribution of weather variables to change in nontrivial ways. This study presents simple nonparametric methods for exploring and comparing differences in pairs of probability ...

Christopher A. T. Ferro; Abdelwaheb Hannachi; David B. Stephenson

2005-11-01T23:59:59.000Z

79

Definition: Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search Dictionary.png Remote Sensing Techniques Remote sensing utilizes satellite and/or airborne based sensors to collect information about a given object or area. Remote sensing data collection methods can be passive or active. Passive sensors (e.g., spectral imagers) detect natural radiation that is emitted or reflected by the object or area being observed. In active remote sensing (e.g., radar) energy is emitted and the resultant signal that is reflected back is measured.[1] View on Wikipedia Wikipedia Definition Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object. In modern usage, the term generally refers to the use of aerial sensor technologies

80

Geographic Information Systems- Tools For Geotherm Exploration, Tracers  

Open Energy Info (EERE)

Systems- Tools For Geotherm Exploration, Tracers Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Details Activities (4) Areas (3) Regions (0) Abstract: Geographic information systems (GIS) are an underused resource that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly customizable to specific user needs and can use entire corporate data sets through a visual interface. This paper briefly documents the use of GIS in specific examples of geothermal research at the

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Definition: Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search Dictionary.png Downhole Techniques Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids intersected by a well. These petrophysical data are fundamental to developing the understanding of a geothermal reservoir.[1] View on Wikipedia Wikipedia Definition Petrophysics (from the Greek πέτρα, petra, "rock" and φύσις, physis, "nature") is the study of physical and chemical rock properties and their interactions with fluids. A major application of petrophysics is in studying reservoirs for the hydrocarbon industry. Petrophysicists are employed to help reservoir engineers and geoscientists understand the rock properties of the reservoir, particularly how pores in

82

Definition: Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Seismic methods provide information regarding the elastic properties of the subsurface through the measurement of the propagation velocity of elastic waves.[1] View on Wikipedia Wikipedia Definition Seismology /saɪzˈmɒlədʒi/ is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake effects, such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes (such as explosions). A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram. A seismologist

83

File:04AKBGeophysicalExplorationPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

AKBGeophysicalExplorationPermit.pdf AKBGeophysicalExplorationPermit.pdf Jump to: navigation, search File File history File usage File:04AKBGeophysicalExplorationPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 62 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:38, 6 August 2012 Thumbnail for version as of 11:38, 6 August 2012 1,275 × 1,650 (62 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 4-AK-b - Geophysical Exploration Permit

84

Haleakala SW Rift Zone Exploration | Open Energy Information  

Open Energy Info (EERE)

Haleakala SW Rift Zone Exploration Haleakala SW Rift Zone Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Haleakala SW Rift Zone Exploration Project Location Information Coordinates 20.63144440367°, -156.37383611407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.63144440367,"lon":-156.37383611407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Category:Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

2 subcategories, out of 2 total. A Active Seismic Techniques 2 pages P Passive Seismic Techniques 2 pages Pages in category "Seismic Techniques" The following 2...

86

Definition: Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Jump to: navigation, search Dictionary.png Electrical Techniques Electrical techniques aim to image the electrical resistivity of the subsurface through the measurement...

87

Category:Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Passive Seismic Techniques page? For detailed information on Passive Seismic Techniques,...

88

Advanced InSAR Techniques for Geothermal Exploration and Production | Open  

Open Energy Info (EERE)

Advanced InSAR Techniques for Geothermal Exploration and Production Advanced InSAR Techniques for Geothermal Exploration and Production Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Advanced InSAR Techniques for Geothermal Exploration and Production Abstract InSAR is a remote sensing tool that has applications in both geothermal exploration and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow, among other things, the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in the US and abroad.

89

Guided Exploration: an Inductive Minimalist Approach for Teaching Tool-related Concepts and Techniques  

Science Conference Proceedings (OSTI)

In this paper we introduce Guided Exploration as an inductive teaching approach. It is based on Minimalism and makes use of the pattern format. Guided Exploration addresses a couple of problems when teaching tool-related concepts and techniques, like ... Keywords: Educational Patterns, Inductive Teaching, Learning Styles

Christian Kppe, Rick Rodin

2013-04-01T23:59:59.000Z

90

Definition: Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Techniques that involve collecting data from one or more sources and developing a comprehensive representation of the data in a model View on...

91

File:04AKCGeothermalExplorationPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

4AKCGeothermalExplorationPermit.pdf 4AKCGeothermalExplorationPermit.pdf Jump to: navigation, search File File history File usage File:04AKCGeothermalExplorationPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 31 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 08:12, 7 August 2012 Thumbnail for version as of 08:12, 7 August 2012 1,275 × 1,650 (31 KB) Jnorris (Talk | contribs) 10:38, 6 August 2012 Thumbnail for version as of 10:38, 6 August 2012 1,275 × 1,650 (29 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

92

Category:Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Sounding Techniques page? For detailed information on Electromagnetic Sounding Techniques, click here. Category:Electromagnetic Sounding Techniques Add.png Add a new Electromagnetic Sounding Techniques Technique Subcategories This category has only the following subcategory. M [×] Magnetotelluric Techniques‎ 1 pages Pages in category "Electromagnetic Sounding Techniques" The following 2 pages are in this category, out of 2 total. M Magnetotelluric Techniques T Time-Domain Electromagnetics Retrieved from "http://en.openei.org/w/index.php?title=Category:Electromagnetic_Sounding_Techniques&oldid=689837"

93

Definition: Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

techniques utilize vibrations from natural earthquakes or rupture processes (due to hydraulic stimulation) as a source for structural imaging of the subsurface.1 References ...

94

Category:Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

95

Definition: Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Lab Analysis Techniques Jump to: navigation, search Dictionary.png Lab Analysis Techniques Lab Analysis Techniques encompass a broad array of analytical methods that can be used to characterize the chemical and physical properties of rock and fluid samples. The reliability of laboratory analyses depends strongly on both adherence to standard sampling procedures in the field when collecting materials for examination and on the application of appropriate sample preparation techniques in the lab. Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Lab_Analysis_Techniques&oldid=688298" Category:

96

Definition: Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Ground Electromagnetic Techniques Jump to: navigation, search Dictionary.png Ground Electromagnetic Techniques Ground electromagnetic techniques measure electromagnetic fields in order to determine subsurface electrical resistivity with the earth surface as the observation point.[1] View on Wikipedia Wikipedia Definition The electromagnetic force is one of the four fundamental interactions in nature, the other three being the strong interaction, the weak interaction, and gravitation. This force is described by electromagnetic fields, and has innumerable physical instances including the interaction of electrically charged particles and the interaction of uncharged magnetic force fields with electrical conductors. The word

97

Definition: Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search Dictionary.png Active Seismic Techniques Active seismic techniques study the behavior of artificially-generated elastic waves in the subsurface. A seismic wave or pulse is generated at the surface by an active seismic source which can be a vibration, mechanical impact, or near-surface explosion.[1] View on Wikipedia Wikipedia Definition Seismic waves are waves of energy that travel through the Earth's layers, and are a result of an earthquake, explosion, or a volcano that imparts low-frequency acoustic energy. Many other natural and anthropogenic sources create low amplitude waves commonly referred to as ambient vibrations. Seismic waves are studied by geophysicists called seismologists. Seismic wave fields are recorded by a seismometer,

98

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

99

Definition: Gravity Techniques | Open Energy Information  

Open Energy Info (EERE)

0521576326 Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http:en.openei.orgwindex.php?titleDefinition:GravityTechniques&oldid598...

100

File:04UTAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

UTAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage File:04UTAStateExplorationProcess.pdf Size of this preview: 463 599 pixels. Other...

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Definition: Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search Dictionary.png Magnetic Techniques The magnetic method is the study of the distribution of magnetic minerals in the upper 20-30km of the earth's crust. The magnetic method may also be used to estimate the thickness of the crust or to constrain temperatures in the crust using the Curie isotherm (the temperatures at which minerals lose their strong magnetic properties), whichever is shallower.[1] References ↑ http://www.ipgp.fr/~diament/Imageries%20Gravi-Mag/Nabighian_etal_Mag.pdf http://www.cflhd.gov/resources/agm/geoApplications/SurfaceMethods/911MagneticMethods.cfm http://onlinelibrary.wiley.com/doi/10.1029/JB087iB06p04846/abstract Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from

102

Definition: Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Techniques Electromagnetic Techniques The objective of electromagnetic (EM) techniques is to image the electrical resistivity structure of the subsurface through the measurement of naturally- or artificially-generated electromagnetic fields.[1] View on Wikipedia Wikipedia Definition The electromagnetic force is one of the four fundamental interactions in nature, the other three being the strong interaction, the weak interaction, and gravitation. This force is described by electromagnetic fields, and has innumerable physical instances including the interaction of electrically charged particles and the interaction of uncharged magnetic force fields with electrical conductors. The word electromagnetism is a compound form of two Greek terms, ἢλεκτρον, ēlektron, "amber", and μαγνήτης, magnētēs, "magnet". The science

103

Definition: Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Magnetotelluric Techniques Jump to: navigation, search Dictionary.png Magnetotelluric Techniques Magnetotellurics is an electromagnetic geophysical method used to image the electrical resistivity structure of the subsurface through the measurement of electrical and magnetic fields at the earth's surface.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

104

An Exploration Of The Market For Traffic Information  

E-Print Network (OSTI)

There a Consumer Market for Traveler Information Services? but they also market their information to broadcast stationsproviders then market their information to broadcast

Chan, Shirley; Malchow, Matthew; Kanafani, Adib

1997-01-01T23:59:59.000Z

105

GRR/Section 4 - Exploration Overview | Open Energy Information  

Open Energy Info (EERE)

4 - Exploration Overview 4 - Exploration Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4 - Exploration Overview 04ExplorationPermittingOverview (3).pdf Click to View Fullscreen Contact Agencies BLM United States Forest Service Regulations & Policies 30 USC § 1001 Triggers None specified Click "Edit With Form" above to add content 04ExplorationPermittingOverview (3).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The exploration process requires consideration of right of way access, geothermal leasing, and state and federal exploration permits. 4.1 and 4.2 - Will the Developer Engage in Coproduction on an Existing

106

Category:Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Electromagnetic Techniques page? For detailed information on Ground Electromagnetic Techniques, click here. Category:Ground Electromagnetic Techniques Add.png Add a new Ground Electromagnetic Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. E [×] Electromagnetic Profiling Techniques‎ 1 pages [+] Electromagnetic Sounding Techniques‎ (1 categories) 2 pages Pages in category "Ground Electromagnetic Techniques" The following 2 pages are in this category, out of 2 total. E Electromagnetic Profiling Techniques Electromagnetic Sounding Techniques Retrieved from "http://en.openei.org/w/index.php?title=Category:Ground_Electromagnetic_Techniques&oldid=689834"

107

Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation  

E-Print Network (OSTI)

NERS Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation detection and characterization for nuclear nonproliferation

Eustice, Ryan

108

Exploration of Management Information System: Pemetreating Business Way  

Science Conference Proceedings (OSTI)

The indispensable role of Management Information Systems is common sense in the buisness and organizaiton circle. The use of Management Information Systems has gone from competitive advantage for few to business necessity for all. Its true value comes ... Keywords: Information management, management information system, information technology

Guo Xiang, Li Yanxiao, Li Weihua

2013-01-01T23:59:59.000Z

109

Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems  

DOE Patents (OSTI)

Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

Zhdanov; Michael S. (Salt Lake City, UT)

2008-01-29T23:59:59.000Z

110

Assessment of Hydrocarbon Seepage on Fort Peck Reservation, Northeast Montana: A Comparison of Surface Exploration Techniques  

Science Conference Proceedings (OSTI)

Surface exploration techniques have been employed in separate study areas on the Fort Peck Reservation in northeastern Montana. Anomalies associated with hydrocarbon seepage are documented in all three areas and a variety of surface exploration techniques can be compared. In a small area with established production, head gas and thermal desorption methods best match production; other methods also mapped depletion. In a moderate-size area that has prospects defined by 3D seismic data, head gas along with microbial, iodine, and Eh soil anomalies are all associated with the best hydrocarbon prospect. In a large area that contains many curvilinear patterns observed on Landsat images, results are preliminary. Reconnaissance mapping of magnetic susceptibility has identified a potential prospect; subsequent soil gas and head gas surveys suggest hydrocarbon potential.

Monson, Lawrence M.

2002-09-09T23:59:59.000Z

111

A History Of Geothermal Exploration In Washington | Open Energy Information  

Open Energy Info (EERE)

History Of Geothermal Exploration In Washington History Of Geothermal Exploration In Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A History Of Geothermal Exploration In Washington Details Activities (2) Areas (2) Regions (0) Abstract: The presence of Mt. St. Helens and other Quaternary andesitic volcanoes and other indicators, e.g., both thermal and both mineral springs, in the Washington Cascades suggests that this area has good potential for geothermal resources. Exploration for geothermal resources has been conducted in the region since the early 1970s, with surge of interest and exploration activity in 1974 when the Federal Government developed a leasing program for its land. This surge was followed by a gradual decline in activity through the early 1980s. During the mid 1980s,

112

Category:Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Profiling Techniques page? For detailed information on Electromagnetic Profiling Techniques, click here. Category:Electromagnetic Profiling Techniques Add.png Add a new Electromagnetic Profiling Techniques Technique Pages in category "Electromagnetic Profiling Techniques" This category contains only the following page. F Frequency-Domain Electromagnetic Survey Retrieved from "http://en.openei.org/w/index.php?title=Category:Electromagnetic_Profiling_Techniques&oldid=689835"

113

Information technology - Security techniques - Information security management systems - Requirements  

E-Print Network (OSTI)

ISO/IEC 27001:2005 covers all types of organizations (e.g. commercial enterprises, government agencies, not-for profit organizations). ISO/IEC 27001:2005 specifies the requirements for establishing, implementing, operating, monitoring, reviewing, maintaining and improving a documented Information Security Management System within the context of the organization's overall business risks. It specifies requirements for the implementation of security controls customized to the needs of individual organizations or parts thereof. ISO/IEC 27001:2005 is designed to ensure the selection of adequate and proportionate security controls that protect information assets and give confidence to interested parties. ISO/IEC 27001:2005 is intended to be suitable for several different types of use, including the following: use within organizations to formulate security requirements and objectives; use within organizations as a way to ensure that security risks are cost effectively managed; use within organizations to ensure comp...

International Organization for Standardization. Geneva

2005-01-01T23:59:59.000Z

114

Information Leakage via Electromagnetic Emanation and Effectiveness of Averaging Technique  

Science Conference Proceedings (OSTI)

It is well known that there is relationship between electromagnetic emanation and processing information in IT devices such as personal computers and smart cards. In this paper, we show how to estimate amount of information that is leaked as electromagnetic ... Keywords: Tempest, Channel capacity, electromagnetic emanation, averaging technique

Hidema Tanaka

2008-04-01T23:59:59.000Z

115

An exploration of the current state of information assurance education  

Science Conference Proceedings (OSTI)

Information Assurance and computer security are serious worldwide concerns of governments, industry, and academia. Computer security is one of the three new focal areas of the ACM/IEEE's Computer Science Curriculum update in 2008. This ACM/IEEE report ... Keywords: IA, education, guidelines, information assurance, standards

Stephen Cooper; Christine Nickell; Victor Piotrowski; Brenda Oldfield; Ali Abdallah; Matt Bishop; Bill Caelli; Melissa Dark; E. K. Hawthorne; Lance Hoffman; Lance C. Prez; Charles Pfleeger; Richard Raines; Corey Schou; Joel Brynielsson

2010-01-01T23:59:59.000Z

116

File:04TXAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:04TXAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04TXAStateExplorationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 79 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:03, 12 August 2013 Thumbnail for version as of 12:03, 12 August 2013 1,275 × 1,650, 2 pages (79 KB) Abergfel (Talk | contribs)

117

Exploration Cost and Time Metric | Open Energy Information  

Open Energy Info (EERE)

Exploration Cost and Time Metric Exploration Cost and Time Metric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Exploration Cost and Time Metric Agency/Company /Organization: NREL Sector: Energy Focus Area: Geothermal Phase: Prepare a Plan Topics: Background analysis, Baseline projection, Resource assessment Resource Type: Application prototype, Online calculator User Interface: Website Website: openei.org/apps/xct_metric/ Country: United States Web Application Link: openei.org/apps/xct_metric/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

File:04COAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

COAStateExplorationProcess.pdf COAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04COAStateExplorationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 40 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 10:32, 27 March 2013 Thumbnail for version as of 10:32, 27 March 2013 1,275 × 1,650 (40 KB) Dfitzger (Talk | contribs) 13:58, 1 February 2013 Thumbnail for version as of 13:58, 1 February 2013 1,275 × 1,650 (41 KB) Dfitzger (Talk | contribs) 11:22, 1 February 2013 Thumbnail for version as of 11:22, 1 February 2013 1,275 × 1,650 (40 KB) Dfitzger (Talk | contribs)

119

File:04AKAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

4AKAStateExplorationProcess.pdf 4AKAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage File:04AKAStateExplorationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 37 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 10:19, 18 October 2012 Thumbnail for version as of 10:19, 18 October 2012 1,275 × 1,650 (37 KB) Jnorris (Talk | contribs) 13:58, 11 September 2012 Thumbnail for version as of 13:58, 11 September 2012 1,275 × 1,650 (56 KB) Djenne (Talk | contribs) 10:37, 6 August 2012 Thumbnail for version as of 10:37, 6 August 2012 1,275 × 1,650 (44 KB) Jnorris (Talk | contribs)

