Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Template:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

'ExplorationTechnique' template. To define a new Exploration 'ExplorationTechnique' template. To define a new Exploration Technique, please use the Exploration Technique Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - ParentExplorationTechnique - parent technique for relationship tree LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

2

Category:Exploration Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Exploration page? For detailed information on Geothermal Exploration, click here. Category:Exploration Techniques Add.png Add a new Exploration Technique Subcategories This category has the following 9 subcategories, out of 9 total. D [+] Data and Modeling Techniques‎ (2 categories) 2 pages [+] Downhole Techniques‎ (5 categories) 10 pages [+] Drilling Techniques‎ (2 categories) 4 pages F [+] Field Methods‎ (1 categories) [+] Field Techniques‎ (2 categories) 4 pages G [+] Geochemical Techniques‎ (1 categories) 1 pages G cont. [+] Geophysical Techniques‎ (4 categories) 5 pages L [+] Lab Analysis Techniques‎ (2 categories) 4 pages R [+] Remote Sensing Techniques‎ (2 categories) 2 pages

3

Property:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

ExplorationTechnique ExplorationTechnique Jump to: navigation, search Property Name ExplorationTechnique Property Type Page Description The ExplorationTechnique used in the Exploration Activity. Use the form ExplorationTechnique to create new exploration technique pages. Subproperties This property has the following 1 subproperty: A Aeromagnetic Survey At Crump's Hot Springs Area (DOE GTP) Pages using the property "ExplorationTechnique" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + 2-M Probe Survey + 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + 2-M Probe Survey + 2-M Probe At Black Warrior Area (DOE GTP) + 2-M Probe Survey + 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) + 2-M Probe Survey +

4

Property:ExplorationParentTechnique | Open Energy Information  

Open Energy Info (EERE)

orationParentTechnique Property Type Page Description parent technique for organization tree Retrieved from "http:en.openei.orgwindex.php?titleProperty:ExplorationParentTechni...

5

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

6

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

7

Data Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Data Techniques: The collection, processing, and interpretation of data from various methods so accurate interpretations can be made about the subject matter. Other definitions:Wikipedia Reegle Introduction Data techniques are any technique where data is collected and organized in a manner so that the information is useful for geothermal purposes. The

8

Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geochemical Techniques Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Techniques: No definition has been provided for this term. Add a Definition Related Techniques Geochemical Techniques Geochemical Data Analysis Geothermometry Gas Geothermometry Isotope Geothermometry Liquid Geothermometry Cation Geothermometers Multicomponent Geothermometers Silica Geothermometers Thermal Ion Dispersion

9

Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geophysical Techniques Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Techniques Details Activities (2) Areas (1) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: may be inferred Stratigraphic/Structural: may be inferred Hydrological: may be inferred Thermal: may be inferred Dictionary.png Geophysical Techniques: Geophysics is the study of the structure and composition of the earth's interior. Other definitions:Wikipedia Reegle Introduction Geophysical techniques measure physical phenomena of the earth such as gravity, magnetism, elastic waves, electrical and electromagnetic waves.

10

Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Electrical Techniques Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the electrical resistivity of the

11

Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Techniques Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Techniques Details Activities (0) Areas (0) Regions (0) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Magnetotelluric Techniques:

12

Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(10) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

13

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

14

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

15

Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Bulk and trace element analysis of rocks, minerals, and sediments. Identify and document surface geology and mineralogy. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Locates active faults in the area of interest. Map fault and fracture patterns, kinematic information. Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

16

Formation Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Formation Testing Techniques Formation Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Formation Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Formation Testing Techniques: No definition has been provided for this term. Add a Definition References No exploration activities found. Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Formation_Testing_Techniques&oldid=601973" Categories: Downhole Techniques Exploration Techniques

17

Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

18

Template:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search This is the 'ExplorationGroup' template. To define a new Exploration Technique, please use the Exploration Group Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

19

Gravity Techniques | Open Energy Information  

Open Energy Info (EERE)

Gravity Techniques Gravity Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

20

Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Remote Sensing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Remote Sensing Techniques: Remote sensing utilizes satellite and/or airborne based sensors to collect information about a given object or area. Remote sensing data collection methods can be passive or active. Passive sensors (e.g., spectral imagers) detect natural radiation that is emitted or reflected by the object or area

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Category:Data Techniques | Open Energy Information  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data Techniques page? For detailed information on Data Techniques as exploration techniques,...

22

Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

23

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

24

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

25

Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data and Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, and fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

26

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

27

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

28

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques (Redirected from Electromagnetic Sounding Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

29

Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Active Seismic Techniques Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

30

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

31

Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques Borehole Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Borehole Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation Thermal: High temperatures and pressure impact the compressional and shear wave velocities

32

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

33

Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Passive Seismic Techniques Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

34

Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Lab Analysis Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Lab Analysis Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Water rock interaction; Rapid and unambiguous identification of unknown minerals; Bulk and trace element analysis of rocks, minerals, and sediments; Obtain detailed information about rock composition and morphology; Determine detailed information about rock composition and morphology; Cuttings are used to define lithology; Core analysis is done to define lithology

35

Property:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search Property Name ExplorationGroup Property Type Page Description Exploration Group for Exploration Activities Pages using the property "ExplorationGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Field Techniques + A Acoustic Logs + Downhole Techniques + Active Seismic Methods + Geophysical Techniques + Active Seismic Techniques + Geophysical Techniques + Active Sensors + Remote Sensing Techniques +, Remote Sensing Techniques + Aerial Photography + Remote Sensing Techniques + Aeromagnetic Survey + Geophysical Techniques + Airborne Electromagnetic Survey + Geophysical Techniques + Airborne Gravity Survey + Geophysical Techniques + Analytical Modeling + Data and Modeling Techniques +

36

Category:Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electrical Techniques page? For detailed information on Electrical Techniques as exploration techniques, click here. Category:Electrical Techniques Add.png Add a new Electrical Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [+] Direct-Current Resistivity Survey‎ (2 categories) 3 pages E [+] Electromagnetic Techniques‎ (1 categories) 2 pages Pages in category "Electrical Techniques"

37

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

38

Category:Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on Geophysical Techniques as exploration techniques, click here. Category:Geophysical Techniques Add.png Add a new Geophysical Techniques Technique Subcategories This category has the following 4 subcategories, out of 4 total. E [+] Electrical Techniques‎ (2 categories) 5 pages G [×] Gravity Techniques‎ 3 pages M [×] Magnetic Techniques‎ 3 pages S [+] Seismic Techniques‎ (2 categories) 2 pages Pages in category "Geophysical Techniques" The following 5 pages are in this category, out of 5 total. D DC Resistivity Survey (Mise-Á-La-Masse) E Electrical Techniques G Gravity Techniques M Magnetic Techniques

39

Template:ExplorationActivity | Open Energy Information  

Open Energy Info (EERE)

ExplorationActivity ExplorationActivity Jump to: navigation, search This is the 'ExplorationActivity' template. To define a new Exploration Activity, please use the Exploration Activity Form. Parameters Name - The name of the activity (typically a combination of the techniques and location, ex. Water Sampling at McCredie Hot Springs) Technique - The exploration technique used in this activity SpectralSensor - The spectral imaging sensor used in this activity Place - The name of the exploration field or location of the activity Notes - General notes about the activity (optional) Outcome - A short description of the benefit or usefulness of the activity Reference_material - The reference material documenting the activity ExpActivityDate - Date or year activity started ExpActivityDateEnd - Date or year activity ended

40

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Category:Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Techniques page? For detailed information on Field Techniques as exploration techniques, click here. Category:Field Techniques Add.png Add a new Field Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [×] Data Collection and Mapping‎ 5 pages F [+] Field Sampling‎ (2 categories) 4 pages Pages in category "Field Techniques" The following 4 pages are in this category, out of 4 total. D Data Collection and Mapping F Field Sampling H Hand-held X-Ray Fluorescence (XRF) P Portable X-Ray Diffraction (XRD) Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Techniques&oldid=689815"

42

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

43

Genability Explorer | Open Energy Information  

Open Energy Info (EERE)

Genability Explorer Genability Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Genability Explorer Agency/Company /Organization: Genability Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Website Website: www.genability.com Country: United States Web Application Link: explorer.genability.com/explorer/index.jsp Cost: Paid OpenEI Keyword(s): Green Button Apps Northern America Coordinates: 37.790383°, -122.393054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.790383,"lon":-122.393054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Category:Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geochemical Techniques page? For detailed information on exploration techniques, click here. Category:Geochemical Techniques Add.png Add a new Geochemical Techniques Technique Subcategories This category has only the following subcategory. G [×] Geochemical Data Analysis‎ 3 pages Pages in category "Geochemical Techniques" This category contains only the following page. G Geochemical Data Analysis Retrieved from "http://en.openei.org/w/index.php?title=Category:Geochemical_Techniques&oldid=689823"

45

Innovative Exploration Techniques for Geothermal Assessment at...  

Open Energy Info (EERE)

determine the fracture surface area, heat content and heat transfer, flow rates, and chemistry of the geothermal fluids encountered by the exploration wells. - Write final report...

46

Property:ExplorationBasis | Open Energy Information  

Open Energy Info (EERE)

ExplorationBasis ExplorationBasis Jump to: navigation, search Property Name ExplorationBasis Property Type Text Description Exploration Basis Why was exploration work conducted in this area (e.g., USGS report of a geothermal resource, hot springs with geothemmetry indicating electrical generation capacity, etc.) Subproperties This property has the following 1 subproperty: M Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Pages using the property "ExplorationBasis" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey At Coso Geothermal Area (1977) + Compare directly shallow temperature results with standard geothermal exploration techniques. 2-M Probe Survey At Coso Geothermal Area (1979) + Correct previously analyzed 2-m probe data

47

Category:Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole Techniques as exploration techniques, click here. Category:Downhole Techniques Add.png Add a new Downhole Techniques Technique Subcategories This category has the following 5 subcategories, out of 5 total. B [×] Borehole Seismic Techniques‎ 2 pages F [×] Formation Testing Techniques‎ O [×] Open-Hole Techniques‎ W [×] Well Log Techniques‎ 17 pages [×] Well Testing Techniques‎ 8 pages

48

Neutron Imaging Explored as Complementary Technique for Improving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast...

49

Geothermal Exploration Techniques a Case Study. Final Report...  

Open Energy Info (EERE)

to library Report: Geothermal Exploration Techniques a Case Study. Final Report Abstract The objective of this project was to review and perform a critical evaluation of...

50

Property:ExplorationSubGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationSubGroup ExplorationSubGroup Jump to: navigation, search Property Name ExplorationSubGroup Property Type Page Description Exploration sub groups for exploration activities Pages using the property "ExplorationSubGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Data Collection and Mapping + A Acoustic Logs + Well Log Techniques + Active Seismic Methods + Seismic Techniques + Active Seismic Techniques + Seismic Techniques + Active Sensors + Active Sensors + Aerial Photography + Passive Sensors + Aeromagnetic Survey + Magnetic Techniques + Airborne Electromagnetic Survey + Electrical Techniques + Airborne Gravity Survey + Gravity Techniques + Analytical Modeling + Modeling Techniques + Audio-Magnetotellurics + Electrical Techniques +

51

Category:Exploration Activities | Open Energy Information  

Open Energy Info (EERE)

Activities Activities Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Exploration Activities Geothermalpower.jpg Looking for the Exploration Activities page? For detailed information on Exploration Activities, click here. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "Exploration Activities" The following 200 pages are in this category, out of 1,574 total. (previous 200) (next 200) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) 2-M Probe At Black Warrior Area (DOE GTP) 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) 2-M Probe At Flint Geothermal Area (DOE GTP)

52

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

53

Neutron Imaging Explored as Complementary Technique for Improving Cancer  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast tumor (black color in top image of monitor screen) using the software to visualize in color the various intensities of neutron transmissions through the breast tissue. ORNL and University of Tennessee collaboration now analyzing first results from neutron radiographs of cancerous tissue samples Today's range of techniques for detection of breast and other cancers include mammography, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and optical imaging. Each technology has advantages and disadvantages, with limitations either

54

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

55

Innovative Exploration Techniques for Geothermal Assessment at Jemez  

Open Energy Info (EERE)

Exploration Techniques for Geothermal Assessment at Jemez Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This collaborative project will perform the following tasks to fully define the nature and extent of the geothermal reservoir underlying the Jemez Reservation: - Conduct 1-6,000-scale geologic mapping of 6 mi2 surrounding the Indian Springs area. - Using the detailed geologic map, locate one N-S and two E-W seismic lines and run a seismic survey of 4 mi2; reduce and analyze seismic data using innovative high-resolution seismic migration imaging techniques developed by LANL, and integrate with 3-D audio-frequency MT/MT data acquired at the same area for fault and subsurface structure imaging and resource assessment.

56

Category:Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data and Modeling Techniques page? For detailed information on Data and Modeling Techniques as exploration techniques, click here. Category:Data and Modeling Techniques Add.png Add a new Data and Modeling Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [×] Data Techniques‎ 3 pages M [×] Modeling Techniques‎ 5 pages Pages in category "Data and Modeling Techniques" The following 2 pages are in this category, out of 2 total. D Data Techniques M Modeling Techniques Retrieved from "http://en.openei.org/w/index.php?title=Category:Data_and_Modeling_Techniques&oldid=689801"

57

Category:Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques page? Borehole Seismic Techniques page? For detailed information on Borehole Seismic Techniques as exploration techniques, click here. Category:Borehole Seismic Techniques Add.png Add a new Borehole Seismic Techniques Technique Pages in category "Borehole Seismic Techniques" The following 2 pages are in this category, out of 2 total. S Single-Well And Cross-Well Seismic V Vertical Seismic Profiling Retrieved from "http://en.openei.org/w/index.php?title=Category:Borehole_Seismic_Techniques&oldid=601962" Category: Downhole Techniques What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

58

Definition: Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search Dictionary.png Electromagnetic Profiling Techniques Electromagnetic profiling techniques map lateral variations in subsurface resistivity.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic) to measure the physical properties of rocks, and in particular, to detect

59

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

60

Category:Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Remote Sensing Techniques page? For detailed information on remote sensing techniques used as a geothermal exploration technique, click here. Category: Remote Sensing Techniques Add.png Add a new Remote Sensing Technique Subcategories This category has the following 2 subcategories, out of 2 total. A [+] Active Sensors‎ (1 categories) 2 pages P [×] Passive Sensors‎ 13 pages Pages in category "Remote Sensing Techniques" The following 2 pages are in this category, out of 2 total. A Active Sensors L Long-Wave Infrared Retrieved from "http://en.openei.org/w/index.php?title=Category:Remote_Sensing_Techniques&oldid=594055"

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

62

RAPID/Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

in Federal Bureau of Land Management, United States Forest Service Notice of Intent to Conduct Geothermal Resource Exploration Operations (Form 3200-009) Bureau of Land...

63

RAPID/Geothermal/Exploration/Colorado | Open Energy Information  

Open Energy Info (EERE)

Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us Geothermal Exploration in Colorado Geothermal...

64

Property:ExplorationOutcome | Open Energy Information  

Open Energy Info (EERE)

ExplorationOutcome ExplorationOutcome Jump to: navigation, search Property Name ExplorationOutcome Property Type String Description The outcome of an Exploration Activity. Allows Values could be useful with more improvements;useful;not indicated;not useful;useful regional reconnaissance Pages using the property "ExplorationOutcome" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Black Warrior Area (DOE GTP) + not indicated + 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) + useful +

65

Category:Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Well Log Techniques page? For detailed information on Well Log Techniques as exploration techniques, click here. Category:Well Log Techniques Add.png Add a new Well Log Techniques Technique Pages in category "Well Log Techniques" The following 17 pages are in this category, out of 17 total. A Acoustic Logs C Caliper Log Cement Bond Log Chemical Logging Cross-Dipole Acoustic Log D Density Log F FMI Log G Gamma Log I Image Logs M Mud Logging N Neutron Log P Pressure Temperature Log R Resistivity Log Resistivity Tomography S Single-Well and Cross-Well Resistivity Spontaneous Potential Well Log Stoneley Analysis

66

CLUSTERED MULTIDIMENSIONAL SCALING FOR EXPLORATION IN INFORMATION RETRIEVAL  

E-Print Network (OSTI)

and even hardly improve the exploration process of datasets assumed to be composed of multiple distinctCLUSTERED MULTIDIMENSIONAL SCALING FOR EXPLORATION IN INFORMATION RETRIEVAL Eniko Sz´ekely, ´Eric: clustering, nearest neighbour, multidimensional scaling, exploration. Abstract: The data that needs

Genève, Université de

67

Geophysical Exploration Technologies | Open Energy Information  

Open Energy Info (EERE)

Geophysical Exploration Technologies Geophysical Exploration Technologies Jump to: navigation, search Geothermal ARRA Funded Projects for Geophysical Exploration Technologies Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

68

Definition: Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Geophysical Techniques Jump to: navigation, search Dictionary.png Geophysical Techniques Geophysics is the study of the structure and composition of the earth's interior.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic)

69

Phase II - Resource Exploration and Confirmation | Open Energy Information  

Open Energy Info (EERE)

Phase II - Resource Exploration and Confirmation Phase II - Resource Exploration and Confirmation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase II: Resource Exploration and Confirmation GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation Phase III - Permitting and Initial Development

70

Property:ExplorationTimePerMetric | Open Energy Information  

Open Energy Info (EERE)

ExplorationTimePerMetric ExplorationTimePerMetric Jump to: navigation, search Property Name ExplorationTimePerMetric Property Type String Description the unit ratio denominator for exploration time Allows Values job;10 mile;10 stn;100 mile;sq. mile;foot Subproperties This property has the following 121 subproperties: A Active Seismic Methods Active Seismic Techniques Active Sensors Analytical Modeling B Borehole Seismic Techniques C Cation Geothermometers Chemical Logging Compound and Elemental Analysis Conceptual Model Core Holes Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array) Data Collection and Mapping Data Techniques

71

Property:ExplorationCostPerMetric | Open Energy Information  

Open Energy Info (EERE)

ExplorationCostPerMetric ExplorationCostPerMetric Jump to: navigation, search Property Name ExplorationCostPerMetric Property Type String Description the unit ratio denominator for exploration cost Allows Values 100 feet cut;30 foot core;compound;day;element;foot;hour;mile;point;process;sample;sq. mile;station;Subject;well Subproperties This property has the following 107 subproperties: A Active Seismic Methods Active Seismic Techniques Active Sensors Analytical Modeling B Borehole Seismic Techniques C Cation Geothermometers Chemical Logging Conceptual Model Core Holes Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array)

72

The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents  

SciTech Connect

The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

Thomas Chidsey

2008-09-30T23:59:59.000Z

73

Geographic Information Systems- Tools For Geotherm Exploration, Tracers  

Open Energy Info (EERE)

Systems- Tools For Geotherm Exploration, Tracers Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Details Activities (4) Areas (3) Regions (0) Abstract: Geographic information systems (GIS) are an underused resource that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly customizable to specific user needs and can use entire corporate data sets through a visual interface. This paper briefly documents the use of GIS in specific examples of geothermal research at the

74

Definition: Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search Dictionary.png Remote Sensing Techniques Remote sensing utilizes satellite and/or airborne based sensors to collect information about a given object or area. Remote sensing data collection methods can be passive or active. Passive sensors (e.g., spectral imagers) detect natural radiation that is emitted or reflected by the object or area being observed. In active remote sensing (e.g., radar) energy is emitted and the resultant signal that is reflected back is measured.[1] View on Wikipedia Wikipedia Definition Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object. In modern usage, the term generally refers to the use of aerial sensor technologies

75

Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico presentation at the April 2013 peer review meeting held in Denver, Colorado.

76

Definition: Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search Dictionary.png Downhole Techniques Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids intersected by a well. These petrophysical data are fundamental to developing the understanding of a geothermal reservoir.[1] View on Wikipedia Wikipedia Definition Petrophysics (from the Greek πέτρα, petra, "rock" and φύσις, physis, "nature") is the study of physical and chemical rock properties and their interactions with fluids. A major application of petrophysics is in studying reservoirs for the hydrocarbon industry. Petrophysicists are employed to help reservoir engineers and geoscientists understand the rock properties of the reservoir, particularly how pores in

77

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

78

Definition: Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Seismic methods provide information regarding the elastic properties of the subsurface through the measurement of the propagation velocity of elastic waves.[1] View on Wikipedia Wikipedia Definition Seismology /saɪzˈmɒlədʒi/ is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake effects, such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes (such as explosions). A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram. A seismologist

79

File:04AKBGeophysicalExplorationPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

AKBGeophysicalExplorationPermit.pdf AKBGeophysicalExplorationPermit.pdf Jump to: navigation, search File File history File usage File:04AKBGeophysicalExplorationPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 62 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:38, 6 August 2012 Thumbnail for version as of 11:38, 6 August 2012 1,275 × 1,650 (62 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 4-AK-b - Geophysical Exploration Permit

80

An Exploration of Multi-touch Interaction Techniques  

E-Print Network (OSTI)

) or not (uncaptured). . . . . . . . . . . . . . . . . . . . . . 12 2.4 Kruger et al. [63] present a single touch technique for integrated ro- tation and translation. Touches in the circle perform only translation. 14 2.5 ?Bumptop?, a physically based desktop....3 Components of the prototype: (a)index slider to perform adjustment of the parameter (b) finger pad to alter the selection of parameters (c) palm support to avoid erroneous touches, and (d) visual feedback of the currently selected parameters (parameter...