120

Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona  

SciTech Connect

A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

1999-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Maps: Exploration, Resources, Reserves, and Production - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Maps: Exploration, Resources, Reserves, and Production Maps: Exploration, Resources, Reserves, and Production Summary Maps: Natural Gas in the Lower 48 States and North America Gas Production in Conventional Fields, Lower 48 States PDF (2.8 MB) JPG (2.5 MB) Gas Production in Offshore Fields, Lower 48 States PDF (0.4 MB) JPG (1.5 MB) Shale Gas and Oil Plays, Lower 48 States Updated 5/9/2011 PDF (1.6 MB) JPG (2.1 MB) Shale Gas and Oil Plays, North America Updated 5/9/2011 PDF (0.4 MB) JPG (1.2 MB) Major Tight Gas Plays, Lower 48 States PDF (1.6 MB) JPG (2.2 MB) Coalbed Methane Fields, Lower 48 States PDF (1.8 MB) JPG (2.7 MB) Oil- and Gas-Related Maps, Geospatial Data, and Geospatial Software Oil and Gas Field Maps in Portable Document Format Oil and Gas Field Data in Shapefile Format EIA's Oil and Gas Field Boundary Generation Scripts

122

Automatic tagging by exploring tag information capability and correlation  

Science Conference Proceedings (OSTI)

Automatic tagging can automatically label images and videos with semantic tags to significantly facilitate multimedia search and organization. However, most of existing tagging algorithms often don't differentiate between tags used to describe visual ... Keywords: automatic tagging, information capability, set correlation

Xiaoming Zhang; Zi Huang; Heng Tao Shen; Yang Yang; Zhoujun Li

2012-05-01T23:59:59.000Z

123

Definition: Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Data and Modeling Techniques Jump to: navigation, search Dictionary.png Data and Modeling Techniques Physical properties and other reservoir performance data are typically used to constrain conceptual and then quantitative models of individual reservoirs. The constraint on individual models is improved as the number of independent data types and sets increases. View on Wikipedia Wikipedia Definition Data modeling in software engineering is the process of creating a data model for an information system by applying formal data modeling techniques. Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Data_and_Modeling_Techniques&oldid=690516"

124

GRR/Section 4-UT-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-UT-a - State Exploration Process 4-UT-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-UT-a - State Exploration Process 04UTAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Utah Division of Water Rights Regulations & Policies Utah Geothermal Resource Conservation Act UC 73-22-6 NOI R655-1-1.1 Overview Information R655-1-2.1.2 Plan of Operations R655-1-2.1.6 Notice to other Agencies R655-1-4: Records Triggers None specified Click "Edit With Form" above to add content 04UTAStateExplorationProcess.pdf 04UTAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

125

New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods  

DOE Green Energy (OSTI)

The research during the first year of the project was focused on developing the foundations of a new geophysical technique for mineral exploration and mineral discrimination, based on electromagnetic (EM) methods. The proposed new technique is based on examining the spectral induced polarization effects in electromagnetic data using modern distributed acquisition systems and advanced methods of 3-D inversion. The analysis of IP phenomena is usually based on models with frequency dependent complex conductivity distribution. One of the most popular is the Cole-Cole relaxation model. In this progress report we have constructed and analyzed a different physical and mathematical model of the IP effect based on the effective-medium theory. We have developed a rigorous mathematical model of multi-phase conductive media, which can provide a quantitative tool for evaluation of the type of mineralization, using the conductivity relaxation model parameters. The parameters of the new conductivity relaxation model can be used for discrimination of the different types of rock formations, which is an important goal in mineral exploration. The solution of this problem requires development of an effective numerical method for EM forward modeling in 3-D inhomogeneous media. During the first year of the project we have developed a prototype 3-D IP modeling algorithm using the integral equation (IP) method. Our IE forward modeling code INTEM3DIP is based on the contraction IE method, which improves the convergence rate of the iterative solvers. This code can handle various types of sources and receivers to compute the effect of a complex resistivity model. We have tested the working version of the INTEM3DIP code for computer simulation of the IP data for several models including a southwest US porphyry model and a Kambalda-style nickel sulfide deposit. The numerical modeling study clearly demonstrates how the various complex resistivity models manifest differently in the observed EM data. These modeling studies lay a background for future development of the IP inversion method, directed at determining the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The new technology envisioned in this proposal, will be used for the discrimination of different rocks, and in this way will provide an ability to distinguish between uneconomic mineral deposits and the location of zones of economic mineralization and geothermal resources.

Michael S. Zhdanov

2005-03-09T23:59:59.000Z

126

An efficient technique for exploring register file size in ASIP synthesis  

Science Conference Proceedings (OSTI)

Performance estimation is a crucial operation which drives the design space exploration in Application Specific Instruction Set Processors (ASIP) synthesis. The usual approach to estimate performance is to do simulation. With increasing dimensions of ... Keywords: ASIP Synthesis, design space exploration, global analysis, instruction scheduling, liveness analysis, register file, register spill, retargetable estimation, storage exploration

Manoj Kumar Jain; M. Balakrishnan; Anshul Kumar

2002-10-01T23:59:59.000Z

127

New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods  

DOE Green Energy (OSTI)

The research during the first two years of the project was focused on developing the foundations of a new geophysical technique for mineral exploration and mineral discrimination, based on electromagnetic (EM) methods. The developed new technique is based on examining the spectral induced polarization effects in electromagnetic data using effective-medium theory and advanced methods of 3-D modeling and inversion. The analysis of IP phenomena is usually based on models with frequency dependent complex conductivity distribution. In this project, we have developed a rigorous physical/mathematical model of heterogeneous conductive media based on the effective-medium approach. The new generalized effective-medium theory of IP effect (GEMTIP) provides a unified mathematical method to study heterogeneity, multi-phase structure, and polarizability of rocks. The geoelectrical parameters of a new composite conductivity model are determined by the intrinsic petrophysical and geometrical characteristics of composite media: mineralization and/or fluid content of rocks, matrix composition, porosity, anisotropy, and polarizability of formations. The new GEMTIP model of multi-phase conductive media provides a quantitative tool for evaluation of the type of mineralization, and the volume content of different minerals using electromagnetic data. We have developed a 3-D EM-IP modeling algorithm using the integral equation (IE) method. Our IE forward modeling software is based on the contraction IE method, which improves the convergence rate of the iterative solvers. This code can handle various types of sources and receivers to compute the effect of a complex resistivity model. We have demonstrated that the generalized effective-medium theory of induced polarization (GEMTIP) in combination with the IE forward modeling method can be used for rock-scale forward modeling from grain-scale parameters. The numerical modeling study clearly demonstrates how the various complex resistivity models manifest differently in the observed EM data. These modeling studies lay a background for future development of the IP inversion method, directed at determining the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The new technology introduced in this project can be used for the discrimination between uneconomic mineral deposits and the location of zones of economic mineralization and geothermal resources.

Michael S. Zhdanov

2009-03-09T23:59:59.000Z

128

TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNIQUES AND CAPABILITIES TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * Source: 2 ID - EPU 105 (3 m, PM , 20-200 eV) EPU 56 (3 m PM, 200-2000 eV) * High-Resolution Angular Resolved Photoemission Scanning Microscopy (µ-ARPES): 20-1500 eV, 1 µm, < 1 meV, <0.1 o , 5-2000 K * Ambient Pressure Scanning Photoelectron Microscopy (AP- SPEM): 200-1800 eV, < 300 nm, 10 +3 Torr * Low-Energy Electron Microscopy & X-ray Photoemission Electron Microscopy (LEEM/XPEEM): 20 - 1800 eV, < 10 nm, high- transmission aberration correction µ-SP-ARPES: Momentum-resolved electronic structurelectronic bands of magnetic materials and non- magnetic materials with le of solids; spin-polarized arge spin-orbit interaction; a 1 µm spot from NSLS-

129

Some Aspects Of Exploration In Non-Volcanic Areas | Open Energy Information  

Open Energy Info (EERE)

Some Aspects Of Exploration In Non-Volcanic Areas Some Aspects Of Exploration In Non-Volcanic Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Some Aspects Of Exploration In Non-Volcanic Areas Details Activities (5) Areas (1) Regions (0) Abstract: Geothermal exploration in non-volcanic areas must above all rely on geophysical techniques to identify the reservoir, as it is unable to resort to volcanological methodologies. A brief description is therefore given of the contribution that can be obtained from certain types of geophysical prospectings. Author(s): Raffaello Nannini Published: Geothermics, 1986 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Aerial Photography (Nannini, 1986) Aeromagnetic Survey (Nannini, 1986) Ground Gravity Survey (Nannini, 1986)

130

Exploring early evaluation techniques of ambient health promoting devices in home environments of senior citizens living independently  

Science Conference Proceedings (OSTI)

In this paper, our goal is to explore different early evaluation techniques and their effectiveness for designing better ambient health- promoting devices for the elderly. One cannot assess the complete impact of these devices without full implementation ... Keywords: Wizard of Oz, ambient technology, early evaluation methods, health monitoring devices, senior citizens, storyboarding, technology probe

Rajasee Rege; Heekyoung Jung; William Hazelwood; Greg Orlov; Kay Connelly; Kalpana Shankar

2008-06-01T23:59:59.000Z

131

File:04MTAStateExplorationProcess (1).pdf | Open Energy Information  

Open Energy Info (EERE)

MTAStateExplorationProcess (1).pdf MTAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage File:04MTAStateExplorationProcess (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 61 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:07, 1 October 2012 Thumbnail for version as of 12:07, 1 October 2012 1,275 × 1,650 (61 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 4-MT-a - State Exploration Process

132

An exploration of the practice approach and its place in information science  

Science Conference Proceedings (OSTI)

A number of cognate disciplines, such as science and technology studies and media studies, appear to be turning to practice theories as a theoretical perspective. Using Schatzki's work as a starting point, this conceptual paper explores the practice ... Keywords: communities of practice, information behaviour, knowledge management, practice theories

Andrew M. Cox

2012-04-01T23:59:59.000Z

133

Combined MCDM techniques for exploring stock selection based on Gordon model  

Science Conference Proceedings (OSTI)

Basing on the Gordon model perspective and applying multiple criteria decision making (MCDM), this research explores the influential factors and relative weight of dividend, discount rate, and dividend growth rate. The purpose is to establish an investment ... Keywords: Analytical network process (ANP), Discount rate, Dividend, Dividend growth rate, Gordon model, Multiple criteria decision making (MCDM)

Wen-Shiung Lee; Gwo-Hshiung Tzeng; Jyh-Liang Guan; Kuo-Ting Chien; Juan-Ming Huang

2009-04-01T23:59:59.000Z

134

Hydroprobe | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe Hydroprobe Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hydroprobe Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Collection of ground water samples for geochemistry and geothermometry Thermal: Temperature measurements down to 50 m Dictionary.png Hydroprobe: An exploratory drilling technique focused on collecting geothermal fluid samples from shallow depths at relatively inexpensive costs and low environmental impact. Other definitions:Wikipedia Reegle Introduction A hydroprobe is a relitively inexpensive and easily portable truck mounted

135

Exploring and exploiting the limited utility of captions in recognizing intention in information graphics  

E-Print Network (OSTI)

This paper presents a corpus study that explores the extent to which captions contribute to recognizing the intended message of an information graphic. It then presents an implemented graphic interpretation system that takes into account a variety of communicative signals, and an evaluation study showing that evidence obtained from shallow processing of the graphics caption has a significant impact on the systems success. This work is part of a larger project whose goal is to provide sight-impaired users with effective access to information graphics.

Stephanie Elzer; Sandra Carberry; Daniel Chester; Seniz Demir; Nancy Green; Ingrid Zukerman; Keith Trnka

2005-01-01T23:59:59.000Z

136

Geographic Information System | Open Energy Information  

Open Energy Info (EERE)

Geographic Information System Geographic Information System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geographic Information System Details Activities (24) Areas (11) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data Techniques Information Provided by Technique Lithology: Any mapable information Stratigraphic/Structural: Any mapable information Hydrological: Any mapable information Thermal: Any mapable information Cost Information Low-End Estimate (USD): 70.007,000 centUSD 0.07 kUSD 7.0e-5 MUSD 7.0e-8 TUSD / hour Median Estimate (USD): 80.008,000 centUSD 0.08 kUSD 8.0e-5 MUSD 8.0e-8 TUSD / hour High-End Estimate (USD): 150.0015,000 centUSD

137

Magnetotellurics | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotellurics Details Activities (39) Areas (36) Regions (5) NEPA(8) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 522.2252,222 centUSD

138

Passive seismic techniques for geothermal exploration. Quarterly technical progress report, December 1, 1976-February 28, 1977  

DOE Green Energy (OSTI)

Efforts concentrated on the development and verification of forward modeling techniques and the processing and analysis of the teleseismic and gravity data bases for the Imperial Valley. Present capabilities include the forward modeling of surface observations of teleseismic travel-time residuals and gravity anomalies associated with three-dimensional variations in near-surface seismic velocities and densities. Considerable time was spent devising test cases that both verify the modeling programs and provide insight for the discretization scheme to be used for modeling the Imperial Valley. The teleseismic travel-time data base originally acquired during the first quarter of this project was subjected to various statistical tests for error analysis.

Savino, J.M.; Goff, R.C.; Jordan, T.H.; Lambert, D.G.

1977-03-01T23:59:59.000Z

139

Evaluation of thermal remote sensing as a low-cost regional geothermal exploration technique in New Mexico. Final report  

DOE Green Energy (OSTI)

Airborne and satellite borne thermal infrared scanner data were analyzed for application in the exploration of geothermal resources in New Mexico. The location for this study was the East Mesa Geothermal Field near Las Cruces, New Mexico. Primary sensor was the Thermal Infrared Multispectral Scanner (TIMS) which obtained data at 10-meter resolution. Additional data for comparison came from the Heat Capacity Mapping Mission (HCMM) satellite which provided data at 600-meter resolution. These data were compared to the soils, vegetation, and geology of the area, as well as borehole temperature data in an attempt to explain temperature patterns and anomalies. Thermal infrared scanner data were found to be too sensitive to solar-induced temperature anomalies to directly reflect the presence of subsurface geothermal anomalies but may provide valuable supporting information for a geothermal exploration program. 15 refs., 16 figs., 3 tabs.

Inglis, M.; Budge, T.K.

1985-03-01T23:59:59.000Z

140

Exploring Volunteered Geographic Information (VGI) for Emergency Management: Toward a Wiki GIS Framework  

E-Print Network (OSTI)

The past three years have witnessed unprecedented growth of user-generated volunteered geographic information (VGI) on the Web. Although scholars, decision makers, and citizens have recognized the potential value of VGI in emergency management, there exists no rigorous study on the availability, quality, and feasibility of VGI for applications related to emergency management. This dissertation applies methodologies of GIScience and computer science to present an overview of VGI and explore its value in emergency management with the goal of developing a wiki GIS approach for community emergency preparedness. This dissertation research concludes that VGI and wiki GIS represent new development in public participation in the production and use of geographic information. In emergency management, VGI and wiki GIS suggest a new approach to incorporate the general public in emergency response activities. By incorporating VGI in emergency management, official agencies and the general public gain better situational awareness in emergency management.

Xu, Chen

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exploratory Boreholes | Open Energy Information  

Open Energy Info (EERE)

Exploratory Boreholes Exploratory Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Boreholes Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a borehole Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Boreholes: An exploratory borehole is drilled for the purpose of identifying the

142

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

143

Chemical logging- a geothermal technique | Open Energy Information  

Open Energy Info (EERE)

logging- a geothermal technique logging- a geothermal technique Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical logging- a geothermal technique Details Activities (1) Areas (1) Regions (0) Abstract: Chemical logging studies conducted at the Department of Energy's Raft River Geothermal Test Site in south central Idaho resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones 15 to 120 m before drill penetration. INEL-1 at the Idaho National Engineering Laboratory site in

144

Geochemical Data Analysis | Open Energy Information  

Open Energy Info (EERE)

Geochemical Data Analysis Geochemical Data Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Data Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Data Analysis: No definition has been provided for this term. Add a Definition References No exploration activities found. Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Geochemical_Data_Analysis&oldid=594157" Categories: Geochemical Techniques Exploration Techniques

145

Time-Domain Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

Time-Domain Electromagnetics Time-Domain Electromagnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Time-Domain Electromagnetics Details Activities (10) Areas (10) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Detection of rock units or geological features with contrasting apparent resistivity. Stratigraphic/Structural: Structural information may be inferred from TDEM data. Hydrological: Hydrological information such as depth to groundwater table may be determined. Thermal: Extent of hydrothermal alteration mineralogy may be inferred. Cost Information

146

Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Flow Test Details Activities (38) Areas (33) Regions (1) NEPA(3) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Flow tests provide information on permeability, recharge rates, reservoir pressures, fluid chemistry, and scaling. Thermal: Flow tests can measure temperature variations with time to estimate characteristics about the heat source. Dictionary.png Flow Test: Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the

147

Aeromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Aeromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Aeromagnetic Survey Details Activities (26) Areas (19) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: map structure, basin fill thickness, and magnetic mineral concentrations in ore bodies Hydrological: Thermal: Cost Information Low-End Estimate (USD): 22.532,253 centUSD

148

Telluric Survey | Open Energy Information  

Open Energy Info (EERE)

Telluric Survey Telluric Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Telluric Survey Details Activities (3) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 522.2252,222 centUSD

149

Self Potential | Open Energy Information  

Open Energy Info (EERE)

Self Potential Self Potential Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Self Potential Details Activities (20) Areas (20) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: Detection and tracing of faults. Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface. Thermal: Location of near-surface thermal anomalies: thermoelectric coupling processes due to variations in temperature in the subsurface.

150

Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

Analytical Modeling Analytical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Analytical Modeling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Analytical Modeling: A mathematical modeling technique used for simulating, explaining, and making predictions about the mechanisms involved in complex physical processes. Other definitions:Wikipedia Reegle Introduction Analytical models are mathematical models that have a closed form solution. Or in other words the solution to the equations used to describe changes in

151

Injectivity Test | Open Energy Information  

Open Energy Info (EERE)

Injectivity Test Injectivity Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Injectivity Test Details Activities (7) Areas (6) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Permeability of the well Thermal: Dictionary.png Injectivity Test: A well testing technique conducted upon completion of a well. Water is pumped into the well at a constant rate until a stable pressure is reached then the pump is turned off and the rate at which pressure decreases is measured. The pressure measurements are graphed and well permeability can

152

Core Holes | Open Energy Information  

Open Energy Info (EERE)

Core Holes Core Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Holes Details Activities (8) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Core holes are drilled to identify lithology and mineralization Stratigraphic/Structural: Retrieved samples can be used to identify fracture networks or faults Hydrological: Thermal: Thermal conductivity measurements can be done on retrieved samples. Dictionary.png Core Holes: A core hole is a well that is drilled using a hallow drill bit coated with synthetic diamonds for the purposes of extracting whole rock samples from

153

GRR/Section 4-OR-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-OR-a - State Exploration Process GRR/Section 4-OR-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-a - State Exploration Process 04ORAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Oregon State Department of Geology and Mineral Industries Oregon Division of State Lands Regulations & Policies OAR 141-075-0130: Exploration Permit Required ORS 517.705: Exploration Permit Regulations Triggers None specified Click "Edit With Form" above to add content 04ORAStateExplorationProcess (1).pdf 04ORAStateExplorationProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _

154

GRR/Section 4-WA-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-WA-a - State Exploration Process GRR/Section 4-WA-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-WA-a - State Exploration Process 4-WA-a State Exploration Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Natural Resources Regulations & Policies Geothermal Act 78.60 RCW Geothermal Rules 332-17 WAC Triggers None specified Geothermal exploration in Washington requires a Geothermal Exploration Permit from the Washington State Department of Natural Resources (WSDNR) for invasive exploration or drilling. Operations that require an exploration or drilling permit will also require the developer to initiate the State Environmental Policy Act (SEPA). In Washington geothermal resources are regulated under Chapter 78.60 RCW

155

GRR/Section 4-NV-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-NV-a - State Exploration Process 4-NV-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-a - State Exploration Process 04NVAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Nevada Division of Minerals Nevada Department of Wildlife Nevada Division of Environmental Protection Regulations & Policies NAC 534A.190: Individual Geothermal Well NAC 534A.193: Geothermal Project Area Triggers None specified Click "Edit With Form" above to add content 04NVAStateExplorationProcess (1).pdf 04NVAStateExplorationProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative ____ 4-NV-a.1 - Is the Proposed Activity Pre-Drilling Exploration or Exploration

156

Geophysical Methods | Open Energy Information  

Open Energy Info (EERE)

Geophysical Methods Geophysical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Methods Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Geophysical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geophysical Methods: Methods used to measure the physical properties of the earth Other definitions:Wikipedia Reegle Introduction There are five main types of geophysical methods used for geothermal resource discovery: Seismic Methods (active and passive) Electrical Methods Magnetic Methods Gravity Methods Radiometric Methods Seismic methods dominates oil and gas exploration, and probably accounts

157

GRR/Section 4-CO-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-CO-a - State Exploration Process 4-CO-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-CO-a - State Exploration Process 04COAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies SEO Geothermal Rules Triggers None specified Click "Edit With Form" above to add content 04COAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the geothermal exploration process in Colorado. As a matter of policy, all geothermal exploration, well construction, flow

158

Conceptual Model | Open Energy Information  

Open Energy Info (EERE)

Conceptual Model Conceptual Model Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Conceptual Model Details Activities (17) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Hydrothermal fluid flow characteristics, up-flow patterns Thermal: Temperature and pressure extrapolation throughout reservoir, heat source characteristics Dictionary.png Conceptual Model:

159

Image Logs | Open Energy Information  

Open Energy Info (EERE)

Image Logs Image Logs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Image Logs Details Activities (2) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, grain size, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip, thickness, and geometry of rock strata in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Locate zones of aquifer inflow/outflow Thermal:

160

Chemical Logging | Open Energy Information  

Open Energy Info (EERE)

Chemical Logging Chemical Logging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Chemical Logging Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Presence and geochemical composition of fluid producing zones Thermal: Calcium-alkalinity ratios versus depth assist in defining warm and hot water aquifers Dictionary.png Chemical Logging: Chemical logging produces a chemical profile of the formation fluid within a well based on the measurement of changes in the chemical composition of the drilling fluid during drilling operations.

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Stress Test | Open Energy Information  

Open Energy Info (EERE)

Stress Test Stress Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stress Test Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Fracture distribution and ambient tectonic stresses Hydrological: Fluid flow direction Thermal: Dictionary.png Stress Test: A geologic stress analysis based on images of a borehole wall and hydraulic fracturing tests to characterize fracture orientations and stress magnitudes in order to identify stress planes and zones of potential permeability. Other definitions:Wikipedia Reegle

162

Numerical Modeling | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling Numerical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Numerical Modeling Details Activities (8) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Dictionary.png Numerical Modeling: A computer model that is designed to simulate and reproduce the mechanisms of a particular system. Other definitions:Wikipedia Reegle

163

Reflection Survey | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Reflection Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Reflection Survey Details Activities (35) Areas (22) Regions (2) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Active Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

164

Tracer Testing | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing Tracer Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Tracer Testing Details Activities (9) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Fracture zones and formation permeability Hydrological: Flow rates, flow direction, hydrologic connections, storativity Thermal: Dictionary.png Tracer Testing: A method based on injecting chemical tracers into the reservoir and monitoring how long it takes and where those tracers travel. The purpose is to model subsurface hydrothermal flow characteristics.

165

Thermochronometry | Open Energy Information  

Open Energy Info (EERE)

Thermochronometry Thermochronometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermochronometry Details Activities (6) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Thermal history of area, rate of cooling, age that minerals reached closure temperature Dictionary.png Thermochronometry: The study of the thermal evolution of a mineral, rock, or geologic region using radiometric dating of two or more different minerals which have different closure temperatures Other definitions:Wikipedia Reegle

166

GRR/Section 4-ID-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-ID-a - State Exploration Process 4-ID-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-ID-a - State Exploration Process 04IDAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Triggers None specified Click "Edit With Form" above to add content 04IDAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-ID-a.1 - Has the Environmental Process been Completed for Exploration? If an EA/EIS has not yet been completed for this portion of the project, the developer must first complete the applicable environmental process.

167

GRR/Section 4-FD-d - BLM Exploration Operations | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-FD-d - BLM Exploration Operations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-FD-d - BLM Exploration Operations 04-FD-d - BLM Exploration Operations .pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 43 CFR 3252 43 CFR 3253. Triggers None specified Exploration operations on Bureau of Land Management (BLM) managed public lands must comply with BLM rules for conducting exploration operations 43 CFR 3252 and require a completion report at the conclusion of exploration

168

Using Data Mining Techniques to Address Critical Information Exchange Needs in Disaster Affected  

E-Print Network (OSTI)

disaster information in the context of disaster management phases: Preparation, Response, RecoveryUsing Data Mining Techniques to Address Critical Information Exchange Needs in Disaster Affected Management and Disaster Recovery have gained immense importance in the wake of recent man and nature

Chen, Shu-Ching

169

Exploring the role of medical and consumer literature in the diffusion of information related to hormone therapy for menopausal women  

Science Conference Proceedings (OSTI)

Using content analysis, this study explored the role of the literature in the diffusion of new information; the influence of the literature on the innovation-decision process; and how the concept of tie strength can contribute to a greater understanding ...

Shelagh K. Genuis

2006-05-01T23:59:59.000Z

170

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

171

Northern Nevada Geothermal Exploration Strategy Analysis | Open Energy  

Open Energy Info (EERE)

Nevada Geothermal Exploration Strategy Analysis Nevada Geothermal Exploration Strategy Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Northern Nevada Geothermal Exploration Strategy Analysis Details Activities (1) Areas (1) Regions (0) Abstract: The results of exploration techniques applied to geothermal resource investigations in northern Nevada were evaluated and rated by seven investigators involved in the work. A quantitative rating scheme was used to obtain estimates of technique effectiveness. From survey cost information we also obtained and compared cost-effectiveness estimates for the various techniques. Effectiveness estimates were used to develop an exploration strategy for the area. However, because no deep confirmatory drilling has been done yet, the technique evaluations and exploration

172

Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Audio MT Controlled Source Audio MT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Audio MT Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,866.44186,644 centUSD

173

Microgravity-Hybrid Microgravity | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Microgravity-Hybrid Microgravity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Microgravity-Hybrid Microgravity Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Ground subsidence can be mapped using microgravity Hydrological: Monitoring net mass changes of a geothermal reservoir due to production and reinjection processes Thermal: Changes in liquid density due to temperature changes in the reservoir Cost Information Low-End Estimate (USD): 50.005,000 centUSD

174

Audio-Magnetotellurics | Open Energy Information  

Open Energy Info (EERE)

Audio-Magnetotellurics Audio-Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Audio-Magnetotellurics Details Activities (4) Areas (4) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,118.26111,826 centUSD

175

GRR/Section 4-MT-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-MT-a - State Exploration Process GRR/Section 4-MT-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-MT-a - State Exploration Process 04MTAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Board of Oil and Gas Conservation Regulations & Policies ARM 17.20.202: Geothermal Exploration Plan ARM 17.20.203: Initial Field Report ARM 17.20.204: Periodic Field Report ARM 17.20.205: Final Field Report ARM 17.20.206: Geological Report MCA 82-1-103: Notice of Intent MCA 82-1-104: Bond MCA 82-1-105: Permit Issuance MCA 82-1-106: NOI Forwarded MCA 82-1-107: Notice to Surface Owner MCA 82-1-108: Record of Work Performed Triggers

176

GRR/Section 4-TX-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-TX-a - State Exploration Process 4-TX-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-TX-a - State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Texas Parks and Wildlife Department Regulations & Policies 16 TAC 3.5: Application to Drill, Deepen, Reenter, or Plug Back 16 TAC 3.7: Strata to Be Sealed Off 16 TAC 3.79: Definitions 16 TAC 3.100: Seismic Holes and Core Holes 31 TAC 10.2: Prospect Permits on State Lands 31 TAC 155.40: Definitions 31 TAC 155.42: Mining Leases on Properties Subject to Prospect 31 TAC 9.11: Geophysical and Geochemical Exploration Permits Triggers None specified

177

Paleomagnetic Measurements | Open Energy Information  

Open Energy Info (EERE)

Paleomagnetic Measurements Paleomagnetic Measurements Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Paleomagnetic Measurements Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Can determine detailed information about rock composition and morphology Stratigraphic/Structural: Historic structure and deformation of land Hydrological: Thermal: Dictionary.png Paleomagnetic Measurements: Paleomagnetism is the study of remnant magnetization in rocks. Paleomagnetic measurements are measurements of the magnetic properties in rocks; these properties are locked in during the formation of the rock. A

178

Geographic Information System At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful...

179

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique...

180

Active Sensors | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Active Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Sensors Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Remote Sensing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement, delineate faults, create high-resolution DEMS, quantify fault kinemaics, develop lineament maps, Geophysical Monitoring Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png Active Sensors: Sensors that emit their own source of energy then measure the

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

182

Passive Sensors | Open Energy Information  

Open Energy Info (EERE)

Passive Sensors Passive Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Sensors Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Remote Sensing Techniques Information Provided by Technique Lithology: Mineral maps can be used to show the presence of hydrothermal minerals and mineral assemblages Stratigraphic/Structural: Map structures/faults and regional strain rates Hydrological: Map surface water features Thermal: Map surface temperatures Dictionary.png Passive Sensors: Sensors that measure energy which is naturally available in the environment. Other definitions:Wikipedia Reegle

183

GRR/Section 4-AK-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-AK-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-a - State Exploration Process 04AKAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

184

Spontaneous Potential Well Log | Open Energy Information  

Open Energy Info (EERE)

Spontaneous Potential Well Log Spontaneous Potential Well Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Spontaneous Potential Well Log Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: -Formation bed thickness and boundaries -Detection and tracing of faults -Permeability and porosity Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface.

185

GRR/Section 4-CA-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-CA-a - State Exploration Process GRR/Section 4-CA-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-CA-a - State Exploration Process 04CAAExploration.pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Regulations & Policies California Division of Oil, Gas, and Geothermal Resources (DOGGR) laws are found in Chapter 4 of Divison 3 of the California Public Resources Code. California Division of Oil, Gas, and Geothermal Resources regulations are found in the California Code of Regulations Title 14, Division 2, Chapter 4 California Laws for Conservation of Geothermal Resources Triggers None specified Click "Edit With Form" above to add content

186

GRR/Section 4-OR-d - Exploration Injection Permit | Open Energy Information  

Open Energy Info (EERE)

4-OR-d - Exploration Injection Permit 4-OR-d - Exploration Injection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-d - Exploration Injection Permit 04ORDExplorationInjectionPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-044-0012: Authorization of Underground Injection Triggers None specified Click "Edit With Form" above to add content 04ORDExplorationInjectionPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-OR-d.1 - Is this New Injection Activity or a Renewal? The developer must follow one of two different procedures if the developer

187

Data Collection and Mapping | Open Energy Information  

Open Energy Info (EERE)

Data Collection and Mapping Data Collection and Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Collection and Mapping Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Field Techniques Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Bulk and trace element analysis of rocks, minerals, and sediments. Identify and document surface geology and mineralogy. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Locates active faults in the area of interest. Map fault and fracture patterns, kinematic information

188

Exploration of volcanic geothermal energy resources based on rheological techniques. First technical status report, April 1, 1978-June 30, 1978  

DOE Green Energy (OSTI)

Initial steps in a physical analytic and field study of the general applicability of the rheidity sensing techniques in the Oregon-Washington Cascade region are listed. (MHR)

Bodvarsson, G.

1978-01-01T23:59:59.000Z

189

Radon emanometry as a geothermal exploration technique; theory and an example from Roosevelt Hot Springs KGRA, Utah  

DOE Green Energy (OSTI)

Four radon survey lines were established over the geothermal field of Roosevelt Hot Springs KGRA. The radon flux was determined using the Westinghouse Alpha 2 system which measures the flux at each station over a period of 30 days using an alpha-sensitive dosimeter. The method was very successful in locating mapped fault systems that communicate with the structurally controlled geothermal reservoir. It is concluded that this method, coupled with a structural analysis, can be useful as a site-specific exploration tool, particularly in locating exploration holes in known geothermal areas.

Nielson, D.L.

1978-12-01T23:59:59.000Z

190

Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes  

SciTech Connect

This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the genetic information associated with the various pathogens. In addition, it has been determined that a suitable information barrier could be applied to this technology when the verification regime has been defined. Finally, the report posits a path forward for additional development of information barriers in a biological weapons verification regime. This path forward has shown that a new analysis approach coined as Information Loss Analysis might need to be pursued so that a numerical understanding of how information can be lost in specific measurement systems can be achieved.

Luke, S J

2011-12-20T23:59:59.000Z

191

Application of Information Theory to Modeling Exploration and Detecting Protein Coevolution  

E-Print Network (OSTI)

2.3 Bayesian inference learning . . . . . . . . . . . . . .missing information. Bayesian inference learning As an agentas priors for performing Bayesian inference. I will consider

Little, Daniel Ying-Jeh

2013-01-01T23:59:59.000Z

192

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

193

Teleseismic-Seismic Monitoring | Open Energy Information  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring Teleseismic-Seismic Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Teleseismic-Seismic Monitoring Details Activities (33) Areas (18) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Passive Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Map geothermal reservoir geometry. Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

194

Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Vertical Seismic Profiling Vertical Seismic Profiling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Seismic Profiling Details Activities (4) Areas (3) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

195

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

196

Cation Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Cation Geothermometers Cation Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cation Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Used to estimate reservoir temperatures. Dictionary.png Cation Geothermometers: No definition has been provided for this term. Add a Definition Introduction Some experts have stated that the factor that changes the risk assessment of a geothermal prospect the fastest is obtaining attractive chemical confirmation (geothermometry, gas analyses) that a thermal resource exists

197

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

198

Multicomponent Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Multicomponent Geothermometers Multicomponent Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Multicomponent Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Multicomponent Geothermometers: The multicomponent geothermometry method consists of using full chemical analyses of water samples to compute the saturation indices (log(Q/K)) of reservoir minerals over a range of temperatures. The saturation indices are graphed as a function of temperature, and the clustering of log(Q/K) curves

199

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

200

Silica Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Silica Geothermometers Silica Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Silica Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Used to estimate reservoir temperatures. Dictionary.png Silica Geothermometers: No definition has been provided for this term. Add a Definition Introduction Some experts have stated that the factor that changes the risk assessment of a geothermal prospect the fastest is obtaining attractive chemical confirmation (geothermometry, gas analyses) that a thermal resource exists

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water Sampling Details Activities (51) Areas (45) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Water sampling is done to characterize the geothermal system under investigation. A geothermal water typically has a unique chemical signature

202

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

203

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

204

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

205

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

206

Fault Mapping | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Fault Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fault Mapping Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Locates active faults in the area of interest Hydrological: Can reveal whether faults are circulating hydrothermal fluids Thermal: Dictionary.png

207

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

208

Extent of private information disclosure on online social networks: An exploration of Facebook mobile phone users  

Science Conference Proceedings (OSTI)

The present study adopts the Communication Privacy Management theory and investigates the factors that influence the extent of private information disclosure of Facebook mobile phone users. Using a sample size of 488 adult mobile phone users, the study ... Keywords: Facebook, Information disclosure, Mobile phone users, Older adults, Online privacy, Online social networks

Victoria Kisekka, Sharmistha Bagchi-Sen, H. Raghav Rao

2013-11-01T23:59:59.000Z

209

File:04-FD-d - BLM Exploration Operations .pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:04-FD-d - BLM Exploration Operations .pdf Jump to: navigation, search File File history File usage Metadata File:04-FD-d - BLM Exploration Operations .pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 22 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:14, 11 December 2013 Thumbnail for version as of 17:14, 11 December 2013 1,275 × 1,650 (22 KB) Alevine (Talk | contribs)

210

GRR/Section 4-HI-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-HI-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-HI-a - State Exploration Process 04HIAExplorationPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Engineering Division Regulations & Policies Hawaii Revised Statute 182-6 Hawaii Administrative Rules Title 13, Chapter 183 Triggers None specified Click "Edit With Form" above to add content 04HIAExplorationPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

211

GRR/Section 4-FD-a - Exploration Permit BLM | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GRR/Section 4-FD-a - Exploration Permit BLM < GRR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Resource Area: Details Technical Info Geology Power Plants (70 Projects (56 Activities (1574 Geothermal Area Profile Location Exploration Region GEA Development Phase 2008 USGS Resource Estimate Mean Reservoir Temp Estimated Reservoir Volume Mean Capacity Power Production Profile Gross Production Capacity 300.7 MW300,700 kW 300,700,000 W 300,700,000,000 mW 0.301 GW 3.007e-4 TW Net Production Capacity 206,358 MW206,358,000 kW 206,358,000,000 W 206,358,000,000,000 mW 206.358 GW

212

File:04NVAStateExplorationProcess (1).pdf | Open Energy Information  

Open Energy Info (EERE)

NVAStateExplorationProcess (1).pdf NVAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage File:04NVAStateExplorationProcess (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 121 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 10:06, 15 October 2012 Thumbnail for version as of 10:06, 15 October 2012 1,275 × 1,650, 2 pages (121 KB) Dfitzger (Talk | contribs) 13:25, 23 July 2012 Thumbnail for version as of 13:25, 23 July 2012 1,275 × 1,650, 2 pages (84 KB) Dklein2012 (Talk | contribs) 10:29, 12 July 2012 Thumbnail for version as of 10:29, 12 July 2012 1,275 × 1,650 (54 KB) Jnorris (Talk | contribs)

213

File:04ORAStateExplorationProcess (1).pdf | Open Energy Information  

Open Energy Info (EERE)

ORAStateExplorationProcess (1).pdf ORAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage File:04ORAStateExplorationProcess (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 90 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:16, 3 October 2012 Thumbnail for version as of 14:16, 3 October 2012 1,275 × 1,650, 2 pages (90 KB) Dfitzger (Talk | contribs) 13:02, 28 September 2012 Thumbnail for version as of 13:02, 28 September 2012 1,275 × 1,650, 2 pages (83 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file.