Damaraju Sriranga, Sashikanth Raju

2013-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Haleakala SW Rift Zone Exploration | Open Energy Information  

Open Energy Info (EERE)

Haleakala SW Rift Zone Exploration Haleakala SW Rift Zone Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Haleakala SW Rift Zone Exploration Project Location Information Coordinates 20.63144440367°, -156.37383611407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.63144440367,"lon":-156.37383611407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Category:Formation Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Formation Testing Techniques page? For detailed information on...

83

Advanced InSAR Techniques for Geothermal Exploration and Production | Open  

Open Energy Info (EERE)

Advanced InSAR Techniques for Geothermal Exploration and Production Advanced InSAR Techniques for Geothermal Exploration and Production Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Advanced InSAR Techniques for Geothermal Exploration and Production Abstract InSAR is a remote sensing tool that has applications in both geothermal exploration and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow, among other things, the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in the US and abroad.

84

Guided Exploration: an Inductive Minimalist Approach for Teaching Tool-related Concepts and Techniques  

Science Journals Connector (OSTI)

In this paper we introduce Guided Exploration as an inductive teaching approach. It is based on Minimalism and makes use of the pattern format. Guided Exploration addresses a couple of problems when teaching tool-related concepts and techniques, like ... Keywords: Educational Patterns, Inductive Teaching, Learning Styles

Christian Kppe; Rick Rodin

2013-04-01T23:59:59.000Z

85

RAPID/Geothermal/Exploration/Utah | Open Energy Information  

Open Energy Info (EERE)

to encourage maximum economic recovery. 1 Exploration Notes: ContactsAgencies: State Exploration Process not available Local Exploration Process not available Policies &...

86

RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information  

Open Energy Info (EERE)

Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT RAPIDGeothermalExploration...

87

RAPID/Overview/Geothermal/Exploration/Idaho | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationIdaho) Redirect page Jump to: navigation, search REDIRECT RAPID...

88

RAPID/Overview/Geothermal/Exploration/Oregon | Open Energy Information  

Open Energy Info (EERE)

Oregon < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationOregon) Redirect page Jump to: navigation, search REDIRECT...

89

RAPID/Overview/Geothermal/Exploration/Nevada | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationNevada) Redirect page Jump to: navigation, search REDIRECT RAPID...

90

RAPID/Overview/Geothermal/Exploration/Texas | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationTexas) Redirect page Jump to: navigation, search REDIRECT RAPID...

91

Gas Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Gas Geothermometry Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group:...

92

File:04AKCGeothermalExplorationPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

4AKCGeothermalExplorationPermit.pdf 4AKCGeothermalExplorationPermit.pdf Jump to: navigation, search File File history File usage File:04AKCGeothermalExplorationPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 31 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 08:12, 7 August 2012 Thumbnail for version as of 08:12, 7 August 2012 1,275 × 1,650 (31 KB) Jnorris (Talk | contribs) 10:38, 6 August 2012 Thumbnail for version as of 10:38, 6 August 2012 1,275 × 1,650 (29 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

93

Category:Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Sounding Techniques page? For detailed information on Electromagnetic Sounding Techniques, click here. Category:Electromagnetic Sounding Techniques Add.png Add a new Electromagnetic Sounding Techniques Technique Subcategories This category has only the following subcategory. M [×] Magnetotelluric Techniques‎ 1 pages Pages in category "Electromagnetic Sounding Techniques" The following 2 pages are in this category, out of 2 total. M Magnetotelluric Techniques T Time-Domain Electromagnetics Retrieved from "http://en.openei.org/w/index.php?title=Category:Electromagnetic_Sounding_Techniques&oldid=689837"

94

RAPID/Geothermal/Exploration/California | Open Energy Information  

Open Energy Info (EERE)

permittee has a preferential right to a geothermal lease. 2 ContactsAgencies: State Exploration Process not available Local Exploration Process not available Policies &...

95

RAPID/Overview/Geothermal/Exploration/Nevada | Open Energy Information  

Open Energy Info (EERE)

Nevada Pe mitting at a Glance State: Nevada Exploration Permit Agency (Pre-drilling): Nevada Division of Minerals Exploration Permit (Pre-drilling): On Nevada state...

96

RAPID/Overview/Geothermal/Exploration/Idaho | Open Energy Information  

Open Energy Info (EERE)

Idaho Pe mitting at a Glance State: Idaho Exploration Permit Agency (Pre-drilling): Idaho Department of Water Resources Exploration Permit (Pre-drilling): In Idaho, no...

97

RAPID/Geothermal/Exploration/Alaska | Open Energy Information  

Open Energy Info (EERE)

or jurisdiction. Permitting at a Glance State: Alaska Exploration Permit Agency (Pre-drilling): Alaska Division of Oil and Gas Exploration Permit (Pre-drilling): A plan of...

98

RAPID/Geothermal/Exploration/Texas | Open Energy Information  

Open Energy Info (EERE)

Railroad Commission of Texas (RRC) if drilling is conducted. Exploration Permit Agency (Drilling): Railroad Commission of Texas Exploration Permit (Drilling): According to 16 TAC...

99

RAPID/Geothermal/Exploration/Texas | Open Energy Information  

Open Energy Info (EERE)

Exploration Permit Agency (Drilling): Railroad Commission of Texas Exploration Permit (Drilling): According to 16 TAC 3.79 an exploratory well includes "any well drilled for the...

100

Property:ExplorationPermitAgency-Drilling | Open Energy Information  

Open Energy Info (EERE)

18 pages using this property. R RAPIDGeothermalExplorationAlaska + Alaska Division of Oil and Gas + RAPIDGeothermalExplorationCalifornia + California Department of...

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Property:ExplorationPermitAgency-PreDrilling | Open Energy Information  

Open Energy Info (EERE)

18 pages using this property. R RAPIDGeothermalExplorationAlaska + Alaska Division of Oil and Gas + RAPIDGeothermalExplorationCalifornia + County or Local Government +...

102

Improving exploration with geographical information system (GIS) technology  

SciTech Connect

Timely reliable access to data is required by Earth Scientists and Engineers evaluating geology, facilities, environment, and new business opportunities. Geographical Information System (GIS) technology has been recently implemented to provide efficient and comprehensive access to data for exploration work in Venezuela. The GIS allows rapid comparisons, queries, sorting, and evaluation of data that in the past required multiple hardware platforms, multiple software packages, paper plots, spreadsheets, and time. A vendor GIS database package formed the foundation. This GIS provided regional coverage for the entire country of Venezuela at a scale of 1:250,000. It included 36,000 wells and associated attributes, facilities, geologic maps, potential field data, and transportation networks. Essential with GIS, all of the data were transformed from multiple cartographic datums to a single map projection. Proprietary and other tabular databases were incorporated into the vendor GIS by Chevron, significantly upgrading the value of the system for company exploration. Tabular databases were either imported, linked or converted to the GIS. They included Nomad, Paradox, Oracle, Openworks, and PC-based spreadsheets containing wells, seismic, and geochemistry data. Nontabular data types incorporated into the GIS included digital outcrop log and paleosections, maps, other GIS data, Global Positioning System control points, satellite imagery and scanned photographs. The enhanced GIS has proven valuable for facilitating access to, and rapid and accurate evaluation of, large geographic areas with multiple data sources and types.

Goodwin, P.B.; Choiniere, M.R.; Harris, F.W. [Chevron Overseas Petroleum, Inc., San Ramon, CA (United States)] [and others

1996-12-31T23:59:59.000Z

103

Transportation Techniques LLC | Open Energy Information  

Open Energy Info (EERE)

Techniques LLC Place: Denver, CO, Colorado Zip: 80205 Sector: Vehicles Product: Colorado-USA-based company that uses patented series hybrid technology to design and develop hybrid...

104

Definition: Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Lab Analysis Techniques Jump to: navigation, search Dictionary.png Lab Analysis Techniques Lab Analysis Techniques encompass a broad array of analytical methods that can be used to characterize the chemical and physical properties of rock and fluid samples. The reliability of laboratory analyses depends strongly on both adherence to standard sampling procedures in the field when collecting materials for examination and on the application of appropriate sample preparation techniques in the lab. Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Lab_Analysis_Techniques&oldid=688298" Category:

105

Definition: Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Ground Electromagnetic Techniques Jump to: navigation, search Dictionary.png Ground Electromagnetic Techniques Ground electromagnetic techniques measure electromagnetic fields in order to determine subsurface electrical resistivity with the earth surface as the observation point.[1] View on Wikipedia Wikipedia Definition The electromagnetic force is one of the four fundamental interactions in nature, the other three being the strong interaction, the weak interaction, and gravitation. This force is described by electromagnetic fields, and has innumerable physical instances including the interaction of electrically charged particles and the interaction of uncharged magnetic force fields with electrical conductors. The word

106

Definition: Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search Dictionary.png Active Seismic Techniques Active seismic techniques study the behavior of artificially-generated elastic waves in the subsurface. A seismic wave or pulse is generated at the surface by an active seismic source which can be a vibration, mechanical impact, or near-surface explosion.[1] View on Wikipedia Wikipedia Definition Seismic waves are waves of energy that travel through the Earth's layers, and are a result of an earthquake, explosion, or a volcano that imparts low-frequency acoustic energy. Many other natural and anthropogenic sources create low amplitude waves commonly referred to as ambient vibrations. Seismic waves are studied by geophysicists called seismologists. Seismic wave fields are recorded by a seismometer,

107

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

108

Definition: Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search Dictionary.png Magnetic Techniques The magnetic method is the study of the distribution of magnetic minerals in the upper 20-30km of the earth's crust. The magnetic method may also be used to estimate the thickness of the crust or to constrain temperatures in the crust using the Curie isotherm (the temperatures at which minerals lose their strong magnetic properties), whichever is shallower.[1] References ↑ http://www.ipgp.fr/~diament/Imageries%20Gravi-Mag/Nabighian_etal_Mag.pdf http://www.cflhd.gov/resources/agm/geoApplications/SurfaceMethods/911MagneticMethods.cfm http://onlinelibrary.wiley.com/doi/10.1029/JB087iB06p04846/abstract Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from

109

Definition: Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Techniques Electromagnetic Techniques The objective of electromagnetic (EM) techniques is to image the electrical resistivity structure of the subsurface through the measurement of naturally- or artificially-generated electromagnetic fields.[1] View on Wikipedia Wikipedia Definition The electromagnetic force is one of the four fundamental interactions in nature, the other three being the strong interaction, the weak interaction, and gravitation. This force is described by electromagnetic fields, and has innumerable physical instances including the interaction of electrically charged particles and the interaction of uncharged magnetic force fields with electrical conductors. The word electromagnetism is a compound form of two Greek terms, ἢλεκτρον, ēlektron, "amber", and μαγνήτης, magnētēs, "magnet". The science

110

Definition: Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Magnetotelluric Techniques Jump to: navigation, search Dictionary.png Magnetotelluric Techniques Magnetotellurics is an electromagnetic geophysical method used to image the electrical resistivity structure of the subsurface through the measurement of electrical and magnetic fields at the earth's surface.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

111

GRR/Section 4 - Exploration Overview | Open Energy Information  

Open Energy Info (EERE)

4 - Exploration Overview 4 - Exploration Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4 - Exploration Overview 04ExplorationPermittingOverview (3).pdf Click to View Fullscreen Contact Agencies BLM United States Forest Service Regulations & Policies 30 USC § 1001 Triggers None specified Click "Edit With Form" above to add content 04ExplorationPermittingOverview (3).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The exploration process requires consideration of right of way access, geothermal leasing, and state and federal exploration permits. 4.1 and 4.2 - Will the Developer Engage in Coproduction on an Existing

112

Category:Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Electromagnetic Techniques page? For detailed information on Ground Electromagnetic Techniques, click here. Category:Ground Electromagnetic Techniques Add.png Add a new Ground Electromagnetic Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. E [×] Electromagnetic Profiling Techniques‎ 1 pages [+] Electromagnetic Sounding Techniques‎ (1 categories) 2 pages Pages in category "Ground Electromagnetic Techniques" The following 2 pages are in this category, out of 2 total. E Electromagnetic Profiling Techniques Electromagnetic Sounding Techniques Retrieved from "http://en.openei.org/w/index.php?title=Category:Ground_Electromagnetic_Techniques&oldid=689834"

113

RAPID/Overview/Geothermal/Exploration/Oregon | Open Energy Information  

Open Energy Info (EERE)

Oregon Pe mitting at a Glance State: Oregon Exploration Permit Agency (Pre-drilling): Oregon State Department of Geology and Mineral Industries, Oregon Division of State...

114

Property:ExplorationPermit-PreDrilling | Open Energy Information  

Open Energy Info (EERE)

Permit from the Hawaii Department of Land and Natural Resources Engineering Division to conduct any exploration activity on state or reserved lands for evidence of geothermal...

115

A History Of Geothermal Exploration In Washington | Open Energy Information  

Open Energy Info (EERE)

History Of Geothermal Exploration In Washington History Of Geothermal Exploration In Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A History Of Geothermal Exploration In Washington Details Activities (2) Areas (2) Regions (0) Abstract: The presence of Mt. St. Helens and other Quaternary andesitic volcanoes and other indicators, e.g., both thermal and both mineral springs, in the Washington Cascades suggests that this area has good potential for geothermal resources. Exploration for geothermal resources has been conducted in the region since the early 1970s, with surge of interest and exploration activity in 1974 when the Federal Government developed a leasing program for its land. This surge was followed by a gradual decline in activity through the early 1980s. During the mid 1980s,

116

File:04UTAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

reflect the modified file. Image title Lucidchart Author None Short title 04-UT-a - State Exploration Process.pdf Keywords None Software used Lucid Software Inc. Conversion program...

117

File:04IDAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

reflect the modified file. Image title Lucidchart Author None Short title 04-ID-a - State Exploration Process.pdf Keywords None Software used Lucid Software Inc. Conversion program...

118

Category:Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Profiling Techniques page? For detailed information on Electromagnetic Profiling Techniques, click here. Category:Electromagnetic Profiling Techniques Add.png Add a new Electromagnetic Profiling Techniques Technique Pages in category "Electromagnetic Profiling Techniques" This category contains only the following page. F Frequency-Domain Electromagnetic Survey Retrieved from "http://en.openei.org/w/index.php?title=Category:Electromagnetic_Profiling_Techniques&oldid=689835"

119

Exploring neighborhood and spatial information for improving scene classification  

Science Journals Connector (OSTI)

A good image descriptor is essential for the scene classification task. This work proposes an improvement for the Contextual Mean Census Transform (CMCT), an image descriptor, obtained by adding information from distant neighbors to the non-parametric ... Keywords: Contextual information, Image descriptor, Non-parametric transform, Scene classification, Spatial arrangement information

Kelly Assis De Souza Gazolli, Evandro Ottoni Teatini Salles

2014-09-01T23:59:59.000Z

120

File:04TXAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:04TXAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04TXAStateExplorationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 79 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:03, 12 August 2013 Thumbnail for version as of 12:03, 12 August 2013 1,275 × 1,650, 2 pages (79 KB) Abergfel (Talk | contribs)

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Exploration Cost and Time Metric | Open Energy Information  

Open Energy Info (EERE)

Exploration Cost and Time Metric Exploration Cost and Time Metric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Exploration Cost and Time Metric Agency/Company /Organization: NREL Sector: Energy Focus Area: Geothermal Phase: Prepare a Plan Topics: Background analysis, Baseline projection, Resource assessment Resource Type: Application prototype, Online calculator User Interface: Website Website: openei.org/apps/xct_metric/ Country: United States Web Application Link: openei.org/apps/xct_metric/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

File:04AKAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

4AKAStateExplorationProcess.pdf 4AKAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage File:04AKAStateExplorationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 37 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 10:19, 18 October 2012 Thumbnail for version as of 10:19, 18 October 2012 1,275 × 1,650 (37 KB) Jnorris (Talk | contribs) 13:58, 11 September 2012 Thumbnail for version as of 13:58, 11 September 2012 1,275 × 1,650 (56 KB) Djenne (Talk | contribs) 10:37, 6 August 2012 Thumbnail for version as of 10:37, 6 August 2012 1,275 × 1,650 (44 KB) Jnorris (Talk | contribs)

123

File:04COAStateExplorationProcess.pdf | Open Energy Information  

Open Energy Info (EERE)

COAStateExplorationProcess.pdf COAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04COAStateExplorationProcess.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 40 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 10:32, 27 March 2013 Thumbnail for version as of 10:32, 27 March 2013 1,275 × 1,650 (40 KB) Dfitzger (Talk | contribs) 13:58, 1 February 2013 Thumbnail for version as of 13:58, 1 February 2013 1,275 × 1,650 (41 KB) Dfitzger (Talk | contribs) 11:22, 1 February 2013 Thumbnail for version as of 11:22, 1 February 2013 1,275 × 1,650 (40 KB) Dfitzger (Talk | contribs)

124

Maps: Exploration, Resources, Reserves, and Production - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Maps: Exploration, Resources, Reserves, and Production Maps: Exploration, Resources, Reserves, and Production Summary Maps: Natural Gas in the Lower 48 States and North America Gas Production in Conventional Fields, Lower 48 States PDF (2.8 MB) JPG (2.5 MB) Gas Production in Offshore Fields, Lower 48 States PDF (0.4 MB) JPG (1.5 MB) Shale Gas and Oil Plays, Lower 48 States Updated 5/9/2011 PDF (1.6 MB) JPG (2.1 MB) Shale Gas and Oil Plays, North America Updated 5/9/2011 PDF (0.4 MB) JPG (1.2 MB) Major Tight Gas Plays, Lower 48 States PDF (1.6 MB) JPG (2.2 MB) Coalbed Methane Fields, Lower 48 States PDF (1.8 MB) JPG (2.7 MB) Oil- and Gas-Related Maps, Geospatial Data, and Geospatial Software Oil and Gas Field Maps in Portable Document Format Oil and Gas Field Data in Shapefile Format EIA's Oil and Gas Field Boundary Generation Scripts

125

Logistics Information Systems for Human Space Exploration: State of the Art and Emerging Technologies  

E-Print Network (OSTI)

Logistics Information Systems for Human Space Exploration: State of the Art and Emerging the lessons learned from past experiences with space logistics and supply chain management. This paper offers an overview of the current state of the art in logistics management for space exploration focused

de Weck, Olivier L.

126

The UC Davis Design Major engages exploration and the process of design to solve and inform  

E-Print Network (OSTI)

The UC Davis Design Major engages exploration and the process of design to solve and inform social . . . . . . . . . . . . . . . . . . . . . . . . Take 1 course from the following: 40A. Energy, Materials, Design . . . . . . . . . . . . . . 40B

Schladow, S. Geoffrey

127

Definition: Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Data and Modeling Techniques Jump to: navigation, search Dictionary.png Data and Modeling Techniques Physical properties and other reservoir performance data are typically used to constrain conceptual and then quantitative models of individual reservoirs. The constraint on individual models is improved as the number of independent data types and sets increases. View on Wikipedia Wikipedia Definition Data modeling in software engineering is the process of creating a data model for an information system by applying formal data modeling techniques. Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Data_and_Modeling_Techniques&oldid=690516"

128

GRR/Section 4-UT-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-UT-a - State Exploration Process 4-UT-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-UT-a - State Exploration Process 04UTAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Utah Division of Water Rights Regulations & Policies Utah Geothermal Resource Conservation Act UC 73-22-6 NOI R655-1-1.1 Overview Information R655-1-2.1.2 Plan of Operations R655-1-2.1.6 Notice to other Agencies R655-1-4: Records Triggers None specified Click "Edit With Form" above to add content 04UTAStateExplorationProcess.pdf 04UTAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

129

Explorations of Space-Charge Limits in Parallel-Plate Diodes and Associated Techniques for Automation  

E-Print Network (OSTI)

and Associated Techniques for Automation by Benjamin Ragan-and Associated Techniques for Automation Copyright 2013 byand Associated Techniques for Automation by Benjamin Ragan-

Ragan-Kelley, Benjamin

2013-01-01T23:59:59.000Z

130

Uranium and nuclear power: The role of exploration information in framing public policy  

Science Journals Connector (OSTI)

Abstract As the importance of addressing climate change increases the future global role for nuclear power, the demand for uranium will increase. Expanded uranium reserves will be needed to meet this increased demand, highlighting the importance of future exploratory efforts. To shed light on the social desirability of future exploration levels I analyze a past expansionary period in the U.S. uranium industry. I find exploration levels were smaller than socially efficient during this period, resulting from a deviation between the private and social values of information. Looking forward, public policies can encourage optimal exploration levels by addressing this deviation.