214

File:04ExplorationPermittingOverview (3).pdf | Open Energy Information  

Open Energy Info (EERE)

ExplorationPermittingOverview (3).pdf ExplorationPermittingOverview (3).pdf Jump to: navigation, search File File history File usage Metadata File:04ExplorationPermittingOverview (3).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 41 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:25, 12 July 2013 Thumbnail for version as of 12:25, 12 July 2013 1,275 × 1,650 (41 KB) Abergfel (Talk | contribs) 15:27, 20 May 2013 Thumbnail for version as of 15:27, 20 May 2013 1,275 × 1,650 (58 KB) Dfitzger (Talk | contribs) 13:26, 30 October 2012 Thumbnail for version as of 13:26, 30 October 2012 1,275 × 1,650 (54 KB) Dklein2012 (Talk | contribs)

215

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

216

Direct-Current Resistivity Survey | Open Energy Information  

Open Energy Info (EERE)

Direct-Current Resistivity Survey Direct-Current Resistivity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Direct-Current Resistivity Survey Details Activities (65) Areas (34) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock type, mineral and clay content may be inferred. Stratigraphic/Structural: Determination of fracture zones, faults, depth to groundwater aquifers. Hydrological: Resistivity influenced by porosity, permeability, fluid saturation, fluid type and phase state of the pore water. Thermal: Resistivity influenced by temperature.[1] Cost Information

217

From the vendor's perspective: exploring the value proposition in information technology outsourcing  

Science Conference Proceedings (OSTI)

To date, most research on information technology (IT) outsourcing concludes that firms decide to outsource IT services because they believe that outside vendors possess production cost advantages. Yet it is not clear whether vendors can provide production ... Keywords: IS core competencies, IS project management, IS staffing issues, case study, complementarity in organizational design, management of computing and IS, outsourcing of IS, systems maintenance

Natalia Levina; Jeanne W. Ross

2003-09-01T23:59:59.000Z

218

Vertical Electrical Sounding Configurations | Open Energy Information  

Open Energy Info (EERE)

Vertical Electrical Sounding Configurations Vertical Electrical Sounding Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Electrical Sounding Configurations Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Direct-Current Resistivity Survey Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

219

Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

Electrical Profiling Configurations Electrical Profiling Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Profiling Configurations Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Direct-Current Resistivity Survey Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

220

Magnetotelluric Methods | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Methods Magnetotelluric Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Magnetotelluric Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques DOI-BLM-NV-C010-2012-0070-CX CX US Navy Geothermal Program Office Dixie Valley Geothermal Area BLM BLM Carson City District Office BLM Stillwater Field Office BLM BLM Geothermal/Exploration Reflection Survey

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gravity Methods | Open Energy Information  

Open Energy Info (EERE)

Gravity Methods Gravity Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Gravity Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques NVN-084630 CU Vulcan Energy Patua Geothermal Area BLM Nevada State Office BLM Winnemucca District Office BLM Humboldt River Field Office BLM BLM Geothermal/Exploration Gravity Methods

222

Gamma Log | Open Energy Information  

Open Energy Info (EERE)

Gamma Log Gamma Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gamma Log Details Activities (6) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: provides information on changes in rock type near the wellbore from changes in measured gamma radiation Stratigraphic/Structural: using multiple gamma logs over an area, the depth to the sandstone and shale layers can be correlated over larger areas Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.2525 centUSD 2.5e-4 kUSD 2.5e-7 MUSD 2.5e-10 TUSD / foot Median Estimate (USD): 0.3838 centUSD

223

Refraction Survey | Open Energy Information  

Open Energy Info (EERE)

Refraction Survey Refraction Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Refraction Survey Details Activities (16) Areas (13) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Active Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Can provide information on crustal thickness, depth to basement. Hydrological: Thermal: Cost Information Low-End Estimate (USD): 6,206.80620,680 centUSD 6.207 kUSD 0.00621 MUSD 6.2068e-6 TUSD / mile Median Estimate (USD): 10,877.331,087,733 centUSD 10.877 kUSD 0.0109 MUSD 1.087733e-5 TUSD / mile

224

Neutron Log | Open Energy Information  

Open Energy Info (EERE)

Neutron Log Neutron Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Neutron Log Details Activities (4) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: if used in conjunction with other logs, this technique can provide information on the rock type and the porosity Stratigraphic/Structural: Corelation of rock units Hydrological: Estimate of formation porosity Thermal: Dictionary.png Neutron Log: The neutron log responds primarily to the amount of hydrogen in the formation which is contained in oil, natural gas, and water. The amount of hydrogen can be used to identify zones of higher porosity.

225

Developing an energy-saving and case-based reasoning information agent with Web service and ontology techniques  

Science Conference Proceedings (OSTI)

Web service and ontology techniques are presented herein for supporting an energy-saving and case-based reasoning information agent. The proposed system is the first energy-saving and case-based reasoning information agent with Web service and ontology ... Keywords: Case-based reasoning agents, Energy-saving information systems, Ontology, Web services

Sheng-Yuan Yang

2013-07-01T23:59:59.000Z

226

Slim Holes | Open Energy Information  

Open Energy Info (EERE)

Slim Holes Slim Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Slim Holes Details Activities (30) Areas (24) Regions (1) NEPA(6) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: If core is collected Stratigraphic/Structural: If core is collected Hydrological: Fluid flow and water chemistry Thermal: Thermal gradient or bottom hole temperature Cost Information Low-End Estimate (USD): 100.0010,000 centUSD 0.1 kUSD 1.0e-4 MUSD 1.0e-7 TUSD / foot Median Estimate (USD): 169.8916,989 centUSD 0.17 kUSD 1.6989e-4 MUSD 1.6989e-7 TUSD / foot High-End Estimate (USD): 200.0020,000 centUSD

227

Thermal Ion Dispersion | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Thermal Ion Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Thermal Ion Dispersion: Thermal Ion Dispersion (TID) is a method used by the precious-metals industry to determine the movement of hot, mineral-bearing waters through rocks, gravels, and soils. The survey involves collection of soil samples

228

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

229

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

230

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally

231

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

232

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

233

The use of remote sensing and Geographic Information System (GIS) techniques, to interpret savanna ecosystem patterns in the Sabi Sand Game Reserve, Mpumalanga province.  

E-Print Network (OSTI)

??This thesis explores techniques which ultimately strive to optimize production systems in rangeland areas of southern Africa. By linking spatially significant, satellite derived data to (more)

Fortescue, Alexander Kenneth John

1997-01-01T23:59:59.000Z

234

SRT | Open Energy Information  

Open Energy Info (EERE)

SRT SRT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: SRT Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: high-resolution DEMs Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.000 centUSD 0 kUSD 0 MUSD 0 TUSD / process Median Estimate (USD): 0.000 centUSD 0 kUSD 0 MUSD 0 TUSD / process High-End Estimate (USD): 0.000 centUSD 0 kUSD 0 MUSD 0 TUSD / process Time Required Low-End Estimate: 2 days0.00548 years 48 hours 0.286 weeks 0.0657 months / job Median Estimate: 2 days0.00548 years 48 hours 0.286 weeks

235

FLIR | Open Energy Information  

Open Energy Info (EERE)

FLIR FLIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: FLIR Details Activities (2) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Cost Information Low-End Estimate (USD): 241.3524,135 centUSD 0.241 kUSD 2.4135e-4 MUSD 2.4135e-7 TUSD / mile Median Estimate (USD): 643.6064,360 centUSD 0.644 kUSD 6.436e-4 MUSD 6.436e-7 TUSD / mile High-End Estimate (USD): 1,609.00160,900 centUSD 1.609 kUSD 0.00161 MUSD 1.609e-6 TUSD / mile Time Required Low-End Estimate: 0.25 days6.844627e-4 years

236

Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Geothermometry Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geothermometry Details Activities (65) Areas (48) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: used to estimate reservoir temperatures Cost Information Low-End Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample Median Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample High-End Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample Dictionary.png Geothermometry:

237

Radiometrics | Open Energy Information  

Open Energy Info (EERE)

Radiometrics Radiometrics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Radiometrics Details Activities (5) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Primary use is in mapping potassium alterations Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 8.04804 centUSD 0.00804 kUSD 8.04e-6 MUSD 8.04e-9 TUSD / mile Median Estimate (USD): 4,609.55460,955 centUSD 4.61 kUSD 0.00461 MUSD 4.60955e-6 TUSD / mile High-End Estimate (USD): 16,000.001,600,000 centUSD 16 kUSD 0.016 MUSD 1.6e-5 TUSD / mile Time Required Low-End Estimate: 0.05 days1.368925e-4 years

238

SWIR | Open Energy Information  

Open Energy Info (EERE)

SWIR SWIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: SWIR Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / subject Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / subject High-End Estimate (USD): 6,000.00600,000 centUSD 6 kUSD 0.006 MUSD 6.0e-6 TUSD / subject Time Required Low-End Estimate: 1 days0.00274 years

239

Macrophotography | Open Energy Information  

Open Energy Info (EERE)

Macrophotography Macrophotography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Macrophotography Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Identify and document surface geology and mineralogy Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 220.0022,000 centUSD 0.22 kUSD 2.2e-4 MUSD 2.2e-7 TUSD / hour Median Estimate (USD): 220.0022,000 centUSD 0.22 kUSD 2.2e-4 MUSD 2.2e-7 TUSD / hour High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD 5.0e-7 TUSD / hour Time Required

240

Acoustic Logs | Open Energy Information  

Open Energy Info (EERE)

Acoustic Logs Acoustic Logs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Acoustic Logs Details Activities (7) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: determine porosity of layers Stratigraphic/Structural: map discontinuities to determine their orientation. Hydrological: Thermal: Cost Information Low-End Estimate (USD): 1.00100 centUSD 1.0e-3 kUSD 1.0e-6 MUSD 1.0e-9 TUSD / foot Median Estimate (USD): 4.62462 centUSD 0.00462 kUSD 4.62e-6 MUSD 4.62e-9 TUSD / foot High-End Estimate (USD): 16.001,600 centUSD 0.016 kUSD 1.6e-5 MUSD 1.6e-8 TUSD / foot

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mud Logging | Open Energy Information  

Open Energy Info (EERE)

Mud Logging Mud Logging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mud Logging Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Lithological layers are identified from drill cuttings Stratigraphic/Structural: Porosity of rocks Hydrological: Fluid content of the borehole while drilling can be determined Thermal: Cost Information Low-End Estimate (USD): 1,300.00130,000 centUSD 1.3 kUSD 0.0013 MUSD 1.3e-6 TUSD / day Median Estimate (USD): 1,450.00145,000 centUSD 1.45 kUSD 0.00145 MUSD 1.45e-6 TUSD / day High-End Estimate (USD): 2,000.00200,000 centUSD

242

Density Log | Open Energy Information  

Open Energy Info (EERE)

Density Log Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (6) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: provides data on the bulk density of the rock surrounding the well Stratigraphic/Structural: Stratigraphic correlation between well bores. Hydrological: Porosity of the formations loggesd can be calculated for the Density log andprovide an indication potential aquifers. Thermal: Cost Information Low-End Estimate (USD): 0.4040 centUSD 4.0e-4 kUSD 4.0e-7 MUSD 4.0e-10 TUSD / foot Median Estimate (USD): 0.6868 centUSD

243

Ground Magnetics | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (15) Areas (12) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

244

A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space. Part I: Algorithm Description  

Science Conference Proceedings (OSTI)

This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon ...

Christian Kummerow; Louis Giglio

1994-01-01T23:59:59.000Z

245

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

Techniques + ExplorationSubGroup Exploration Drilling + ExplorationTimePerMetric job + NEPAanalysis This exploration technique may be approved ... This exploration...

246

DC Resistivity Survey (Dipole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Dipole-Dipole Array) Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

247

DC Resistivity Survey (Wenner Array) | Open Energy Information  

Open Energy Info (EERE)

Wenner Array) Wenner Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Wenner Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

248

DC Resistivity Survey (Schlumberger Array) | Open Energy Information  

Open Energy Info (EERE)

Schlumberger Array) Schlumberger Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Schlumberger Array) Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

249

DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

Pole-Dipole Array) Pole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Pole-Dipole Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

250

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

251

Petrography Analysis | Open Energy Information  

Open Energy Info (EERE)

Petrography Analysis Petrography Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Petrography Analysis Details Activities (6) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Provides detailed information about rock composition and morphology Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 275.0027,500 centUSD 0.275 kUSD 2.75e-4 MUSD 2.75e-7 TUSD / sample Median Estimate (USD): 420.0042,000 centUSD 0.42 kUSD 4.2e-4 MUSD 4.2e-7 TUSD / sample High-End Estimate (USD): 625.0062,500 centUSD 0.625 kUSD 6.25e-4 MUSD 6.25e-7 TUSD / sample

252

Core Analysis | Open Energy Information  

Open Energy Info (EERE)

Core Analysis Core Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Analysis Details Activities (41) Areas (28) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Core analysis is done to define lithology. Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Hydrological: Thermal: Thermal conductivity can be measured from core samples. Cost Information Low-End Estimate (USD): 2,000.00200,000 centUSD 2 kUSD 0.002 MUSD 2.0e-6 TUSD / 30 foot core Median Estimate (USD): 10,000.001,000,000 centUSD

253

Field Mapping | Open Energy Information  

Open Energy Info (EERE)

Field Mapping Field Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Mapping Details Activities (59) Areas (35) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Stratigraphic/Structural: Map fault and fracture patterns, kinematic information. Hydrological: Map surface manifestations of geothermal systems. Thermal: Map surface temperature. Cost Information Low-End Estimate (USD): 400.0040,000 centUSD 0.4 kUSD 4.0e-4 MUSD 4.0e-7 TUSD / hour Median Estimate (USD): 600.0060,000 centUSD

254

Field Sampling | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Techniques Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

255

Resistivity Tomography | Open Energy Information  

Open Energy Info (EERE)

Resistivity Tomography Resistivity Tomography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Resistivity Tomography Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Resistivity Log Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 60.986,098 centUSD 0.061 kUSD 6.098e-5 MUSD 6.098e-8 TUSD / foot Median Estimate (USD): 76.227,622 centUSD 0.0762 kUSD 7.622e-5 MUSD 7.622e-8 TUSD / foot High-End Estimate (USD): 106.7110,671 centUSD 0.107 kUSD 1.0671e-4 MUSD 1.0671e-7 TUSD / foot Time Required Low-End Estimate: 1 days0.00274 years

256

Radar | Open Energy Information  

Open Energy Info (EERE)

Radar Radar Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Radar Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Active Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png Radar: Radar is an active-sensor remote sensing tool used to detect small changes in ground movement at geothermal locations. Other definitions:Wikipedia Reegle Introduction RAdio Detection And Ranging (RADAR) is used in a wide variety of applications. In remote sensing applications, the source of the radio waves

257

Micro-Earthquake | Open Energy Information  

Open Energy Info (EERE)

Micro-Earthquake Micro-Earthquake Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Micro-Earthquake Details Activities (33) Areas (16) Regions (2) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Passive Seismic Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Fault zones, permeable pathways Hydrological: Fluid type- liquid or steam Thermal: Dictionary.png Micro-Earthquake: The micro-earthquake technique (MEQ), also known as microseismic, utilizes vibrations in the subsurface to locate permeable pathways and determine fluid phase. Other definitions:Wikipedia Reegle Use in Geothermal Exploration Ground noise and micro-earthquakes (MEQ) may be utilized in the

258

Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

Thermal Gradient Holes Thermal Gradient Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (50) Areas (39) Regions (4) NEPA(29) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Field wide fluid flow characteristics if an array of wells are drilled Thermal: Mapping and projecting thermal anomalies Cost Information Low-End Estimate (USD): 5.00500 centUSD 0.005 kUSD 5.0e-6 MUSD 5.0e-9 TUSD / foot Median Estimate (USD): 16.501,650 centUSD 0.0165 kUSD 1.65e-5 MUSD 1.65e-8 TUSD / foot High-End Estimate (USD): 50.005,000 centUSD

259

Evaluation of lineament analysis as an exploration technique for geothermal energy, western and central Nevada. Final report, June 1976--October 1978  

DOE Green Energy (OSTI)

Lineament analysis as an exploration technique for geothermal energy using multi-scale, multi-format imagery and geophysical data is investigated and evaluated. Two areas in Nevada, each having distinct differences in structural style were studied. One area, which encompasses a portion of the Battle Mountain Heat Flow High, was studied to determine the relationship between regional and local structural controls and geothermal activity. Four geothermal sites within this area (Winnemucca AMS) were selected and studied in detail. These sites include: 1) Leach Hot Springs, 2) Kyle Hot Springs, 3) Beowawe geothermal area and Buffalo Valley Hot Springs. A second area encompassed by the Reno AMS Sheet was selected for further study in a region dominated by three diverse tectonic styles; these are: 1) the Sierra Nevada Front, 2) the Walker Lane, and 3) basin-and-range structures. Geothermal sites analyzed at site specific scales within the Reno AMS Sheet included Steamboat Hot Springs in the Sierra Nevada Front subprovince, Dixie Valley Hot Springs located in typical basin-and-range terrain and the Brady's-Desert Peak area which is marginal to the Walker Lane. Data products employed included LANDSAT imagery, SKYLAB photography, gravity, and aeromagnetic maps. Results of this investigation indicate that in north-central Nevada the major sites of geothermal activity are associated with northeast trending structures related to the Midas Trench lineament and that the most viable geothermal area (Beowawe is located at the intersection of the northeast trend of the Oregon-Nevada Lineament.

Trexler, D.T.; Bell, E.J.; Roquemore, G.R.

1978-10-01T23:59:59.000Z

260

Soil Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling Soil Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Sampling Details Activities (10) Areas (9) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Can reveal relatively high permeability zones Hydrological: Thermal: Used to locate active hydrothermal systems Dictionary.png Soil Sampling: Soil sampling is a method that can be used for exploration of geothermal resources that lack obvious surface manifestations. Soils that are above or adjacent to a "hidden" hydrothermal system will have a unique chemistry that can be indicative of a hydrothermal system at depth and a zone of

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Multispectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Multispectral Imaging Multispectral Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Multispectral Imaging Details Activities (35) Areas (22) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: relative mineral maps Stratigraphic/Structural: aerial photographs can show structures Hydrological: delineate locations of surface water features Thermal: vegetation maps can show plants stressed due to nearby thermal activity Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sq. mile Median Estimate (USD): 370.2337,023 centUSD

262

Aerial Photography | Open Energy Information  

Open Energy Info (EERE)

Aerial Photography Aerial Photography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Aerial Photography Details Activities (10) Areas (9) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: map structures/faults Hydrological: map surface water features Thermal: if photos taken in winter snow cover, can map thermal anomalies Cost Information Low-End Estimate (USD): 100.3610,036 centUSD 0.1 kUSD 1.0036e-4 MUSD 1.0036e-7 TUSD / sq. mile Median Estimate (USD): 240.5424,054 centUSD 0.241 kUSD 2.4054e-4 MUSD 2.4054e-7 TUSD / sq. mile High-End Estimate (USD): 2,360.00236,000 centUSD

263

Cuttings Analysis | Open Energy Information  

Open Energy Info (EERE)

Cuttings Analysis Cuttings Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cuttings Analysis Details Activities (36) Areas (28) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Cuttings are used to define lithology Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 1,000.00100,000 centUSD 1 kUSD 1.0e-3 MUSD 1.0e-6 TUSD / 100 feet cut Median Estimate (USD): 4,000.00400,000 centUSD 4 kUSD 0.004 MUSD 4.0e-6 TUSD / 100 feet cut High-End Estimate (USD): 10,000.001,000,000 centUSD 10 kUSD 0.01 MUSD 1.0e-5 TUSD / 100 feet cut Time Required

264

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

265

Hyperspectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Hyperspectral Imaging Hyperspectral Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hyperspectral Imaging Details Activities (4) Areas (4) Regions (1) NEPA(1) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: mineral maps can be used to show the presence of hydrothermal minerals and mineral assemblages Stratigraphic/Structural: aerial photographs can show structures Hydrological: delineate locations of surface water features Thermal: vegetation maps can show plants stressed due to nearby thermal activity Cost Information Low-End Estimate (USD): 8.63863 centUSD 0.00863 kUSD 8.63e-6 MUSD

266

Rock Density | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Density of different lithologic units. Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sample

267

Geodetic Survey | Open Energy Information  

Open Energy Info (EERE)

Geodetic Survey Geodetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geodetic Survey Details Activities (17) Areas (10) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Map regional strain rates Hydrological: Thermal: Cost Information Low-End Estimate (USD): 250.0025,000 centUSD 0.25 kUSD 2.5e-4 MUSD 2.5e-7 TUSD / point Median Estimate (USD): 600.0060,000 centUSD 0.6 kUSD 6.0e-4 MUSD 6.0e-7 TUSD / point High-End Estimate (USD): 1,500.00150,000 centUSD 1.5 kUSD 0.0015 MUSD 1.5e-6 TUSD / point Time Required Low-End Estimate: 5 days0.0137 years

268

FMI Log | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » FMI Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: FMI Log Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Image Logs Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

269

Stoneley Analysis | Open Energy Information  

Open Energy Info (EERE)

Stoneley Analysis Stoneley Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stoneley Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Acoustic Logs Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Stoneley Analysis: A type of large-amplitude interface, or surface, wave generated by a sonic tool in a borehole. Stoneley waves can propagate along a solid-fluid interface, such as along the walls of a fluid-filled borehole and are the main low-frequency component of signal generated by sonic sources in boreholes. Analysis of Stoneley waves can allow estimation of the locations

270

Static Temperature Survey | Open Energy Information  

Open Energy Info (EERE)

Static Temperature Survey Static Temperature Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Static Temperature Survey Details Activities (28) Areas (24) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Extrapolate the true temperature of the formation the well penetrates Cost Information Low-End Estimate (USD): 0.2525 centUSD 2.5e-4 kUSD 2.5e-7 MUSD 2.5e-10 TUSD / foot Median Estimate (USD): 0.3535 centUSD 3.5e-4 kUSD 3.5e-7 MUSD 3.5e-10 TUSD / foot High-End Estimate (USD): 0.7575 centUSD 7.5e-4 kUSD 7.5e-7 MUSD

271

Modeling-Computer Simulations | Open Energy Information  

Open Energy Info (EERE)

Modeling-Computer Simulations Modeling-Computer Simulations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling-Computer Simulations Details Activities (78) Areas (31) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Cost Information Low-End Estimate (USD): 85.008,500 centUSD 0.085 kUSD 8.5e-5 MUSD 8.5e-8 TUSD / hour Median Estimate (USD): 195.0019,500 centUSD

272

Airborne Electromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Electromagnetic Survey Airborne Electromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Electromagnetic Survey Details Activities (2) Areas (2) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: provide data on rock type and mineral content Stratigraphic/Structural: Hydrological: can be used to detect changes in density of fluids and indicate if there is salt water intrusion Thermal: Cost Information Low-End Estimate (USD): 48.274,827 centUSD 0.0483 kUSD 4.827e-5 MUSD 4.827e-8 TUSD / mile Median Estimate (USD): 317.3831,738 centUSD 0.317 kUSD

273

Pressure Temperature Log | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Pressure Temperature Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Pressure Temperature Log Details Activities (13) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Perturbations in temperature or pressure can be indicative of faults or other structural features Hydrological: fluid cirulation, over-pressured zones, and under-pressured zones. Thermal: Temperature profile with depth Cost Information Low-End Estimate (USD): 0.6060 centUSD 6.0e-4 kUSD

274

A VIKOR technique based on DEMATEL and ANP for information security risk control assessment  

Science Conference Proceedings (OSTI)

As companies and organizations have grown to rely on their computer systems and networks, the issue of information security management has become more significant. To maintain their competitiveness, enterprises should safeguard their information and ... Keywords: Analytic network process (ANP), DEMATEL, Information security, Multiple criteria decision making (MCDM), Risk control assessment, VIKOR

Yu-Ping Ou Yang; How-Ming Shieh; Gwo-Hshiung Tzeng

2013-05-01T23:59:59.000Z

275

Vertical Flowmeter Test | Open Energy Information  

Open Energy Info (EERE)

Vertical Flowmeter Test Vertical Flowmeter Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Flowmeter Test Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Define permeable zones within a well Thermal: Dictionary.png Vertical Flowmeter Test: A well testing technique done upon completion of a well to identify locations of permeable zones within the well and to quantify the relative permeability of each zone. Other definitions:Wikipedia Reegle Introduction A vertical flowmeter test is also known as a spinner test and is preformed

276

DC Resistivity Survey (Mise-Á-La-Masse) | Open Energy Information  

Open Energy Info (EERE)

Mise-Á-La-Masse) Mise-Á-La-Masse) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Mise-Á-La-Masse) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

277

Step-out Well | Open Energy Information  

Open Energy Info (EERE)

Step-out Well Step-out Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Step-out Well Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Step-out Well: A well drilled outside of the proven reservoir boundaries to investigate a

278

Airborne Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Gravity Survey Airborne Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Gravity Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

279

Ground Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Ground Gravity Survey Ground Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Gravity Survey Details Activities (48) Areas (34) Regions (2) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and large-scale deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

280

InSAR | Open Energy Information  

Open Energy Info (EERE)

InSAR InSAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: InSAR Details Activities (11) Areas (10) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: Geophysical Monitoring Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png InSAR: Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that can be used to accurately measure ground displacement. Other definitions:Wikipedia Reegle Introduction InSAR is a radar technique used in geodesy and remote sensing. This geodetic method uses two or more synthetic aperture radar (SAR) images to

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

282

Compound and Elemental Analysis | Open Energy Information  

Open Energy Info (EERE)

Compound and Elemental Analysis Compound and Elemental Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Compound and Elemental Analysis Details Activities (104) Areas (69) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems. Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / compound Median Estimate (USD): 30.003,000 centUSD

283

2-M Probe Survey | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey 2-M Probe Survey (Redirected from 2-M Probe) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: 2-M Probe Survey Details Activities (27) Areas (21) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Identify and delineate shallow thermal anomalies Cost Information Low-End Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / station Median Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / station High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD

284

PSInSAR | Open Energy Information  

Open Energy Info (EERE)

PSInSAR PSInSAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: PSInSAR Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Cost Information Low-End Estimate (USD): 20.722,072 centUSD 0.0207 kUSD 2.072e-5 MUSD 2.072e-8 TUSD / sq. mile Median Estimate (USD): 103.6010,360 centUSD 0.104 kUSD 1.036e-4 MUSD 1.036e-7 TUSD / sq. mile High-End Estimate (USD): 259.0025,900 centUSD 0.259 kUSD 2.59e-4 MUSD 2.59e-7 TUSD / sq. mile

285

Fluid Inclusion Analysis | Open Energy Information  

Open Energy Info (EERE)

Fluid Inclusion Analysis Fluid Inclusion Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Inclusion Analysis Details Activities (20) Areas (11) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Fluid composition at a point in time and space Thermal: The minimum temperature of fluid inclusion formation Cost Information Low-End Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample Median Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample High-End Estimate (USD): 26.782,678 centUSD

286

Trace Element Analysis | Open Energy Information  

Open Energy Info (EERE)

Trace Element Analysis Trace Element Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Trace Element Analysis Details Activities (8) Areas (8) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Reconstructing the fluid circulation of a hydrothermal system Thermal: Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / element Median Estimate (USD): 18.001,800 centUSD 0.018 kUSD 1.8e-5 MUSD 1.8e-8 TUSD / element High-End Estimate (USD): 106.0010,600 centUSD 0.106 kUSD 1.06e-4 MUSD 1.06e-7 TUSD / element

287

LiDAR | Open Energy Information  

Open Energy Info (EERE)

LiDAR LiDAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: LiDAR Details Activities (10) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Active Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: delineate faults, create high-resolution DEMS, quantify fault kinemaics, develop lineament maps Hydrological: Thermal: Cost Information Low-End Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / sq. mile Median Estimate (USD): 850.0085,000 centUSD 0.85 kUSD 8.5e-4 MUSD 8.5e-7 TUSD / sq. mile High-End Estimate (USD): 1,300.00130,000 centUSD 1.3 kUSD 0.0013 MUSD 1.3e-6 TUSD / sq. mile

288

Stereo Satellite Imagery | Open Energy Information  

Open Energy Info (EERE)

Stereo Satellite Imagery Stereo Satellite Imagery Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stereo Satellite Imagery Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: map structures/faults Hydrological: map surface water features, determine the boundary conditions of hydrothermal circulation Thermal: Cost Information Low-End Estimate (USD): 259.0025,900 centUSD 0.259 kUSD 2.59e-4 MUSD 2.59e-7 TUSD / sq. mile Median Estimate (USD): 282.3128,231 centUSD 0.282 kUSD 2.8231e-4 MUSD 2.8231e-7 TUSD / sq. mile High-End Estimate (USD): 362.6036,260 centUSD

289

2-M Probe Survey | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey 2-M Probe Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: 2-M Probe Survey Details Activities (27) Areas (21) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Identify and delineate shallow thermal anomalies Cost Information Low-End Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / station Median Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / station High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD 5.0e-7 TUSD / station

290

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile Time Required Low-End Estimate: 6 weeks0.115 years

291

ONCO-i2b2: improve patients selection through case-based information retrieval techniques  

Science Conference Proceedings (OSTI)

The University of Pavia (Italy) and the IRCCS Fondazione Salvatore Maugeri hospital in Pavia have recently started an information technology initiative to support clinical research in oncology called ONCO-i2b2. This project aims at supporting translational ... Keywords: case-based reasoning, i2b2, oncology

Daniele Segagni; Matteo Gabetta; Valentina Tibollo; Alberto Zambelli; Silvia G. Priori; Riccardo Bellazzi

2012-06-01T23:59:59.000Z

292

Fluid Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fluid Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways, and assist in determining the degree of mixing between different hydrothermal fluids. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems; Isotopic ratios can be used to characterize and locate subsurface thermal anomalies.

293

Over Core Stress | Open Energy Information  

Open Energy Info (EERE)

Over Core Stress Over Core Stress Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Over Core Stress Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Over Core Stress: No definition has been provided for this term. Add a Definition Related Techniques Rock Lab Analysis Core Analysis Cuttings Analysis Isotopic Analysis- Rock Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) References Page Area Activity Start Date Activity End Date Reference Material

294

SqueeSAR | Open Energy Information  

Open Energy Info (EERE)

SqueeSAR SqueeSAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: SqueeSAR Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png SqueeSAR: SqueeSAR is a remote sensing technique that uses radar signals from a satellite to accurately measure ground displacement. SqueeSAR is a newer, improved, and more accurate analysis algorithm compared to the PSInSAR method. Other definitions:Wikipedia Reegle

295

Frequency-Domain Electromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

Frequency-Domain Electromagnetic Survey Frequency-Domain Electromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Frequency-Domain Electromagnetic Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Profiling Techniques Information Provided by Technique Lithology: Detection of high-conductivity bodies in the subsurface. Stratigraphic/Structural: Hydrological: Thermal: Detection of the presence of a thermal anomaly through its resistivity signature. Cost Information Low-End Estimate (USD): 2,928.38292,838 centUSD 2.928 kUSD 0.00293 MUSD 2.92838e-6 TUSD / mile Median Estimate (USD): 4,505.20450,520 centUSD

296

Controlled Source Frequency-Domain Magnetics | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Frequency-Domain Magnetics Controlled Source Frequency-Domain Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Frequency-Domain Magnetics Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Locate geothermal groundwater and flow patterns. Thermal: Cost Information Low-End Estimate (USD): 12,000.001,200,000 centUSD 12 kUSD 0.012 MUSD 1.2e-5 TUSD / mile Median Estimate (USD): 18,000.001,800,000 centUSD 18 kUSD 0.018 MUSD 1.8e-5 TUSD / mile High-End Estimate (USD): 25,000.002,500,000 centUSD

297

Z-Axis Tipper Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

Z-Axis Tipper Electromagnetics Z-Axis Tipper Electromagnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Z-Axis Tipper Electromagnetics Details Activities (2) Areas (2) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 4,827.00482,700 centUSD 4.827 kUSD 0.00483 MUSD 4.827e-6 TUSD / mile Median Estimate (USD): 6,206.14620,614 centUSD 6.206 kUSD 0.00621 MUSD 6.20614e-6 TUSD / mile High-End Estimate (USD): 17,239.291,723,929 centUSD 17.239 kUSD 0.0172 MUSD 1.723929e-5 TUSD / mile Dictionary.png

298

DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

DDE Discovering data and non-text information in the Department of Energy DOE Data Explorer What's New About DDE DOE Data Centers OSTI's Data ID Service Featured Collection...