Charles F. Mason

2014-01-01T23:59:59.000Z

131

Some Aspects Of Exploration In Non-Volcanic Areas | Open Energy Information  

Open Energy Info (EERE)

Some Aspects Of Exploration In Non-Volcanic Areas Some Aspects Of Exploration In Non-Volcanic Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Some Aspects Of Exploration In Non-Volcanic Areas Details Activities (5) Areas (1) Regions (0) Abstract: Geothermal exploration in non-volcanic areas must above all rely on geophysical techniques to identify the reservoir, as it is unable to resort to volcanological methodologies. A brief description is therefore given of the contribution that can be obtained from certain types of geophysical prospectings. Author(s): Raffaello Nannini Published: Geothermics, 1986 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Aerial Photography (Nannini, 1986) Aeromagnetic Survey (Nannini, 1986) Ground Gravity Survey (Nannini, 1986)

132

TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNIQUES AND CAPABILITIES TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * Source: 2 ID - EPU 105 (3 m, PM , 20-200 eV) EPU 56 (3 m PM, 200-2000 eV) * High-Resolution Angular Resolved Photoemission Scanning Microscopy (µ-ARPES): 20-1500 eV, 1 µm, < 1 meV, <0.1 o , 5-2000 K * Ambient Pressure Scanning Photoelectron Microscopy (AP- SPEM): 200-1800 eV, < 300 nm, 10 +3 Torr * Low-Energy Electron Microscopy & X-ray Photoemission Electron Microscopy (LEEM/XPEEM): 20 - 1800 eV, < 10 nm, high- transmission aberration correction µ-SP-ARPES: Momentum-resolved electronic structurelectronic bands of magnetic materials and non- magnetic materials with le of solids; spin-polarized arge spin-orbit interaction; a 1 µm spot from NSLS-

133

New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods  

SciTech Connect

The research during the first two years of the project was focused on developing the foundations of a new geophysical technique for mineral exploration and mineral discrimination, based on electromagnetic (EM) methods. The developed new technique is based on examining the spectral induced polarization effects in electromagnetic data using effective-medium theory and advanced methods of 3-D modeling and inversion. The analysis of IP phenomena is usually based on models with frequency dependent complex conductivity distribution. In this project, we have developed a rigorous physical/mathematical model of heterogeneous conductive media based on the effective-medium approach. The new generalized effective-medium theory of IP effect (GEMTIP) provides a unified mathematical method to study heterogeneity, multi-phase structure, and polarizability of rocks. The geoelectrical parameters of a new composite conductivity model are determined by the intrinsic petrophysical and geometrical characteristics of composite media: mineralization and/or fluid content of rocks, matrix composition, porosity, anisotropy, and polarizability of formations. The new GEMTIP model of multi-phase conductive media provides a quantitative tool for evaluation of the type of mineralization, and the volume content of different minerals using electromagnetic data. We have developed a 3-D EM-IP modeling algorithm using the integral equation (IE) method. Our IE forward modeling software is based on the contraction IE method, which improves the convergence rate of the iterative solvers. This code can handle various types of sources and receivers to compute the effect of a complex resistivity model. We have demonstrated that the generalized effective-medium theory of induced polarization (GEMTIP) in combination with the IE forward modeling method can be used for rock-scale forward modeling from grain-scale parameters. The numerical modeling study clearly demonstrates how the various complex resistivity models manifest differently in the observed EM data. These modeling studies lay a background for future development of the IP inversion method, directed at determining the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The new technology introduced in this project can be used for the discrimination between uneconomic mineral deposits and the location of zones of economic mineralization and geothermal resources.

Michael S. Zhdanov

2009-03-09T23:59:59.000Z

134

File:04MTAStateExplorationProcess (1).pdf | Open Energy Information  

Open Energy Info (EERE)

MTAStateExplorationProcess (1).pdf MTAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage File:04MTAStateExplorationProcess (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 61 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:07, 1 October 2012 Thumbnail for version as of 12:07, 1 October 2012 1,275 × 1,650 (61 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 4-MT-a - State Exploration Process

135

Project Information Form Project Title Exploring Unintended Environmental and SocialEquity Consequences of  

E-Print Network (OSTI)

Source(s) and Amounts Provided (by each agency or organization) Caltrans $91,829 Total Project Cost $92Project Information Form Project Title Exploring Unintended Environmental and Social Brief Description of Research Project Communities throughout the U.S. are pursuing land use

California at Davis, University of

136

Project Information Form Project Title Exploring Unintended Environmental and Social-Equity Consequences of  

E-Print Network (OSTI)

to simulate the effect of plans on rents, location of low income households, and travel (mode, trips, autoProject Information Form Project Title Exploring Unintended Environmental and Social and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Communities

California at Davis, University of

137

Hydroprobe | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe Hydroprobe Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hydroprobe Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Collection of ground water samples for geochemistry and geothermometry Thermal: Temperature measurements down to 50 m Dictionary.png Hydroprobe: An exploratory drilling technique focused on collecting geothermal fluid samples from shallow depths at relatively inexpensive costs and low environmental impact. Other definitions:Wikipedia Reegle Introduction A hydroprobe is a relitively inexpensive and easily portable truck mounted

138

Geographic Information System | Open Energy Information  

Open Energy Info (EERE)

Geographic Information System Geographic Information System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geographic Information System Details Activities (24) Areas (11) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data Techniques Information Provided by Technique Lithology: Any mapable information Stratigraphic/Structural: Any mapable information Hydrological: Any mapable information Thermal: Any mapable information Cost Information Low-End Estimate (USD): 70.007,000 centUSD 0.07 kUSD 7.0e-5 MUSD 7.0e-8 TUSD / hour Median Estimate (USD): 80.008,000 centUSD 0.08 kUSD 8.0e-5 MUSD 8.0e-8 TUSD / hour High-End Estimate (USD): 150.0015,000 centUSD

139

Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Locate and drill two exploration wells that will be used to define the nature and extent of the geothermal resources on Jemez Pueblo in the Indian Springs area.

140

Magnetotellurics | Open Energy Information  

Open Energy Info (EERE)

Magnetotellurics Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotellurics Details Activities (39) Areas (36) Regions (5) NEPA(8) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 522.2252,222 centUSD

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CubeExplorer: An Evaluation of Interaction Techniques in Architectural Education  

E-Print Network (OSTI)

comparing CubeExplorer and SketchUp in a similar building task. Keywords: Education, 3D modeling, pen, requiring students to focus on constructability. CAD tools such as AutoCAD [1], SketchUp [3], or FormZ [2

Keinan, Alon

142

Exploratory Boreholes | Open Energy Information  

Open Energy Info (EERE)

Exploratory Boreholes Exploratory Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Boreholes Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a borehole Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Boreholes: An exploratory borehole is drilled for the purpose of identifying the

143

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

144

Geochemical Data Analysis | Open Energy Information  

Open Energy Info (EERE)

Geochemical Data Analysis Geochemical Data Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Data Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Data Analysis: No definition has been provided for this term. Add a Definition References No exploration activities found. Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Geochemical_Data_Analysis&oldid=594157" Categories: Geochemical Techniques Exploration Techniques

145

Time-Domain Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

Time-Domain Electromagnetics Time-Domain Electromagnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Time-Domain Electromagnetics Details Activities (10) Areas (10) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Detection of rock units or geological features with contrasting apparent resistivity. Stratigraphic/Structural: Structural information may be inferred from TDEM data. Hydrological: Hydrological information such as depth to groundwater table may be determined. Thermal: Extent of hydrothermal alteration mineralogy may be inferred. Cost Information

146

Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Flow Test Details Activities (38) Areas (33) Regions (1) NEPA(3) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Flow tests provide information on permeability, recharge rates, reservoir pressures, fluid chemistry, and scaling. Thermal: Flow tests can measure temperature variations with time to estimate characteristics about the heat source. Dictionary.png Flow Test: Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the

147

Aeromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Aeromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Aeromagnetic Survey Details Activities (26) Areas (19) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: map structure, basin fill thickness, and magnetic mineral concentrations in ore bodies Hydrological: Thermal: Cost Information Low-End Estimate (USD): 22.532,253 centUSD

148

Telluric Survey | Open Energy Information  

Open Energy Info (EERE)

Telluric Survey Telluric Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Telluric Survey Details Activities (3) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 522.2252,222 centUSD

149

CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy  

E-Print Network (OSTI)

The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of $^{130}$Te. With 741 kg of TeO$_2$ crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is $1.6\\times 10^{26}$ y at $1\\sigma$ ($9.5\\times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with $^{130}$Te and possibly other double beta decay candidate nuclei.

D. R. Artusa; F. T. Avignone III; O. Azzolini; M. Balata; T. I. Banks; G. Bari; J. Beeman; F. Bellini; A. Bersani; M. Biassoni; C. Brofferio; C. Bucci; X. Z. Cai; A. Camacho; L. Canonica; X. G. Cao; S. Capelli; L. Carbone; L. Cardani; M. Carrettoni; N. Casali; D. Chiesa; N. Chott; M. Clemenza; S. Copello; C. Cosmelli; O. Cremonesi; R. J. Creswick; I. Dafinei; A. Dally; V. Datskov; A. De Biasi; M. M. Deninno; S. Di Domizio; M. L. di Vacri; L. Ejzak; D. Q. Fang; H. A. Farach; M. Faverzani; G. Fernandes; E. Ferri; F. Ferroni; E. Fiorini; M. A. Franceschi; S. J. Freedman; B. K. Fujikawa; A. Giachero; L. Gironi; A. Giuliani; J. Goett; P. Gorla; C. Gotti; T. D. Gutierrez; E. E. Haller; K. Han; K. M. Heeger; R. Hennings-Yeomans; H. Z. Huang; R. Kadel; K. Kazkaz; G. Keppel; Yu. G. Kolomensky; Y. L. Li; C. Ligi; X. Liu; Y. G. Ma; C. Maiano; M. Maino; M. Martinez; R. H. Maruyama; Y. Mei; N. Moggi; S. Morganti; T. Napolitano; S. Nisi; C. Nones; E. B. Norman; A. Nucciotti; T. O'Donnell; F. Orio; D. Orlandi; J. L. Ouellet; M. Pallavicini; V. Palmieri; L. Pattavina; M. Pavan; M. Pedretti; G. Pessina; V. Pettinacci; G. Piperno; C. Pira; S. Pirro; E. Previtali; V. Rampazzo; C. Rosenfeld; C. Rusconi; E. Sala; S. Sangiorgio; N. D. Scielzo; M. Sisti; A. R. Smith; L. Taffarello; M. Tenconi; F. Terranova; W. D. Tian; C. Tomei; S. Trentalange; G. Ventura; M. Vignati; B. S. Wang; H. W. Wang; L. Wielgus; J. Wilson; L. A. Winslow; T. Wise; A. Woodcraft; L. Zanotti; C. Zarra; B. X. Zhu; S. Zucchelli

2014-07-04T23:59:59.000Z

150

CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy  

E-Print Network (OSTI)

The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of $^{130}$Te. With 741 kg of TeO$_2$ crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is $1.6\\times 10^{26}$ y at $1\\sigma$ ($9.5\\times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with $^{130}$Te and possibly other double beta decay candidate nuclei.

Artusa, D R; Azzolini, O; Balata, M; Banks, T I; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Brofferio, C; Bucci, C; Cai, X Z; Camacho, A; Canonica, L; Cao, X G; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Copello, S; Cosmelli, C; Cremonesi, O; Creswick, R J; Dafinei, I; Dally, A; Datskov, V; De Biasi, A; Deninno, M M; Di Domizio, S; di Vacri, M L; Ejzak, L; Fang, D Q; Farach, H A; Faverzani, M; Fernandes, G; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, M A; Freedman, S J; Fujikawa, B K; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Gutierrez, T D; Haller, E E; Han, K; Heeger, K M; Hennings-Yeomans, R; Huang, H Z; Kadel, R; Kazkaz, K; Keppel, G; Kolomensky, Yu G; Li, Y L; Ligi, C; Liu, X; Ma, Y G; Maiano, C; Maino, M; Martinez, M; Maruyama, R H; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; O'Donnell, T; Orio, F; Orlandi, D; Ouellet, J L; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pettinacci, V; Piperno, G; Pira, C; Pirro, S; Previtali, E; Rampazzo, V; Rosenfeld, C; Rusconi, C; Sala, E; Sangiorgio, S; Scielzo, N D; Sisti, M; Smith, A R; Taffarello, L; Tenconi, M; Terranova, F; Tian, W D; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, B S; Wang, H W; Wielgus, L; Wilson, J; Winslow, L A; Wise, T; Woodcraft, A; Zanotti, L; Zarra, C; Zhu, B X; Zucchelli, S

2014-01-01T23:59:59.000Z

151

Self Potential | Open Energy Information  

Open Energy Info (EERE)

Self Potential Self Potential Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Self Potential Details Activities (20) Areas (20) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: Detection and tracing of faults. Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface. Thermal: Location of near-surface thermal anomalies: thermoelectric coupling processes due to variations in temperature in the subsurface.

152

Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

Analytical Modeling Analytical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Analytical Modeling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Analytical Modeling: A mathematical modeling technique used for simulating, explaining, and making predictions about the mechanisms involved in complex physical processes. Other definitions:Wikipedia Reegle Introduction Analytical models are mathematical models that have a closed form solution. Or in other words the solution to the equations used to describe changes in

153

Injectivity Test | Open Energy Information  

Open Energy Info (EERE)

Injectivity Test Injectivity Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Injectivity Test Details Activities (7) Areas (6) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Permeability of the well Thermal: Dictionary.png Injectivity Test: A well testing technique conducted upon completion of a well. Water is pumped into the well at a constant rate until a stable pressure is reached then the pump is turned off and the rate at which pressure decreases is measured. The pressure measurements are graphed and well permeability can

154

Core Holes | Open Energy Information  

Open Energy Info (EERE)

Core Holes Core Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Holes Details Activities (8) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Core holes are drilled to identify lithology and mineralization Stratigraphic/Structural: Retrieved samples can be used to identify fracture networks or faults Hydrological: Thermal: Thermal conductivity measurements can be done on retrieved samples. Dictionary.png Core Holes: A core hole is a well that is drilled using a hallow drill bit coated with synthetic diamonds for the purposes of extracting whole rock samples from

155

Chemical logging- a geothermal technique | Open Energy Information  

Open Energy Info (EERE)

logging- a geothermal technique logging- a geothermal technique Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical logging- a geothermal technique Details Activities (1) Areas (1) Regions (0) Abstract: Chemical logging studies conducted at the Department of Energy's Raft River Geothermal Test Site in south central Idaho resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones 15 to 120 m before drill penetration. INEL-1 at the Idaho National Engineering Laboratory site in

156

Geophysical Methods | Open Energy Information  

Open Energy Info (EERE)

Geophysical Methods Geophysical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Methods Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Geophysical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geophysical Methods: Methods used to measure the physical properties of the earth Other definitions:Wikipedia Reegle Introduction There are five main types of geophysical methods used for geothermal resource discovery: Seismic Methods (active and passive) Electrical Methods Magnetic Methods Gravity Methods Radiometric Methods Seismic methods dominates oil and gas exploration, and probably accounts

157

Conceptual Model | Open Energy Information  

Open Energy Info (EERE)

Conceptual Model Conceptual Model Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Conceptual Model Details Activities (17) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Hydrothermal fluid flow characteristics, up-flow patterns Thermal: Temperature and pressure extrapolation throughout reservoir, heat source characteristics Dictionary.png Conceptual Model:

158

Reflection Survey | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Reflection Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Reflection Survey Details Activities (35) Areas (22) Regions (2) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Active Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

159

Image Logs | Open Energy Information  

Open Energy Info (EERE)

Image Logs Image Logs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Image Logs Details Activities (2) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, grain size, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip, thickness, and geometry of rock strata in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Locate zones of aquifer inflow/outflow Thermal:

160

Chemical Logging | Open Energy Information  

Open Energy Info (EERE)

Chemical Logging Chemical Logging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Chemical Logging Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Presence and geochemical composition of fluid producing zones Thermal: Calcium-alkalinity ratios versus depth assist in defining warm and hot water aquifers Dictionary.png Chemical Logging: Chemical logging produces a chemical profile of the formation fluid within a well based on the measurement of changes in the chemical composition of the drilling fluid during drilling operations.

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Stress Test | Open Energy Information  

Open Energy Info (EERE)

Stress Test Stress Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stress Test Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Fracture distribution and ambient tectonic stresses Hydrological: Fluid flow direction Thermal: Dictionary.png Stress Test: A geologic stress analysis based on images of a borehole wall and hydraulic fracturing tests to characterize fracture orientations and stress magnitudes in order to identify stress planes and zones of potential permeability. Other definitions:Wikipedia Reegle

162

Numerical Modeling | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling Numerical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Numerical Modeling Details Activities (8) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Dictionary.png Numerical Modeling: A computer model that is designed to simulate and reproduce the mechanisms of a particular system. Other definitions:Wikipedia Reegle

163

Tracer Testing | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing Tracer Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Tracer Testing Details Activities (9) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Fracture zones and formation permeability Hydrological: Flow rates, flow direction, hydrologic connections, storativity Thermal: Dictionary.png Tracer Testing: A method based on injecting chemical tracers into the reservoir and monitoring how long it takes and where those tracers travel. The purpose is to model subsurface hydrothermal flow characteristics.

164

Information findability : an informal study to explore options for improving information findability for the systems analysis group.  

SciTech Connect

A Systems Analysis Group has existed at Sandia National Laboratories since at least the mid-1950s. Much of the groups work output (reports, briefing documents, and other materials) has been retained, along with large numbers of related documents. Over time the collection has grown to hundreds of thousands of unstructured documents in many formats contained in one or more of several different shared drives or SharePoint sites, with perhaps five percent of the collection still existing in print format. This presents a challenge. How can the group effectively find, manage, and build on information contained somewhere within such a large set of unstructured documents? In response, a project was initiated to identify tools that would be able to meet this challenge. This report documents the results found and recommendations made as of August 2013.

Stoecker, Nora Kathleen

2014-03-01T23:59:59.000Z

165

Thermochronometry | Open Energy Information  

Open Energy Info (EERE)

Thermochronometry Thermochronometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermochronometry Details Activities (6) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Thermal history of area, rate of cooling, age that minerals reached closure temperature Dictionary.png Thermochronometry: The study of the thermal evolution of a mineral, rock, or geologic region using radiometric dating of two or more different minerals which have different closure temperatures Other definitions:Wikipedia Reegle

166

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

167

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Geographic Information System At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

168

Geographic Information System At Chena Geothermal Area (Holdmann...  

Open Energy Info (EERE)

Activity Details Location Chena Geothermal Area Exploration Technique Geographic Information System Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration...

169

Geographic Information System (Nash, Et Al., 2002) | Open Energy...  

Open Energy Info (EERE)

Exploration Activity Details Location Unspecified Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown References Gregory D....

170

Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Audio MT Controlled Source Audio MT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Audio MT Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,866.44186,644 centUSD

171

Microgravity-Hybrid Microgravity | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Microgravity-Hybrid Microgravity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Microgravity-Hybrid Microgravity Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Ground subsidence can be mapped using microgravity Hydrological: Monitoring net mass changes of a geothermal reservoir due to production and reinjection processes Thermal: Changes in liquid density due to temperature changes in the reservoir Cost Information Low-End Estimate (USD): 50.005,000 centUSD

172

Audio-Magnetotellurics | Open Energy Information  

Open Energy Info (EERE)

Audio-Magnetotellurics Audio-Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Audio-Magnetotellurics Details Activities (4) Areas (4) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,118.26111,826 centUSD

173

Paleomagnetic Measurements | Open Energy Information  

Open Energy Info (EERE)

Paleomagnetic Measurements Paleomagnetic Measurements Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Paleomagnetic Measurements Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Can determine detailed information about rock composition and morphology Stratigraphic/Structural: Historic structure and deformation of land Hydrological: Thermal: Dictionary.png Paleomagnetic Measurements: Paleomagnetism is the study of remnant magnetization in rocks. Paleomagnetic measurements are measurements of the magnetic properties in rocks; these properties are locked in during the formation of the rock. A

174

GRR/Section 4-OR-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-OR-a - State Exploration Process GRR/Section 4-OR-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-a - State Exploration Process 04ORAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Oregon State Department of Geology and Mineral Industries Oregon Division of State Lands Regulations & Policies OAR 141-075-0130: Exploration Permit Required ORS 517.705: Exploration Permit Regulations Triggers None specified Click "Edit With Form" above to add content 04ORAStateExplorationProcess (1).pdf 04ORAStateExplorationProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _

175

GRR/Section 4-WA-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-WA-a - State Exploration Process GRR/Section 4-WA-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-WA-a - State Exploration Process 4-WA-a State Exploration Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Natural Resources Regulations & Policies Geothermal Act 78.60 RCW Geothermal Rules 332-17 WAC Triggers None specified Geothermal exploration in Washington requires a Geothermal Exploration Permit from the Washington State Department of Natural Resources (WSDNR) for invasive exploration or drilling. Operations that require an exploration or drilling permit will also require the developer to initiate the State Environmental Policy Act (SEPA). In Washington geothermal resources are regulated under Chapter 78.60 RCW

176

GRR/Section 4-NV-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-NV-a - State Exploration Process 4-NV-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-a - State Exploration Process 04NVAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Nevada Division of Minerals Nevada Department of Wildlife Nevada Division of Environmental Protection Regulations & Policies NAC 534A.190: Individual Geothermal Well NAC 534A.193: Geothermal Project Area Triggers None specified Click "Edit With Form" above to add content 04NVAStateExplorationProcess (1).pdf 04NVAStateExplorationProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative ____ 4-NV-a.1 - Is the Proposed Activity Pre-Drilling Exploration or Exploration

177

Northern Nevada Geothermal Exploration Strategy Analysis | Open Energy  

Open Energy Info (EERE)

Nevada Geothermal Exploration Strategy Analysis Nevada Geothermal Exploration Strategy Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Northern Nevada Geothermal Exploration Strategy Analysis Details Activities (1) Areas (1) Regions (0) Abstract: The results of exploration techniques applied to geothermal resource investigations in northern Nevada were evaluated and rated by seven investigators involved in the work. A quantitative rating scheme was used to obtain estimates of technique effectiveness. From survey cost information we also obtained and compared cost-effectiveness estimates for the various techniques. Effectiveness estimates were used to develop an exploration strategy for the area. However, because no deep confirmatory drilling has been done yet, the technique evaluations and exploration

178

Technology and Architecture: Informing Investment Decisions for the Future of Human Space Exploration  

E-Print Network (OSTI)

, it is not clear exactly which technologies are necessary for enabling future exploration. The process Exploration by Jonathan Alexander Battat B.S. Mechanical Engineering Columbia University, 2009 M.Sc. Space Exploration by Jonathan Alexander Battat Submitted to the Department of Aeronautics and Astronautics on August

de Weck, Olivier L.