299

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

300

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cross-Dipole Acoustic Log | Open Energy Information  

Open Energy Info (EERE)

Cross-Dipole Acoustic Log Cross-Dipole Acoustic Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cross-Dipole Acoustic Log Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Acoustic Logs Information Provided by Technique Lithology: Stratigraphic/Structural: Rock stress and fracture analysis Hydrological: Use for fracture identification in open and cased holes. Also used for evaluating hydro fracturing/well stimulation effectiveness. Thermal: Dictionary.png Cross-Dipole Acoustic Log: An acoustic logging technique where the acoustic transmitter and receivers are lowered down hole and waveforms that travel through the well mud,

302

SAR | Open Energy Information  

Open Energy Info (EERE)

SAR SAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: SAR Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: create high-resolution DEMs, detect fault and ground movement Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.441,044 centUSD 0.0104 kUSD 1.044e-5 MUSD 1.044e-8 TUSD / sq. mile Median Estimate (USD): 59.575,957 centUSD 0.0596 kUSD 5.957e-5 MUSD 5.957e-8 TUSD / sq. mile High-End Estimate (USD): 673.4067,340 centUSD 0.673 kUSD 6.734e-4 MUSD 6.734e-7 TUSD / sq. mile Time Required Low-End Estimate: 21 days0.0575 years

303

A Technique to Utilize Smart Meter Load Information for Adapting Overcurrent Protection for Radial Distribution Systems with Distributed Generations  

E-Print Network (OSTI)

Smart radial distribution grids will include advanced metering infrastructure (AMI) and significant distributed generators (DGs) connected close to loads. DGs in these radial distribution systems (RDS) introduce bidirectional power flows (BPFs) and contribute to fault current. These BPFs may cause unwanted tripping of existing overcurrent (OC) protection devices and result in permanent outages for a large number of customers. This thesis presents a protection approach that modified an existing overcurrent protection scheme to reduce the number of customers affected by faults in RDS with DGs. Further, a technique is presented that utilizes customers loading information from smart meters in AMI to improve the sensitivity of substation OC relays by adaptively changing the pickup settings. The modified protection approach involves predefining zones in RDS with DGs and installing directional OC relays and circuit breakers at the zonal boundaries. Zonal boundary relays determine faulted zones by sharing information on the direction of detected faults current using binary state signals over a communication medium. The technique to adapt the substation relay pickup settings uses the demand measurements from smart meters for two 12-hour intervals from the previous day to determine the maximum diversified demand at the relay?s location. The pickup settings of the substation relay for the two 12-hour intervals during the following day for the zone supplied by the substation are adaptively set based on the current that corresponds to the maximum diversified demand from the previous day. The techniques were validated through simulations in EMTP/PSCAD using an expanded IEEE 34 node radial test feeder that included DGs and a secondary distribution level. By decentralizing the control of the zonal boundary breakers, the single point of failure was eliminated in the modified protection approach. The cases studied showed that the modified protection approach allows for selective identification and isolation of the faulted zones. Also, the sensitivity of the substation OC relay was improved by at least 24% by using the pickup settings for the two 12-hour intervals from the smart meter demand measurements compared to the pickup settings computed using the conventional methodology based on the maximum loading of the zone.

Ituzaro, Fred Agyekum

2012-05-01T23:59:59.000Z

304

Caliper Log | Open Energy Information  

Open Energy Info (EERE)

Caliper Log Caliper Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Caliper Log Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.4040 centUSD 4.0e-4 kUSD 4.0e-7 MUSD 4.0e-10 TUSD / foot Median Estimate (USD): 0.7878 centUSD 7.8e-4 kUSD 7.8e-7 MUSD 7.8e-10 TUSD / foot High-End Estimate (USD): 3.00300 centUSD 0.003 kUSD 3.0e-6 MUSD 3.0e-9 TUSD / foot Time Required Low-End Estimate: 0.35 days9.582478e-4 years 8.4 hours 0.05 weeks 0.0115 months / job

305

X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Diffraction (XRD): X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to

306

Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Portable X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Portable X-Ray Diffraction (XRD): Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction,

307

Geographic Information System (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Geographic Information System (Laney, 2005) Geographic Information System (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. This project has also reinforced the value of geographic information systems (GIS) in exploration efforts. GIS has enabled the visualization of data, storage and access of disparate data sets, and merging of data that would not be possible using any other technology. While CAD is preferred by some in geothermal exploration, it lacks a multitude of the functions facilitated with GIS. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_(Laney,_2005)&oldid=38930

308

Underground Exploration  

E-Print Network (OSTI)

ultimately is chosen. The rationale is based on models that are backed by limited data obtained from G-Tunnel thermal testing. The G-Tunnel thermal tests were conducted over Exploration and Testing Strategies 9 9). Because no additional testing has been conducted since the G-Tunnel effort was terminated in 1989

309

Innovative Exploration Techniques for Geothermal Assessment at...  

Open Energy Info (EERE)

electrical conductivity (FEC), to determine the fracture surface area, heat content and heat transfer, flow rates, and chemistry of the geothermal fluids encountered by the...

310

Hand-held X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

Hand-held X-Ray Fluorescence (XRF) Hand-held X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hand-held X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Hand-held X-Ray Fluorescence (XRF): Hand-held X-Ray Fluorescence is a portable analytical technique derived from the instrumentation used in traditional lab-based XRF analysis. The technique is used for bulk chemical analysis of rock, mineral, and sediment

311

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

312

Single-Well and Cross-Well Resistivity | Open Energy Information  

Open Energy Info (EERE)

Single-Well and Cross-Well Resistivity Single-Well and Cross-Well Resistivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well and Cross-Well Resistivity Details Activities (14) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

313

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

314

inform  

Science Conference Proceedings (OSTI)

The monthly member publication of AOCS. inform Inform Magazine Membership Merchandise Subscriptions Journals Membership Merchandise 8C5A902BB64F1A5D499524EFF5918AE0 INFORM-NM 2008

315

Techniques for Enhanced Physical-Layer Security  

E-Print Network (OSTI)

Information-theoretic security--widely accepted as the strictest notion of security--relies on channel coding techniques that exploit the inherent randomness of propagation channels to strengthen the security of communications systems. Within this paradigm, we explore strategies to improve secure connectivity in a wireless network. We first consider the intrinsically secure communications graph (iS-graph), a convenient representation of the links that can be established with information-theoretic security on a large-scale network. We then propose and characterize two techniques--sectorized transmission and eavesdropper neutralization--which are shown to dramatically enhance the connectivity of the iS-graph.

Pinto, Pedro C; Win, Moe Z

2010-01-01T23:59:59.000Z

316

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

ExplorationBasis 1) Characterize a magma source. 2) To conduct reservoir modeling of a steam reservoir. ExplorationOutcome not indicated + ExplorationTechnique Analytical Modeling...

317

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

useful + ExplorationTechnique Compound and Elemental Analysis + Notes In order to test FIS for geothermal explor ... In order to test FIS for geothermal exploration, drill...

318

Geographic Information System At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

International Geothermal Area, Indonesia International Geothermal Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area Indonesia (Nash, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes GIs also facilitates grid data (raster) analysis and visualization. For example, a raster GIs layer, derived from an enhanced Landsat 7 Thematic Mapper (TM) image of the Karaha-Telaga Bodas area, Indonesia, is shown in Figure 2. References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers

319

Exploring the Effect of mHealth Technologies on Communication and Information Sharing in a Pediatric Critical Care Unit: A Case Study  

Science Conference Proceedings (OSTI)

Communication and information sharing is an important aspect of healthcare information technology and mHealth management. A main requirement in the quality of patient care is the ability of all health care participants to communicate. Research illustrates ... Keywords: Health Care Technology, Information Technology, Management of Technology, Professional Communication, Technology Assessment, eHealth, mHealth

Rocci Luppicini; Victoria Aceti

2011-07-01T23:59:59.000Z

320

Geothermal Literature Review | Open Energy Information  

Open Energy Info (EERE)

Geothermal Literature Review Geothermal Literature Review Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geothermal Literature Review Details Activities (40) Areas (25) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 60.006,000 centUSD 0.06 kUSD 6.0e-5 MUSD 6.0e-8 TUSD / hour Median Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / hour High-End Estimate (USD): 250.0025,000 centUSD 0.25 kUSD 2.5e-4 MUSD 2.5e-7 TUSD / hour Dictionary.png Geothermal Literature Review: A review of previously documented knowledge about an area to compile the

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Data Acquisition-Manipulation | Open Energy Information  

Open Energy Info (EERE)

Data Acquisition-Manipulation Data Acquisition-Manipulation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Acquisition-Manipulation Details Activities (37) Areas (24) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 60.006,000 centUSD 0.06 kUSD 6.0e-5 MUSD 6.0e-8 TUSD / hour Median Estimate (USD): 250.0025,000 centUSD 0.25 kUSD 2.5e-4 MUSD 2.5e-7 TUSD / hour High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD 5.0e-7 TUSD / hour Time Required Low-End Estimate: 5 days0.0137 years

322

Well Log Techniques At Newberry Caldera Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Well Log Techniques Activity Date Usefulness not indicated...

323

Low-Intrusion Techniques and Sensitive Information Management for Warhead Counting and Verification: FY2012 Annual Report  

SciTech Connect

Progress in the second year of this project is described by the series of technical reports and manuscripts that make up the content of this report. These documents summarize successes in our goals to develop our robust image-hash templating and material-discrimination techniques and apply them to test image data.

Jarman, Kenneth D.; McDonald, Benjamin S.; Robinson, Sean M.; Gilbert, Andrew J.; White, Timothy A.; Pitts, W. Karl; Misner, Alex C.; Seifert, Allen

2012-11-01T23:59:59.000Z

324

Exploring new energy alternatives.  

Science Conference Proceedings (OSTI)

What is most likely to satisfy our energy needs in the future - wind farms and photovoltaic arrays, or something yet to be invented? Options for the world's energy future may include surprises, thanks to innovative research under way around the world. The article focuses on the energy sources alternatives in the U.S. It explores innovations for energy sources such as wind farms, solar thermal concentrators, solar cells, and geothermal energy production. It states that the attainment of energy efficiency through conversation or improved technology allows to extract more applied energy. It points out that techniques are being explored to expand the possible fuel materials to includes other types of uranium and thorium. Furthermore, it discusses the capability of nanotechnology in offering a tool which could help create designs that convert energy more efficiently.

LePoire, D.J. (Environmental Science Division)

2011-09-01T23:59:59.000Z

325

Low-Intrusion Techniques and Sensitive Information Management for Warhead Counting and Verification: FY2011 Annual Report  

Science Conference Proceedings (OSTI)

Future arms control treaties may push nuclear weapons limits to unprecedented low levels and may entail precise counting of warheads as well as distinguishing between strategic and tactical nuclear weapons. Such advances will require assessment of form and function to confidently verify the presence or absence of nuclear warheads and/or their components. Imaging with penetrating radiation can provide such an assessment and could thus play a unique role in inspection scenarios. Yet many imaging capabilities have been viewed as too intrusive from the perspective of revealing weapon design details, and the potential for the release of sensitive information poses challenges in verification settings. A widely held perception is that verification through radiography requires images of sufficient quality that an expert (e.g., a trained inspector or an image-matching algorithm) can verify the presence or absence of components of a device. The concept of information barriers (IBs) has been established to prevent access to relevant weapon-design information by inspectors (or algorithms), and has, to date, limited the usefulness of radiographic inspection. The challenge of this project is to demonstrate that radiographic information can be used behind an IB to improve the capabilities of treaty-verification weapons-inspection systems.

Jarman, Kenneth D.; Robinson, Sean M.; McDonald, Benjamin S.; Gilbert, Andrew J.; Misner, Alex C.; Pitts, W. Karl; White, Timothy A.; Seifert, Allen; Miller, Erin A.

2011-09-01T23:59:59.000Z

326

Cement Bond Log | Open Energy Information  

Open Energy Info (EERE)

Cement Bond Log Cement Bond Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cement Bond Log Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Acoustic Logs Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.8585 centUSD 8.5e-4 kUSD 8.5e-7 MUSD 8.5e-10 TUSD / foot Median Estimate (USD): 1.25125 centUSD 0.00125 kUSD 1.25e-6 MUSD 1.25e-9 TUSD / foot High-End Estimate (USD): 3.00300 centUSD 0.003 kUSD 3.0e-6 MUSD 3.0e-9 TUSD / foot Time Required Low-End Estimate: 0.35 days9.582478e-4 years 8.4 hours 0.05 weeks 0.0115 months / job

327

RMOTC - Testing - Exploration  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration Helicopter flying over RMOTC testing facility for leak detection survey test Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC's extensive exploration-related data sets, including 3D and 2D seismic, wells and logging data, and cores - both physical core samples, stored in Casper, and core analysis data and reports - provide a great

328

Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Raft River Geothermal Area Well Log Techniques At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Well Log Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Characterize the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated neutron; compensated densilog; and caliper. Lithologic breaks for a drill core to a depth of 2840 ft are illustrated. References Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho Raft River geothermal exploration well No. 4 Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Raft_River_Geothermal_Area_(1977)&oldid=6004

329

Geographic Information System At Central Nevada Seismic Zone Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital

330

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

electromagnetic surveys as a reconnaissance technique for geothermal exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Airborne...

331

A space-based end-to-end prototype geographic information network for lunar and planetary exploration and emergency response (2002 and 2003 field experiments)  

Science Conference Proceedings (OSTI)

Communications and imaging experiments conducted in the Arizona desert during July of 2002 with the National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS) helped to identify a fundamental suite of scientific ... Keywords: Geographic information network, Internet, Remote sensing, Satellite imaging

Richard A. Beck; Robert K. Vincent; Doyle W. Watts; Marc A. Seibert; David P. Pleva; Michael A. Cauley; Calvin T. Ramos; Theresa M. Scott; Dean W. Harter; Mary Vickerman; David Irmies; Al Tucholski; Brian Frantz; Glenn Lindamood; Isaac Lopez; Greg Follen; Thaddeus Kollar; Jay Horowitz; Robert Griffin; Raymond Gilstrap; Marjory Johnson; Kenneth Freeman; Celeste Banaag; Joseph Kosmo; Amy Ross; Kevin Groneman; Jeffrey Graham; Kim Shillcutt; Robert Hirsh; Nathan Howard; Dean B. Eppler

2005-04-01T23:59:59.000Z

332

Exploration de formes gomtriques par le toucher  

Science Conference Proceedings (OSTI)

We propose a new technique to help people to explore geometric shapes without vision. This technique is based on a guidance using directional cues with a pin array. This is an alternative to the usual technique that consists of raising the pins corresponding ... Keywords: geometric shapes, non-visual interaction, tactile interaction, tactons

Thomas Pietrzak; Andrew Crossan; Stephen A. Brewster; Benot Martin; Isabelle Pecci

2009-10-01T23:59:59.000Z

333

Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) | Open  

Open Energy Info (EERE)

Nash, Et Al., 2002) Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And

334

Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al.,  

Open Energy Info (EERE)

Nash, Et Al., Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management

335

Geographic Information System At U.S. West Region (Williams & Deangelo,  

Open Energy Info (EERE)

Williams & Deangelo, Williams & Deangelo, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity Details Location U.S. West Region Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown References Colin F. Williams, Jacob DeAngelo (2008) Mapping Geothermal Potential In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_U.S._West_Region_(Williams_%26_Deangelo,_2008)&oldid=390068" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

336

Geographic Information System At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Geographic Information System At Walker-Lane Geographic Information System At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

337

Geographic Information System At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

338

Solar Power Expert For Remote Robotic Explorers  

E-Print Network (OSTI)

Robotic exploration of remote areas to assist or replace human exploration reduces the cost, hazard and tedium of such exploration. For remote explorers, power is the most critical resource, and the most common source of that power is solar energy. Information about the robot configuration, the planned path, the terrain and the position of the sun can be processed by a solar power expert software module to calculate the power provided by a given plan of action. Using this information to select the best plans will enable remote robotic explorers to extend their lifetimes. This paper presents the development of a solar power expert and its implementation on a simulator. Several patterned path plans are evaluated with various solar panel configurations, starting times and locations, concentrating on polar regions. 1. EXPLORATION ROBOTS Capable and adaptable robots are needed for exploring areas too dangerous or costly for humans to visit. Planets, moons, and remote earthly locations suc...

Kimberly Shillcutt Robotics; Kimberly Shillcutt; William Whittaker

1999-01-01T23:59:59.000Z

339

Technique for information retrieval using enhanced latent semantic analysis generating rank approximation matrix by factorizing the weighted morpheme-by-document matrix  

SciTech Connect

A technique for information retrieval includes parsing a corpus to identify a number of wordform instances within each document of the corpus. A weighted morpheme-by-document matrix is generated based at least in part on the number of wordform instances within each document of the corpus and based at least in part on a weighting function. The weighted morpheme-by-document matrix separately enumerates instances of stems and affixes. Additionally or alternatively, a term-by-term alignment matrix may be generated based at least in part on the number of wordform instances within each document of the corpus. At least one lower rank approximation matrix is generated by factorizing the weighted morpheme-by-document matrix and/or the term-by-term alignment matrix.

Chew, Peter A; Bader, Brett W

2012-10-16T23:59:59.000Z

340

UWC geothermal resource exploration  

DOE Green Energy (OSTI)

A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

NONE

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

DDE DDE Discovering data and non-text information in the Department of Energy DOE Data Explorer What's New About DDE DOE Data Centers OSTI's Data ID Service Featured Collection Featured Data Collection Visit CEDR View the archive Search Find Advanced Search Options × Full Text: Bibliographic Data: Creator/Author: Title: Subject: Identifier Numbers: Host Website: Research Org: Sponsor/Funding Org: Contributing Orgs: Type: Select Type Publication Date: from Date: to to Date: Sort: By Relevance By Title Limit to: Matches with DOI only Collections only (no DOIs) Clear Find Advanced Search Basic Search Browse DDE Content All Titles (alphabetically) Sponsor/Funding Organizations Types of Data and Non-text Other Related Organizations Subject Categories Some links on this page may take you to non-federal websites. Their

342

Scatter correction in cone-beam CT via a half beam blocker technique allowing simultaneous acquisition of scatter and image information  

SciTech Connect

Purpose: X-ray scatter incurred to detectors degrades the quality of cone-beam computed tomography (CBCT) and represents a problem in volumetric image guided and adaptive radiation therapy. Several methods using a beam blocker for the estimation and subtraction of scatter have been proposed. However, due to missing information resulting from the obstruction of the blocker, such methods require dual scanning or dynamically moving blocker to obtain a complete volumetric image. Here, we propose a half beam blocker-based approach, in conjunction with a total variation (TV) regularized Feldkamp-Davis-Kress (FDK) algorithm, to correct scatter-induced artifacts by simultaneously acquiring image and scatter information from a single-rotation CBCT scan. Methods: A half beam blocker, comprising lead strips, is used to simultaneously acquire image data on one side of the projection data and scatter data on the other half side. One-dimensional cubic B-Spline interpolation/extrapolation is applied to derive patient specific scatter information by using the scatter distributions on strips. The estimated scatter is subtracted from the projection image acquired at the opposite view. With scatter-corrected projections where this subtraction is completed, the FDK algorithm based on a cosine weighting function is performed to reconstruct CBCT volume. To suppress the noise in the reconstructed CBCT images produced by geometric errors between two opposed projections and interpolated scatter information, total variation regularization is applied by a minimization using a steepest gradient descent optimization method. The experimental studies using Catphan504 and anthropomorphic phantoms were carried out to evaluate the performance of the proposed scheme. Results: The scatter-induced shading artifacts were markedly suppressed in CBCT using the proposed scheme. Compared with CBCT without a blocker, the nonuniformity value was reduced from 39.3% to 3.1%. The root mean square error relative to values inside the regions of interest selected from a benchmark scatter free image was reduced from 50 to 11.3. The TV regularization also led to a better contrast-to-noise ratio. Conclusions: An asymmetric half beam blocker-based FDK acquisition and reconstruction technique has been established. The proposed scheme enables simultaneous detection of patient specific scatter and complete volumetric CBCT reconstruction without additional requirements such as prior images, dual scans, or moving strips.

Lee, Ho; Xing Lei; Lee, Rena; Fahimian, Benjamin P. [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul 158-710 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States)

2012-05-15T23:59:59.000Z

343

DOE Data Explorer enhancement adds more content  

Office of Scientific and Technical Information (OSTI)

enhancement adds more content Since June of 2008, the DOE Data Explorer has been helping users find and link to DOE's vast collection of data and non-text information. The records...

344

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

345

Petroleum - Exploration & Production - EIA  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity. ... Oil Production Capacity Expansion Costs for the Persian Gulf.

346

Geographic Information System At Nevada Test And Training Range Area  

Open Energy Info (EERE)

Geographic Information System At Nevada Test And Training Range Area Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes Nellis Air Force Range (NAFR) occupies over 3 million acres in southern Nevada (Figure 1). We recently assessed potential utility-grade geothermal resources and possible target areas for exploration by constructing a GIS of this area and applying the occurrence model ideas outlined above (ITSI, 2003; Sabin et al., 2004). We list below many of the factors considered.

347

Complexity in simplicity: flexible agent-based state space exploration  

Science Conference Proceedings (OSTI)

In this paper, we describe a new flexible framework for state space exploration based on cooperating agents. The idea is to let various agents with different search patterns explore the state space individually and communicate information about fruitful ...

Jacob I. Rasmussen; Gerd Behrmann; Kim G. Larsen

2007-03-01T23:59:59.000Z

348

Categorizing web search results into meaningful and stable categories using fast-feature techniques  

Science Conference Proceedings (OSTI)

When search results against digital libraries and web resources have limited metadata, augmenting them with meaningful and stable category information can enable better overviews and support user exploration. This paper proposes six fast-feature techniques ... Keywords: browsing, categorization, classification, metadata, open directory, taxonomies

Bill Kules; Jack Kustanowitz; Ben Shneiderman

2006-06-01T23:59:59.000Z

349

Geographic Information System (Monaster And Coolbaugh, 2007)...  

Open Energy Info (EERE)

Geographic Information System (Monaster And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System...

350

Geographic Information System At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Geographic Information System At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

351

International Oil and Gas Exploration and Development 1991  

U.S. Energy Information Administration (EIA)

Exploration and Development 1991 November 1993 Energy Information Administration Office of Oil and Gas ... Production figures in this report may differ slightly from

352

Exploration Best Practices and the OpenEI Knowledge Exchange  

E-Print Network (OSTI)

Develop Knowledge Exchange & collect data to help identify: Best practices/pitfalls for hydrothermal exploration Techniques used in some regions, that could be implemented in other regions Techniques used to identify blind systems Techniques that could be useful with additional investment to reduce time, cost, risk Regional reconnaissance techniques to identify more of the undiscovered resource

Katherine R. Young; Timothy Reber; Kermit Witherbee

2012-01-01T23:59:59.000Z

353

Using Structured Interviewing Techniques  

E-Print Network (OSTI)

GAO assists congressional decisionmakers in their deliberative process by furnishing analytical information on issues and options under consideration. Many diverse methodologies are needed to develop sound and timely answers to the questions that are posed by the Congress. To provide GAO evaluators with basic information about the more commonly used methodologies, GAOs policy guidance includes documents such as methodology transfer papers and technical guidelines, This methodology transfer paper on using structured interviewing techniques discusses how GAO evaluators should incorporate structured interview techniques when appropriate to performing our work. It explains when these techniques should be

Gao/pemd-. Preface; Werner Grosshans

1991-01-01T23:59:59.000Z

354

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity.

355

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration...

356

Geographic Information System (Nash, Et Al., 2002) | Open Energy...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System (Nash, Et Al., 2002) Exploration Activity Details Location Unspecified...

357

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

358

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

359

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

360

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

362

Motion Enhanced Information Mural For Climate Data Visualisation  

E-Print Network (OSTI)

This paper discusses visualisation of climate data. The possible use of an information mural for this purpose is explored as well as the potential of enhancing the visualisation with motion. It is investigated how these techniques help in the analysis of data distribution regarding different data dimensions such as temperature and precipitation. The work is accompanied by a presentation of the method's implementation.

Roland Jesse; Climate Data Visualisation

2002-01-01T23:59:59.000Z

363

A Vigorous Explorer Program  

E-Print Network (OSTI)

Explorers have made breakthroughs in many fields of astrophysics. The science from both these missions contributed to three Nobel Prizes - Giacconi (2002), Mather, and Smoot (2006). Explorers have: marked the definitive beginning of precision cosmology, discovered that short gamma-ray bursts are caused by compact star mergers and have measured metalicity to redshifts z>6. NASA Explorers do cutting-edge science that cannot be done by facility-class instruments. The Explorer program provides a rapid response to changing science and technology, to enable cutting-edge science at moderate cost. Explorers also enable innovation, and engage & train scientists, managers and engineers, adding human capital to NASA and the nation. The astrophysics Explorer launch rate now being achieved is 1 per 3 years, and budget projections are in the $150M/year range for the next five years. A newly Vigorous Explorer Program should be created to: 1. Reach the long-stated goal of annual astrophysics launches; 2. Find additional ...

Elvis, Martin; Brissenden, Roger; Chakrabarti, Supriya; Cherry, Michael; Devlin, Mark; Edelstein, Jerry; Eisenhardt, Peter; Feldman, Paul; Ford, Holland; Gehrels, Neil; Golub, Leon; Marshall, Herman; Martin, Christopher; Mather, John; McCandliss, Stephan; McConnell, Mark; McDowell, Jonathan; Meier, David; Millan, Robyn; Mitchell, John; Moos, Warren; Murray, Steven S; Nousek, John; Oegerle, William; Ramsey, Brian; Green, James; Grindlay, Jonathan; Kaaret, Philip; Kaiser, Mary Elizabeth; Kaltenegger, Lisa; Kasper, Justin; Krolik, Julian; Kruk, Jeffrey W; Latham, David; MacKenty, John; Mainzer, Amanda; Ricker, George; Rinehart, Stephen; Romaine, Suzanne; Scowen, Paul; Silver, Eric; Sonneborn, George; Stern, Daniel; Swain, Mark; Swank, Jean; Traub, Wesley; Weisskopf, Martin; Werner, Michael; Wright, Edward

2009-01-01T23:59:59.000Z

364

Standard Slowness Log | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Standard Slowness Log edit Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration...

365

Global Precipitation Estimates Based on a Technique for Combining Satellite-Based Estimates, Rain Gauge Analysis, and NWP Model Precipitation Information  

Science Conference Proceedings (OSTI)

The satellite-gauge-model (SGM) technique is described for combining precipitation estimates from microwave satellite data, infrared satellite data, rain gauge analyses, and numerical weather prediction models into improved estimates of global ...

George J. Huffman; Robert F. Adler; Bruno Rudolf; Udo Schneider; Peter R. Keehn

1995-05-01T23:59:59.000Z

366

DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

OSTI Home DDE Home DDE FAQs Help Site Map Contact Us Save searches, create alerts and export data :Sign In orCreate Account DOE Data Explorer Search Find Advanced Search Options...

367

DOE Data Explorer -  

Office of Scientific and Technical Information (OSTI)

OSTI Home DDE Home DDE FAQs Help Site Map Contact Us Save searches, create alerts and export data :Sign In orCreate Account DOE Data Explorer Search Find Advanced Search Options...

368

Exploring Beowulf clusters  

Science Conference Proceedings (OSTI)

Beowulf clusters provide the computational power of parallel programming at minimal cost, making this technology available to small colleges and individual labs. In this paper, we explore the construction and programming of four distinct varieties of ...

Marsha Meredith; Teresa Carrigan; James Brockman; Timothy Cloninger; Jaroslav Privoznik; Jeffery Williams

2003-04-01T23:59:59.000Z

369

Geothermal Literature Review (Mcnitt, 1978) | Open Energy Information  

Open Energy Info (EERE)

Mcnitt, 1978) Mcnitt, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review (Mcnitt, 1978) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes "A literature search found 46 geothermal fields for which reservoir temperatures in excess of 180degrees C have been proven by drilling and for which there is either drilling or geophysical data on which to base an estimate of field area. These fields are ranked according to area in Table 1 and their frequency distribution is shown in Fig. 2." "Sufficient information was found in the literature search to calculate an empirical

370

DESCOMP: a new design space exploration approach  

Science Conference Proceedings (OSTI)

In this paper, we introduce a new approach in Design-Space-Exploration (DSE) for non-clustered VLIW architectures. It differs from existing techniques by using a bottom-up strategy. While other approaches start with the design of an architecture, ...

Mario Schlzel; Peter Bachmann

2005-03-01T23:59:59.000Z

371

Neutron Imaging Explored as Complementary Technique for Improving...  

NLE Websites -- All DOE Office Websites (Extended Search)

the hydrogen-sensitive neutron imaging capabilities at the High Flux Isotope Reactor (HFIR) to image healthy and cancerous breast tissue specimens. Working with Hassina Bilheux,...

372

Geothermal Exploration in Hot Springs, Montana  

SciTech Connect

The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165???????????????????????????????°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250???????????????¢???????????????????????????????? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the ???????????????¢????????????????????????????????center???????????????¢??????????????????????????????? of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165???????????????????????????????°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

Toby McIntosh, Jackola Engineering

2012-09-26T23:59:59.000Z

373

Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of Quaternary fault orientations; (2) the direction of extensional strain; and (3) the magnitudoef fault-normal extensional strain. Item (1) is purely a structural analysis based on documented Quatemary faulting. Item (2) is purely an empirical strain-rate analysis, based on GPS station velocity

374

Diagnostics Techniques of Power Transformer  

Science Conference Proceedings (OSTI)

This paper provides the information on the diagnostics techniques for condition monitoring of power transformer (PT). This paper deals with the practical importance of the transformer diagnostic in the Electrical Engineering field. A review has been ... Keywords: temperature, condition monitoring, diagnostics methods, paper analysis techniques, oil analysis techniques

Piush Verma; Y. R. Sood; Jashandeep Singh

2009-12-01T23:59:59.000Z

375

Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Several datasets have been incorporated into a GIS database for map production, data archiving, data visualization, and modeling. These include (1) geology map layers produced from field work done on this project; (2) previously drilled U.S. Borax exploration bore holes and ancillary data; (3) temperature gradients; (4) thermal anomalies; and (5) gravity data.

376

NVN-084239X | Open Energy Information  

Open Energy Info (EERE)

Inc Geothermal Area Gabbs Valley Geothermal Area Project Location Nevada Project Phase GeothermalExploration Techniques Thermal Gradient Holes, Well Testing Techniques Comments...

377

Exploration Incentive Tax Credit (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Mineral and Coal Exploration Incentive Tax Credit provides tax incentives to entities conducting exploration for minerals and coal. Expenditures related to the following activities are eligible...

378

Exploration for Uranium Ore (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation describes permitting procedures and requirements for exploration activities. For the purpose of this legislation, exploration is defined as the drilling of test holes or...

379

DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

Data Types Browse DDE Content: Types of Data and Non-text Information Everything Numeric Data GenomeGenetics Data Interactive Data Maps Multimedia AnimationsSimulations Figures...

380

Advances In Geothermal Resource Exploration Circa 2007 | Open Energy  

Open Energy Info (EERE)

Exploration Circa 2007 Exploration Circa 2007 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Advances In Geothermal Resource Exploration Circa 2007 Details Activities (8) Areas (1) Regions (0) Abstract: At the outset of the 21st centry, the geothermal community at-large is essentially attempting to use available exploration tools and techniques to find needles (geothermal occurrences) in very large haystacks (expanses of unexplored territory). Historically teh industry has relied on teh presence of surface manifestations of subsurface heat, such as hot springs, fumaroles, or geyers as a firt-order exploration tool., Regrettably, even when such surface manifestations are investigated more closely, there is no proven technique or techniques that can bve used with

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Definition: Data Collection and Mapping | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Data Collection and Mapping Jump to: navigation, search Dictionary.png Data Collection and Mapping Data collection and mapping techniques include a broad array of methods used for collecting information about a geothermal area directly in the field. Surface mapping, shallow temperature probe surveys, and portable XRF/XRD analysis represent a valuable set of basic, cost effective tools for evaluating geothermal prospects. These methods can provide a geothermal exploration program with considerable information about a hydrothermal system prior to the application of expensive laboratory analysis or exploration drilling techniques.[3] View on Wikipedia Wikipedia Definition Powder diffraction is a scientific technique using X-ray, neutron,

382

Geographic Information System At Northern Basin & Range Region (Coolbaugh,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa-

383

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401371

384

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Blewitt,_Et_Al.,_2003)&oldid=401370"

385

Exploration for deep coal  

Science Conference Proceedings (OSTI)

The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

NONE

2008-12-15T23:59:59.000Z

386

Business Intelligence Explorer: A knowledge map framework for discovering business intelligence on the Web  

E-Print Network (OSTI)

Nowadays, information overload hinders the discovery of business intelligence on the World Wide Web. Existing business intelligence tools suffer from a lack of analysis and visualization capabilities and traditional result list display by search engines often overwhelms business analysts with irrelevant information. Thus, developing tools that enable better analysis while reduce information overload has been a challenge. The literature show that hierarchical and map displays enable effective access and browsing of information. However, they have not been widely applied to discover business intelligence on the Web. This research proposes Business Intelligence Explorer, a tool implementing the steps in a knowledge map framework for discovering business intelligence on the Web. Two browsing methods, namely, Web community and knowledge map, have been implemented. Web community uses a genetic algorithm to organize different Web sites into a hierarchical format. Knowledge map uses a multidimensional scaling algorithm to place different Web sites as points on a map. Preliminary results of our user study show that Web community helps users locate results quickly and effectively. Users liked the intuitive map display of knowledge map. Our Business Intelligence Explorer contributes to alleviate information overload in business analysis. Future directions on applying document visualization techniques in discovering business intelligence are described.

Wingyan Chung; Hsinchun Chen; Jay F. Nunamaker

2003-01-01T23:59:59.000Z

387

Geothermal exploration technology. Annual report, 1978  

DOE Green Energy (OSTI)

Progress is reported on the following programs: electrical and electromagnetic computer modeling techniques; minicomputer for in-field processing of magnetotelluric data; superconducting thin-film gradiometer and magnetometers for geophysical applications; magnetotellurics with SQUID magnetometers; controlled-source electromagnetic system; geothermal seismic field system development; Klamath Basin geothermal resource and exploration technique evaluation; Mt. Hood geothermal resource evaluation; East Mesa seismic study; seismological studies at Cerro Prieto; self-potential studies at Cerro Prieto; resistivity studies at Cerro Prieto; magnetotelluric survey at Cerro Prieto; and precision gravity studies at Cerro Prieto. (MHR)

Not Available

1978-01-01T23:59:59.000Z

388

Exploring colourful holographic superconductors  

E-Print Network (OSTI)

We explore a class of holographic superconductors built using non-abelian condensates on probe branes in conformal and non-conformal backgrounds. These are shown to exhibit behaviour of the specific heat which resembles that of heavy fermion compounds in the superconducting phase. Instead of showing BCS-like exponential behaviour, the specific heat is polynomial in the temperature. It exhibits a jump at the critical temperature, in agreement with real-world superconductors. We also analyse the behaviour of the energy gap and the AC and DC conductivities, and find that the systems can be either semi-conducting or metallic just above the critical temperature.