179

Applications of geographic information systems (GIS) to exploration studies in the San Juan basin, New Mexico  

SciTech Connect

The US Geological Survey (USGS) is currently applying geographic information systems (GIS) technology to develop a geologic knowledge base that will provide the framework for an integrated basin analysis for the San Juan basin. GIS technology involves the integration of mapping and data-base functions that enable the user to integrate and manipulate spatial (coordinate) data with attribute (thematic) data in order to combine complex geographic, geologic, and geophysical data sets into resultant overlay and composite maps and to conduct multivariate exploratory data analysis and have access to a variety of options for analyzing these databases. The San Juan basin, a 13,500-mi{sup 2} Laramide structural basin in northwestern New Mexico, was chosen for the pilot project. The basin encompasses a maximum of over 15,000 ft of Paleozoic to Eocene sedimentary rock and contains economic deposits of natural gas, oil, coal, and uranium. Successful exploration in this basin requires an understanding of the complex stratigraphy and structural geology controlling the distribution of these resources. GIS technology applied to the San Juan basin includes both surface and subsurface data sets that establish a three-dimensional perspective of the basin's fundamental stratigraphic and structural framework and aid in the identification of its temporal and tectonic relationships relative to origin and occurrence of its resources. Among the digital data bases used for surface mapping is the US GeoData system from the USGS's national mapping program, which includes digital elevation models (DEM) for terrain elevations: digital line graphs (DLG) for planimetric information on boundaries, transportation, hydrography, and the US Public Land Survey system; and land use and land cover (LULC) data. Additional data bases used for surface mapping include surficial geology, locations of oil and gas wells, well status, and oil and gas fields.

Miller, B.M. (Geological Survey, Reston, VA (USA))

1990-05-01T23:59:59.000Z

180

Active Sensors | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Active Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Sensors Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Remote Sensing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement, delineate faults, create high-resolution DEMS, quantify fault kinemaics, develop lineament maps, Geophysical Monitoring Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png Active Sensors: Sensors that emit their own source of energy then measure the

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

182

Passive Sensors | Open Energy Information  

Open Energy Info (EERE)

Passive Sensors Passive Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Sensors Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Remote Sensing Techniques Information Provided by Technique Lithology: Mineral maps can be used to show the presence of hydrothermal minerals and mineral assemblages Stratigraphic/Structural: Map structures/faults and regional strain rates Hydrological: Map surface water features Thermal: Map surface temperatures Dictionary.png Passive Sensors: Sensors that measure energy which is naturally available in the environment. Other definitions:Wikipedia Reegle

183

GRR/Section 4-CO-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-CO-a - State Exploration Process 4-CO-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-CO-a - State Exploration Process 04COAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies SEO Geothermal Rules Triggers None specified Click "Edit With Form" above to add content 04COAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the geothermal exploration process in Colorado. As a matter of policy, all geothermal exploration, well construction, flow

184

Spontaneous Potential Well Log | Open Energy Information  

Open Energy Info (EERE)

Spontaneous Potential Well Log Spontaneous Potential Well Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Spontaneous Potential Well Log Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: -Formation bed thickness and boundaries -Detection and tracing of faults -Permeability and porosity Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface.

185

GRR/Section 4-ID-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-ID-a - State Exploration Process 4-ID-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-ID-a - State Exploration Process 04IDAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Triggers None specified Click "Edit With Form" above to add content 04IDAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-ID-a.1 - Has the Environmental Process been Completed for Exploration? If an EA/EIS has not yet been completed for this portion of the project, the developer must first complete the applicable environmental process.

186

GRR/Section 4-FD-d - BLM Exploration Operations | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-FD-d - BLM Exploration Operations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-FD-d - BLM Exploration Operations 04-FD-d - BLM Exploration Operations .pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 43 CFR 3252 43 CFR 3253. Triggers None specified Exploration operations on Bureau of Land Management (BLM) managed public lands must comply with BLM rules for conducting exploration operations 43 CFR 3252 and require a completion report at the conclusion of exploration

187

Data Collection and Mapping | Open Energy Information  

Open Energy Info (EERE)

Data Collection and Mapping Data Collection and Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Collection and Mapping Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Field Techniques Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Bulk and trace element analysis of rocks, minerals, and sediments. Identify and document surface geology and mineralogy. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Locates active faults in the area of interest. Map fault and fracture patterns, kinematic information

188

GRR/Section 4-MT-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-MT-a - State Exploration Process GRR/Section 4-MT-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-MT-a - State Exploration Process 04MTAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Board of Oil and Gas Conservation Regulations & Policies ARM 17.20.202: Geothermal Exploration Plan ARM 17.20.203: Initial Field Report ARM 17.20.204: Periodic Field Report ARM 17.20.205: Final Field Report ARM 17.20.206: Geological Report MCA 82-1-103: Notice of Intent MCA 82-1-104: Bond MCA 82-1-105: Permit Issuance MCA 82-1-106: NOI Forwarded MCA 82-1-107: Notice to Surface Owner MCA 82-1-108: Record of Work Performed Triggers

189

GRR/Section 4-TX-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-TX-a - State Exploration Process 4-TX-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-TX-a - State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Texas Parks and Wildlife Department Regulations & Policies 16 TAC 3.5: Application to Drill, Deepen, Reenter, or Plug Back 16 TAC 3.7: Strata to Be Sealed Off 16 TAC 3.79: Definitions 16 TAC 3.100: Seismic Holes and Core Holes 31 TAC 10.2: Prospect Permits on State Lands 31 TAC 155.40: Definitions 31 TAC 155.42: Mining Leases on Properties Subject to Prospect 31 TAC 9.11: Geophysical and Geochemical Exploration Permits Triggers None specified

190

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

191

Teleseismic-Seismic Monitoring | Open Energy Information  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring Teleseismic-Seismic Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Teleseismic-Seismic Monitoring Details Activities (33) Areas (18) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Passive Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Map geothermal reservoir geometry. Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

192

Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Vertical Seismic Profiling Vertical Seismic Profiling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Seismic Profiling Details Activities (4) Areas (3) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

193

Earth Tidal Analysis | Open Energy Information  

Open Energy Info (EERE)

Earth Tidal Analysis Earth Tidal Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Earth Tidal Analysis Details Activities (6) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Enables estimation of in-situ reservoir elastic parameters. Stratigraphic/Structural: Hydrological: Enables estimation of in-situ reservoir hydraulic parameters. Thermal: Dictionary.png Earth Tidal Analysis: Earth tidal analysis is the measurement of the impact of tidal and barometric fluctuations on effective pore volume in a porous reservoir. Other definitions:Wikipedia Reegle

194

Cation Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Cation Geothermometers Cation Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cation Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Used to estimate reservoir temperatures. Dictionary.png Cation Geothermometers: No definition has been provided for this term. Add a Definition Introduction Some experts have stated that the factor that changes the risk assessment of a geothermal prospect the fastest is obtaining attractive chemical confirmation (geothermometry, gas analyses) that a thermal resource exists

195

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

196

Multicomponent Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Multicomponent Geothermometers Multicomponent Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Multicomponent Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Multicomponent Geothermometers: The multicomponent geothermometry method consists of using full chemical analyses of water samples to compute the saturation indices (log(Q/K)) of reservoir minerals over a range of temperatures. The saturation indices are graphed as a function of temperature, and the clustering of log(Q/K) curves

197

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

198

Silica Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Silica Geothermometers Silica Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Silica Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Used to estimate reservoir temperatures. Dictionary.png Silica Geothermometers: No definition has been provided for this term. Add a Definition Introduction Some experts have stated that the factor that changes the risk assessment of a geothermal prospect the fastest is obtaining attractive chemical confirmation (geothermometry, gas analyses) that a thermal resource exists

199

Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water Sampling Details Activities (51) Areas (45) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Water sampling is done to characterize the geothermal system under investigation. A geothermal water typically has a unique chemical signature

200

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

202

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

203

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

204

Fault Mapping | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Fault Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fault Mapping Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Locates active faults in the area of interest Hydrological: Can reveal whether faults are circulating hydrothermal fluids Thermal: Dictionary.png

205

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

206

GRR/Section 4-AK-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-AK-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-a - State Exploration Process 04AKAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

207

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

208

Direct-Current Resistivity Survey | Open Energy Information  

Open Energy Info (EERE)

Direct-Current Resistivity Survey Direct-Current Resistivity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Direct-Current Resistivity Survey Details Activities (65) Areas (34) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock type, mineral and clay content may be inferred. Stratigraphic/Structural: Determination of fracture zones, faults, depth to groundwater aquifers. Hydrological: Resistivity influenced by porosity, permeability, fluid saturation, fluid type and phase state of the pore water. Thermal: Resistivity influenced by temperature.[1] Cost Information

209

GRR/Section 4-CA-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-CA-a - State Exploration Process GRR/Section 4-CA-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-CA-a - State Exploration Process 04CAAExploration.pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Regulations & Policies California Division of Oil, Gas, and Geothermal Resources (DOGGR) laws are found in Chapter 4 of Divison 3 of the California Public Resources Code. California Division of Oil, Gas, and Geothermal Resources regulations are found in the California Code of Regulations Title 14, Division 2, Chapter 4 California Laws for Conservation of Geothermal Resources Triggers None specified Click "Edit With Form" above to add content

210

GRR/Section 4-OR-d - Exploration Injection Permit | Open Energy Information  

Open Energy Info (EERE)

4-OR-d - Exploration Injection Permit 4-OR-d - Exploration Injection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-d - Exploration Injection Permit 04ORDExplorationInjectionPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-044-0012: Authorization of Underground Injection Triggers None specified Click "Edit With Form" above to add content 04ORDExplorationInjectionPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-OR-d.1 - Is this New Injection Activity or a Renewal? The developer must follow one of two different procedures if the developer

211

Vertical Electrical Sounding Configurations | Open Energy Information  

Open Energy Info (EERE)

Vertical Electrical Sounding Configurations Vertical Electrical Sounding Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Electrical Sounding Configurations Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Direct-Current Resistivity Survey Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

212

Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

Electrical Profiling Configurations Electrical Profiling Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Profiling Configurations Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Direct-Current Resistivity Survey Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

213

COMPUTER & INFORMATION TECHNOLOGY L/R 590. Programming Languages and Techniques. (C)  

E-Print Network (OSTI)

COMPUTER & INFORMATION TECHNOLOGY (EG) {CIT} L/R 590. Programming Languages and Techniques. (C) Introduction to fundamental concepts of programming and computer science for students who have little not have an academic background in computer science and who are not pursuing the Master's in Computer

Fang-Yen, Christopher

214

File:04-FD-d - BLM Exploration Operations .pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:04-FD-d - BLM Exploration Operations .pdf Jump to: navigation, search File File history File usage Metadata File:04-FD-d - BLM Exploration Operations .pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 22 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:14, 11 December 2013 Thumbnail for version as of 17:14, 11 December 2013 1,275 × 1,650 (22 KB) Alevine (Talk | contribs)

215

GRR/Section 4-HI-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-HI-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-HI-a - State Exploration Process 04HIAExplorationPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Engineering Division Regulations & Policies Hawaii Revised Statute 182-6 Hawaii Administrative Rules Title 13, Chapter 183 Triggers None specified Click "Edit With Form" above to add content 04HIAExplorationPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

216

GRR/Section 4-FD-a - Exploration Permit BLM | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GRR/Section 4-FD-a - Exploration Permit BLM < GRR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Resource Area: Details Technical Info Geology Power Plants (70 Projects (56 Activities (1574 Geothermal Area Profile Location Exploration Region GEA Development Phase 2008 USGS Resource Estimate Mean Reservoir Temp Estimated Reservoir Volume Mean Capacity Power Production Profile Gross Production Capacity 300.7 MW300,700 kW 300,700,000 W 300,700,000,000 mW 0.301 GW 3.007e-4 TW Net Production Capacity 206,358 MW206,358,000 kW 206,358,000,000 W 206,358,000,000,000 mW 206.358 GW

217

File:04NVAStateExplorationProcess (1).pdf | Open Energy Information  

Open Energy Info (EERE)

NVAStateExplorationProcess (1).pdf NVAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage File:04NVAStateExplorationProcess (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 121 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 10:06, 15 October 2012 Thumbnail for version as of 10:06, 15 October 2012 1,275 × 1,650, 2 pages (121 KB) Dfitzger (Talk | contribs) 13:25, 23 July 2012 Thumbnail for version as of 13:25, 23 July 2012 1,275 × 1,650, 2 pages (84 KB) Dklein2012 (Talk | contribs) 10:29, 12 July 2012 Thumbnail for version as of 10:29, 12 July 2012 1,275 × 1,650 (54 KB) Jnorris (Talk | contribs)

218

File:04ORAStateExplorationProcess (1).pdf | Open Energy Information  

Open Energy Info (EERE)

ORAStateExplorationProcess (1).pdf ORAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage File:04ORAStateExplorationProcess (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 90 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:16, 3 October 2012 Thumbnail for version as of 14:16, 3 October 2012 1,275 × 1,650, 2 pages (90 KB) Dfitzger (Talk | contribs) 13:02, 28 September 2012 Thumbnail for version as of 13:02, 28 September 2012 1,275 × 1,650, 2 pages (83 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file.

219

File:04ExplorationPermittingOverview (3).pdf | Open Energy Information  

Open Energy Info (EERE)

ExplorationPermittingOverview (3).pdf ExplorationPermittingOverview (3).pdf Jump to: navigation, search File File history File usage Metadata File:04ExplorationPermittingOverview (3).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 41 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:25, 12 July 2013 Thumbnail for version as of 12:25, 12 July 2013 1,275 × 1,650 (41 KB) Abergfel (Talk | contribs) 15:27, 20 May 2013 Thumbnail for version as of 15:27, 20 May 2013 1,275 × 1,650 (58 KB) Dfitzger (Talk | contribs) 13:26, 30 October 2012 Thumbnail for version as of 13:26, 30 October 2012 1,275 × 1,650 (54 KB) Dklein2012 (Talk | contribs)

220

Magnetotelluric Methods | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Methods Magnetotelluric Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Magnetotelluric Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques DOI-BLM-NV-C010-2012-0070-CX CX US Navy Geothermal Program Office Dixie Valley Geothermal Area BLM BLM Carson City District Office BLM Stillwater Field Office BLM BLM Geothermal/Exploration Reflection Survey

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gravity Methods | Open Energy Information  

Open Energy Info (EERE)

Gravity Methods Gravity Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Gravity Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques NVN-084630 CU Vulcan Energy Patua Geothermal Area BLM Nevada State Office BLM Winnemucca District Office BLM Humboldt River Field Office BLM BLM Geothermal/Exploration Gravity Methods

222

A system for constructing private digital libraries through information space exploration  

Science Journals Connector (OSTI)

Digital libraries on the Internet are constructed separately and ... On the other hand, users of digital libraries have their own information needs. In order for users to fully utilize digital libraries, therefor...

Masanori Sugimoto; Norio Katayama

1998-10-01T23:59:59.000Z

223

Agricultural Advisors as Climate Information Intermediaries: Exploring Differences in Capacity to Communicate Climate  

Science Journals Connector (OSTI)

Although agricultural production faces chronic stress associated with extreme precipitation events, high temperatures, drought, and shifts in climate conditions, adoption of climate information into agricultural decision making has been relatively ...

Tonya Haigh; Lois Wright Morton; Maria Carmen Lemos; Cody Knutson; Linda Stalker Prokopy; Yun Jia Lo; Jim Angel

224

Gamma Log | Open Energy Information  

Open Energy Info (EERE)

Gamma Log Gamma Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gamma Log Details Activities (6) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: provides information on changes in rock type near the wellbore from changes in measured gamma radiation Stratigraphic/Structural: using multiple gamma logs over an area, the depth to the sandstone and shale layers can be correlated over larger areas Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.2525 centUSD 2.5e-4 kUSD 2.5e-7 MUSD 2.5e-10 TUSD / foot Median Estimate (USD): 0.3838 centUSD

225

Refraction Survey | Open Energy Information  

Open Energy Info (EERE)

Refraction Survey Refraction Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Refraction Survey Details Activities (16) Areas (13) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Active Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Can provide information on crustal thickness, depth to basement. Hydrological: Thermal: Cost Information Low-End Estimate (USD): 6,206.80620,680 centUSD 6.207 kUSD 0.00621 MUSD 6.2068e-6 TUSD / mile Median Estimate (USD): 10,877.331,087,733 centUSD 10.877 kUSD 0.0109 MUSD 1.087733e-5 TUSD / mile

226

Neutron Log | Open Energy Information  

Open Energy Info (EERE)

Neutron Log Neutron Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Neutron Log Details Activities (4) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: if used in conjunction with other logs, this technique can provide information on the rock type and the porosity Stratigraphic/Structural: Corelation of rock units Hydrological: Estimate of formation porosity Thermal: Dictionary.png Neutron Log: The neutron log responds primarily to the amount of hydrogen in the formation which is contained in oil, natural gas, and water. The amount of hydrogen can be used to identify zones of higher porosity.

227

Slim Holes | Open Energy Information  

Open Energy Info (EERE)

Slim Holes Slim Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Slim Holes Details Activities (30) Areas (24) Regions (1) NEPA(6) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: If core is collected Stratigraphic/Structural: If core is collected Hydrological: Fluid flow and water chemistry Thermal: Thermal gradient or bottom hole temperature Cost Information Low-End Estimate (USD): 100.0010,000 centUSD 0.1 kUSD 1.0e-4 MUSD 1.0e-7 TUSD / foot Median Estimate (USD): 169.8916,989 centUSD 0.17 kUSD 1.6989e-4 MUSD 1.6989e-7 TUSD / foot High-End Estimate (USD): 200.0020,000 centUSD

228

Thermal Ion Dispersion | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Thermal Ion Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Thermal Ion Dispersion: Thermal Ion Dispersion (TID) is a method used by the precious-metals industry to determine the movement of hot, mineral-bearing waters through rocks, gravels, and soils. The survey involves collection of soil samples

229

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

230

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

231

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally

232

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

233

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

234

Information-building applications: designing for data exploration and analysis by elementary school students  

Science Journals Connector (OSTI)

The propagation of Inquiry Based Learning has lead to many more elementary students interacting with authentic scientific tools and practices. However, the more problematic realities of scientific data collection, such as noise and large data sets, are ... Keywords: information-building applications, k-12 science education, learner centered design

Tia Shelley; Leilah Lyons; Tom Moher; Chandan Dasgupta; Brenda Lopez Silva; Alexandra Silva

2014-04-01T23:59:59.000Z

235

Technology Decisions Under Architectural Uncertainty: Informing Investment Decisions Through Tradespace Exploration  

E-Print Network (OSTI)

Technology Decisions Under Architectural Uncertainty: Informing Investment Decisions Through§ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 DOI: 10.2514/1.A32562 Although NASA has-term investment in the enabling technologies that will be required for these future systems. Given

de Weck, Olivier L.

236

Category:Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Mercury Vapor page? For detailed information on Mercury Vapor as exploration techniques,...

237

SRT | Open Energy Information  

Open Energy Info (EERE)

SRT SRT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: SRT Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: high-resolution DEMs Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.000 centUSD 0 kUSD 0 MUSD 0 TUSD / process Median Estimate (USD): 0.000 centUSD 0 kUSD 0 MUSD 0 TUSD / process High-End Estimate (USD): 0.000 centUSD 0 kUSD 0 MUSD 0 TUSD / process Time Required Low-End Estimate: 2 days0.00548 years 48 hours 0.286 weeks 0.0657 months / job Median Estimate: 2 days0.00548 years 48 hours 0.286 weeks

238

FLIR | Open Energy Information  

Open Energy Info (EERE)

FLIR FLIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: FLIR Details Activities (2) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Cost Information Low-End Estimate (USD): 241.3524,135 centUSD 0.241 kUSD 2.4135e-4 MUSD 2.4135e-7 TUSD / mile Median Estimate (USD): 643.6064,360 centUSD 0.644 kUSD 6.436e-4 MUSD 6.436e-7 TUSD / mile High-End Estimate (USD): 1,609.00160,900 centUSD 1.609 kUSD 0.00161 MUSD 1.609e-6 TUSD / mile Time Required Low-End Estimate: 0.25 days6.844627e-4 years

239

Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Geothermometry Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geothermometry Details Activities (65) Areas (48) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: used to estimate reservoir temperatures Cost Information Low-End Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample Median Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample High-End Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample Dictionary.png Geothermometry:

240

Radiometrics | Open Energy Information  

Open Energy Info (EERE)

Radiometrics Radiometrics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Radiometrics Details Activities (5) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Primary use is in mapping potassium alterations Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 8.04804 centUSD 0.00804 kUSD 8.04e-6 MUSD 8.04e-9 TUSD / mile Median Estimate (USD): 4,609.55460,955 centUSD 4.61 kUSD 0.00461 MUSD 4.60955e-6 TUSD / mile High-End Estimate (USD): 16,000.001,600,000 centUSD 16 kUSD 0.016 MUSD 1.6e-5 TUSD / mile Time Required Low-End Estimate: 0.05 days1.368925e-4 years

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SWIR | Open Energy Information  

Open Energy Info (EERE)

SWIR SWIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: SWIR Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / subject Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / subject High-End Estimate (USD): 6,000.00600,000 centUSD 6 kUSD 0.006 MUSD 6.0e-6 TUSD / subject Time Required Low-End Estimate: 1 days0.00274 years

242

Macrophotography | Open Energy Information  

Open Energy Info (EERE)

Macrophotography Macrophotography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Macrophotography Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Identify and document surface geology and mineralogy Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 220.0022,000 centUSD 0.22 kUSD 2.2e-4 MUSD 2.2e-7 TUSD / hour Median Estimate (USD): 220.0022,000 centUSD 0.22 kUSD 2.2e-4 MUSD 2.2e-7 TUSD / hour High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD 5.0e-7 TUSD / hour Time Required

243

Geothermal Exploration Cost and Time  

SciTech Connect

The Department of Energys Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

Scott Jenne

2013-02-13T23:59:59.000Z

244

Acoustic Logs | Open Energy Information  

Open Energy Info (EERE)

Acoustic Logs Acoustic Logs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Acoustic Logs Details Activities (7) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: determine porosity of layers Stratigraphic/Structural: map discontinuities to determine their orientation. Hydrological: Thermal: Cost Information Low-End Estimate (USD): 1.00100 centUSD 1.0e-3 kUSD 1.0e-6 MUSD 1.0e-9 TUSD / foot Median Estimate (USD): 4.62462 centUSD 0.00462 kUSD 4.62e-6 MUSD 4.62e-9 TUSD / foot High-End Estimate (USD): 16.001,600 centUSD 0.016 kUSD 1.6e-5 MUSD 1.6e-8 TUSD / foot

245

Mud Logging | Open Energy Information  

Open Energy Info (EERE)

Mud Logging Mud Logging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mud Logging Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Lithological layers are identified from drill cuttings Stratigraphic/Structural: Porosity of rocks Hydrological: Fluid content of the borehole while drilling can be determined Thermal: Cost Information Low-End Estimate (USD): 1,300.00130,000 centUSD 1.3 kUSD 0.0013 MUSD 1.3e-6 TUSD / day Median Estimate (USD): 1,450.00145,000 centUSD 1.45 kUSD 0.00145 MUSD 1.45e-6 TUSD / day High-End Estimate (USD): 2,000.00200,000 centUSD

246

Density Log | Open Energy Information  

Open Energy Info (EERE)

Density Log Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (6) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: provides data on the bulk density of the rock surrounding the well Stratigraphic/Structural: Stratigraphic correlation between well bores. Hydrological: Porosity of the formations loggesd can be calculated for the Density log andprovide an indication potential aquifers. Thermal: Cost Information Low-End Estimate (USD): 0.4040 centUSD 4.0e-4 kUSD 4.0e-7 MUSD 4.0e-10 TUSD / foot Median Estimate (USD): 0.6868 centUSD

247

Ground Magnetics | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (15) Areas (12) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

248

DC Resistivity Survey (Dipole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Dipole-Dipole Array) Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

249

DC Resistivity Survey (Wenner Array) | Open Energy Information  

Open Energy Info (EERE)

Wenner Array) Wenner Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Wenner Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

250

DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

Pole-Dipole Array) Pole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Pole-Dipole Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

251

DC Resistivity Survey (Schlumberger Array) | Open Energy Information  

Open Energy Info (EERE)

Schlumberger Array) Schlumberger Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Schlumberger Array) Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

252

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

253

Petrography Analysis | Open Energy Information  

Open Energy Info (EERE)

Petrography Analysis Petrography Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Petrography Analysis Details Activities (6) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Provides detailed information about rock composition and morphology Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 275.0027,500 centUSD 0.275 kUSD 2.75e-4 MUSD 2.75e-7 TUSD / sample Median Estimate (USD): 420.0042,000 centUSD 0.42 kUSD 4.2e-4 MUSD 4.2e-7 TUSD / sample High-End Estimate (USD): 625.0062,500 centUSD 0.625 kUSD 6.25e-4 MUSD 6.25e-7 TUSD / sample

254

Core Analysis | Open Energy Information  

Open Energy Info (EERE)

Core Analysis Core Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Analysis Details Activities (41) Areas (28) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Core analysis is done to define lithology. Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Hydrological: Thermal: Thermal conductivity can be measured from core samples. Cost Information Low-End Estimate (USD): 2,000.00200,000 centUSD 2 kUSD 0.002 MUSD 2.0e-6 TUSD / 30 foot core Median Estimate (USD): 10,000.001,000,000 centUSD

255

Field Mapping | Open Energy Information  

Open Energy Info (EERE)

Field Mapping Field Mapping Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Mapping Details Activities (59) Areas (35) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Stratigraphic/Structural: Map fault and fracture patterns, kinematic information. Hydrological: Map surface manifestations of geothermal systems. Thermal: Map surface temperature. Cost Information Low-End Estimate (USD): 400.0040,000 centUSD 0.4 kUSD 4.0e-4 MUSD 4.0e-7 TUSD / hour Median Estimate (USD): 600.0060,000 centUSD

256

Field Sampling | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Techniques Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

257

Resistivity Tomography | Open Energy Information  

Open Energy Info (EERE)

Resistivity Tomography Resistivity Tomography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Resistivity Tomography Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Resistivity Log Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 60.986,098 centUSD 0.061 kUSD 6.098e-5 MUSD 6.098e-8 TUSD / foot Median Estimate (USD): 76.227,622 centUSD 0.0762 kUSD 7.622e-5 MUSD 7.622e-8 TUSD / foot High-End Estimate (USD): 106.7110,671 centUSD 0.107 kUSD 1.0671e-4 MUSD 1.0671e-7 TUSD / foot Time Required Low-End Estimate: 1 days0.00274 years

258

Radar | Open Energy Information  

Open Energy Info (EERE)

Radar Radar Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Radar Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Active Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png Radar: Radar is an active-sensor remote sensing tool used to detect small changes in ground movement at geothermal locations. Other definitions:Wikipedia Reegle Introduction RAdio Detection And Ranging (RADAR) is used in a wide variety of applications. In remote sensing applications, the source of the radio waves

259

A Technique to Utilize Smart Meter Load Information for Adapting Overcurrent Protection for Radial Distribution Systems with Distributed Generations  

E-Print Network (OSTI)

overcurrent protection scheme to reduce the number of customers affected by faults in RDS with DGs. Further, a technique is presented that utilizes customers loading information from smart meters in AMI to improve the sensitivity of substation OC relays...

Ituzaro, Fred Agyekum

2012-07-16T23:59:59.000Z

260

Micro-Earthquake | Open Energy Information  

Open Energy Info (EERE)

Micro-Earthquake Micro-Earthquake Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Micro-Earthquake Details Activities (33) Areas (16) Regions (2) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Passive Seismic Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Fault zones, permeable pathways Hydrological: Fluid type- liquid or steam Thermal: Dictionary.png Micro-Earthquake: The micro-earthquake technique (MEQ), also known as microseismic, utilizes vibrations in the subsurface to locate permeable pathways and determine fluid phase. Other definitions:Wikipedia Reegle Use in Geothermal Exploration Ground noise and micro-earthquakes (MEQ) may be utilized in the

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Novel Neutral Point Potential Stabilization Technique Using the Information of Output Current Polarities and Voltage Vector  

E-Print Network (OSTI)

- This paper proposes a new neutral point potential control technique for the three-level neutral-point-clamped PWM inverter. Utilizing the phase current polarity information, this technique distributes including the zero power factor condition. Detailed analysis and computer simulations show the superiority

Hava, Ahmet

262

Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

Thermal Gradient Holes Thermal Gradient Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (50) Areas (39) Regions (4) NEPA(29) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Field wide fluid flow characteristics if an array of wells are drilled Thermal: Mapping and projecting thermal anomalies Cost Information Low-End Estimate (USD): 5.00500 centUSD 0.005 kUSD 5.0e-6 MUSD 5.0e-9 TUSD / foot Median Estimate (USD): 16.501,650 centUSD 0.0165 kUSD 1.65e-5 MUSD 1.65e-8 TUSD / foot High-End Estimate (USD): 50.005,000 centUSD

263

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Area Exploration Technique Geographic Information System Activity Date 1996 - 1997 Usefulness not indicated DOE-funding Unknown...

264

Category:Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling page? For detailed information on Surface Water Sampling as exploration techniques, click here. Category:Surface Water Sampling Add.png Add a new Surface...

265

Category:Microgravity-Hybrid Microgravity | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Looking for the Microgravity-Hybrid Microgravity page? For detailed information on Microgravity-Hybrid Microgravity as exploration techniques, click here....

266

Category:FLIR | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Looking for the FLIR page? For detailed information on FLIR as exploration techniques, click here. Category:FLIR Add.png Add a new FLIR Technique Pages in...

267

Category:Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling page? For detailed information on Gas Sampling as exploration techniques, click here. Category:Gas Sampling Add.png Add a new Gas Sampling Technique Subcategories This...

268

Soil Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling Soil Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Sampling Details Activities (10) Areas (9) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Can reveal relatively high permeability zones Hydrological: Thermal: Used to locate active hydrothermal systems Dictionary.png Soil Sampling: Soil sampling is a method that can be used for exploration of geothermal resources that lack obvious surface manifestations. Soils that are above or adjacent to a "hidden" hydrothermal system will have a unique chemistry that can be indicative of a hydrothermal system at depth and a zone of

269

Multispectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Multispectral Imaging Multispectral Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Multispectral Imaging Details Activities (35) Areas (22) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: relative mineral maps Stratigraphic/Structural: aerial photographs can show structures Hydrological: delineate locations of surface water features Thermal: vegetation maps can show plants stressed due to nearby thermal activity Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sq. mile Median Estimate (USD): 370.2337,023 centUSD

270

Aerial Photography | Open Energy Information  

Open Energy Info (EERE)

Aerial Photography Aerial Photography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Aerial Photography Details Activities (10) Areas (9) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: map structures/faults Hydrological: map surface water features Thermal: if photos taken in winter snow cover, can map thermal anomalies Cost Information Low-End Estimate (USD): 100.3610,036 centUSD 0.1 kUSD 1.0036e-4 MUSD 1.0036e-7 TUSD / sq. mile Median Estimate (USD): 240.5424,054 centUSD 0.241 kUSD 2.4054e-4 MUSD 2.4054e-7 TUSD / sq. mile High-End Estimate (USD): 2,360.00236,000 centUSD

271

Cuttings Analysis | Open Energy Information  

Open Energy Info (EERE)

Cuttings Analysis Cuttings Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cuttings Analysis Details Activities (36) Areas (28) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Cuttings are used to define lithology Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 1,000.00100,000 centUSD 1 kUSD 1.0e-3 MUSD 1.0e-6 TUSD / 100 feet cut Median Estimate (USD): 4,000.00400,000 centUSD 4 kUSD 0.004 MUSD 4.0e-6 TUSD / 100 feet cut High-End Estimate (USD): 10,000.001,000,000 centUSD 10 kUSD 0.01 MUSD 1.0e-5 TUSD / 100 feet cut Time Required

272

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

273

Hyperspectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Hyperspectral Imaging Hyperspectral Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hyperspectral Imaging Details Activities (4) Areas (4) Regions (1) NEPA(1) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: mineral maps can be used to show the presence of hydrothermal minerals and mineral assemblages Stratigraphic/Structural: aerial photographs can show structures Hydrological: delineate locations of surface water features Thermal: vegetation maps can show plants stressed due to nearby thermal activity Cost Information Low-End Estimate (USD): 8.63863 centUSD 0.00863 kUSD 8.63e-6 MUSD

274

Rock Density | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Density of different lithologic units. Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sample

275

Geodetic Survey | Open Energy Information  

Open Energy Info (EERE)

Geodetic Survey Geodetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geodetic Survey Details Activities (17) Areas (10) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Map regional strain rates Hydrological: Thermal: Cost Information Low-End Estimate (USD): 250.0025,000 centUSD 0.25 kUSD 2.5e-4 MUSD 2.5e-7 TUSD / point Median Estimate (USD): 600.0060,000 centUSD 0.6 kUSD 6.0e-4 MUSD 6.0e-7 TUSD / point High-End Estimate (USD): 1,500.00150,000 centUSD 1.5 kUSD 0.0015 MUSD 1.5e-6 TUSD / point Time Required Low-End Estimate: 5 days0.0137 years

276

Static Temperature Survey | Open Energy Information  

Open Energy Info (EERE)

Static Temperature Survey Static Temperature Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Static Temperature Survey Details Activities (28) Areas (24) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Extrapolate the true temperature of the formation the well penetrates Cost Information Low-End Estimate (USD): 0.2525 centUSD 2.5e-4 kUSD 2.5e-7 MUSD 2.5e-10 TUSD / foot Median Estimate (USD): 0.3535 centUSD 3.5e-4 kUSD 3.5e-7 MUSD 3.5e-10 TUSD / foot High-End Estimate (USD): 0.7575 centUSD 7.5e-4 kUSD 7.5e-7 MUSD

277

Modeling-Computer Simulations | Open Energy Information  

Open Energy Info (EERE)

Modeling-Computer Simulations Modeling-Computer Simulations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling-Computer Simulations Details Activities (78) Areas (31) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Cost Information Low-End Estimate (USD): 85.008,500 centUSD 0.085 kUSD 8.5e-5 MUSD 8.5e-8 TUSD / hour Median Estimate (USD): 195.0019,500 centUSD

278

Airborne Electromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Electromagnetic Survey Airborne Electromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Electromagnetic Survey Details Activities (2) Areas (2) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: provide data on rock type and mineral content Stratigraphic/Structural: Hydrological: can be used to detect changes in density of fluids and indicate if there is salt water intrusion Thermal: Cost Information Low-End Estimate (USD): 48.274,827 centUSD 0.0483 kUSD 4.827e-5 MUSD 4.827e-8 TUSD / mile Median Estimate (USD): 317.3831,738 centUSD 0.317 kUSD

279

Pressure Temperature Log | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Pressure Temperature Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Pressure Temperature Log Details Activities (13) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Perturbations in temperature or pressure can be indicative of faults or other structural features Hydrological: fluid cirulation, over-pressured zones, and under-pressured zones. Thermal: Temperature profile with depth Cost Information Low-End Estimate (USD): 0.6060 centUSD 6.0e-4 kUSD

280

FMI Log | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » FMI Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: FMI Log Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Image Logs Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Stoneley Analysis | Open Energy Information  

Open Energy Info (EERE)

Stoneley Analysis Stoneley Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stoneley Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Acoustic Logs Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Stoneley Analysis: A type of large-amplitude interface, or surface, wave generated by a sonic tool in a borehole. Stoneley waves can propagate along a solid-fluid interface, such as along the walls of a fluid-filled borehole and are the main low-frequency component of signal generated by sonic sources in boreholes. Analysis of Stoneley waves can allow estimation of the locations

282

As printed in IEEE Visualization 2000 A Spreadsheet Interface for Visualization Exploration  

E-Print Network (OSTI)

and interaction techniques that ex- pedite the process of exploring that data must receive new attention efforts have been devoted to storing and presenting the data exploration process itself. This information through a set of examples. During the data exploration process, a user attempts to discover a set

Jankun-Kelly, T. J.

283

DC Resistivity Survey (Mise-Á-La-Masse) | Open Energy Information  

Open Energy Info (EERE)

Mise-Á-La-Masse) Mise-Á-La-Masse) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Mise-Á-La-Masse) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

284

Vertical Flowmeter Test | Open Energy Information  

Open Energy Info (EERE)

Vertical Flowmeter Test Vertical Flowmeter Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Flowmeter Test Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Define permeable zones within a well Thermal: Dictionary.png Vertical Flowmeter Test: A well testing technique done upon completion of a well to identify locations of permeable zones within the well and to quantify the relative permeability of each zone. Other definitions:Wikipedia Reegle Introduction A vertical flowmeter test is also known as a spinner test and is preformed

285

Step-out Well | Open Energy Information  

Open Energy Info (EERE)

Step-out Well Step-out Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Step-out Well Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Step-out Well: A well drilled outside of the proven reservoir boundaries to investigate a

286

Optimization of numerical weather/wave prediction models based on information geometry and computational techniques  

Science Journals Connector (OSTI)

The last years a new highly demanding framework has been set for environmental sciences and applied mathematics as a result of the needs posed by issues that are of interest not only of the scientific community but of today's society in general: global warming renewable resources of energy natural hazards can be listed among them. Two are the main directions that the research community follows today in order to address the above problems: The utilization of environmental observations obtained from in situ or remote sensing sources and the meteorological-oceanographic simulations based on physical-mathematical models. In particular trying to reach credible local forecasts the two previous data sources are combined by algorithms that are essentially based on optimization processes. The conventional approaches in this framework usually neglect the topological-geometrical properties of the space of the data under study by adopting least square methods based on classical Euclidean geometry tools. In the present work new optimization techniques are discussed making use of methodologies from a rapidly advancing branch of applied Mathematics the Information Geometry. The latter prove that the distributions of data sets are elements of non-Euclidean structures in which the underlying geometry may differ significantly from the classical one. Geometrical entities like Riemannian metrics distances curvature and affine connections are utilized in order to define the optimum distributions fitting to the environmental data at specific areas and to form differential systems that describes the optimization procedures. The methodology proposed is clarified by an application for wind speed forecasts in the Kefaloniaisland Greece.

2014-01-01T23:59:59.000Z

287

Airborne Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Gravity Survey Airborne Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Gravity Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

288

Ground Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Ground Gravity Survey Ground Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Gravity Survey Details Activities (48) Areas (34) Regions (2) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and large-scale deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

289

InSAR | Open Energy Information  

Open Energy Info (EERE)

InSAR InSAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: InSAR Details Activities (11) Areas (10) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: Geophysical Monitoring Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png InSAR: Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that can be used to accurately measure ground displacement. Other definitions:Wikipedia Reegle Introduction InSAR is a radar technique used in geodesy and remote sensing. This geodetic method uses two or more synthetic aperture radar (SAR) images to

290

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

291

Compound and Elemental Analysis | Open Energy Information  

Open Energy Info (EERE)

Compound and Elemental Analysis Compound and Elemental Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Compound and Elemental Analysis Details Activities (104) Areas (69) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems. Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / compound Median Estimate (USD): 30.003,000 centUSD

292

2-M Probe Survey | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey 2-M Probe Survey (Redirected from 2-M Probe) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: 2-M Probe Survey Details Activities (27) Areas (21) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Identify and delineate shallow thermal anomalies Cost Information Low-End Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / station Median Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / station High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD

293

PSInSAR | Open Energy Information  

Open Energy Info (EERE)

PSInSAR PSInSAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: PSInSAR Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Cost Information Low-End Estimate (USD): 20.722,072 centUSD 0.0207 kUSD 2.072e-5 MUSD 2.072e-8 TUSD / sq. mile Median Estimate (USD): 103.6010,360 centUSD 0.104 kUSD 1.036e-4 MUSD 1.036e-7 TUSD / sq. mile High-End Estimate (USD): 259.0025,900 centUSD 0.259 kUSD 2.59e-4 MUSD 2.59e-7 TUSD / sq. mile

294

Fluid Inclusion Analysis | Open Energy Information  

Open Energy Info (EERE)

Fluid Inclusion Analysis Fluid Inclusion Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Inclusion Analysis Details Activities (20) Areas (11) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Fluid composition at a point in time and space Thermal: The minimum temperature of fluid inclusion formation Cost Information Low-End Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample Median Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample High-End Estimate (USD): 26.782,678 centUSD

295

Trace Element Analysis | Open Energy Information  

Open Energy Info (EERE)

Trace Element Analysis Trace Element Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Trace Element Analysis Details Activities (8) Areas (8) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Reconstructing the fluid circulation of a hydrothermal system Thermal: Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / element Median Estimate (USD): 18.001,800 centUSD 0.018 kUSD 1.8e-5 MUSD 1.8e-8 TUSD / element High-End Estimate (USD): 106.0010,600 centUSD 0.106 kUSD 1.06e-4 MUSD 1.06e-7 TUSD / element

296

LiDAR | Open Energy Information  

Open Energy Info (EERE)

LiDAR LiDAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: LiDAR Details Activities (10) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Active Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: delineate faults, create high-resolution DEMS, quantify fault kinemaics, develop lineament maps Hydrological: Thermal: Cost Information Low-End Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / sq. mile Median Estimate (USD): 850.0085,000 centUSD 0.85 kUSD 8.5e-4 MUSD 8.5e-7 TUSD / sq. mile High-End Estimate (USD): 1,300.00130,000 centUSD 1.3 kUSD 0.0013 MUSD 1.3e-6 TUSD / sq. mile

297

Stereo Satellite Imagery | Open Energy Information  

Open Energy Info (EERE)

Stereo Satellite Imagery Stereo Satellite Imagery Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stereo Satellite Imagery Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: map structures/faults Hydrological: map surface water features, determine the boundary conditions of hydrothermal circulation Thermal: Cost Information Low-End Estimate (USD): 259.0025,900 centUSD 0.259 kUSD 2.59e-4 MUSD 2.59e-7 TUSD / sq. mile Median Estimate (USD): 282.3128,231 centUSD 0.282 kUSD 2.8231e-4 MUSD 2.8231e-7 TUSD / sq. mile High-End Estimate (USD): 362.6036,260 centUSD

298

2-M Probe Survey | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey 2-M Probe Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: 2-M Probe Survey Details Activities (27) Areas (21) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Identify and delineate shallow thermal anomalies Cost Information Low-End Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / station Median Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / station High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD 5.0e-7 TUSD / station

299

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile Time Required Low-End Estimate: 6 weeks0.115 years

300

Frequency-Domain Electromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

Frequency-Domain Electromagnetic Survey Frequency-Domain Electromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Frequency-Domain Electromagnetic Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Profiling Techniques Information Provided by Technique Lithology: Detection of high-conductivity bodies in the subsurface. Stratigraphic/Structural: Hydrological: Thermal: Detection of the presence of a thermal anomaly through its resistivity signature. Cost Information Low-End Estimate (USD): 2,928.38292,838 centUSD 2.928 kUSD 0.00293 MUSD 2.92838e-6 TUSD / mile Median Estimate (USD): 4,505.20450,520 centUSD

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Controlled Source Frequency-Domain Magnetics | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Frequency-Domain Magnetics Controlled Source Frequency-Domain Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Frequency-Domain Magnetics Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Locate geothermal groundwater and flow patterns. Thermal: Cost Information Low-End Estimate (USD): 12,000.001,200,000 centUSD 12 kUSD 0.012 MUSD 1.2e-5 TUSD / mile Median Estimate (USD): 18,000.001,800,000 centUSD 18 kUSD 0.018 MUSD 1.8e-5 TUSD / mile High-End Estimate (USD): 25,000.002,500,000 centUSD

302

Z-Axis Tipper Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

Z-Axis Tipper Electromagnetics Z-Axis Tipper Electromagnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Z-Axis Tipper Electromagnetics Details Activities (2) Areas (2) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 4,827.00482,700 centUSD 4.827 kUSD 0.00483 MUSD 4.827e-6 TUSD / mile Median Estimate (USD): 6,206.14620,614 centUSD 6.206 kUSD 0.00621 MUSD 6.20614e-6 TUSD / mile High-End Estimate (USD): 17,239.291,723,929 centUSD 17.239 kUSD 0.0172 MUSD 1.723929e-5 TUSD / mile Dictionary.png

303

Fluid Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fluid Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways, and assist in determining the degree of mixing between different hydrothermal fluids. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems; Isotopic ratios can be used to characterize and locate subsurface thermal anomalies.

304

Over Core Stress | Open Energy Information  

Open Energy Info (EERE)

Over Core Stress Over Core Stress Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Over Core Stress Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Over Core Stress: No definition has been provided for this term. Add a Definition Related Techniques Rock Lab Analysis Core Analysis Cuttings Analysis Isotopic Analysis- Rock Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) References Page Area Activity Start Date Activity End Date Reference Material

305

SqueeSAR | Open Energy Information  

Open Energy Info (EERE)

SqueeSAR SqueeSAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: SqueeSAR Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png SqueeSAR: SqueeSAR is a remote sensing technique that uses radar signals from a satellite to accurately measure ground displacement. SqueeSAR is a newer, improved, and more accurate analysis algorithm compared to the PSInSAR method. Other definitions:Wikipedia Reegle

306

Music to knowledge: A visual programming environment for the development and evaluation of music information retrieval techniques  

Science Journals Connector (OSTI)

The objective of the International Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL) project is the creation of a large secure corpus of audio and symbolic music data accessible to the music information retrieval (MIR) community for the testing and evaluation of various MIR techniques. As part of the IMIRSEL project a cross?platform JAVA based visual programming environment called Music to Knowledge (M2K) is being developed for a variety of music information retrieval related tasks. The primary objective of M2K is to supply the MIR community with a toolset that provides the ability to rapidly prototype algorithms as well as foster the sharing of techniques within the MIR community through the use of a standardized set of tools. Due to the relatively large size of audio data and the computational costs associated with some digital signal processing and machine learning techniques M2K is also designed to support distributed computing across computing clusters. In addition facilities to allow the integration of non?JAVA based (e.g. C/C++ MATLAB etc.) algorithms and programs are provided within M2K. [Work supported by the Andrew W. Mellon Foundation and NSF Grants No. IIS?0340597 and No. IIS?0327371.

2005-01-01T23:59:59.000Z

307

Combining query translation techniques to improve cross-language information retrieval  

Science Journals Connector (OSTI)

In this paper we address the combination of query translation approaches for cross-language information retrieval (CLIR). We translate queries with Google Translate and extend them with new translations obtained by mapping noun phrases in the query to ...

Benjamin Herbert; Gyrgy Szarvas; Iryna Gurevych

2011-04-01T23:59:59.000Z

308

Techniques for noise suppression and robust control in spin-based quantum information processors  

E-Print Network (OSTI)

Processing information quantum mechanically allows the relatively efficient solution of many important problems thought to be intractable on a classical computer. A primary challenge in experimentally implementing a quantum ...

Borneman, Troy William

2013-01-01T23:59:59.000Z

309

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

310

Chapter 6 - Seismic Inversion Techniques  

Science Journals Connector (OSTI)

Abstract Seismic inversion techniques were developed as a discipline at the same time that seismic technologies were widely applied in oil exploration and development starting in the 1980s. Except for basic theories and principles, seismic inversion techniques are different from traditional seismic exploration methods in geological tasks, involving basic information as well as study approaches. In the early stages of exploration, the geological task of seismic exploration was to find structures and identify traps, and seismic exploration techniques always focused on the ups and downs of reflection interfaces. They mainly relied on the travel time for structural interpretation. The main work of reservoir geophysics is to study the heterogeneity of a reservoir, and the main geological task is to make predictions on the reservoir parameters. Scientists focus on the lateral variation of reservoir characteristics and conduct seismic interpretation based on the information extracted from the results of reservoir seismic inversion. Seismic inversion has developed rapidly in recent years, including recursive inversion, log-constrained inversion, and multiparameter lithological seismic inversion. We choose different methods according to the geological characteristics and specific problems of the study area.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

311

Decoherence-based exploration of d-dimensional one-way quantum computation: Information transfer and basic gates  

SciTech Connect

We study the effects of amplitude and phase damping decoherence in d-dimensional one-way quantum computation. We focus our attention on low dimensions and elementary unidimensional cluster state resources. Our investigation shows how information transfer and entangling gate simulations are affected for d{>=}2. To understand motivations for extending the one-way model to higher dimensions, we describe how basic qudit cluster states deteriorate under environmental noise of experimental interest. In order to protect quantum information from the environment, we consider encoding logical qubits into qudits and compare entangled pairs of linear qubit-cluster states to single qudit clusters of equal length and total dimension. A significant reduction in the performance of cluster state resources for d>2 is found when Markovian-type decoherence models are present.

Tame, M. S.; Paternostro, M.; Kim, M. S. [School of Mathematics and Physics, The Queen's University, Belfast BT7 1NN (United Kingdom); Hadley, C.; Bose, S. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

2006-10-15T23:59:59.000Z

312

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

313

Cross-Dipole Acoustic Log | Open Energy Information  

Open Energy Info (EERE)

Cross-Dipole Acoustic Log Cross-Dipole Acoustic Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cross-Dipole Acoustic Log Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Acoustic Logs Information Provided by Technique Lithology: Stratigraphic/Structural: Rock stress and fracture analysis Hydrological: Use for fracture identification in open and cased holes. Also used for evaluating hydro fracturing/well stimulation effectiveness. Thermal: Dictionary.png Cross-Dipole Acoustic Log: An acoustic logging technique where the acoustic transmitter and receivers are lowered down hole and waveforms that travel through the well mud,

314

SAR | Open Energy Information  

Open Energy Info (EERE)

SAR SAR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: SAR Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Radar Information Provided by Technique Lithology: Stratigraphic/Structural: create high-resolution DEMs, detect fault and ground movement Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.441,044 centUSD 0.0104 kUSD 1.044e-5 MUSD 1.044e-8 TUSD / sq. mile Median Estimate (USD): 59.575,957 centUSD 0.0596 kUSD 5.957e-5 MUSD 5.957e-8 TUSD / sq. mile High-End Estimate (USD): 673.4067,340 centUSD 0.673 kUSD 6.734e-4 MUSD 6.734e-7 TUSD / sq. mile Time Required Low-End Estimate: 21 days0.0575 years

315

X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Diffraction (XRD): X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to

316

Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Portable X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Portable X-Ray Diffraction (XRD): Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction,

317

September 2006 FORENSIC TECHNIQUES  

E-Print Network (OSTI)

September 2006 FORENSIC TECHNIQUES: HELPING ORGANIZATIONS IMPROVE THEIR RESPONSES TO INFORMATION SECURITY INCIDENTS FORENSIC TECHNIQUES: HELPING ORGANIZATIONS IMPROVE THEIR RESPONSES TO INFORMATION and Technology National Institute of Standards and Technology Digital forensic techniques involve the application

318

Caliper Log | Open Energy Information  

Open Energy Info (EERE)

Caliper Log Caliper Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Caliper Log Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.4040 centUSD 4.0e-4 kUSD 4.0e-7 MUSD 4.0e-10 TUSD / foot Median Estimate (USD): 0.7878 centUSD 7.8e-4 kUSD 7.8e-7 MUSD 7.8e-10 TUSD / foot High-End Estimate (USD): 3.00300 centUSD 0.003 kUSD 3.0e-6 MUSD 3.0e-9 TUSD / foot Time Required Low-End Estimate: 0.35 days9.582478e-4 years 8.4 hours 0.05 weeks 0.0115 months / job

319

Geographic Information System (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Geographic Information System (Laney, 2005) Geographic Information System (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. This project has also reinforced the value of geographic information systems (GIS) in exploration efforts. GIS has enabled the visualization of data, storage and access of disparate data sets, and merging of data that would not be possible using any other technology. While CAD is preferred by some in geothermal exploration, it lacks a multitude of the functions facilitated with GIS. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_(Laney,_2005)&oldid=38930

320

Underground Exploration  

E-Print Network (OSTI)

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Category:Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared page? For detailed information on Long-Wave Infrared as exploration techniques, click here. Category:Long-Wave Infrared Add.png Add a new Long-Wave Infrared...

322

Category:Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling page? For detailed information on Soil Gas Sampling as exploration techniques, click here. Category:Soil Gas Sampling Add.png Add a new Soil Gas Sampling...

323

Category:Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling page? For detailed information on Surface Gas Sampling as exploration techniques, click here. Category:Surface Gas Sampling Add.png Add a new Surface Gas...

324

Category:Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling page? For detailed information on Gas Flux Sampling as exploration techniques, click here. Category:Gas Flux Sampling Add.png Add a new Gas Flux Sampling...

325

Hand-held X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

Hand-held X-Ray Fluorescence (XRF) Hand-held X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hand-held X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Hand-held X-Ray Fluorescence (XRF): Hand-held X-Ray Fluorescence is a portable analytical technique derived from the instrumentation used in traditional lab-based XRF analysis. The technique is used for bulk chemical analysis of rock, mineral, and sediment

326

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

327

Single-Well and Cross-Well Resistivity | Open Energy Information  

Open Energy Info (EERE)

Single-Well and Cross-Well Resistivity Single-Well and Cross-Well Resistivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well and Cross-Well Resistivity Details Activities (14) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

328

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

329

Explorations Cathy Moulder  

E-Print Network (OSTI)

Explorations in Mapping Cathy Moulder Director of Library Services, Maps, Data & GIS Mc � "Professional mapping" � Geographic Information Systems (GIS) � Web 2.0 and NeoGeography � Role of traditional GIS... Neogeography is about people using and creating their own maps, on their own terms

Haykin, Simon

330

Exploring the magnetic topologies of cool stars  

E-Print Network (OSTI)

Magnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale component of the magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution. The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations b...

Morin, J; Petit, P; Albert, L; Auriere, M; Cabanac, R; Catala, C; Delfosse, X; Dintrans, B; Fares, R; Forveille, T; Gastine, T; Jardine, M; Konstantinova-Antova, R; Lanoux, J; Lignieres, F; Morgenthaler, A; Paletou, F; Velez, J C Ramirez; Solanki, S K; Theado, S; Van Grootel, V

2010-01-01T23:59:59.000Z

331

Geographic Information System At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

International Geothermal Area, Indonesia International Geothermal Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area Indonesia (Nash, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes GIs also facilitates grid data (raster) analysis and visualization. For example, a raster GIs layer, derived from an enhanced Landsat 7 Thematic Mapper (TM) image of the Karaha-Telaga Bodas area, Indonesia, is shown in Figure 2. References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers

332

Geothermal Literature Review | Open Energy Information  

Open Energy Info (EERE)

Geothermal Literature Review Geothermal Literature Review Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geothermal Literature Review Details Activities (40) Areas (25) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 60.006,000 centUSD 0.06 kUSD 6.0e-5 MUSD 6.0e-8 TUSD / hour Median Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / hour High-End Estimate (USD): 250.0025,000 centUSD 0.25 kUSD 2.5e-4 MUSD 2.5e-7 TUSD / hour Dictionary.png Geothermal Literature Review: A review of previously documented knowledge about an area to compile the

333

Data Acquisition-Manipulation | Open Energy Information  

Open Energy Info (EERE)

Data Acquisition-Manipulation Data Acquisition-Manipulation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Acquisition-Manipulation Details Activities (37) Areas (24) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 60.006,000 centUSD 0.06 kUSD 6.0e-5 MUSD 6.0e-8 TUSD / hour Median Estimate (USD): 250.0025,000 centUSD 0.25 kUSD 2.5e-4 MUSD 2.5e-7 TUSD / hour High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD 5.0e-7 TUSD / hour Time Required Low-End Estimate: 5 days0.0137 years

334

Development of Exploration Methods for Engineered Geothermal...  

Open Energy Info (EERE)

non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data,...

335

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

336

Cement Bond Log | Open Energy Information  

Open Energy Info (EERE)

Cement Bond Log Cement Bond Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cement Bond Log Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Acoustic Logs Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 0.8585 centUSD 8.5e-4 kUSD 8.5e-7 MUSD 8.5e-10 TUSD / foot Median Estimate (USD): 1.25125 centUSD 0.00125 kUSD 1.25e-6 MUSD 1.25e-9 TUSD / foot High-End Estimate (USD): 3.00300 centUSD 0.003 kUSD 3.0e-6 MUSD 3.0e-9 TUSD / foot Time Required Low-End Estimate: 0.35 days9.582478e-4 years 8.4 hours 0.05 weeks 0.0115 months / job

337

Exploring the Effect of mHealth Technologies on Communication and Information Sharing in a Pediatric Critical Care Unit: A Case Study  

Science Journals Connector (OSTI)

Communication and information sharing is an important aspect of healthcare information technology and mHealth management. A main requirement in the quality of patient care is the ability of all health care participants to communicate. Research illustrates ... Keywords: Health Care Technology, Information Technology, Management of Technology, Professional Communication, Technology Assessment, eHealth, mHealth

Rocci Luppicini; Victoria Aceti

2011-07-01T23:59:59.000Z

338

EXPLORATION ACTIVITY WORKSHEET MAJOR & CAREER EXPLORATION  

E-Print Network (OSTI)

of activity or process you should explore to bring you closer to your academic goals. NameEXPLORATION ACTIVITY WORKSHEET MAJOR & CAREER EXPLORATION Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they relate to student success, majors, careers

Milchberg, Howard

339

Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Raft River Geothermal Area Well Log Techniques At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Well Log Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Characterize the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated neutron; compensated densilog; and caliper. Lithologic breaks for a drill core to a depth of 2840 ft are illustrated. References Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho Raft River geothermal exploration well No. 4 Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Raft_River_Geothermal_Area_(1977)&oldid=6004

340

Integrating Customer Relationship Management and Project Lifecycle Management using Information Technology Infrastructure Library Techniques to Improve Service Delivery  

E-Print Network (OSTI)

(International Standards Organization) to certify organizations as being compliant with the ISO/IEC 20000 standard. This body of knowledge includes a description of a CMS (Configuration Management System). CMS is a central repository of information about products...

Millet, Sabbas

2008-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geographic Information System At Central Nevada Seismic Zone Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital

342

Silver Peak Innovative Exploration Project  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

343

Low-Intrusion Techniques and Sensitive Information Management for Warhead Counting and Verification: FY2012 Annual Report  

SciTech Connect

Progress in the second year of this project is described by the series of technical reports and manuscripts that make up the content of this report. These documents summarize successes in our goals to develop our robust image-hash templating and material-discrimination techniques and apply them to test image data.

Jarman, Kenneth D.; McDonald, Benjamin S.; Robinson, Sean M.; Gilbert, Andrew J.; White, Timothy A.; Pitts, W. Karl; Misner, Alex C.; Seifert, Allen

2012-11-01T23:59:59.000Z

344

Data Exploration at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration Data Exploration energy16gunther.jpg Highly interactive data exploration is a key component of scientific analytics, often combining multiple analytics technologies,...

345

RMOTC - Testing - Exploration  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration Helicopter flying over RMOTC testing facility for leak detection survey test Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC's extensive exploration-related data sets, including 3D and 2D seismic, wells and logging data, and cores - both physical core samples, stored in Casper, and core analysis data and reports - provide a great

346

Low-Intrusion Techniques and Sensitive Information Management for Warhead Counting and Verification: FY2011 Annual Report  

SciTech Connect

Future arms control treaties may push nuclear weapons limits to unprecedented low levels and may entail precise counting of warheads as well as distinguishing between strategic and tactical nuclear weapons. Such advances will require assessment of form and function to confidently verify the presence or absence of nuclear warheads and/or their components. Imaging with penetrating radiation can provide such an assessment and could thus play a unique role in inspection scenarios. Yet many imaging capabilities have been viewed as too intrusive from the perspective of revealing weapon design details, and the potential for the release of sensitive information poses challenges in verification settings. A widely held perception is that verification through radiography requires images of sufficient quality that an expert (e.g., a trained inspector or an image-matching algorithm) can verify the presence or absence of components of a device. The concept of information barriers (IBs) has been established to prevent access to relevant weapon-design information by inspectors (or algorithms), and has, to date, limited the usefulness of radiographic inspection. The challenge of this project is to demonstrate that radiographic information can be used behind an IB to improve the capabilities of treaty-verification weapons-inspection systems.

Jarman, Kenneth D.; Robinson, Sean M.; McDonald, Benjamin S.; Gilbert, Andrew J.; Misner, Alex C.; Pitts, W. Karl; White, Timothy A.; Seifert, Allen; Miller, Erin A.

2011-09-01T23:59:59.000Z

347

Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) | Open  

Open Energy Info (EERE)

Nash, Et Al., 2002) Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And

348

Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al.,  

Open Energy Info (EERE)

Nash, Et Al., Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management

349

Geographic Information System At U.S. West Region (Williams & Deangelo,  

Open Energy Info (EERE)

Williams & Deangelo, Williams & Deangelo, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity Details Location U.S. West Region Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown References Colin F. Williams, Jacob DeAngelo (2008) Mapping Geothermal Potential In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_U.S._West_Region_(Williams_%26_Deangelo,_2008)&oldid=390068" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

350

Geographic Information System At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Geographic Information System At Walker-Lane Geographic Information System At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

351

Geographic Information System At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

352

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

353

Geographic Information System (Monaster And Coolbaugh, 2007)...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System (Monaster And Coolbaugh, 2007) Exploration Activity Details Location...

354

Technique for information retrieval using enhanced latent semantic analysis generating rank approximation matrix by factorizing the weighted morpheme-by-document matrix  

DOE Patents (OSTI)

A technique for information retrieval includes parsing a corpus to identify a number of wordform instances within each document of the corpus. A weighted morpheme-by-document matrix is generated based at least in part on the number of wordform instances within each document of the corpus and based at least in part on a weighting function. The weighted morpheme-by-document matrix separately enumerates instances of stems and affixes. Additionally or alternatively, a term-by-term alignment matrix may be generated based at least in part on the number of wordform instances within each document of the corpus. At least one lower rank approximation matrix is generated by factorizing the weighted morpheme-by-document matrix and/or the term-by-term alignment matrix.

Chew, Peter A; Bader, Brett W

2012-10-16T23:59:59.000Z

355

MAGNETOTELLURICS -APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST/LITHOSPHERE,  

E-Print Network (OSTI)

OF TECHNIQUES OF DATA ACQUISITION AND INTERPRETATION NATIONAL GEOPHYSICAL RESEARCH INSTITUTE (COUNCILMAGNETOTELLURICS - APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST/LITHOSPHERE, IMPROVEMENT: NGRI-2009-EXP- MAGNETOTELLURICS ­ APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST / LITHOSPHERE

Harinarayana, T.

356

DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

DDE DDE Discovering data and non-text information in the Department of Energy DOE Data Explorer What's New About DDE DOE Data Centers OSTI's Data ID Service Featured Collection Featured Data Collection Visit CEDR View the archive Search Find Advanced Search Options × Full Text: Bibliographic Data: Creator/Author: Title: Subject: Identifier Numbers: Host Website: Research Org: Sponsor/Funding Org: Contributing Orgs: Type: Select Type Publication Date: from Date: to to Date: Sort: By Relevance By Title Limit to: Matches with DOI only Collections only (no DOIs) Clear Find Advanced Search Basic Search Browse DDE Content All Titles (alphabetically) Sponsor/Funding Organizations Types of Data and Non-text Other Related Organizations Subject Categories Some links on this page may take you to non-federal websites. Their

357

Tracers and Exploration Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

358

Geographic Information System At Nevada Test And Training Range Area  

Open Energy Info (EERE)

Geographic Information System At Nevada Test And Training Range Area Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes Nellis Air Force Range (NAFR) occupies over 3 million acres in southern Nevada (Figure 1). We recently assessed potential utility-grade geothermal resources and possible target areas for exploration by constructing a GIS of this area and applying the occurrence model ideas outlined above (ITSI, 2003; Sabin et al., 2004). We list below many of the factors considered.

359

Thermo2Pro: Knowledge dissemination for deep geothermal exploration  

E-Print Network (OSTI)

1/12 Thermo2Pro: Knowledge dissemination for deep geothermal exploration Philippe Calcagno1 territoires, Voreppe, France # now at Kitware, Villeurbanne, France p.calcagno@brgm.fr Keywords: Deep geothermal exploration, information system, Web tool, sedimentary basin, dissemination. Abstract

Paris-Sud XI, Université de

360

Isotope Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Isotope Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotope Geothermometry Details Activities (0) Areas (0) Regions (0)...

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geographic Information System At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Geographic Information System At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

362

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

363

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Abstract INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five...

364

Property:ExplorationHistory | Open Energy Information  

Open Energy Info (EERE)

Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area R cont. Rye Patch Geothermal Area S Salt Wells Geothermal Area V Valles Caldera - Redondo Geothermal...

365

Geographic Information System At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014) Exploration Activity...

366

Exploration Best Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm 1 | US DOE Geothermal Program eere.energy.gov Geothermal Technologies Program 2010 Peer Review Exploration Best Practices and Success Rates PI: Katherine Young Presented by:...

367

Virtual Reviewers for Collaborative Exploration of Movie Reviews  

E-Print Network (OSTI)

items well. Collaborative information exploration virtualizes this process by using rating data. We haveVirtual Reviewers for Collaborative Exploration of Movie Reviews Junichi Tatemura Institute tatemura@iis.u-tokyo.ac.jp ABSTRACT We propose a collaborative exploration system that helps users

368

Managerial information behaviour: Relationships among Total Quality Management orientation, information use environments, and managerial roles  

E-Print Network (OSTI)

production process and customer information Low Total Quality Learning: continuous innovation and learning: exploration

Simard, C; Rice, Ronald E

2006-01-01T23:59:59.000Z

369

Geothermal Literature Review (Mcnitt, 1978) | Open Energy Information  

Open Energy Info (EERE)

Mcnitt, 1978) Mcnitt, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review (Mcnitt, 1978) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes "A literature search found 46 geothermal fields for which reservoir temperatures in excess of 180degrees C have been proven by drilling and for which there is either drilling or geophysical data on which to base an estimate of field area. These fields are ranked according to area in Table 1 and their frequency distribution is shown in Fig. 2." "Sufficient information was found in the literature search to calculate an empirical

370

Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of Quaternary fault orientations; (2) the direction of extensional strain; and (3) the magnitudoef fault-normal extensional strain. Item (1) is purely a structural analysis based on documented Quatemary faulting. Item (2) is purely an empirical strain-rate analysis, based on GPS station velocity

371

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

372

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

373

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

374

Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Several datasets have been incorporated into a GIS database for map production, data archiving, data visualization, and modeling. These include (1) geology map layers produced from field work done on this project; (2) previously drilled U.S. Borax exploration bore holes and ancillary data; (3) temperature gradients; (4) thermal anomalies; and (5) gravity data.

375

Miniaturization Techniques for Accelerators  

SciTech Connect

The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

Spencer, James E.

2003-05-27T23:59:59.000Z

376

Exploration Best Practices  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this project is to provide an overview of currentt geoth thermall explloratiti on bbestt practi tices andd a baseline values for exploration (both non-drilling and drilling) success rates in the U.S.

377

Dismantling techniques  

SciTech Connect

Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

Wiese, E.

1998-03-13T23:59:59.000Z

378

Definition: Data Collection and Mapping | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Data Collection and Mapping Jump to: navigation, search Dictionary.png Data Collection and Mapping Data collection and mapping techniques include a broad array of methods used for collecting information about a geothermal area directly in the field. Surface mapping, shallow temperature probe surveys, and portable XRF/XRD analysis represent a valuable set of basic, cost effective tools for evaluating geothermal prospects. These methods can provide a geothermal exploration program with considerable information about a hydrothermal system prior to the application of expensive laboratory analysis or exploration drilling techniques.[3] View on Wikipedia Wikipedia Definition Powder diffraction is a scientific technique using X-ray, neutron,

379

Geographic Information System At Northern Basin & Range Region (Coolbaugh,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa-

380

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401371

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Blewitt,_Et_Al.,_2003)&oldid=401370"

382

Exploring Salvage Techniques for Multi-core Architectures Russ Joseph  

E-Print Network (OSTI)

-field threaten the functional life- time of computer hardware. Second, manufacturing defects will become or virtualizing functionality which cannot be supported by the hardware as a result of failure. 1 Introduction be swapped in to replace them. This however, can be rather hardware inefficient since the spare cores remain

Bustamante, Fabián E.

383

Exploring Written Communication Techniques for Complex Natural Resource Issues.  

E-Print Network (OSTI)

??Many natural resource issues are increasingly complex and multi-faceted, and solutions may not be readily apparent. Increasing public understanding and encouraging public involvement is assumed (more)

Oxarart, Annie

2008-01-01T23:59:59.000Z

384

Exploration and Development Techniques for Basin and Range Geothermal...  

Open Energy Info (EERE)

Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV;...

385

Advances In Geothermal Resource Exploration Circa 2007 | Open Energy  

Open Energy Info (EERE)

Exploration Circa 2007 Exploration Circa 2007 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Advances In Geothermal Resource Exploration Circa 2007 Details Activities (8) Areas (1) Regions (0) Abstract: At the outset of the 21st centry, the geothermal community at-large is essentially attempting to use available exploration tools and techniques to find needles (geothermal occurrences) in very large haystacks (expanses of unexplored territory). Historically teh industry has relied on teh presence of surface manifestations of subsurface heat, such as hot springs, fumaroles, or geyers as a firt-order exploration tool., Regrettably, even when such surface manifestations are investigated more closely, there is no proven technique or techniques that can bve used with

386

Cooperative Exploration under Communication Constraints  

E-Print Network (OSTI)

process has not been fully characterized. Existing exploration algorithms do not realistically modelCooperative Exploration under Communication Constraints by Emily M. Craparo Submitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . David Darmofal Chairman, Department Committee on Graduate Students #12;2 #12;Cooperative Exploration

How, Jonathan P.

387

Exploration Incentive Tax Credit (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Mineral and Coal Exploration Incentive Tax Credit provides tax incentives to entities conducting exploration for minerals and coal. Expenditures related to the following activities are eligible...

388

Exploration for Uranium Ore (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation describes permitting procedures and requirements for exploration activities. For the purpose of this legislation, exploration is defined as the drilling of test holes or...

389

Exploring Autodesk Navisworks 2014  

Science Journals Connector (OSTI)

Exploring Autodesk Navisworks 2014 is a comprehensive textbook that has been written to cater to the needs of the students and the professionals who are involved in the AEC profession. In this textbook, the author has emphasized on various hands on tools ...

Sham Tickoo / CADCIM Technologies

2013-08-01T23:59:59.000Z

390

Exploring Civil and Environmental  

E-Print Network (OSTI)

Engineers % of Total Architectural, Engineering, and Related Services 135,000 53 Federal, State, and Local1 CEE 100 Exploring Civil and Environmental Engineering #12;CEE 100 Schedule--Winter 2010 https Geotechnical Engineering January 27 Steve Muench Construction Engineering February 3 Greg Miller Structural

391

Workshop: Teachers explore electronics  

Science Journals Connector (OSTI)

Workshop: Teachers explore electronics Conference: ASE conference hits Nottingham Teacher training: Videoconferencing discovers asteroids Lecture: Annual education talk gets interactive Award: Britton receives a New Year's honour Multimedia: Multimedia conference 2010 will be held in France Conference series: ICPE travels to Thailand in 2009 Filming: Sixth-formers take physics on location

392

Exploring Functional Mellin Transforms  

E-Print Network (OSTI)

We define functional Mellin transforms within a scheme for functional integration proposed in [1]. Functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

J. LaChapelle

2015-01-08T23:59:59.000Z

393

Exploring Mars' Climate History  

E-Print Network (OSTI)

Exploring Mars' Climate History #12;2 Mars Reconnaissance Orbiter ESA Mars Express (NASA: MARSIS by studying the solar wind and other interactions with the Sun. #12;The solar wind is a high-speed stream of electrons and protons released from the Sun. #12;High-energy photons (light) stream constantly from the Sun

394

A Tool for Materials Exploration Dieter W. Heermann  

E-Print Network (OSTI)

into · preprocessing · simulation (production runs) · postprocessing Pre-processing prepA Tool for Materials Exploration Dieter W. Heermann Andreas Linke Christian Münkel Institut für) as well as visualisation techniques to explore materials. In this paper we describe the basic design

Heermann, Dieter W.

395

EUROGRAPHICS 2007 Cultural Heritage Papers An Interactive Exploration of the  

E-Print Network (OSTI)

reconstruction and access supplemental historical background material on demand. With the multimedia installation we present a new experience which empowers visitors of the museum to explore an historical site exploration techniques, however, come at the price of complex interac- tion paradigms and costly equipment

Blanz, Volker

396

Initial Report on the Development of a Monte Carlo-Markov Chain Joint Inversion Approach for Geothermal Exploration  

SciTech Connect

Geothermal exploration and subsequent characterization of potential resources typically employ a variety of geophysical, geologic and geochemical techniques. However, since the data collected by each technique provide information directly on only one or a very limited set of the many physical parameters that characterize a geothermal system, no single method can be used to describe the system in its entirety. Presently, the usual approach to analyzing disparate data streams for geothermal applications is to invert (or forward model) each data set separately and then combine or compare the resulting models, for the most part in a more or less ad hoc manner. However, while each inversion may yield a model that fits the individual data set, the models are usually inconsistent with each other to some degree. This reflects uncertainties arising from the inevitable fact that geophysical and other exploration data in general are to some extent noisy, incomplete, and of limited sensitivity and resolution, and so yield non-unique results. The purpose of the project described here is to integrate the different model constraints provided by disparate geophysical, geological and geochemical data in a rigorous and consistent manner by formal joint inversion. The objective is to improve the fidelity of exploration results and reservoir characterization, thus addressing the goal of the DOE Geothermal Program to improve success in exploration for economically viable resources by better defining drilling targets, reducing risk, and improving exploration/drilling success rates.

Foxall, W; Ramirez, A; Carlson, S; Dyer, K; Sun, Y

2007-04-25T23:59:59.000Z

397

The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study  

SciTech Connect

This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.

None

1982-07-01T23:59:59.000Z

398

An asteroseismology explorer  

SciTech Connect

In response to a NASA opportunity, a proposal has been made to study the concept of an Asteroseismology Explorer (ASE). The goal of the ASE would be to measure solar-like oscillations on many (perhaps hundreds) of stars during a 1-year mission, including many members of open clusters. We describe this proposal's observational goals, a strawman technical approach, and likely scientific rewards. 5 refs.

Brown, T.M.; Cox, A.N.

1986-08-11T23:59:59.000Z

399

An integration of grounded theory and chance discovery to explore the technology opportunity  

Science Journals Connector (OSTI)

To explore the technology opportunity is an important task for managers and stakeholders to grasp the emerging trends of their industries. Solar cell, one of green energies, is growing at a fast pace with its clean and renewable characters. In addition, the patent data contains plentiful technological information from which it is worthwhile to extract further knowledge. Therefore, an integrated approach of grounded theory and chance discovery has been proposed in order to analyse the patent data and to explore the technology opportunity. Grounded theory is employed to provide a procedural basis for guiding the research processes, while chance discovery is adopted to provide the mining techniques for discovering the relations within the textual data. Consequently, the relation types were recognised, the tendency of solar cell technology was identified, and the active companies and significant technical subcategories in the solar cell industry were also observed.

Tzu-Fu Chiu

2012-01-01T23:59:59.000Z

400

Using GIS to Measure Connectivity: An Exploration of Issues  

E-Print Network (OSTI)

Using GIS to Measure Connectivity: An Exploration of Issues Mike Tresidder Field Area Paper School Measures 7 Methodology 8 Geographic Information Systems (GIS) 8 Data Collection 10 Protocol 12 Examples

Bertini, Robert L.

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geographic Information System At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Walker-Lane Transitional Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard

402

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

403

Switzerland exploration may resume  

SciTech Connect

Since 1912, 35 wells have been drilled for oil and gas, 19 of them in the last 38 years. Eighty percent of these 19 wells had oil and/or gas shows, but only one was placed on production. The only gas discovery, Entlebuch-1, produced about 2.6 bcf of a high quality gas in 10 years. It was abandoned in 1994. This paper discusses why exploration waned. A second look at the data suggests Switzerland has a high potential for gas production.

Lahusen, P.H. [SEAG, Geneva (Switzerland)

1997-06-23T23:59:59.000Z

404

OpenEI:OldGeoGateway | Open Energy Information  

Open Energy Info (EERE)

Project page Project page Edit History Facebook icon Twitter icon » OpenEI:OldGeoGateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST

405

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

406

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process  

E-Print Network (OSTI)

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process Adam M. Ross in Tradespace Exploration · Question-guided TSE· Question-guided TSE · Discussion · Conclusion seari.mit.edu © 2010 Massachusetts Institute of Technology 2 #12;Introduction · Early design process is high leverage

de Weck, Olivier L.

407

International Oil and Gas Exploration and Development 1991  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Oil and Gas Exploration and Development 1991 November 1993 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, D.C. 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration International Oil and Gas Exploration and Development 1991 iii Contacts International Oil and Gas Exploration and Development 1991 was prepared by the Energy Information Administration (EIA), Office of Oil and Gas, Reserves and Natural Gas Division, Reserves and Production Branch.

408

Typograph: Multiscale Spatial Exploration of Text Documents  

SciTech Connect

Visualizing large document collections using a spatial layout of terms can enable quick overviews of information. These visual metaphors (e.g., word clouds, tag clouds, etc.) traditionally show a series of terms organized by space-filling algorithms. However, often lacking in these views is the ability to interactively explore the information to gain more detail, and the location and rendering of the terms are often not based on mathematical models that maintain relative distances from other information based on similarity metrics. In this paper, we present Typograph, a multi-scale spatial exploration visualization for large document collections. Based on the term-based visualization methods, Typograh enables multiple levels of detail (terms, phrases, snippets, and full documents) within the single spatialization. Further, the information is placed based on their relative similarity to other information to create the near = similar geographic metaphor. This paper discusses the design principles and functionality of Typograph and presents a use case analyzing Wikipedia to demonstrate usage.

Endert, Alexander; Burtner, Edwin R.; Cramer, Nicholas O.; Perko, Ralph J.; Hampton, Shawn D.; Cook, Kristin A.

2013-10-06T23:59:59.000Z

409

Relevance of Massively Distributed Explorations  

E-Print Network (OSTI)

that this exploration process gives a partial and biased view of the real topology, which leads to the idea links) and may be biased by the exploration process (some properties of the obtained map may be induced induced by the exploration process. In order to improve these maps, several re- searchers and groups now

Paris-Sud XI, Université de

410

Relevance of Massively Distributed Explorations  

E-Print Network (OSTI)

that this exploration process gives a partial and biased view of the real topology, which leads to the idea links) and may be biased by the exploration process (some properties of the obtained map may be induced induced by the exploration process. In order to improve these maps, several re- searchers and groups no

Paris-Sud XI, Université de

411

Polar Explorer References Raold Amundsen  

E-Print Network (OSTI)

-15, 2003, 1 h 19 min. * National Geographic May 2009, concerning claims of Arctic Ocean oil and gasPolar Explorer References Raold Amundsen My Life as an Explorer, Raold Amundsen The Red Tent.L. Berens [This book includes other historic polar explorers] * National Geographic Jan. 2009 (2 articles

Fabrikant, Sara Irina

412

Geographic Information System At U.S. West Region (Williams ...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity Details...

413

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration...

414

Geographic Information System At Cove Fort Area - Vapor (Nash...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al., 2002) Exploration Activity Details...

415

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

416

SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT  

SciTech Connect

This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

RUCKER DF; MYERS DA

2011-10-04T23:59:59.000Z

417

Success Stories: Carbon Explorer  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL Device Monitors Ocean Carbon LBNL Device Monitors Ocean Carbon Imagine waking up each morning and discovering that twenty percent of all plants in your garden had disappeared over night. They had been eaten. Equally astonishing would be the discovery in the afternoon that new plants had taken their place. This is the norm of life in the ocean. Without the ability to accurately observe these daily changes in ocean life cycles, over vast spatial scales, we lack the ability to predict how the ocean will respond to rising CO2 levels, crippling our ability to develop accurate models of global warming or devise strategies to prevent it. The Carbon Explorer, conceived by Berkeley Lab's James K. Bishop in collaboration with Scripps Institution of Oceanography (La Jolla, California) and WET labs, Inc. (Philomath, Oregon), bridges this

418

The Extreme Physics Explorer  

E-Print Network (OSTI)

Some tests of fundamental physics - the equation of state at supra-nuclear densities, the metric in strong gravity, the effect of magnetic fields above the quantum critical value - can only be measured using compact astrophysical objects: neutron stars and black holes. The Extreme Physics Explorer is a modest sized (~500 kg) mission that would carry a high resolution (R ~300) X-ray spectrometer and a sensitive X-ray polarimeter, both with high time resolution (~5 ?s) capability, at the focus of a large area (~5 sq.m), low resolution (HPD~1 arcmin) X-ray mirror. This instrumentation would enable new classes of tests of fundamental physics using neutron stars and black holes as cosmic laboratories.

Martin Elvis

2006-08-25T23:59:59.000Z

419

Historical Exploration And Drilling Data From Geothermal Prospects And  

Open Energy Info (EERE)

Exploration And Drilling Data From Geothermal Prospects And Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Details Activities (20) Areas (7) Regions (0) Abstract: In 2005, Idaho National Laboratory was conducting a study of historical exploration practices and success rates for geothermal resources identification. Geo Hills Associates (GHA) was contracted to review and accumulate copies of published literature, Internet information, and unpublished geothermal exploration data to determine the level of exploration and drilling activities that occurred for all of the currently

420

Summary-Invisible Networking: Techniques and Defenses  

E-Print Network (OSTI)

Summary-Invisible Networking: Techniques and Defenses Lei Wei, Michael K. Reiter, and Ketan Mayer explored. We investigate the combination of these ideas, which we term Summary-Invisible Networking (SIN #12;Summary-Invisible Networking: Techniques and Defenses 211 community of security analysts now holds

Reiter, Michael

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Exploration geochemistry: The Los Alamos experience  

SciTech Connect

Los Alamos National Laboratory became actively involved in geochemical exploration in 1975 by conducting a reconnaissance-scale exploration program for uranium as part of the National Uranium Resource Evaluation program. Initially, only uranium and thorium were analyzed. By 1979 Los Alamos was analyzing a multielement suite. The data were presented in histograms and as black and white concentration plots for uranium and thorium only. Data for the remaining elements were presented as hard copy data listings in an appendix to the report. In 1983 Los Alamos began using exploration geochemistry for the purpose of finding economic mineral deposits to help stimulate the economies of underdeveloped countries. Stream-sediment samples were collected on the Caribbean island of St. Lucia and a geochemical atlas of that island was produced. The data were statistically smoothed and presented as computer-generated color plots of each element of the multielement suite. Studies for the US Bureau of Land Management in 1984 consisted of development of techniques for the integration of several large data sets, which could then be used for computer-assisted mineral resource assessments. A supervised classification technique was developed which compares the attributes of grid cells containing mines or mineral occurrences with attributes of unclassified cells not known to contain mines or occurrences. Color maps indicate how closely unclassified cells match in attributes the cells with mines or occurrences. 20 refs., 1 fig., 1 tab.

Maassen, L.W.; Bolivar, S.L.

1989-01-01T23:59:59.000Z

422

Geographic Information System At Brady Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Brady Hot Springs Geographic Information System At Brady Hot Springs Area (Laney, 2005) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes InSAR Ground Displacement Analysis, Gary Oppliger and Mark Coolbaugh. This project supports increased utilization of geothermal resources in the Western United States by developing basic measurements and interpretations that will assist reservoir management and expansion at Bradys, Desert Peak and the Desert Peak EGS study area (80 km NE of Reno, Nevada) and will serve as a technology template for other geothermal fields. Raw format European Space Agency (ESA) ERS 1/2 satellite synthetic Aperture Radar (SAR) radar scenes acquired from 1992 through 2002 are being processed to

423

Category:Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Sampling page? For detailed information on Field Sampling as exploration techniques, click here. Category:Field Sampling Add.png Add a new Field Sampling Technique Subcategories This category has the following 2 subcategories, out of 2 total. G [×] Gas Sampling‎ 3 pages W [×] Water Sampling‎ 2 pages Pages in category "Field Sampling" The following 4 pages are in this category, out of 4 total. G Gas Sampling R Rock Sampling S Soil Sampling W Water Sampling Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Sampling&oldid=689818" Category: Field Techniques

424

E-Print Network 3.0 - astronaut-rover exploration strategies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Technologies and Information Sciences 2 Experiments with an EVA Assistant Robot Robert R. Burridge1 Summary: to explore these possibilities. The first such field...

425

Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et  

Open Energy Info (EERE)

Nw Basin & Range Region (Coolbaugh, Et Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Nw_Basin_%26_Range_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401452

426

Explorer at Los Alamos: A library for the future  

SciTech Connect

Since 1993, Los Alamos National Laboratory, has been developing World Wide Web (WWW) applications to facilitate access to vast quantities of information critical to the successful operation of a nuclear weapons facility Explorer is a web-based tool that integrates full-text search and retrieval technology, custom user in interface faces, user-friendly navigation tools, extremely large document collections, and data collection and workflow applications. Explorer`s first major thrust was to enable quick access to regulatory and policy information used by Department of Energy facilities throughout the country. Today, Explorer users can easily search document collections containing, millions of pages of information scattered across Web sites around the country. Over fifteen large applications containing multiple collections are searchable through Explorer, and the subject areas range from DOE regulations to quality management-related resources to technology transfer opportunities. Explorer has succeeded because it provides quick and easy access to stored data across the Web; it saves time and reduces costs in comparison with traditional information distribution, access, and retrieval methods.

Waters, M.; McDonald, J.

1998-03-01T23:59:59.000Z

427

Exploration Technologies Technology Needs Assessment  

Energy.gov (U.S. Department of Energy (DOE))

The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

428

Radioisotopes: Energy for Space Exploration  

SciTech Connect

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2011-01-01T23:59:59.000Z

429

Radioisotopes: Energy for Space Exploration  

ScienceCinema (OSTI)

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2013-05-29T23:59:59.000Z

430

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION  

SciTech Connect

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

R. C. O'Brien; S. D. Howe; J. E. Werner

2010-09-01T23:59:59.000Z

431

Ralph Grishman ,,Information Extraction: Techniques and Challenges"  

E-Print Network (OSTI)

in San Salvador leaving a large part of the city without energy, but no casualties have been reported a power tower in the northwestern part of San Salvador at 0650 (1250 GMT). INCIDENT TYPE bombing DATE March 19 LOCATION El Salvador: San Salvador (city) PERPETRATOR urban guerrilla commandos PHYSICAL TARGET

Morik, Katharina

432

Information Extraction: Techniques and Ralph Grishman  

E-Print Network (OSTI)

this morning near a power tower in San Salvador leaving a large part of the city without energy guerrilla commandos --- blew up a power tower in the northwestern part of San Salvador at 0650 (1250 GMT). INCIDENT TYPE bombing DATE March 19 LOCATION El Salvador: San Salvador (city) PERPETRATOR urban guerrilla

433

Category:Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Subcategories This category has the following 4 subcategories, out of 4 total. A Audio-Magnetotellurics 1 pages C Controlled Source Audio MT 1 pages M ...

434

Autonomous Exploration via Regions of Interest Robert Grabowski, Pradeep Khosla and Howie Choset  

E-Print Network (OSTI)

. Autonomous exploration is a recursive process that utilizes the relationship between sensing and movement-Space Approach Researchers have posed many variants to the exploration process [1][3][8][9]. Most are based as to the importance of obstacles in the exploration process. He utilizes map information to define the contours

Choset, Howie

435

INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP  

E-Print Network (OSTI)

exploration coordination tool to enhance the implementation of the coordination process At the 1st ISECG1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting broader future participation in the planning and coordination process; - assessment of the requirements

436

Clean Cities: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Clean Cities: Information Resources to someone by E-mail Share Clean Cities: Information Resources on Facebook Tweet about Clean Cities: Information Resources on Twitter Bookmark Clean Cities: Information Resources on Google Bookmark Clean Cities: Information Resources on Delicious Rank Clean Cities: Information Resources on Digg Find More places to share Clean Cities: Information Resources on AddThis.com... Publications Technical Assistance Information Resources Learn about Clean Cities by exploring these information resources. Publications View Clean Cities-branded publications or search for publications about alternative fuels and vehicles. Technical Assistance Learn about technical assistance available to help organizations overcome

437

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

438

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity Details Location Newberry Caldera Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

439

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

440

From Question Answering to Visual Exploration  

SciTech Connect

Research in Question Answering has focused on the quality of information retrieval or extraction using the metrics of precision and recall to judge success; these metrics drive toward finding the specific best answer(s) and are best supportive of a lookup type of search. These do not address the opportunity that users? natural language questions present for exploratory interactions. In this paper, we present an integrated Question Answering environment that combines a visual analytics tool for unstructured text and a state-of-the-art query expansion tool designed to compliment the cognitive processes associated with an information analysts work flow. Analysts are seldom looking for factoid answers to simple questions; their information needs are much more complex in that they may be interested in patterns of answers over time, conflicting information, and even related non-answer data may be critical to learning about a problem or reaching prudent conclusions. In our visual analytics tool, questions result in a comprehensive answer space that allows users to explore the variety within the answers and spot related information in the rest of the data. The exploratory nature of the dialog between the user and this system requires tailored evaluation methods that better address the evolving user goals and counter cognitive biases inherent to exploratory search tasks.

McColgin, Dave W.; Gregory, Michelle L.; Hetzler, Elizabeth G.; Turner, Alan E.

2006-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process  

E-Print Network (OSTI)

A number of case applications of tradespace exploration have further extended the types of analyses and knowledge insights that can be gained about tradeoffs between design choices and perceived utility and cost of ...

Ross, Adam Michael

442

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description A comprehensive, interdisciplinary approach is proposed using existing geophysical exploration technology coupled with new seismic techniques and subject matter experts to determine the combination of geoscience data that demonstrates the greatest potential for identifying EGS drilling targets using non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data, thereby reducing the uncertainty in the primary selection criteria for identifying EGS drilling targets. These criteria are, in order of importance: (1) temperatures greater than 200-250°C at 1-5 km depth; (2) rock type at the depth of interest, and; (3) stress regime.

443

OpenEI:GeoTeam | Open Energy Information  

Open Energy Info (EERE)

with form History with form History Facebook icon Twitter icon » OpenEI:GeoTeam Jump to: navigation, search How to Create a new Exploration Technique Be sure the technique you want to add does not already exist - in any form of the name Go to Click on "Add a new Exploration Technique" Enter the name of the new technique - be careful to check the spelling, since this creates the page name, which can be problematic to change in the future - and click enter. You will be brought to the exploration techniques template. For the "Exploration Group" - enter one of the 8 exploration groups listed here For the "Exploration Subgroup" - enter then next level below the exploration group. If the technique itself is the next level, enter the technique as the subgroup

444

SFU Library Ask. Explore. Discover.  

E-Print Network (OSTI)

SFU Library Ask. Explore. Discover. SFU Library Annual Report 2007-08 #12;SFU Library Annual Report..................................................................................................... 8 WAC BENNETT LIBRARY................................................................................... 9 SAMUEL AND FRANCES BELZBERG LIBRARY............................................... 10 FRASER

445

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network (OSTI)

Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory, at least, be one that allows the scientific exploration of burning plasmas" and if Japan and Europe do

446

Micro-Earthquake At Coso Geothermal Area (1987) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (1987) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis Analysis was done to link the zones of decreased P velocity to contemporary magmatic activity Notes Inversion of 4036 P wave travel time residuals from 429 local earthquakes using a tomographic scheme provides information about 3D upper crustal velocity variations in the Indian Wells Valley-Coso region of southeastern CA. The residuals are calculated relative to a Coso-specific velocity model, corrected for station elevation, weighted, and back-projected along

447

Geographic Information System At Northern Basin & Range Region (Blewitt, Et  

Open Energy Info (EERE)

Blewitt, Et Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of Quaternary fault orientations; (2) the direction of extensional strain; and (3) the magnitudoef fault-normal extensional strain. Item (1) is purely a structural analysis based on documented Quatemary faulting. Item (2) is purely an empirical strain-rate analysis, based on GPS station velocity

448

Geobotanical Remote Sensing For Geothermal Exploration | Open Energy  

Open Energy Info (EERE)

For Geothermal Exploration For Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Geobotanical Remote Sensing For Geothermal Exploration Details Activities (1) Areas (1) Regions (0) Abstract: This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and

449

Category:Active Sensors | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Active Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Active Sensors page? For detailed information on exploration techniques, click here. Category:Active Sensors Add.png Add a new Active Sensors Technique Subcategories This category has only the following subcategory. R [×] Radar‎ 5 pages Pages in category "Active Sensors" The following 2 pages are in this category, out of 2 total. L LiDAR R Radar Retrieved from "http://en.openei.org/w/index.php?title=Category:Active_Sensors&oldid=689848"

450

Handbook on research techniques  

Science Journals Connector (OSTI)

Handbook on research techniques ... A request for contributions to a handbook entitled "Handbook of Research Techniques" for gifted children. ...

William Marina

1972-01-01T23:59:59.000Z

451

Novel nuclear magnetic resonance techniques for studying biological molecules  

SciTech Connect

Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of {alpha}-helical and {beta}-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly {beta}-sheet.

Laws, David D.

2000-06-01T23:59:59.000Z

452

Information management support for international negotiations  

Science Journals Connector (OSTI)

This paper examines the information processing requirements that surround the international negotiations process. General problem-solving models and generic task taxonomies are explored to provide insight into...

Stephen J. Andriole

1993-05-01T23:59:59.000Z

453

Category:Gas Geothermometry | Open Energy Information  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Gas Geothermometry page? For detailed information on Gas Geothermometry as exploration...

454

Framework for database and modelbase in an Information based Simulation system  

E-Print Network (OSTI)

in the building of this database, (3) It applies these methodologies to the Manufacturing arena and for creating simulation constructs and tests them with various examples, (4) It explores the area of modelbase and presents I'ramework for the modelbase... systems in which numerous techniques and modern computing methodologies are being tested for the creation of an integrated simulation environment. The present research work is motivated by the advancements made in the area of information based...

Ghoshal, Debashis

2012-06-07T23:59:59.000Z

455

Inversion of the amplitude of the two-dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique  

Science Journals Connector (OSTI)

......programme. In oil exploration, for example...first-order basin-exploration parameters (Li...structures for oil exploration. Several automated...reasonable time and cost. These techniques...commonly used as benchmark functions, namely......

Shalivahan Srivastava; B. N. P. Agarwal

2010-08-01T23:59:59.000Z

456

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The  

Open Energy Info (EERE)

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews the use of earthquake studies in the field of geothermal exploration. Local, regional and teleseismic events can all provide useful information about a geothermal area on various scales. It is imperative that data collection is conducted in properly designed, realistic experiments. Ground noise is still of limited usefulness as a prospecting tool. The utility of the method cannot yet be assessed because of its undeveloped methodology and the paucity of case histories.

457

Oil and Gas Exploration (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploration (Connecticut) Exploration (Connecticut) Oil and Gas Exploration (Connecticut) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Connecticut Program Type Siting and Permitting These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding exploratory well drilling or aerial surveys. Such exploration for oil or gas must be registered with the

458

Exploring Transition Textures for Pseudo-natural Maps  

E-Print Network (OSTI)

221 Exploring Transition Textures for Pseudo-natural Maps Helen JENNY, Bernhard JENNY, and Juliane CRON Abstract Pseudo-natural maps show land cover information in a compelling style that combines on maps would be helpful. This article focuses on a single aspect of pseudo-natural map creation, namely

Jenny, Bernhard

459

NASA/CP--2006214202 NASA Space Exploration Logistics Workshop  

E-Print Network (OSTI)

NASA/CP--2006­214202 NASA Space Exploration Logistics Workshop Proceedings January 17-18, 2006 Washington, DC April 2006 #12;NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program

de Weck, Olivier L.

460

Swarming Behavior Using Probabilistic Roadmap Techniques  

E-Print Network (OSTI)

Swarming Behavior Using Probabilistic Roadmap Techniques O. Bur¸chan Bayazit1 , Jyh-Ming Lien2 behaviors: homing, exploring (covering and goal searching), passing through narrow areas and shepherding. We consider several different behaviors: homing, goal searching, covering, passing through narrow passages

Lien, Jyh-Ming

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Surface space : digital manufacturing techniques and emergent building material  

E-Print Network (OSTI)

This thesis explores tectonic possibilities of new material and forming techniques. The design process is catalyzed by experimenting different configurations of the material.This project attempts to develop inventive ways ...

Ho, Joseph Chi-Chen, 1975-

2002-01-01T23:59:59.000Z

462

Robust techniques for developing empirical models of fluidized bed combustors  

E-Print Network (OSTI)

This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

Gruhl, Jim

463

U.S. Open Labs - Exploring Resources | Open Energy Information  

Open Energy Info (EERE)

but can be used with other solar energy simulation models including the Solar Advisor Model. NASA Surface meteorology and Solar Energy The U.S. National Aeronautical and...

464

Exploring Blog Graphs Patterns and a Model for Information  

E-Print Network (OSTI)

success, discovering links between companies. Example: blogs in the 2004 election. [Adamic, Glance 2005MichelleMalkin #12;11 Blogosphere network Non-trivial vs. trivial cascades Cascades From networks to cascades slashdot boingboing DlistedMichelleMalkin Time #12;12 From networks to cascades Non-trivial vs. trivial

465

Supporting Information Exploring Matrix Effects on Photochemistry of  

E-Print Network (OSTI)

machine shop to accept a 25 mm CaF2 window as the impaction substrate. The flow tube setup is able of the flow tube operation. To prepare the 24-DNP/SOM film for the experiments, a 100 L droplet of 0.01 M 24 Scientific, Optima, HPLC grade) was added on the CaF2 window containing a known mass of SOM (as determined

Nizkorodov, Sergey

466

Edinburgh Research Explorer Minimal information for reusable scientific software  

E-Print Network (OSTI)

-user, and any restrictions placed on the software. In software engineering terms [2], the quality of the software engineer and the researcher. It proposes a multi-level framework for improving the reusability amount of investment of effort and money is put into scientific software. In the UK, the Engineering

Millar, Andrew J.

467

Property:ExplorationPermit-Drilling | Open Energy Information  

Open Energy Info (EERE)

without first obtaining a permit issued under the authority of the State Department of Geology and Mineral Industries and without complying with the conditions of such permit....

468

Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Technologies Peer Review - 2010. The primary objective of this project is to combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships.

469

Atomic-scale dynamics inside living cells explored by neutron scattering  

Science Journals Connector (OSTI)

...inside living cells explored by neutron scattering Marion Jasnin * * jasnin...specific usefulness of the neutron scattering technique to get insight into...cell types and organelles. neutron scattering|living cell|molecular dynamics...

2009-01-01T23:59:59.000Z

470

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

471

Geothermal Exploration Best Practices Webinar Presentation Now...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exploration Best Practices Webinar Presentation Now Available Geothermal Exploration Best Practices Webinar Presentation Now Available April 12, 2012 - 3:08pm Addthis Presentation...

472

Edinburgh Research Explorer Money Cycles  

E-Print Network (OSTI)

Edinburgh Research Explorer Money Cycles Citation for published version: Clausen, A & Strub, C 2014 'Money Cycles' Edinburgh School of Economics Discussion Paper Series. Link: Link to publication record date: 11. Dec. 2014 #12;Edinburgh School of Economics Discussion Paper Series Number 249 Money Cycles

Millar, Andrew J.

473

Value of Information spreadsheet  

DOE Data Explorer (OSTI)

This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Jlusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

Trainor-Guitton, Whitney

474

Value of Information spreadsheet  

SciTech Connect

This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Jlusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

Trainor-Guitton, Whitney

2014-05-12T23:59:59.000Z

475

7 Efficient Exploration 7.1 Overview  

E-Print Network (OSTI)

Methods: Here a more global view of the process is taken, and the schemes are directly designed to explore7 Efficient Exploration 7.1 Overview Efficient exploration of the action and state space is a crucial factor in the convergence rate of a learning scheme. An early survey of early exploration methods

Shimkin, Nahum

476

Draft Innovative Exploration Technologies Needs Assessment  

Energy.gov (U.S. Department of Energy (DOE))

A draft needs assessment for the Geothermal Technologies Programs Innovative Exploration Technologies Subprogram.

477

Definition: Time-Domain Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Time-Domain Electromagnetics Jump to: navigation, search Dictionary.png Time-Domain Electromagnetics Time-domain electromagnetic (TDEM) surveys are active-source soundings which provide information about the electrical structure of the shallow subsurface.[1] View on Wikipedia Wikipedia Definition Transient electromagnetics, (also time-domain electromagnetics / TDEM), is a geophysical exploration technique in which electric and magnetic fields are induced by transient pulses of electric current and the subsequent decay response measured. TEM / TDEM methods are generally able to determine subsurface electrical properties, but are also sensitive to subsurface magnetic properties in applications like UXO detection and

478

Tunisia's production peaks, exploration busy  

SciTech Connect

This paper reports on the oil and gas exploration industry in Tunisia which is continuing to experience an almost unprecedented boom as the effects of the favorable fiscal and legislative regime work through the recent discoveries come on stream. Perhaps the most significant of the new discoveries is 1 Belli on Cap Bon, which Marathon tested at a rate of 6,800 b/d of oil with reported potential of as much as 15,000 b/d.

Mrad, R.; M'Rabet, A.; Chine, N. (Enterprise Tunisienne d'Activites Petrolieres (TN)); Davies, W.C.

1991-12-23T23:59:59.000Z

479

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The size and low resistivity of the clay cap associated with a geothermal system create a target well suited for electromagnetic (EM) methods and also make electrical detection of the underlying geothermal reservoir a challenge. Using 3-D numerical models, we evaluate four EM techniques for use in geothermal exploration: magnetotellurics (MT), controlled-source audio magnetotellurics (CSAMT), long-offset time-domain EM (LOTEM), and short-offset time-domain EM (TEM). Our results show that all of these techniques can delineate the clay cap, but none can be said to unequivocally detect the reservoir. We do find, however, that the EM

480

OurStory: Exploring the Sky From the Internet to Outer Space  

E-Print Network (OSTI)

OurStory: Exploring the Sky From the Internet to Outer Space Read the "Directions" sheets for step Guide, page 1 of 2 #12;OurStory: Exploring the Sky From the Internet to Outer Space Parent Guide, page 2 (attached) Computer with Internet access Pen or pencil More information at http

Mathis, Wayne N.

Note: This page contains sample records for the topic "technique information exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or otherwise restricted information. Self-potential 2 | US DOE Geothermal Program eere.energy.gov * Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal...

482

American Institute of Aeronautics and Astronautics Political Sustainability in Space Exploration Architectures  

E-Print Network (OSTI)

for Space Exploration as a case study, a policy-technology feedback loop is outlined. This paper Administration OMB = Office of Management and Budget RCC = Reinforced Carbon-Carbon RFI = Request for Information

de Weck, Olivier L.

483

Exploring Variations in Peoples Sources, Uses, and Perceptions of Weather Forecasts  

Science Journals Connector (OSTI)

Past research has shown that individuals vary in their attitudes and behaviors regarding weather forecast information. To deepen knowledge about these variations, this article explores 1) patterns in peoples sources, uses, and perceptions of ...

Julie L. Demuth; Jeffrey K. Lazo; Rebecca E. Morss

2011-07-01T23:59:59.000Z

484

Building the Information Superhighway  

Office of Scientific and Technical Information (OSTI)

"Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. "Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. Building the Information Superhighway Summer 1993 By Jeffery Kahn, JBKahn@lbl.gov In 1989, LBL researcher Bill Johnston was called to Washington for a U.S. Senate hearing. Its purpose: to explore the potential of a national information superhighway.

485

Building the Information Superhighway  

Office of Scientific and Technical Information (OSTI)

"Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. "Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. Building the Information Superhighway Summer 1993 By Jeffery Kahn, JBKahn@lbl.gov In 1989, LBL researcher Bill Johnston was called to Washington for a U.S. Senate hearing. Its purpose: to explore the potential of a national information superhighway.

486

Geothermal Literature Review (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Geothermal Literature Review (Laney, 2005) Geothermal Literature Review (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Field Case Studies, Marcelo Lippmann. This on-going project has collected a large set of publications on EGS activities, particularly in foreign geothermal fields, continues to search for news on current projects and on plans for future EGS activities. Information has been e-mailed to DOE and U.S. geothermal organizations like the Geothermal Energy Association, the Geothermal Resources Council and DOE contractors. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_(Laney,_2005)&oldid=510792"