Kasper Peeters; Jonathan Powell; Marija Zamaklar

2009-07-09T23:59:59.000Z

389

Exploring colourful holographic superconductors  

E-Print Network (OSTI)

We explore a class of holographic superconductors built using non-abelian condensates on probe branes in conformal and non-conformal backgrounds. These are shown to exhibit behaviour of the specific heat which resembles that of heavy fermion compounds in the superconducting phase. Instead of showing BCS-like exponential behaviour, the specific heat is polynomial in the temperature. It exhibits a jump at the critical temperature, in agreement with real-world superconductors. We also analyse the behaviour of the energy gap and the AC and DC conductivities, and find that the systems can be either semi-conducting or metallic just above the critical temperature.

Peeters, Kasper; Zamaklar, Marija

2009-01-01T23:59:59.000Z

390

Gas Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Gas Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Geothermometry Details Activities (0) Areas (0) Regions (0) NEPA(0)...

391

Initial Report on the Development of a Monte Carlo-Markov Chain Joint Inversion Approach for Geothermal Exploration  

DOE Green Energy (OSTI)

Geothermal exploration and subsequent characterization of potential resources typically employ a variety of geophysical, geologic and geochemical techniques. However, since the data collected by each technique provide information directly on only one or a very limited set of the many physical parameters that characterize a geothermal system, no single method can be used to describe the system in its entirety. Presently, the usual approach to analyzing disparate data streams for geothermal applications is to invert (or forward model) each data set separately and then combine or compare the resulting models, for the most part in a more or less ad hoc manner. However, while each inversion may yield a model that fits the individual data set, the models are usually inconsistent with each other to some degree. This reflects uncertainties arising from the inevitable fact that geophysical and other exploration data in general are to some extent noisy, incomplete, and of limited sensitivity and resolution, and so yield non-unique results. The purpose of the project described here is to integrate the different model constraints provided by disparate geophysical, geological and geochemical data in a rigorous and consistent manner by formal joint inversion. The objective is to improve the fidelity of exploration results and reservoir characterization, thus addressing the goal of the DOE Geothermal Program to improve success in exploration for economically viable resources by better defining drilling targets, reducing risk, and improving exploration/drilling success rates.

Foxall, W; Ramirez, A; Carlson, S; Dyer, K; Sun, Y

2007-04-25T23:59:59.000Z

392

The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study  

DOE Green Energy (OSTI)

This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.

None

1982-07-01T23:59:59.000Z

393

Exploring DOE Data Treasure | OSTI, US Dept of Energy, Office...  

Office of Scientific and Technical Information (OSTI)

Newsletter for Office of Scientific and Technical Information OSTI.gov Newsletter OSTI has been making government R&D results open and transparent since 1947 Exploring DOE Data...

394

EXPLORER: A Natural Language Processing System for Oil Exploration  

E-Print Network (OSTI)

EXPLORER: A Natural Language Processing System for Oil Exploration Wendy G. Lehnert Department", whereas the second time "show" is used it has a technical meaning (i.e., an indicator of oil or gas Steven P. Shwartz Cognitive Systems Inc. 234 Church Street New Haven, Ct. 06510 EXPLORER (Lehnert

395

FMI Log At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Wister Area (DOE GTP) Exploration Activity Details Location Wister Area Exploration Technique FMI Log Activity Date Usefulness not indicated DOE-funding Unknown References (1...

396

Core Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

397

Aeromagnetic Survey At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown References...

398

Multispectral Imaging At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Multispectral Imaging At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration Technique Multispectral Imaging Activity Date Usefulness not indicated...

399

Core Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Colrado Area (DOE GTP) Exploration Activity Details Location Colado Geothermal Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown...

400

Geothermometry At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding...

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cuttings Analysis At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Wister Area (DOE GTP) Exploration Activity Details Location Wister Area Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown...

402

Geothermometry At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area Exploration Technique Geothermometry Activity Date Usefulness not indicated...

403

Magnetotellurics At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics At New River Area (DOE GTP) Exploration Activity Details Location New River Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated...

404

Flow Test At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Colrado Area (DOE GTP) Exploration Activity Details Location Colado Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

405

Development Wells At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Development Wells At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration Technique Development Wells Activity Date Usefulness not indicated DOE-funding...

406

Development Wells At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Development Wells At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Development Wells Activity Date Usefulness not...

407

Magnetotellurics At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding...

408

Cuttings Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Colrado Area (DOE GTP) Exploration Activity Details Location Colado Geothermal Area Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding...

409

Cuttings Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding...

410

Cuttings Analysis At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown References (1...

411

Multispectral Imaging At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Multispectral Imaging At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Multispectral Imaging Activity Date...

412

Field Mapping At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Colrado Area (DOE GTP) Exploration Activity Details Location Colado Geothermal Area Exploration Technique Field Mapping Activity Date Usefulness not indicated...

413

LiDAR (Lewicki & Oldenburg, 2004) | Open Energy Information  

Open Energy Info (EERE)

LiDAR (Lewicki & Oldenburg, 2004) Exploration Activity Details Location Unspecified Exploration Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References...

414

Success Stories: Carbon Explorer  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL Device Monitors Ocean Carbon LBNL Device Monitors Ocean Carbon Imagine waking up each morning and discovering that twenty percent of all plants in your garden had disappeared over night. They had been eaten. Equally astonishing would be the discovery in the afternoon that new plants had taken their place. This is the norm of life in the ocean. Without the ability to accurately observe these daily changes in ocean life cycles, over vast spatial scales, we lack the ability to predict how the ocean will respond to rising CO2 levels, crippling our ability to develop accurate models of global warming or devise strategies to prevent it. The Carbon Explorer, conceived by Berkeley Lab's James K. Bishop in collaboration with Scripps Institution of Oceanography (La Jolla, California) and WET labs, Inc. (Philomath, Oregon), bridges this

415

DOE Data Explorer - Create Account  

Office of Scientific and Technical Information (OSTI)

DOE Data Explorer Create Account Create New Account To create a DataExplorer account, enter your email address and password below. You will be taken to your account management...

416

Autonomous Exploration: Driven by Uncertainty  

E-Print Network (OSTI)

Autonomous Exploration: Driven by Uncertainty Peter Whaite and Frank P. Ferrie TR-CIM-93-17 1993-6319 Telex: 05 268510 FAX: 514 398-7348 Email: cim@cim.mcgill.ca #12;Autonomous Exploration: Driven

Dudek, Gregory

417

Sun-Synchronous Planetary Exploration  

E-Print Network (OSTI)

Contemporary planetary missions are characterized by favorable landing sites, communication, and duration. The ambition of planetary exploration is to discover the unknown: to explore regions, not just sites; to analyze, not just observe; and to operate effectively and reliably without excessive communication and ground support. New robotics technologies and mission concepts will revolutionize exploration systems and operations. This paper addresses the key enabling technologies for sun-synchronous planetary exploration: environmental modeling, temporal path planning, scaling, and robot configuration. 1.

William Red Whittaker; William red Whittaker; George Kantor; Ben Shamah; David Wettergreen

2000-01-01T23:59:59.000Z

418

SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT  

SciTech Connect

This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

RUCKER DF; MYERS DA

2011-10-04T23:59:59.000Z

419

International Oil and Gas Exploration and Development 1991  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Oil and Gas Exploration and Development 1991 November 1993 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, D.C. 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration International Oil and Gas Exploration and Development 1991 iii Contacts International Oil and Gas Exploration and Development 1991 was prepared by the Energy Information Administration (EIA), Office of Oil and Gas, Reserves and Natural Gas Division, Reserves and Production Branch.

420

Geographic Information System At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

OpenEI:OldGeoGateway | Open Energy Information  

Open Energy Info (EERE)

Project page Project page Edit History Facebook icon Twitter icon » OpenEI:OldGeoGateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST

422

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

423

Historical Exploration And Drilling Data From Geothermal Prospects And  

Open Energy Info (EERE)

Exploration And Drilling Data From Geothermal Prospects And Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Details Activities (20) Areas (7) Regions (0) Abstract: In 2005, Idaho National Laboratory was conducting a study of historical exploration practices and success rates for geothermal resources identification. Geo Hills Associates (GHA) was contracted to review and accumulate copies of published literature, Internet information, and unpublished geothermal exploration data to determine the level of exploration and drilling activities that occurred for all of the currently

424

Techniques for Disaster Tolerant Information Technology Systems  

E-Print Network (OSTI)

& BACKGROUND A disaster is an event that can cause system-wide malfunction or outage as a result of one or more. A cascading failure resulting from a disaster may be characterized as a series of system outages, such that an initial disturbance causes one or more dependent system outages [1, 2]. A catastrophe, characterized

Thornton, Mitchell

425

Definition: Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

the subsurface.1 References http:www.slb.commediaFilesevaluationbooksfundamentalsofboreholeseismictechnologyoverview.pdf Ret LikeLike UnlikeLike You like...

426

Definition: Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

427

Category:Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

in this category, out of 5 total. A Analytical Modeling C Conceptual Model M Modeling-Computer Simulations N Numerical Modeling P Portfolio Risk Modeling Retrieved from "http:...

428

The development of a south Texas health information gateway : negotiating the construction of information.  

E-Print Network (OSTI)

??This study examines the challenges, issues and complexities surrounding the construction of information for a South Texas Internet-based, health information gateway. It explores the collaborative (more)

Kaercher, Deborah J.

2007-01-01T23:59:59.000Z

429

Geographic Information System At Nw Basin & Range Region (Coolbaugh...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration...

430

Geographic Information System At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

Geographic Information System At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration...

431

Geographic Information System At U.S. West Region (Williams ...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity Details...

432

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration...

433

Geographic Information System At Nw Basin & Range Region (Blewitt...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity...

434

Category:Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Sampling page? For detailed information on Field Sampling as exploration techniques, click here. Category:Field Sampling Add.png Add a new Field Sampling Technique Subcategories This category has the following 2 subcategories, out of 2 total. G [×] Gas Sampling‎ 3 pages W [×] Water Sampling‎ 2 pages Pages in category "Field Sampling" The following 4 pages are in this category, out of 4 total. G Gas Sampling R Rock Sampling S Soil Sampling W Water Sampling Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Sampling&oldid=689818" Category: Field Techniques

435

Geographic Information System At Brady Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Brady Hot Springs Geographic Information System At Brady Hot Springs Area (Laney, 2005) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes InSAR Ground Displacement Analysis, Gary Oppliger and Mark Coolbaugh. This project supports increased utilization of geothermal resources in the Western United States by developing basic measurements and interpretations that will assist reservoir management and expansion at Bradys, Desert Peak and the Desert Peak EGS study area (80 km NE of Reno, Nevada) and will serve as a technology template for other geothermal fields. Raw format European Space Agency (ESA) ERS 1/2 satellite synthetic Aperture Radar (SAR) radar scenes acquired from 1992 through 2002 are being processed to

436

Geobotanical Remote Sensing for Geothermal Exploration  

DOE Green Energy (OSTI)

This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

2001-05-22T23:59:59.000Z

437

Introduction Optimal static exploration strategy  

E-Print Network (OSTI)

strategy Optimal dynamic exploration strategy The project Find Oil The current work is part of the project strategy Optimal dynamic exploration strategy The project Find Oil The current work is part of the project components required for oil and gas to accumulate in sufficient quantities to be worth producing: source

Eidsvik, Jo

438

Data Mining for Seismic Exploration  

Science Conference Proceedings (OSTI)

Seismic exploration plays an important role in petroleum industry. It is widely admitted that there are a lot of limitations of conventional data analysis ways in oil and gas industry. Traditional methods in petroleum engineering are knowledge-driven ... Keywords: seismic exploration, data mining, cluster analysis

Zhongbin Ouyang; Jing He; Keliang Zhang

2008-12-01T23:59:59.000Z

439

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION  

Science Conference Proceedings (OSTI)

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

R. C. O'Brien; S. D. Howe; J. E. Werner

2010-09-01T23:59:59.000Z

440

Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et  

Open Energy Info (EERE)

Nw Basin & Range Region (Coolbaugh, Et Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Nw_Basin_%26_Range_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401452

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

An Architecture for Distributed Environment Sensing with Application to Robotic Cliff Exploration  

Science Conference Proceedings (OSTI)

Future planetary exploration missions will use cooperative robots to explore and sample rough terrain. To succeed robots will need to cooperatively acquire and share data. Here a cooperative multi-agent sensing architecture is presented and applied to ... Keywords: cooperative robots, data fusion, information theory, robot communication, visual exploration

Vivek A. Sujan; Steven Dubowsky; Terry Huntsberger; Hrand Aghazarian; Yang Cheng; Paul Schenker

2004-05-01T23:59:59.000Z

442

From Question Answering to Visual Exploration  

SciTech Connect

Research in Question Answering has focused on the quality of information retrieval or extraction using the metrics of precision and recall to judge success; these metrics drive toward finding the specific best answer(s) and are best supportive of a lookup type of search. These do not address the opportunity that users? natural language questions present for exploratory interactions. In this paper, we present an integrated Question Answering environment that combines a visual analytics tool for unstructured text and a state-of-the-art query expansion tool designed to compliment the cognitive processes associated with an information analysts work flow. Analysts are seldom looking for factoid answers to simple questions; their information needs are much more complex in that they may be interested in patterns of answers over time, conflicting information, and even related non-answer data may be critical to learning about a problem or reaching prudent conclusions. In our visual analytics tool, questions result in a comprehensive answer space that allows users to explore the variety within the answers and spot related information in the rest of the data. The exploratory nature of the dialog between the user and this system requires tailored evaluation methods that better address the evolving user goals and counter cognitive biases inherent to exploratory search tasks.

McColgin, Dave W.; Gregory, Michelle L.; Hetzler, Elizabeth G.; Turner, Alan E.

2006-08-11T23:59:59.000Z

443

Clean Cities: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Clean Cities: Information Resources to someone by E-mail Share Clean Cities: Information Resources on Facebook Tweet about Clean Cities: Information Resources on Twitter Bookmark Clean Cities: Information Resources on Google Bookmark Clean Cities: Information Resources on Delicious Rank Clean Cities: Information Resources on Digg Find More places to share Clean Cities: Information Resources on AddThis.com... Publications Technical Assistance Information Resources Learn about Clean Cities by exploring these information resources. Publications View Clean Cities-branded publications or search for publications about alternative fuels and vehicles. Technical Assistance Learn about technical assistance available to help organizations overcome

444

DOE Data Explorer - Sign In  

Office of Scientific and Technical Information (OSTI)

OSTI Home DDE Home DDE FAQs Help Site Map Contact Us Save searches, create alerts and export data :Sign In orCreate Account DOE Data Explorer Search Find Advanced Search Options...

445

DOE Data Explorer - Forgot Password  

Office of Scientific and Technical Information (OSTI)

OSTI Home DDE Home DDE FAQs Help Site Map Contact Us Save searches, create alerts and export data :Sign In orCreate Account DOE Data Explorer Search Find Advanced Search Options...

446

Electromagnetic exploration system. Progress report  

DOE Green Energy (OSTI)

A design for a cost effective, highly flexible, and portable controlled source EM exploration system is presented. The design goals of the CMOS micro-processor based receiver and its companion transmitter are listed. (MHR)

Not Available

1978-11-01T23:59:59.000Z

447

Electric Micro Imager Log | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electric Micro Imager Log edit Details Activities (1) Areas (1) Regions (0) NEPA(0)...

448

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Water-Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water-Gas Sampling edit Details Activities (21) Areas (18) Regions (1)...

449

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description A comprehensive, interdisciplinary approach is proposed using existing geophysical exploration technology coupled with new seismic techniques and subject matter experts to determine the combination of geoscience data that demonstrates the greatest potential for identifying EGS drilling targets using non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data, thereby reducing the uncertainty in the primary selection criteria for identifying EGS drilling targets. These criteria are, in order of importance: (1) temperatures greater than 200-250°C at 1-5 km depth; (2) rock type at the depth of interest, and; (3) stress regime.

450

PROMETHEE II: A knowledge-driven method for copper exploration  

Science Conference Proceedings (OSTI)

This paper describes the application of a well-known Multi Criteria Decision Making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits. Various raster-based evidential ... Keywords: Knowledge-driven method, Mineral prospectivity mapping, Now Chun deposit, PROMETHEE II, Porphyry copper, Various geo-datasets

Maysam Abedi; S. Ali Torabi; Gholam-Hossain Norouzi; Mohammad Hamzeh; Gholam-Reza Elyasi

2012-09-01T23:59:59.000Z

451

Geobotanical Remote Sensing For Geothermal Exploration | Open Energy  

Open Energy Info (EERE)

For Geothermal Exploration For Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Geobotanical Remote Sensing For Geothermal Exploration Details Activities (1) Areas (1) Regions (0) Abstract: This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and

452

Geothermal energy: Geology, exploration, and developments. Part I  

DOE Green Energy (OSTI)

Geology, exploration, and initial developments of significant geothermal areas of the world are summarized in this report which is divided into two parts. Part 1 is a review of the geological and explorational aspects of geothermal energy development; areas of potential development in the Western United States are also discussed. The most favorable geological environment for exploration and development of geothermal steam is characterized by recent normal faulting, volcanism, and high heat flow. Successful exploration for steam consists of coordinated multidisciplinary application of geological, geophysical, and geochemical knowledge and techniques. These are reviewed. California leads in known geothermal reserves and is followed by Nevada, Oregon, and New Mexico. Specific prospective areas in these 11 Western States are described.

Grose, Dr. L.T.

1971-11-01T23:59:59.000Z

453

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

454

Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

455

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

456

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated...

457

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

458

2-M Probe At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area Exploration Technique 2-M Probe Activity Date Usefulness not indicated DOE-funding Unknown...

459

Acoustic Logs At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area Exploration Technique Acoustic Logs Activity Date Usefulness not indicated DOE-funding Unknown...

460

Ground Gravity Survey At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Ground Gravity Survey At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated...