Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hyperspectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Hyperspectral Imaging Hyperspectral Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hyperspectral Imaging Details Activities (4) Areas (4) Regions (1) NEPA(1) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: mineral maps can be used to show the presence of hydrothermal minerals and mineral assemblages Stratigraphic/Structural: aerial photographs can show structures Hydrological: delineate locations of surface water features Thermal: vegetation maps can show plants stressed due to nearby thermal activity Cost Information Low-End Estimate (USD): 8.63863 centUSD 0.00863 kUSD 8.63e-6 MUSD

2

Multispectral detection of organic residues on poultry processing plant equipment based on hyperspectral reflectance imaging technique  

Science Journals Connector (OSTI)

Diluted organic residues, such as feces, ingesta and other biological substances on poultry processing plant equipment surfaces, not easily discernible by human eye, are potential contamination sources for poultry carcasses. Development of sensitive ... Keywords: Fecal contamination, Hyperspectral, Multispectral, Reflectance image

Byoung-Kwan Cho; Yud-Ren Chen; Moon S. Kim

2007-07-01T23:59:59.000Z

3

The application of hyperspectral image techniques on MODIS data for the detection of oil spills in the RSA1  

E-Print Network [OSTI]

The application of hyperspectral image techniques on MODIS data for the detection of oil spills Oceanography Centre, Empress Dock, Southampton, S014 3ZH, UK ABSTRACT Oil spills pose a serious threat to the sensitive marine ecosystem of the RSA. The study aims to detect and identify oil spills using remote sensing

Quartly, Graham

4

Definition: Hyperspectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Imaging Imaging Jump to: navigation, search Dictionary.png Hyperspectral Imaging Hyperspectral sensors collect data across a wide range of the spectrum (VNIR-LWIR, plus TIR) at small spectral resolution (5-15 nm) and high spatial resolution (1-5 m). This allows detailed spectral signatures to be identified for different imaged materials - for example hyperspectral imaging can be used to identify specific clay minerals; multispectral imaging can identify only the presence of clay minerals in general. View on Wikipedia Wikipedia Definition Hyperspectral imaging, like other spectral imaging, collects and processes information from across the electromagnetic spectrum. Much as the human eye sees visible light in three bands (red, green, and blue), spectral imaging divides the spectrum into many more bands. This technique

5

Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes AVIRIS airborne hyperspectral imaging. References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Hyperspectral_Imaging_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=400435"

6

Category:Hyperspectral Imaging | Open Energy Information  

Open Energy Info (EERE)

following page. H Hyperspectral Imaging Retrieved from "http:en.openei.orgwindex.php?titleCategory:HyperspectralImaging&oldid794160" Categories: Geothermal Passive Sensors...

7

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources |  

Open Energy Info (EERE)

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Abstract Demonstrating the effectiveness of hyperspectral sensors to explore for geothermal resources will be critical to our nation's energy security plans. Discovering new geothermal resources will contribute to established renewable energy capacity and lower our dependence upon fuels that contribute to green house gas emissions. The use of hyperspectral data and derived imagery products is currently helping exploration managers gain greater efficiencies and drilling success. However, more work is needed as geologists continue to learn about hyperspectral imaging and, conversely,

8

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

9

Standoff Hyperspectral Imaging of Explosives Residues Using Broadly Tunable External Cavity Quantum Cascade Laser Illumination  

SciTech Connect (OSTI)

We describe experimental results on the detection of explosives residues using active hyperspectral imaging by illumination of the target surface using an external cavity quantum cascade laser (ECQCL) and imaging using a room temperature microbolometer camera. The active hyperspectral imaging technique forms an image hypercube by recording one image for each tuning step of the ECQCL. The resulting hyperspectral image contains the full absorption spectrum produced by the illumination laser at each pixel in the image which can then be used to identify the explosive type and relative quantity using spectral identification approaches developed initially in the remote sensing community.

Bernacki, Bruce E.; Phillips, Mark C.

2010-05-01T23:59:59.000Z

10

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010)  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes "The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument acquired hyperspectral data over northern Fish Lake Valley in March 2003. The AVIRIS sensor is maintained by the Jet Propulsion Laboratory and collects data in 224 wavelengths from the visible to shortwave infrared (0.4 to 2.5 micro-m) at 2 m spatial resolution. The data set covers the

11

Hyperspectral Imaging: Training Algorithms & Data Generation  

E-Print Network [OSTI]

Hyperspectral Imaging: Training Algorithms & Data Generation REU Students: Ping Fung and Carl +exp[-2(( + s))1/2 D / 3]} 1-rlSI +(rl - SI )exp[-2(( + s))1/2 D / 3] Data Generation To apply our possible parameters is impractical, so we generate approximate spectra using a physical model based

Mountziaris, T. J.

12

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

13

Hyperspectral Imaging At Salton Sea Area (Reath, Et Al., 2010...  

Open Energy Info (EERE)

Reath, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Salton Sea Area (Reath, Et Al., 2010) Exploration...

14

Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...  

Open Energy Info (EERE)

Calvin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al.,...

15

Novel Pattern Recognition Techniques for Improved Target Detection in Hyperspectral Imagery  

E-Print Network [OSTI]

........................ 7 C. Spatial Domain Versus Spectral Domain .................................. 9 D. The HSI Data Cube ................................................................... 10 E. Classification Versus Detection... Page 1 General concept of hyperspectral imaging................................................. 7 2 Construction of a typical hyperspectral image........................................... 9 3 Data cube visualization showing spatial...

Sakla, Wesam Adel

2011-02-22T23:59:59.000Z

16

Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays  

SciTech Connect (OSTI)

Hyperspectral imaging (HSI), in which each pixel contains a high-resolution spectrum, is a powerful technique that can remotely detect, identify, and quantify a multitude of materials and chemicals. The advent of addressable micro-mirror arrays (MMAs) makes possible a new class of programmable hyperspectral imagers that can perform key spectral processing functions directly in the optical hardware, thus alleviating some of HSI's high computational overhead, as well as offering improved signal-to-noise in certain important regimes (e.g. when using uncooled infrared detectors). We have built and demonstrated a prototype UV-Visible micro-mirror hyperspectral imager that is capable not only of matched-filter imaging, but also of full hyperspectral imagery via the Hadamard transform technique. With this instrument, one can upload a chemical-specific spectral matched filter directly to the MMA, producing an image showing the location of that chemical without further processing. Target chemicals are changeable nearly instantaneously simply by uploading new matched-filter patterns to the MMA. Alternatively, the MMA can implement Hadamard mask functions, yielding a full-spectrum hyperspectral image upon inverting the transform. In either case, the instrument can produce the 2D spatial image either by an internal scan, using the MMA itself, or with a traditional external push-broom scan. The various modes of operation are selectable simply by varying the software driving the MMA. Here the design and performance of the prototype is discussed, along with experimental results confirming the signal-to-noise improvement produced by the Hadamard technique in the noisy-detector regime.

Love, Steven P [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

17

Visible/near-infrared hyperspectral imaging for beef tenderness prediction  

Science Journals Connector (OSTI)

Beef tenderness is an important quality attribute for consumer satisfaction. The current beef quality grading system does not incorporate a direct measure of tenderness because there is currently no accurate, rapid, nondestructive method for predicting ... Keywords: Beef tenderness, Hyperspectral imaging, Instrument grading, Principal component analysis, Textural co-occurrence matrices

Govindarajan Konda Naganathan; Lauren M. Grimes; Jeyamkondan Subbiah; Chris R. Calkins; Ashok Samal; George E. Meyer

2008-12-01T23:59:59.000Z

18

Dark-field hyperspectral X-ray imaging  

Science Journals Connector (OSTI)

...or to studying static systems. Hyperspectral imaging...integrated circuitry. Systems, currently available...energy-dispersive XRD, defined by collimation through the pinhole...energy broadening from collimation is deltaE/E=9...achievable with our detector system and with large amounts...

2014-01-01T23:59:59.000Z

19

RECENT ACTIVITIES IN THE HYPERSPECTRAL IMAGING NETWORK (HYPER-I-NET): A EUROPEAN CONSORTIUM FOSTERING IMAGING SPECTROSCOPY RESEARCH  

E-Print Network [OSTI]

] to advanced data processing [7], and science applica- tions [8]. Although hyperspectral imaging has beenRECENT ACTIVITIES IN THE HYPERSPECTRAL IMAGING NETWORK (HYPER-I-NET): A EUROPEAN CONSORTIUM, and 4) science appli- cations. Along with the description of the progress made in the four main areas

Plaza, Antonio J.

20

Extreme learning machines for soybean classification in remote sensing hyperspectral images  

Science Journals Connector (OSTI)

This paper focuses on the application of Extreme Learning Machines (ELM) to the classification of remote sensing hyperspectral data. The specific aim of the work is to obtain accurate thematic maps of soybean crops, which have proven to be difficult ... Keywords: Agricultural remote sensing, Extreme learning machine, Hyperspectral images

Ramón Moreno; Francesco Corona; Amaury Lendasse; Manuel Graña; Lênio S. Galvão

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Digital Compressive Quantitation and Hyperspectral Imaging  

E-Print Network [OSTI]

Jun 20, 2013 ... produced using multivariate curve resolution (MCR) to pre-process mixture training spectra, thus facilitating the quantitation of mixtures even when no pure chemical component .... simulated annealing to ?nd the rotation matrix elements that ... the image registration was also performed in Matlab R2012a.

2013-07-25T23:59:59.000Z

22

The Robust Classification of Hyperspectral Images Using Adaptive Wavelet Kernel Support Vector Data Description  

E-Print Network [OSTI]

Detection of targets in hyperspectral images is a specific case of one-class classification. It is particularly relevant in the area of remote sensing and has received considerable interest in the past few years. The thesis proposes the use...

Kollegala, Revathi

2012-07-16T23:59:59.000Z

23

Hyperspectral Imaging At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a...

24

3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.  

SciTech Connect (OSTI)

A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

2007-02-01T23:59:59.000Z

25

Fast Hyperspectral Imaging Using a Mid-Infrared Tunable External Cavity Quantum Cascade Laser  

SciTech Connect (OSTI)

An active hyperspectral imaging system using an external cavity quantum cascade laser and a focal plane array acquiring images at 25 Hz from 985 cm-1 to 1075 cm-1 with a resolution of 0.3 cm 1 is demonstrated. The chemical imaging of gases is demonstrated in both static and dynamic cases. The system was also used to analyze liquid and solid samples.

Phillips, Mark C.; Ho, Nicolas

2008-04-23T23:59:59.000Z

26

Automation of waste recycling using hyperspectral image analysis Artzai Picon1  

E-Print Network [OSTI]

Automation of waste recycling using hyperspectral image analysis Artzai Picon1 Ovidiu Ghita2 Pedro. In this paper we present a novel methodology to automate the recycling process of non-ferrous metal Waste from that the proposed solution can be used to replace the manual procedure that is currently used in WEEE recycling

Whelan, Paul F.

27

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data  

E-Print Network [OSTI]

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data Javier large spill oil events threatening coastal habitats and species. Some recent examples include the 2002 Prestige tanker oil spill in Galicia, Northern Spain, as well as repeated oil spill leaks evidenced

Plaza, Antonio J.

28

Hyperspectral microscope for in vivo imaging of microstructures and cells in tissues  

DOE Patents [OSTI]

An optical hyperspectral/multimodal imaging method and apparatus is utilized to provide high signal sensitivity for implementation of various optical imaging approaches. Such a system utilizes long working distance microscope objectives so as to enable off-axis illumination of predetermined tissue thereby allowing for excitation at any optical wavelength, simplifies design, reduces required optical elements, significantly reduces spectral noise from the optical elements and allows for fast image acquisition enabling high quality imaging in-vivo. Such a technology provides a means of detecting disease at the single cell level such as cancer, precancer, ischemic, traumatic or other type of injury, infection, or other diseases or conditions causing alterations in cells and tissue micro structures.

Demos; Stavros G. (Livermore, CA)

2011-05-17T23:59:59.000Z

29

Dark-field hyperspectral X-ray imaging  

Science Journals Connector (OSTI)

...relevant to materials science. The novel aspects...capabilities for materials science applications...aircraft and other aerospace structures [29...Plaza, A , 2009 Recent advances in techniques for...sensing for the earth sciences, vol. 3. New...

2014-01-01T23:59:59.000Z

30

Hyperspectral Imaging of Structure and Composition in Atomically Thin Heterostructures  

Science Journals Connector (OSTI)

Precise vertical stacking and lateral stitching of two-dimensional (2D) materials, such as graphene and hexagonal boron nitride (h-BN), can be used to create ultrathin heterostructures with complex functionalities, but this diversity of behaviors also makes these new materials difficult to characterize. ... It produces transmission or reflection images (see Figure 1c for transmission mode, Figure 5a for reflection mode) with no chromatic aberrations due to its exclusively mirror-based (“catoptric”)(23) optics; additionally, elements were specifically chosen for optimal performance over all DUV–vis-NIR energies (see Supporting Information). ... The at. registry and its absence are consistent with the two different strain-induced deformations we observe; by tilting the samples to break mirror symmetry, we find a high d. of twinned domains in oriented multilayer graphene, where multiple domains of two different stacking configurations coexist, connected by discrete twin boundaries. ...

Robin W. Havener; Cheol-Joo Kim; Lola Brown; Joshua W. Kevek; Joel D. Sleppy; Paul L. McEuen; Jiwoong Park

2013-07-10T23:59:59.000Z

31

Hyperspectral stimulated emission depletion microscopy and methods of use thereof  

DOE Patents [OSTI]

A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

Timlin, Jerilyn A; Aaron, Jesse S

2014-04-01T23:59:59.000Z

32

Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array  

SciTech Connect (OSTI)

A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30-10.15 ?m). Hypercubes containing images at 300 wavelengths separated by 0.3 cm 1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

Phillips, Mark C.; Ho, Nicolas

2008-02-04T23:59:59.000Z

33

Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral images  

E-Print Network [OSTI]

- 1 - Mapping microphytobenthos biomass by non-linear inversion of visible-infrared hyperspectral-Philippe.Combe@chimie.univ-nantes.fr Abstract This study presents an innovative approach to map microphytobenthos biomass and fractional cover to microscale intimate mixtures. This prevents the use of classical linear unmixing models to retrieve biomass

Combe, Jean-Philippe

34

VIMS images of the Huygens landing site on Titan: S. Rodriguez et al. Cassini/VIMS hyperspectral observations of the HUYGENS  

E-Print Network [OSTI]

VIMS images of the Huygens landing site on Titan: S. Rodriguez et al. 1 Cassini/VIMS hyperspectral.N. Clark2 , B. Buratti3 , R.H. Brown4 , T.B. McCord5 , P.D. Nicholson6 , K.H. Baines3 and the VIMS science Number of Table(s): 1 Number of figure(s): 11 Running Head: VIMS images of the Huygens probe landing site

Paris-Sud XI, Université de

35

Electronic imaging system and technique  

DOE Patents [OSTI]

A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

Bolstad, Jon O. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

36

Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser  

SciTech Connect (OSTI)

Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 µm in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

Phillips, Mark C.; Bernacki, Bruce E.

2012-12-26T23:59:59.000Z

37

Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline  

Science Journals Connector (OSTI)

The technique was found useful for monitoring retinal and brain amyloidopathy in an ongoing preclinical anti-AD study, attesting to the technique’s sensitivity and specificity. ... Interestingly, the technique was found applicable not just to excised brain tissue, but also to isolated mouse retina. ... With the retina being heralded widely as a (diagnostic) extension of the CNS and retinal amyloidopathy occurring well before that in the brain, this development raises a possibility for the first direct retinal imaging diagnosis of early, asymptomatic Alzheimer’s disease. ...

Swati Sudhakar More; Robert Vince

2014-10-29T23:59:59.000Z

38

Hyperspectral Data Classification Using Spectral-Spatial Approaches  

E-Print Network [OSTI]

Hyperspectral Data Classification Using Spectral-Spatial Approaches Yuliya Tarabalka1 , Jón Atli classification problem AVIRIS image Spatial resolution: 20m/pix Spectral resolution: 200 bands Ground-truth data.tarabalka@nasa.gov) Spectral-Spatial Classification of Hyperspectral Data 6 #12;Introduction Classification using segmentation

Dobigeon, Nicolas

39

Low energy neutral atom imaging techniques  

SciTech Connect (OSTI)

The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission methods yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LENA energies of approximately 1 keV to greater than 30 keV. Reflection methods using low work function surfaces could be employed for LENA ionization for energies less than several keV.

Funsten, H.O. McComas, D.J.; Scime, E.E.

1993-01-01T23:59:59.000Z

40

The characterization of particle clouds using optical imaging techniques  

E-Print Network [OSTI]

Optical imaging techniques can be used to provide a better understanding of the physical properties of particle clouds. The purpose of this thesis is to design, perform and evaluate a set of experiments using optical imaging ...

Bruce, Elizabeth J. (Elizabeth Jane), 1972-

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

E-Print Network 3.0 - airborne hyperspectral sensors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imaging activities in Europe, ranging from sensor design and flight operation to data collection... directed towards the improvement of hyperspectral sensor and mission...

42

Neutron Imaging Explored as Complementary Technique for Improving Cancer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast tumor (black color in top image of monitor screen) using the software to visualize in color the various intensities of neutron transmissions through the breast tissue. ORNL and University of Tennessee collaboration now analyzing first results from neutron radiographs of cancerous tissue samples Today's range of techniques for detection of breast and other cancers include mammography, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and optical imaging. Each technology has advantages and disadvantages, with limitations either

43

Neutron Imaging Explored as Complementary Technique for Improving...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast...

44

Thermal Imaging Technique for Measuring Mixing of Fluids - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Thermal Solar Thermal Energy Analysis Energy Analysis Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Thermal Imaging Technique for...

45

Hyperspectral Imaging or Imaging Spectroscopy  

E-Print Network [OSTI]

DIFFERENTIATION Every sensor is limited in respect to the size of the smallest area that can be separately V / NIR / SWIR / MWIR / LWIR Optical Region 400 14000 400 0.4 14000 14.0 1500 1.5 3000 3.0 5000 5;Sampling the Spectrum NIR SWIR MWIR LWIR 400 nm 700 1500 3000 RB 5000 14000 nm G Panchromatic: one very

Gilbes, Fernando

46

Selective document image data compression technique  

DOE Patents [OSTI]

A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel.--(235 words)

Fu, Chi-Yung (29 Cameo Way, San Francisco, CA 94131); Petrich, Loren I. (1674 Cordoba St., #4, Livermore, CA 94550)

1998-01-01T23:59:59.000Z

47

Selective document image data compression technique  

DOE Patents [OSTI]

A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel. 10 figs.

Fu, C.Y.; Petrich, L.I.

1998-05-19T23:59:59.000Z

48

Special Section Guest Editorial Coherent Raman Imaging Techniques and Biomedical  

E-Print Network [OSTI]

Special Section Guest Editorial Coherent Raman Imaging Techniques and Biomedical Applications. The combination of high resolution and molecular contrast has moved Raman techniques into the biomedical spotlight on biomedical imag- ing. The spontaneous Raman interaction is weak, yielding insufficient photons for fast

Potma, Eric Olaf

49

Gas Leakage Detection Using Thermal Imaging Technique  

Science Journals Connector (OSTI)

Gas leakage is one of the hazards that can cause major incidents to human injuries, fires as well as high impact on economic. To avoid such situation, a preventive inspection is paramount important. Since gas leakage is unseen by naked eyes due to the ... Keywords: gas leakage, image processing, infrared image

Mohd Shawal Jadin, Kamarul Hawari Ghazali

2014-03-01T23:59:59.000Z

50

Technique for identifying, tracing, or tracking objects in image data  

DOE Patents [OSTI]

A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

Anderson, Robert J. (Albuquerque, NM); Rothganger, Fredrick (Albuquerque, NM)

2012-08-28T23:59:59.000Z

51

New imaging technique provides improved insight into controlling the plasma  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New imaging technique provides improved insight into controlling the plasma New imaging technique provides improved insight into controlling the plasma in fusion experiments By John Greenwald December 9, 2013 Tweet Widget Facebook Like Google Plus One Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. A key issue for the development of fusion energy to generate electricity is the ability to confine the superhot, charged plasma gas that fuels fusion reactions in magnetic devices called tokamaks. This gas is subject to instabilities that cause it to leak from the magnetic fields and halt fusion reactions. Now a recently developed imaging technique can help researchers improve

52

New imaging technique provides improved insight into controlling the plasma  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New imaging technique provides improved insight into controlling the plasma New imaging technique provides improved insight into controlling the plasma in fusion experiments By John Greenwald December 9, 2013 Tweet Widget Facebook Like Google Plus One Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. Graphic representation of 2D images of fluctuating electron temperatures in a cross-section of a confined fusion plasma. A key issue for the development of fusion energy to generate electricity is the ability to confine the superhot, charged plasma gas that fuels fusion reactions in magnetic devices called tokamaks. This gas is subject to instabilities that cause it to leak from the magnetic fields and halt fusion reactions. Now a recently developed imaging technique can help researchers improve

53

Backscatter absorption gas imaging: a new technique for gas visualization  

Science Journals Connector (OSTI)

This paper presents a new laser-based method of gas detection that permits real-time television images of gases to be produced. The principle of this technique [which is called...

McRae, Thomas G; Kulp, Thomas J

1993-01-01T23:59:59.000Z

54

EXPERIMENTAL IDENTIFICATION OF COHESIVE ZONE MODELS FROM THERMOMECHANICAL IMAGING TECHNIQUES  

E-Print Network [OSTI]

1 EXPERIMENTAL IDENTIFICATION OF COHESIVE ZONE MODELS FROM THERMOMECHANICAL IMAGING TECHNIQUES S]. Although CZMs are becoming increasingly powerful, the identification of these models still remains of the ductile material into a purely elastoplastic behaviour related to the bulk response (hardening

Paris-Sud XI, Université de

55

USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF...  

Open Energy Info (EERE)

USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

56

Study of microfluidic measurement techniques using novel optical imaging diagnostics  

E-Print Network [OSTI]

is applied for a 3-D vector field mapping in a microscopic flow and a Brownian motion tracking of nanoparticles. This technique modifies OSSM system for a micro-fluidic experiment, and the imaging system captures a diffracted particle image having numerous...

Park, Jaesung

2007-04-25T23:59:59.000Z

57

Functional magnetic resonance imaging: imaging techniques and contrast mechanisms  

Science Journals Connector (OSTI)

...Furthermore, in a study of motor recovery, fMRI activation...focal lesion. The future should also see further...able to harness this quantum physics phenomenon...Functional imaging of the motor system. Curr. Opin...assessment with a graded motor activation procedure...past, present, and future. Proc. Natl Acad...

1999-01-01T23:59:59.000Z

58

Standoff imaging of chemicals using IR spectroscopy  

SciTech Connect (OSTI)

Here we report on a standoff spectroscopic technique for identifying chemical residues on surfaces. A hand-held infrared camera was used in conjunction with a wavelength tunable mid-IR quantum cascade laser (QCL) to create hyperspectral image arrays of a target with an explosive residue on its surface. Spectral signatures of the explosive residue (RDX) were extracted from the hyperspectral image arrays and compared with a reference spectrum. Identification of RDX was achieved for residue concentrations of 20 g per cm2 at a distance of 1.5 m, and for 5 g per cm2 at a distance of 15 cm.

Senesac, Larry R [ORNL] [ORNL; Thundat, Thomas George [ORNL] [ORNL; Morales Rodriguez, Marissa E [ORNL] [ORNL

2011-01-01T23:59:59.000Z

59

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect (OSTI)

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Martini, B; Silver, E; Pickles, W; Cocks, P

2004-03-25T23:59:59.000Z

60

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect (OSTI)

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Pickles, W L; Martini, B A; Silver, E A; Cocks, P A

2004-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid  

Open Energy Info (EERE)

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: Over 2000 km2 (772 mi2) of 5 m resolution Hymap hyperspectral data was acquired over the Pyramid Lake Paiute Reservation in the Fall of 2004. Subsequent image processing and data analysis has identified reflectance spectra for alunite, kaolinite/halloysite, illite, gypsum, vegetation, and carbonate. A portable spectrometer is being used for in situ validation, along with laboratory measurements and X-ray diffraction analyses of samples collected in the field. We are in the process of

62

A comparison of spotlight synthetic aperture radar image formation techniques  

SciTech Connect (OSTI)

Spotlight synthetic aperture radar images can be formed from the complex phase history data using two main techniques: (1) polar-to-cartesian interpolation followed by two-dimensional inverse Fourier transform (2DFFT), and (2) convolution backprojection (CBP). CBP has been widely used to reconstruct medical images in computer aided tomography, and only recently has been applied to form synthetic aperture radar imagery. It is alleged that CBP yields higher quality images because (1) all the Fourier data are used and (2) the polar formatted data is used directly to form a 2D Cartesian image and therefore 2D interpolation is not required. This report compares the quality of images formed by CBP and several modified versions of the 2DFFT method. We show from an image quality point of view that CBP is equivalent to first windowing the phase history data and then interpolating to an exscribed rectangle. From a mathematical perspective, we should expect this conclusion since the same Fourier data are used to form the SAR image. We next address the issue of parallel implementation of each algorithm. We dispute previous claims that CBP is more readily parallelizable than the 2DFFT method. Our conclusions are supported by comparing execution times between massively parallel implementations of both algorithms, showing that both experience similar decreases in computation time, but that CBP takes significantly longer to form an image.

Knittle, C.D.; Doren, N.E.; Jakowatz, C.V.

1996-10-01T23:59:59.000Z

63

New imaging technique gets under the skin...deep  

SciTech Connect (OSTI)

Using a combination of simple optical techniques, plain old white light, and image processing, two Lawrence Livermore researchers and a colleague from the City College of New York (CCNY) have developed a technique for imaging tissue structures--tendons, veins, tumors--deep beneath the skin. The ultimate goal of this research is to dramatically improve the ability to perform minimally invasive cancer detection. ''With a technique called spectral polarization difference imaging [SPDI], we use different wavelengths of light to reach different depths. We also use the polarization properties of the light to help us select the light that penetrates into the tissue and is reflected back out of the tissue as opposed to the light that bounces off the tissue surface,'' says Livermore physicist Harry Radousky, acting Director of University Relations. ''We then image the tissue structures at the different depths, based on how these structures absorb, scatter, and depolarize light. This technique, combined with fiber optics, charge-coupled-device cameras, and image enhancement calculations, allows us to image up to 1.5 centimeters inside tissue, far deeper than the millimeter depths managed by other existing optical techniques.'' The basic research to develop this technique was funded by the Department of Energy through one of its centers of excellence in laser medicine--the DOE Center for Laser Imaging and Cancer Diagnostics directed by Robert Alfano, M.D., at CCNY. A branch of this center is hosted at the Laboratory within the Materials Research Institute. wavelengths in the visible spectrum are scattered and absorbed within the tissue. For even longer wavelengths--those in the near-infrared spectral region--scattering and absorption of the photons is even further reduced.'' The light that passes through the filter then passes through a polarizer. The light that finally hits the tissue sample is thus not only of a given wavelength but also of a selected polarization. As photons penetrate the tissue, they interact with various tissue structures that may have optical properties different from those of the host tissue. Finally, some of the injected photons emerge from the tissue in the backscattering direction. The intensity of the backscattered light depends on the optical characteristics of the tissue at the sample's surface as well as below its surface at a particular location. Light that reflects from the surface (known as a spectral reflection) is polarized and can be removed with a second polarizer set to reject this light. This phenomenon is similar to the way sunglasses work to remove the polarized glare from surfaces, such as the water surface in a swimming pool. The light that backscatters from somewhere below the surface of the tissue is depolarized and consequently can pass through this second polarizer. This remaining light passes through a 50-millimeter camera lens, which is coupled to a CCD detector that captures the image in an exposure of a few milliseconds.

Radousky, H; Demos, S

2000-11-01T23:59:59.000Z

64

E-Print Network 3.0 - advanced imaging techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photogrammetry Advanced Photogrammetric Techniques Ayman F. Habib 25 LiDAR cloud Image patch... and intensity images Raw point cloud Linear Features Extraction Advanced...

65

5 Hyperspectral Data Processing Algorithms  

E-Print Network [OSTI]

121 5 Hyperspectral Data Processing Algorithms Antonio Plaza, Javier Plaza, Gabriel Martín), able to cover the wavelength region from 400 to 2500nm using more than 200 spec- tral channels. The special characteristics of hyperspectral data sets pose different processing problems [3], which must

Plaza, Antonio J.

66

Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis  

SciTech Connect (OSTI)

We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.

Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G

2011-03-23T23:59:59.000Z

67

Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) |  

Open Energy Info (EERE)

Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) Exploration Activity Details Location Rangely Oilfield Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Airborne hyperspectral imaging applied to determine vegetation and CO2 leakage in the Rangely oilfield of northwest Colorado - results may be useful for geothermal exploration. References W. Pickles, W. Cover (2004) Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Rangely_Oilfield_Area_(Pickles_%26_Cover,_2004)&oldid=511013"

68

Calculation of nuclear masses using image reconstruction techniques  

SciTech Connect (OSTI)

Several methods have been developed to calculate and predict nuclear masses over the last 70 years. The accuracy of the present state-of-the-art nuclear mass models is impressive, because these quantities can be calculated with an average 0.05 % precision. However this precision level is still insufficient to deal with nuclear reactions of astrophysical interest, especially r-process ones. Different approaches exist to calculate nuclear masses, ranging from the simple Bethe-Weizsaecker Liquid Drop Formula (LDM) to the sophisticated Finite Range Droplet Model calculations or the microscopic Hartree-Fock-Bogoliuvob techniques from first principles, using Skyrme or Gogny parametrizations of the nucleon-nucleon interaction. Here we suggest a new method to calculate this fundamental property of the atomic nucleus, using a completely phenomenological point of view. Our method is based in the analysis of the differences between measured masses and LDM predictions, which contains information related to those ingredients not taken into account in the LDM formula, such as shell closures, nuclear deformations and residual nuclear interactions. The differences are arranged in a two dimensional plot which can be viewed as an incomplete image of the full chart of nuclides, equivalent to a product of the full image and a binary mask. In order to remove the distortions produced by this mask we employ an algorithm, well known in astronomy, used to remove artificial effects present in the astrophysical images collected through telescopes. This algorithm is called the CLEAN method. It is one of a number of methods which exists to deconvolve undesirable effects in images and to extrapolate or reconstruct missing parts in them. By using the CLEAN method we can fit measured masses with an r.m.s error of less than 100 keV. We have performed several checks and concluded that its utilization must be carried out carefully in order to obtain reliable results in the zone of unknown masses between the driplines. We also outline potential applications of the present approach.

Barea, J.; Frank, A.; Hirsch, J. G.; Lopez, J. C.; Morales, I.; Mendoza, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Velazquez, V. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D.F. (Mexico)

2007-10-26T23:59:59.000Z

69

Self-image (autoidolon) techniques for the realisation of optical computing type operations  

Science Journals Connector (OSTI)

Self-images of a number of spatially periodic (e.g., gratings) and quasiperiodic (e.g., halftone picture) objects have been systematically studied. These studies indicate that self-imaging techniques could be ...

S V Pappu; H R Manjunath

1979-09-01T23:59:59.000Z

70

Evaluation of Four Imaging Techniques for the Electrical Characterization of Solar Cells (Presentation)  

SciTech Connect (OSTI)

The imaging techniques enable the possibility of higher-level quality control and defect analysis of solar cell materials in in-line production processes.

Johnston. S.; Berman, G.; Call, N.; Ahrenkiel, R.

2008-12-03T23:59:59.000Z

71

Scanning photo-induced impedance microscopy*/an impedance based imaging technique  

E-Print Network [OSTI]

Scanning photo-induced impedance microscopy*/an impedance based imaging technique Steffi Krause a technique, scanning photo-induced impedance micro- scopy (SPIM), suitable for the imaging of the complex Photoelectrochemistry has been used widely to study photo-thermally induced current changes at metal surfaces

Moritz, Werner

72

Evaluating fusion techniques for multi-sensor satellite image data  

SciTech Connect (OSTI)

Satellite image data fusion is a topic of interest in many areas including environmental monitoring, emergency response, and defense. Typically any single satellite sensor cannot provide all of the benefits offered by a combination of different sensors (e.g., high-spatial but low spectral resolution vs. low-spatial but high spectral, optical vs. SAR). Given the respective strengths and weaknesses of the different types of image data, it is beneficial to fuse many types of image data to extract as much information as possible from the data. Our work focuses on the fusion of multi-sensor image data into a unified representation that incorporates the potential strengths of a sensor in order to minimize classification error. Of particular interest is the fusion of optical and synthetic aperture radar (SAR) images into a single, multispectral image of the best possible spatial resolution. We explore various methods to optimally fuse these images and evaluate the quality of the image fusion by using K-means clustering to categorize regions in the fused images and comparing the accuracies of the resulting categorization maps.

Martin, Benjamin W [ORNL] [ORNL; Vatsavai, Raju [ORNL] [ORNL

2013-01-01T23:59:59.000Z

73

Combined Illumination Cylindrical Millimeter-Wave Imaging Technique for Concealed Weapon Detection  

SciTech Connect (OSTI)

A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30-300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3-D images of the person. After reconstruction, the images are combined into a single high-resolution three-dimensional image of the person under surveillance. This combined image is then rendered using 3-D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operator will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration (FAA).

Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

2000-04-01T23:59:59.000Z

74

Testing Hyperspectral Data for Geobatanical Anomaly Mapping,...  

Open Energy Info (EERE)

Area Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Testing Hyperspectral Data for Geobatanical Anomaly Mapping, Dixie Valley, Nevada, Geothermal...

75

Retrieval of Brain Image Using Soft Computing Technique  

Science Journals Connector (OSTI)

CBIR in medical image databases are used to assist physician in diagnosis the diseases and also used to aid diagnosis by identifying similar past cases. Retrieval of brain in fast, accurate and an effective from the large data set needs pre-processing ... Keywords: Artifact, CBIR, ELM, FEMA, Hamming distance

J. Esther, M. Mohamed Sathik

2014-03-01T23:59:59.000Z

76

Digital signal processing techniques for optical coherence tomography : OCT and OCT image enhancement  

E-Print Network [OSTI]

Digital signal processing (DSP) techniques were developed to improve the flexibility, functionality, and image quality of ultrahigh resolution optical coherence tomography (OCT) systems. To reduce the dependence of OCT ...

Adler, Desmond Christopher, 1978-

2004-01-01T23:59:59.000Z

77

MR imaging techniques for nano-pathophysiology and theranostics  

Science Journals Connector (OSTI)

Abstract The advent of nanoparticle \\{DDSs\\} (drug delivery systems, nano-DDSs) is opening new pathways to understanding physiology and pathophysiology at the nanometer scale. A nano-DDS can be used to deliver higher local concentrations of drugs to a target region and magnify therapeutic effects. However, interstitial cells or fibrosis in intractable tumors, as occurs in pancreatic or scirrhous stomach cancer, tend to impede nanoparticle delivery. Thus, it is critical to optimize the type and size of nanoparticles to reach the target. High-resolution 3D imaging provides a means of “seeing” the nanoparticle distribution and therapeutic effects. We introduce the concept of “nano-pathophysiological imaging” as a strategy for theranostics. The strategy consists of selecting an appropriate nano-DDS and rapidly evaluating drug effects in vivo to guide the next round of therapy. In this article we classify nano-DDSs by component carrier materials and present an overview of the significance of nano-pathophysiological MRI.

Kevin M. Bennett; Jun-ichiro Jo; Horacio Cabral; Rumiana Bakalova; Ichio Aoki

2014-01-01T23:59:59.000Z

78

Synthetic aperture focusing techniques for ultrasonic imaging of solid objects.  

E-Print Network [OSTI]

technique (SAFT) has been used in non-destructive testing mainly in its simplest form that mimics acoustic a review of SAFT algorithms applied for post-processing of ultrasonic data acquired in non-destructive inspection of metals. The performance of SAFT in terms of its spatial resolution and suppression

79

USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO  

Open Energy Info (EERE)

USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: During December of 1999, approximately 32 miles of seismic data were acquired within the Coso Geothermal Field, Inyo County, California, as part of a detailed seismic investigation undertaken by the US Navy Geothermal Program Office. Data acquisition was designed to make effective use of advanced data processing methods, which include Optim's proprietary nonlinear velocity optimization technique and pre-stack Kirchhoff migration. The nonlinear optimization technique is used to obtain high

80

Integrated Imaging and Vision Techniques for Industrial Inspection: A Special Issue on Machine Vision and Applications  

SciTech Connect (OSTI)

Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in an automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.

Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep; Forsyth, D. S.

2010-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Characterization of forest crops with a range of nutrient and water treatments using AISA Hyperspectral Imagery.  

SciTech Connect (OSTI)

This research examined the utility of Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for estimating the biomass of three forest crops---sycamore, sweetgum and loblolly pine--planted in experimental plots with a range of fertilization and irrigation treatments on the Savannah River Site near Aiken, South Carolina.

Gong, Binglei; Im, Jungho; Jensen, John, R.; Coleman, Mark; Rhee, Jinyoung; Nelson, Eric

2012-07-01T23:59:59.000Z

82

Developments in limited data image reconstruction techniques for ultrahigh-resolution x-ray tomographic imaging of microchips  

SciTech Connect (OSTI)

The use of soft x-ray (about 1.8 KeV) nanotomography techniques for the evaluation and failure mode analysis of microchips was investigated. Realistic numerical simulations of the imaging process were performed and a specialized approach to image reconstruction from limited projection data was devised. Prior knowledge of the structure and its component materials was used to eliminate artifacts in the reconstructed images so that defects and deviations from the original design could be visualized. Simulated data sets were generated with a total of 21 projections over three different angular ranges: -50 to +50, - 80 to +80 and -90 to +90 degrees. In addition, a low level of illumination was assumed. It was shown that sub-micron defects within one cell of a microchip (< 10 pm3) could be imaged in 3-D using such an approach.

Haddad, W.S.; Trebes, J.E.

1997-08-20T23:59:59.000Z

83

The effects of surface mapping corrections with synthetic-aperture focusing techniques on ultrasonic imaging  

SciTech Connect (OSTI)

Image processing to improve the resolution of ultrasonic imaging systems requires an accurate knowledge of the geometry and properties of the media through which the ultrasound travels. This is particularly true when a method such as the synthetic-aperture focusing technique (SAFT) is used. For SAFT to function properly, it is necessary to know accurately the path traveled by the ultrasound from transducer to target and back again. A form of SAFT imaging is described in which the imaging routine also constructs a map of the target surface. This map is then used to calculate accurately the propagation history of the ultrasound for the SAFT processing. The resolution and positional accuracy of unprocessed images, unmapped SAFT images, and surface mapped SAFT images are compared. All but the surface mapping images show significant errors in positional accuracy for relatively small surface deviations. The surface mapping correction, however, brings the imaging accuracy back to within the limits of the mechanical experimental error. A more severely distorted surface destroys the phase relationships required for processing unless the surface variations are accounted for. In addition, results achieved with a flat ultrasonic transducer suggest significant simplifications that may ease field implementation of SAFT systems.

Johnson, J.A.; Barna, B.A.

1983-09-01T23:59:59.000Z

84

Effects of surface mapping corrections with synthetic-aperture focusing techniques on ultrasonic imaging  

SciTech Connect (OSTI)

Image processing to improve the resolution of ultrasonic imaging systems requires an accurate knowledge of the geometry and properties of the media through which the ultrasound travels. This is particularly true when a method such as the Synthetic Aperture Focusing Technique (SAFT) is used. For SAFT to function properly, it is necessary to accurately know the path traveled by the ultrasound from transducer to target and back again. A form of SAFT imaging is described in which the image routine also constructs a map of the target surface. This map is then used to accurately calculate the propagation history of the ultrasound for the SAFT processing. The resolution and positional accuracy of unprocessed images, unmapped SAFT images, and surface mapping SAFT images are compared. All but the surface mapping images show significant errors in positional accuracy for relatively small surface deviations. The surface mapping correction however, brings the imaging accuracy back to within the limits of the mechanical experimental error. In addition, results achieved with a flat ultrasonic transducer suggest significant simplifications that may ease field implementation of SAFT systems.

Barna, B.A.; Johnson, J.A.

1981-01-01T23:59:59.000Z

85

Measurement of thermally induced vibrations of microelectronic devices by use of a heterodyne electronic speckle pattern interferometry imaging technique  

Science Journals Connector (OSTI)

An imaging technique to measure modulated surface displacements on microelectronic devices is presented. A device is supplied by a sinusoidal current that creates a modulated variation...

Grauby, Stéphane; Dilhaire, Stefan; Jorez, Sébastien; Lopez, Luis David Patino; Rampnoux, Jean-Michel; Claeys, Wilfrid

2003-01-01T23:59:59.000Z

86

ON THE CONTINUITY OF IMAGES BY TRANSMISSION IMAGING Abstract. Transmission imaging is an important imaging technique which is widely used in  

E-Print Network [OSTI]

ON THE CONTINUITY OF IMAGES BY TRANSMISSION IMAGING CHUNLIN WU Abstract. Transmission imaging imaging principle is quite different from that of reflection imaging used in our everyday life. As well scholars studied the application of TV regularization to processing images generated by transmission

Soatto, Stefano

87

Design and development of the associated-particle three-dimensional imaging technique  

SciTech Connect (OSTI)

The authors describe the development of the ``associated-particle`` imaging technique for producing low-resolution three-dimensional images of objects. Based on the t(d,n){sup 4}He reaction, the method requires access to only one side of the object being imaged and allows for the imaging of individual chemical elements in the material under observation. Studies were performed to (1) select the appropriate components of the system, including detectors, data-acquisition electronics, and neutron source, and (2) optimize experimental methods for collection and presentation of data. This report describes some of the development steps involved and provides a description of the complete final system that was developed.

Ussery, L.E.; Hollas, C.L.

1994-10-01T23:59:59.000Z

88

Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy  

Science Journals Connector (OSTI)

A spectrally and temporally programmable light engine can create any spectral profile for hyperspectral, fluorescence, or principal-component imaging or with medical photonics devices...

MacKinnon, Nicholas; Stange, Ulrich; Lane, Pierre; MacAulay, Calum; Quatrevalet, Mathieu

2005-01-01T23:59:59.000Z

89

Phase distribution measurements in narrow rectangular channels using image-processing techniques  

SciTech Connect (OSTI)

Phase distribution of air-water flow in a narrow rectangular channel is examined using image-processing techniques. Ink is added to the water, and clear channel walls were used to allow high-speed, still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh IIci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image-processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time-averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time-averaged spatial liquid distribution to formulate the combined temporally and spatially averaged liquid fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity. 11 refs.

Bentley, C.L.; Ruggles, A.E.

1992-06-01T23:59:59.000Z

90

Multispectral Imaging At The Needles Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Needles Area (Laney, 2005) Needles Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At The Needles Area (Laney, 2005) Exploration Activity Details Location The Needles Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to

91

Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) |  

Open Energy Info (EERE)

Martin, Et Al., 2004) Martin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References B. Martin, E. Silver, W. Pickles, P. Cocks (Unknown) Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Long_Valley_Caldera_Area_(Martin,_Et_Al.,_2004)&oldid=511009" Categories: Exploration Activities DOE Funded

92

Near to the Brain: Functional Near-Infrared Spectroscopy as a Lightweight Brain Imaging Technique for Visualization  

E-Print Network [OSTI]

Near to the Brain: Functional Near-Infrared Spectroscopy as a Lightweight Brain Imaging Technique the use of cumbersome or expensive brain imaging equipment. In recent years, functional near-infrared near-infrared spectroscopy (fNIRS) is an emerging technology for brain imaging being developed

Tomkins, Andrew

93

Measuring water velocity using DIDSON and image cross-correlation techniques  

SciTech Connect (OSTI)

To design or operate hydroelectric facilities for maximum power generation and minimum ecological impact, it is critical to understand the biological responses of fish to different flow structures. However, information is still lacking on the relationship between fish behavior and flow structures despite many years of research. Existing field characterization approaches conduct fish behavior studies and flow measurements separately and coupled later using statistical analysis. These types of studies, however, lack a way to determine the specific hydraulic conditions or the specific causes of the biological response. The Dual-Frequency Identification Sonar (DIDSON) has been in wide use for fish behavior studies since 1999. The DIDSON can detect acoustic targets at long ranges in dark or turbid dark water. PIV is a state-of-the-art, non-intrusive, whole-flow-field technique, providing instantaneous velocity vector measurements in a whole plane using image cross-correlating techniques. There has been considerable research in the development of image processing techniques associated with PIV. This existing body of knowledge is applicable and can be used to process the images taken by the DIDSON. This study was conducted in a water flume which is 9 m long, 1.2 m wide, and 1.2 m deep when filled with water. A lab jet flow was setup as the benchmark flow to calibrate DIDSON images. The jet nozzle was 6.35 cm in diameter and core jet velocity was 1.52 m/s. Different particles were used to seed the flow. The flow was characterized based on the results using Laser Doppler Velocimetry (LDV). A DIDSON was mounted about 5 meters away from the jet nozzle. Consecutive DIDSON images with known time delay were divided into small interrogation spots after background was subtracted. Across-correlation was then performed to estimate the velocity vector for each interrogation spot. The estimated average velocity in the core zone was comparable to that obtained using a LDV. This proof-of-principle project demonstrated the feasibility of extracting water flow velocity information from underwater DIDSON images using image cross-correlation techniques.

Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

2009-08-01T23:59:59.000Z

94

An investigation of polarized atomic photofragments using the ion imaging technique  

SciTech Connect (OSTI)

This thesis describes measurement and analysis of the recoil angle dependence of atomic photofragment polarization (atomic v-J correlation). This property provides information on the electronic rearrangement which occurs during molecular photodissociation. Chapter 1 introduces concepts of photofragment vector correlations and reviews experimental and theoretical progress in this area. Chapter 2 described the photofragment ion imaging technique, which the author has used to study the atomic v-J correlation in chlorine and ozone dissociation. Chapter 3 outlines a method for isolating and describing the contribution to the image signal which is due exclusively to angular momentum alignment. Ion imaging results are presented and discussed in Chapter 4. Chapter 5 discusses a different set of experiments on the three-fragment dissociation of azomethane. 122 refs.

Bracker, A.S.

1997-12-01T23:59:59.000Z

95

Comparison of four paper imaging techniques;. beta. -radiography, electrography, light transmission, and soft x-radiography  

SciTech Connect (OSTI)

This paper discusses four paper imaging techniques ({beta}-radiography, electrography, light transmission, and soft X-radiography) which were compared in terms of their process parameters and image characteristics (exposure time, spatial variation, contrast, spatial resolution, correlation with mass, and limitation in basis weight range) with the same newsprint samples and the same electron microscope film. Electrography gave a higher spatial resolution, shorter exposure time, and the wider basis weight range than {beta}-radiography. The light transmission image could be obtained in a very short time, but it gave the poorest spatial resolution and correlation with mass. Soft X-radiography gave the biggest spatial resolution but the poorest spatial variation and contrast.

Tomimasu, H. (Mitsubishi Paper Mills, Ltd., Central Research Inst., 1-4-1 Higashi-Kanamachi, Istsushiba-ku, Tokyo 125 (JP)); Kim, D.; Suk, M. (Syracuse Univ., Dept. of Electrical and Computer Engineering, Syracuse, NY (US)); Luner, P. (State Univ. of New York, College of Environmental Science and Forestry, Syracuse, NY (US))

1991-07-01T23:59:59.000Z

96

An automated image?registration technique based on multiple structure matching  

Science Journals Connector (OSTI)

A new image?registration technique that matches multiple structures on complementary imagingdata sets (e.g. CT and MRI) has been developed and tested with both phantom and patient data. The algorithm assumes a rigid?body transformation and is suitable for correlating structures within the cranium or at the skull base. The basic premise of the new technique is that an optimum transformation is achieved when the relative volume lying outside of the intersection between a structure and its transformed counterpart is a minimum. This relative volume is calculated numerically using a random sampling approach and a binary searching algorithm was used to step through the nine?dimensional parameter space consisting of three rotation angles three scaling factors and three components of a translation vector. For the nine tests using phantom data the automated structure?matching technique was able to predict the correct rotation angles to within ±1°. The expected clinical performance of the new technique was assessed by comparing results obtained with the new method to those obtained using other techniques for 12 patients who were treated with charged particles at Lawrence Berkeley Laboratory (LBL) and who had image?registration studies performed as part of their treatment plan. For 9 of the 12 patients considered the new structure?matching technique produced a significantly better registration than the older methods as measured by the resultant average relative volume lying outside of the intersection between any structure and its transformed counterpart. For the other three patients results were not significantly different for the new structure?matching method and the older techniques.

Paula L. Petti; Marc L. Kessler; Terri Fleming; Samuel Pitluck

1994-01-01T23:59:59.000Z

97

An imaging technique for detection and absolute calibration of scintillation light  

SciTech Connect (OSTI)

Triggered by the need of a detection system to be used in experiments of nuclear fusion in laser-generated plasmas, we developed an imaging technique for the measurement and calibration of the scintillation light yield of scintillating materials. As in such experiments, all the reaction products are generated in an ultrashort time frame, the event-by-event data acquisition scheme is not feasible. As an alternative to the emulsion technique (or the equivalent CR39 sheets) we propose a scintillating screen readout by means of a high performance charge coupled device camera. Even though it is not strictly required in the particular application, this technique allows the absolute calibration of the scintillation light yield.

Pappalardo, Alfio; Cosentino, Luigi; Finocchiaro, Paolo [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95125 Catania (Italy)

2010-03-15T23:59:59.000Z

98

An imaging technique for detection and absolute calibration of scintillation light  

Science Journals Connector (OSTI)

Triggered by the need of a detection system to be used in experiments of nuclear fusion in laser-generated plasmas we developed an imaging technique for the measurement and calibration of the scintillation light yield of scintillating materials. As in such experiments all the reaction products are generated in an ultrashort time frame the event-by-event data acquisition scheme is not feasible. As an alternative to the emulsion technique (or the equivalent CR39 sheets) we propose a scintillating screen readout by means of a high performance charge coupled devicecamera. Even though it is not strictly required in the particular application this technique allows the absolute calibration of the scintillation light yield.

Alfio Pappalardo; Luigi Cosentino; Paolo Finocchiaro

2010-01-01T23:59:59.000Z

99

Imaging large vessels using cosmic-ray muon energy-loss techniques  

Science Journals Connector (OSTI)

Imaging the internal structure of large vessels (2–20 m in diameter) is not possible with most traditional imaging methods. The sheer size renders gamma-ray and other high-energy photon, neutron, electrical and acoustic techniques useless, whilst the use of high-energy accelerators required to produce charged-particles of sufficient energy are impractical in most industrial situations. The use of naturally occurring high-energy (?GeV) cosmic-ray mu-mesons (muons) provides an effective solution to the penetration problem. The problems of low intensity at near-horizontal angles with the cosmic-ray muon flux are addressed by using energy-loss imaging methods. In other methodologies, using charge-particle energy-loss imaging techniques, only a few events are needed compared to many thousands required if attenuation measurements were to be employed. The energies of horizontal cosmic-ray muons are distributed largely between 0.1 and 1000 GeV with a mean energy of about 50 GeV. Radiation Transport Monte-Carlo methods (GEANT4) have been used to calculate the energy loss for a selection of industrial materials in the energy range of interest. The energy loss of the muons along a ray-sum are modelled and compared to attenuation losses along the ray-sum using energy resolving detectors in coincidence before and after the sample. The energy-loss spectra across different samples are measured, demonstrating that embedded materials can be identified with as few as 10 muons passing through the sample. It is proposed that the imaging modality can be extended into a full tomographic modality allowing material identification within each voxel.

P.M. Jenneson; W.B. Gilboy; S.J.R. Simons; S.J. Stanley; D. Rhodes

2007-01-01T23:59:59.000Z

100

Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique  

E-Print Network [OSTI]

We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for ...

Lin, Jian

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle  

SciTech Connect (OSTI)

In the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).

Ryan C. Hruska; Jessica J. Mitchell; Matthew O. Anderson; Nancy F. Glenn

2012-09-01T23:59:59.000Z

102

Combining Vis–NIR hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (Cap-Bon, Tunisia)  

Science Journals Connector (OSTI)

Abstract Previous studies have demonstrated that Visible Near InfraRed (Vis–NIR) hyperspectral imagery is a cost-efficient way to map soil properties at fine resolutions (~ 5 m) over large areas. However, such mapping is only feasible for the soil surface because the effective penetration depths of optical sensors do not exceed several millimeters. This study aims to determine how Vis–NIR hyperspectral imagery can serve to map the subsurface properties at four depth intervals (15–30 cm, 30–60 cm, 60–100 cm and 30–100 cm) when used with legacy soil profiles and images of parameters derived from digital elevation model (DEM). Two types of surface–subsurface functions, namely linear models and random forests, that estimate subsurface property values from surface values and landscape covariates were first calibrated over the set of legacy measured profiles. These functions were then applied to map the soil properties using the hyperspectral-derived digital surface soil property maps and the images of landscape covariates as input. Error propagation was addressed using a Monte Carlo approach to estimate the mapping uncertainties. The study was conducted in a pedologically contrasted 300 km2-cultivated area located in the Cap Bon region (Northern Tunisia) and tested on three soil surface properties (clay and sand contents and cation exchange capacity). The main results were as follows: i) fairly satisfactory (cross-validation R2 between 0.55 and 0.81) surface–subsurface functions were obtained for predicting the soil properties at 15–30 cm and 30–60 cm, whereas predictions at 60–100 cm were less accurate (R2 between 0.38 and 0.43); ii) linear models outperformed random-forest models in developing surface–subsurface functions; iii) due to the error propagations, the final predicted maps of the subsurface soil properties captured from 1/3 to 2/3 of the total variance with a significantly decreasing performance with depth; and iv) these maps brought significant improvements over the existing soil maps of the region and showed soil patterns that largely agreed with the local pedological knowledge. This paper demonstrates the added value of combining modern remote sensing techniques with old legacy soil databases.

Philippe Lagacherie; Anne-Ruth Sneep; Cécile Gomez; Sinan Bacha; Guillaume Coulouma; Mohamed Hédi Hamrouni; Insaf Mekki

2013-01-01T23:59:59.000Z

103

Developing new optical imaging techniques for single particle and molecule tracking in live cells  

SciTech Connect (OSTI)

Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

Sun, Wei

2010-12-15T23:59:59.000Z

104

Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws  

Science Journals Connector (OSTI)

In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high- ... resolution imaging techni...

André Gahleitner; G. Watzek; H. Imhof

2003-02-01T23:59:59.000Z

105

Evaluation of the robustness of the preprocessing technique improving reversible compressibility of CT images: Tested on various CT examinations  

SciTech Connect (OSTI)

Purpose: To modify the preprocessing technique, which was previously proposed, improving compressibility of computed tomography (CT) images to cover the diversity of three dimensional configurations of different body parts and to evaluate the robustness of the technique in terms of segmentation correctness and increase in reversible compression ratio (CR) for various CT examinations.Methods: This study had institutional review board approval with waiver of informed patient consent. A preprocessing technique was previously proposed to improve the compressibility of CT images by replacing pixel values outside the body region with a constant value resulting in maximizing data redundancy. Since the technique was developed aiming at only chest CT images, the authors modified the segmentation method to cover the diversity of three dimensional configurations of different body parts. The modified version was evaluated as follows. In randomly selected 368 CT examinations (352 787 images), each image was preprocessed by using the modified preprocessing technique. Radiologists visually confirmed whether the segmented region covers the body region or not. The images with and without the preprocessing were reversibly compressed using Joint Photographic Experts Group (JPEG), JPEG2000 two-dimensional (2D), and JPEG2000 three-dimensional (3D) compressions. The percentage increase in CR per examination (CR{sub I}) was measured.Results: The rate of correct segmentation was 100.0% (95% CI: 99.9%, 100.0%) for all the examinations. The median of CR{sub I} were 26.1% (95% CI: 24.9%, 27.1%), 40.2% (38.5%, 41.1%), and 34.5% (32.7%, 36.2%) in JPEG, JPEG2000 2D, and JPEG2000 3D, respectively.Conclusions: In various CT examinations, the modified preprocessing technique can increase in the CR by 25% or more without concerning about degradation of diagnostic information.

Jeon, Chang Ho; Kim, Bohyoung; Gu, Bon Seung; Lee, Jong Min [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)] [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of); Kim, Kil Joong [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Department of Radiation Applied Life Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)] [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Department of Radiation Applied Life Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Lee, Kyoung Ho [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Institute of Radiation Medicine, Seoul National University Medical Research Center, and Clinical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744 (Korea, Republic of)] [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Institute of Radiation Medicine, Seoul National University Medical Research Center, and Clinical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744 (Korea, Republic of); Kim, Tae Ki [Medical Information Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)] [Medical Information Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)

2013-10-15T23:59:59.000Z

106

Identification of a New Blind Geothermal System with Hyperspectral Remote  

Open Energy Info (EERE)

Identification of a New Blind Geothermal System with Hyperspectral Remote Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Abstract Hyperspectral remote sensing-derived mineral maps and follow-up shallow temperature measurements were used to identify a new blind geothermal target in the Columbus Salt Marsh playa, Esmeralda County, Nevada. The hyperspectral survey was conducted with the ProSpecTIR VS2 instrument and consists of 380 km2 of 4-meter spatial resolution data acquired on October

107

A new technique for tritium imaging and profiling using a computer aided--video enhanced microscope system for metallographic analysis  

SciTech Connect (OSTI)

Recent advances in image enhancement and image processing have made ultra-low-light microscopy a reality. Currently available instrumentation allows imaging of ''individual'' photons with a tremendous dynamic range of one to 10/sup 9/ photons/mm/sup 2//sec. This capability allows for the development of tritium imaging techniques based on different basic principles than previously employed. Previous autoradiographic techniques for this purpose used photographic emulsions which are chemically reactive with many metals and for good resolution required in-situ processing in chemical solutions which can also chemically affect the samples or emulsion characteristics. The new technique makes use of optically transparent thin films of relatively chemically inert scintillating compounds applied to metallographically prepared samples. The light given off by these scintillating compounds can now be imaged and quantified using the new Video Intensified Microscope (VIM) System. This allows the location of the tritium to be imaged as well as the corresponding microstructure. In addition, special containers have been designed and built to allow highly radioactive or pyrophoric samples with high levels of off-gassing to be evaluated. 5 refs., 10 figs.

Downs, G.L.

1989-01-01T23:59:59.000Z

108

Definition: Multispectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Imaging Imaging Jump to: navigation, search Dictionary.png Multispectral Imaging Multispectral surveys image the earth in an average of ten wide bands over a wide spectral range. Multispectral sensors measure the electromagnetic spectrum in discrete, discontinuous bands (unlike the continuous hyperspectral image). Multispectral sensors are capable of relative material delineation. The thermal wavelength range of the multispectral survey senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1]

109

Fusion of multiple image types for the creation of radiometrically-accurate synthetic scenes  

E-Print Network [OSTI]

Fusion of multiple image types for the creation of radiometrically-accurate synthetic scenes-in-the-loop requirements for many aspects of synthetic hyperspectral scene construction. Through a fusion of 3D lidar data: lidar, hyperspectral, fusion, DIRSIG, building reconstruction, synthetic scene 1 INTRODUCTION Over

Kerekes, John

110

Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005) | Open  

Open Energy Info (EERE)

Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005) Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005) Exploration Activity Details Location The Needles Area Exploration Technique Multispectral Imaging Activity Date Usefulness not indicated DOE-funding Unknown Notes Over 2000 km2 of 5-m resolution Hymap hyperspectral data was acquired in 2004. Subsequent image processing and data analysis has identified reflectance spectra for alunite, kaolinite/halloysite, illite, gypsum, vegetation, and carbonate. A portable spectrometer is being used for in situ validation, along with laboratory measurements and x-ray diffraction analyses of samples collected in teh field. We are in the process of

111

A Comparison of Image Quality Evaluation Techniques for Transmission X-Ray Microscopy  

SciTech Connect (OSTI)

Beamline 6-2c at Stanford Synchrotron Radiation Lightsource (SSRL) is capable of Transmission X-ray Microscopy (TXM) at 30 nm resolution. Raw images from the microscope must undergo extensive image processing before publication. Since typical data sets normally contain thousands of images, it is necessary to automate the image processing workflow as much as possible, particularly for the aligning and averaging of similar images. Currently we align images using the 'phase correlation' algorithm, which calculates the relative offset of two images by multiplying them in the frequency domain. For images containing high frequency noise, this algorithm will align noise with noise, resulting in a blurry average. To remedy this we multiply the images by a Gaussian function in the frequency domain, so that the algorithm ignores the high frequency noise while properly aligning the features of interest (FOI). The shape of the Gaussian is manually tuned by the user until the resulting average image is sharpest. To automatically optimize this process, it is necessary for the computer to evaluate the quality of the average image by quantifying its sharpness. In our research we explored two image sharpness metrics, the variance method and the frequency threshold method. The variance method uses the variance of the image as an indicator of sharpness while the frequency threshold method sums up the power in a specific frequency band. These metrics were tested on a variety of test images, containing both real and artificial noise. To apply these sharpness metrics, we designed and built a MATLAB graphical user interface (GUI) called 'Blur Master.' We found that it is possible for blurry images to have a large variance if they contain high amounts of noise. On the other hand, we found the frequency method to be quite reliable, although it is necessary to manually choose suitable limits for the frequency band. Further research must be performed to design an algorithm which automatically selects these parameters.

Bolgert, Peter J; /Marquette U. /SLAC

2012-08-31T23:59:59.000Z

112

Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Multispectral Imaging At Buffalo Valley Hot Springs Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

113

USING HYPERSPECTRAL IMAGERY TO ASSIST FEDERAL FOREST MONITORING AND RESTORATION PROJECTS IN THE SOUTHERN ROCKY MOUNTAINS, COLORADO  

E-Print Network [OSTI]

catastrophic wildfires. Many of the restoration techniques that were proposed do not differ greatly from what is currently being applied by various governmental agencies in Colorado. The most relevant research publications related to forest monitoring... USING HYPERSPECTRAL IMAGERY TO ASSIST FEDERAL FOREST MONITORING AND RESTORATION PROJECTS IN THE SOUTHERN ROCKY MOUNTAINS, COLORADO BY Kyle Wamser Submitted to the graduate degree program in Department of Geography and the Faculty...

Wamser, William Kyle

2012-12-31T23:59:59.000Z

114

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect (OSTI)

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

115

Hydrothermal alteration mineral mapping using hyperspectral imagery in  

Open Energy Info (EERE)

alteration mineral mapping using hyperspectral imagery in alteration mineral mapping using hyperspectral imagery in Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal alteration mineral mapping using hyperspectral imagery in Dixie Valley, Nevada Abstract Hyperspectral (HyMap) data was used to map the location ofoutcrops of high temperature, hydrothermally alterated minerals(including alunite, pyrophyllite, and hematite) along a 15 kmswath of the eastern front of the Stillwater Mountain Range inDixie Valley, Nevada. Analysis of this data set reveals that severaloutcrops of these altered minerals exist in the area, and thatone outcrop, roughly 1 square kilometer in area, shows abundanthigh temperature alteration. Structural analysis of the alteredregion using a

116

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration...  

Open Energy Info (EERE)

aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a...

117

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley,  

Open Energy Info (EERE)

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Abstract A collaborative effort among U. S. Department of Energy sponsored remote sensing specialists and industry recently culminated in the acquisition of hyperspectral data over a new exploration target in Dixie Valley, Nevada, U. S. A. Related research at the Energy & Geoscience Institute is currently focused on mineralogy mapping at the outcrop level. This will be extended to piedmont and valley fill soils to detect soil mineral anomalies that may be related to buried structures and sinters. Spectral mineral end-members

118

Spatial and frequency domain techniques for segmentation of Placido images and accuracy implications for videokeratography  

Science Journals Connector (OSTI)

Objective:: Videokeratography (VK) has been a widespread technology for corneal surface analysis since the mid 1980s. Most manufactures use personal computers attached to a Placido disc apparatus in order to capture and process digital images. Although ... Keywords: Corneal topography, Image processing, Placido discs, Signal processing, Videokeratography

Luis Alberto Vieira de Carvalho; Odemir Martinez Bruno

2005-08-01T23:59:59.000Z

119

Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors  

SciTech Connect (OSTI)

This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

2011-06-22T23:59:59.000Z

120

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution conductivity imaging  

E-Print Network [OSTI]

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution potentials and the magnetic fields produced by the probing current are measured. Surface potentials are measured by using conventional electrical impedance tomography techniques and high resolution magnetic

Eyüboðlu, Murat

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DEVELOPMENT OF A WEB-BASED BLIND TEST TO SCORE AND RANK HYPERSPECTRAL CLASSIFICATION ALGORITHMS  

E-Print Network [OSTI]

://dirsapps.cis.rit.edu/classtest/. 1. INTRODUCTION The accuracy of land cover classification algorithms applied to hyperspectral remoteDEVELOPMENT OF A WEB-BASED BLIND TEST TO SCORE AND RANK HYPERSPECTRAL CLASSIFICATION ALGORITHMS K ABSTRACT Remotely sensed hyperspectral imagery plays an important role in land cover classification

Kerekes, John

122

Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Imaging Print Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the "water window" (300-500 eV). Nanomagnetism studies require the energy range characteristic of iron, cobalt, and nickel (600-900 eV). Mid- and far-infrared (energies below 1 eV) microprobes using synchrotron radiation are being used to address problems such as chemistry in biological tissues, chemical identification and molecular conformation, environmental biodegradation, mineral phases in geological and astronomical specimens, and electronic properties of novel materials. Infrared synchrotron radiation is focused through, or reflected from, a small spot on the specimen and then analyzed using a spectrometer. Tuning to characteristic vibrational frequencies serves as a sensitive fingerprint for molecular species. Images of the various species are built up by raster scanning the specimen through the small illuminated spot.

123

A survey of shaped-based registration and segmentation techniques for cardiac images  

Science Journals Connector (OSTI)

Heart disease is the leading cause of death in the modern world. Cardiac imaging is routinely applied for assessment and diagnosis of cardiac diseases. Computerized image analysis methods are now widely applied to cardiac segmentation and registration ... Keywords: AAM, ASM, CT, CVD, Cardiac CT, Cardiac MR, Cardiac motion, Cardiac registration, Cardiac segmentation, EB, EDV, EF, EFFD, EM, ESV, Echocardiography, Endo, Epi, FE, FFD, Four CH, GMM, GRPM, LA, LADA, LAX, LCX, LV, MI, MIA, MRF, MRI, N, N/A, NMI, NURBS, P, PCA, PET, PM, RA, RPM, RV, Review article, SAD, SAX, SM, SPECT, SSD, TDI, TEE, TMI, US

Vahid Tavakoli; Amir A. Amini

2013-09-01T23:59:59.000Z

124

Effect of Background Emissivity on Gas Detection in Thermal Hyperspectral Imagery  

SciTech Connect (OSTI)

Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temper- ature, and background clutter. This paper presents an analysis of one formulation of the physics-based radiance model, which describes at-sensor observed radiance. The background emissivity and plume/ground temperatures are isolated, and their effects on net chemical signal are described. This analysis shows that the plume’s physical state, emission or absorption, is directly dependent on the background emissivity. It then describes what conditions on the background emissivity have inhibiting effects on the net chemical signal. These claims are illustrated by analyzing synthetic hyperspectral imaging data with the Adaptive Matched Filter using four chemicals and three distinct background emissivities. Two chemicals (Carbontetrachloride and Tetraflourosilane) in the analysis had a very strong relationship with the background emissivities: they exhibited absorbance over a small range of wavenumbers and the background emissivities showed a consistent ordering at these wavenumbers. Analysis of simulated hyperspectral images containing these chemicals showed complete agreement with the analysis of the physics-based model that described when the background emissivities would have inhibiting effects on gas detection. The other chemicals considered (Ammonia and Tributylphosphate) exhibited very complex absorbance structure across the longwave infrared spectrum. Analysis of images containing these chemicals revealed that the the analysis of the physics-based model did not hold completely for these complex chemicals but did suggest that gas detection was dominated by their dominant absorbance features. These results provide some explanation of the effect of the background emissivity on gas detection and a more general exploration of gas absorbance/background emissivity variability and their effects on gas detection is warranted. i

Walsh, Stephen J.; Tardiff, Mark F.; Chilton, Lawrence K.; Metoyer, Candace N.

2008-10-02T23:59:59.000Z

125

Multispectral Imaging At Brady Hot Springs Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Multispectral Imaging At Brady Hot Springs Area Multispectral Imaging At Brady Hot Springs Area (Laney, 2005) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

126

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Details Activities (1) Areas (1) Regions (0) Abstract: This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant

127

Laser initiated reactions in N{sub 2}O clusters studied by time-sliced ion velocity imaging technique  

SciTech Connect (OSTI)

Laser initiated reactions in N{sub 2}O clusters were studied by a time-sliced velocity imaging technique. The N{sub 2}O clusters, (N{sub 2}O){sub n}, generated by supersonic expansion were irradiated by an ultraviolet laser around 204 nm to convert reactant pairs, O({sup 1}D{sub 2})-(N{sub 2}O){sub n?1}. The NO molecules formed from these reactant pairs were ionized by the same laser pulse and their velocity distribution was determined by the time-sliced velocity imaging technique. At low nozzle pressure, lower than 1.5 atm, the speed distribution in the frame moving with the clusters consists of two components. These components were ascribed to the products appeared in the backward and forward directions in the center-of-mass frame, respectively. The former consists of the vibrational ground state and the latter consists of highly vibrational excited states. At higher nozzle pressure, a single broad speed distribution became dominant for the product NO. The pressure and laser power dependences suggested that this component is attributed to the product formed in the clusters larger than dimer, (N{sub 2}O){sub n} (n ? 3)

Honma, Kenji [Graduate School of Material Science, University of Hyogo, 3-2-1 Kohto, Kamigori, Hyogo 678-1297 (Japan)] [Graduate School of Material Science, University of Hyogo, 3-2-1 Kohto, Kamigori, Hyogo 678-1297 (Japan)

2013-07-28T23:59:59.000Z

128

Techniques for High Contrast Imaging in Multi-Star Systems I: Super-Nyquist Wavefront Control  

E-Print Network [OSTI]

Extra-solar planets direct imaging is now a reality with the deployment and commissioning of the first generation of specialized ground-based instruments (GPI, SPHERE, P1640 and SCExAO). These systems allow of planets $ 10 ^ 7 $ times fainter than their host star. For space-based missions (EXCEDE, EXO-C, EXO-S, WFIRST), various teams have demonstrated laboratory contrasts reaching $ 10 ^ { -10 } $ within a few diffraction limits from the star. However, all of these current and future systems are designed to detect faint planets around a single host star or unresolved multiples, while most non M-dwarf stars such as Alpha Centauri belong to multi-star systems. Direct imaging around binaries/multiple systems at a level of contrast allowing Earth-like planet detection is challenging because the region of interest is contaminated by the hosts star companion as well as the host Generally, the light leakage is caused by both diffraction and aberrations in the system. Moreover, the region of interest usually falls ou...

Thomas, Sandrine J; Bendek, Eduardo

2015-01-01T23:59:59.000Z

129

A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging  

SciTech Connect (OSTI)

Purpose: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. Methods and Materials: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference was greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. Results: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. Conclusions: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.

Gierga, David P., E-mail: dgierga@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Turcotte, Julie C. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Sharp, Gregory C. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States) [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Sedlacek, Daniel E.; Cotter, Christopher R. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)] [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Taghian, Alphonse G. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States) [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States)

2012-12-01T23:59:59.000Z

130

Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution  

E-Print Network [OSTI]

plasmons; (250.5403) Plasmonics. References and Links 1. S. A. Maier, Plasmonics: Fundamentals Spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998). 9. E. D. Palik, ed. Handbook of Optical

Jonsson, Fredrik

131

Estimation of Atmospheric PSF Parameters for Hyperspectral Imaging  

E-Print Network [OSTI]

from the online tutorial: http://personalpages.manchester.ac.uk/staff/ david.foster/Tutorial_HSI2RGB

Plemmons, Robert J.

132

HYPER-I-NET: European Research Network on Hyperspectral Imaging  

E-Print Network [OSTI]

sensor design and cal- ibration/validation [3], [4] to advanced data processing [5]­ [8], and science-I-NET), a recently started Marie Curie Research Training Network. The project is designed to build-I-NET is at the confluence of heterogeneous disciplines, such as sensor design including optics and electronics, aerospace

Plaza, Antonio J.

133

Joint Linear/Nonlinear Spectral Unmixing of Hyperspectral Image Data  

E-Print Network [OSTI]

of the mixing process, several naturally occurring situations exist where nonlinear models may provide the most and flexibility in different applications, there are many naturally occuring situations where nonlinear mixture mixed spectra from the reflected surface radiation of various subpixel constituent materials

Plaza, Antonio J.

134

A HYPERSPECTRAL VIEW OF THE CRAB NEBULA  

SciTech Connect (OSTI)

We have obtained spatially resolved spectra of the Crab nebula in the spectral ranges 450-520 nm and 650-680 nm, encompassing the H{beta}, [O III] {lambda}4959, {lambda}5007, H{alpha}, [N II] {lambda}6548, {lambda}6584, and [S II] {lambda}6717, {lambda}6731 emission lines, with the imaging Fourier transform spectrometer SpIOMM at the Observatoire du Mont-Megantic's 1.6 m telescope. We first compare our data with published observations obtained either from a Fabry-Perot interferometer or from a long-slit spectrograph. Using a spectral deconvolution technique similar to the one developed by Cadez et al., we identify and resolve multiple emission lines separated by large Doppler shifts and contained within the rapidly expanding filamentary structure of the Crab. This allows us to measure important line ratios, such as [N II]/H{alpha}, [S II]/H{alpha}, and [S II] {lambda}6717 /[S II] {lambda}6731 of individual filaments, providing a new insight on the SE-NW asymmetry in the Crab. From our analysis of the spatial distribution of the electronic density and of the respective shocked versus photoionized gas components, we deduce that the skin-less NW region must have evolved faster than the rest of the nebula. Assuming a very simple expansion model for the ejecta material, our data provide us with a complete tridimensional view of the Crab.

Charlebois, M.; Drissen, L.; Bernier, A.-P. [Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada); Grandmont, F. [ABB Bomem Inc., 585 boulevard Charest est, Suite 300, Quebec, Quebec G1K 9H4 (Canada); Binette, L., E-mail: maxime.charlebois.1@ulaval.c, E-mail: ldrissen@phy.ulaval.c, E-mail: anne-pier.bernier.1@ulaval.c [Instituto de AstronomIa, UNAM, Ap.70-264, 04510 Mexico, DF (Mexico)

2010-05-15T23:59:59.000Z

135

Decision Fusion of Hyperspectral and SAR data for Trafficability Assessment  

E-Print Network [OSTI]

Decision Fusion of Hyperspectral and SAR data for Trafficability Assessment Capt. Pierre Chouinard assessment. To perform the assessment, different types of classification on the two data sets were performed of using both HSI and SAR data in trafficability assessment. Keywords-component; Decision Fusion

Kerekes, John

136

Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”  

SciTech Connect (OSTI)

In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2014-02-16T23:59:59.000Z

137

Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging  

SciTech Connect (OSTI)

Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse-like phantom. OSLDs exhibited a reproducibility of 2.4% and good linearity was found between 60 and 450 mGy. The energy scaling factor was calculated to be between 1.80 ± 0.16 and 1.86 ± 0.16, depending on protocol used. In phantoms, mean doses to tissue over a whole-body CT examination were ranging from 186.4 ± 7.6 to 234.9 ± 7.1 mGy. In mice, mean doses to tissue in the mouse trunk (thorax, abdomen, pelvis, and flanks) were between 213.0 ± 17.0 and 251.2 ± 13.4 mGy. Skin doses (3 OSLDs) were much higher with average doses between 350.6 ± 25.3 and 432.5 ± 34.1 mGy. The dose delivered during a topogram was found to be below 10 mGy. Use of the multimouse bed of the system gave a significantly 20%–40% lower dose per animal (p < 0.05).Conclusions: Absorbed doses in micro-CT were found to be relatively high. In micro-SPECT/CT imaging, the micro-CT unit is mainly used to produce a localization frame. As a result, users should pay attention to adjustable CT parameters so as to minimize the radiation dose and avoid any adverse radiation effects which may interfere with biological parameters studied.

Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France)] [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France); Ranouil, Julien [Landauer Europe, 33 avenue du Général Leclerc, Fontenay-aux-Roses 92266 Cedex (France)] [Landauer Europe, 33 avenue du Général Leclerc, Fontenay-aux-Roses 92266 Cedex (France); Morgand, Loïc; Raguin, Olivier [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France)] [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France); Walker, Paul [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)] [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France); Brunotte, François [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)] [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)

2013-12-15T23:59:59.000Z

138

FUSION OF HYPERSPECTRAL AND BATHYMETRY DATA FOR IMPROVED BENTHIC HABITAT MAPPING  

E-Print Network [OSTI]

FUSION OF HYPERSPECTRAL AND BATHYMETRY DATA FOR IMPROVED BENTHIC HABITAT MAPPING Maria C. Torres, coastal remote sensing, underwater unmixing, benthic habitat mapping, data fusion. #12;

Gilbes, Fernando

139

E-Print Network 3.0 - airborne hyperspectral imagery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Fusion of Hyperspectral and Multispectral Imagery with the Objective of Improving Spatial Resolution While Retaining Spectral Data Summary: Development of Algorithm for...

140

Hyperspectral mineral mapping in support of geothermal exploration-  

Open Energy Info (EERE)

mineral mapping in support of geothermal exploration- mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hyperspectral mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Abstract N/A Authors B. A. Martini, E. A. Silver, W. L. Pickles and P. A. Cocks Conference Geothermal Resources Council Annual Meeting; Morelia, Mexico; 2004 Published Geothermal Resources Council Annual Meeting;, 2004 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hyperspectral mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan  

E-Print Network [OSTI]

Titan is one of the primary scientific objectives of the NASA ESA ASI Cassini Huygens mission. Scattering by haze particles in Titan's atmosphere and numerous methane absorptions dramatically veil Titan's surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4 5.2 ?m. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scat...

Rodríguez, S; Sotin, C; Clénet, H; Clark, R N; Buratti, B; Brown, R H; Mccord, T B; Nicholson, P D; Baines, K H; 10.1016/J.PSS.2006.06.016

2009-01-01T23:59:59.000Z

142

Evaluating the Effects of Spatial Resolution on Hyperspectral Fire Detection and Temperature Retrieval  

E-Print Network [OSTI]

and background land cover. Previous work has used hyperspectral data acquired from airborne platforms, limiting (Riaño et al., 2002). Hyperspectral sensors utilize a large number of contiguous bands, each, like all airborne sensors, faces issues of varying spatial resolutions and has limited spatial

143

Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses  

E-Print Network [OSTI]

Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses by David Title of Thesis: Gas Plume Species Identification in LWIR Hyperspectral Imagery by Regression Analyses I in whole or in part. Any reproduction will not be for commercial use or profit. Signature Date ii #12;Gas

Salvaggio, Carl

144

Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma  

SciTech Connect (OSTI)

A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

Marshall, F. J., E-mail: fredm@lle.rochester.edu; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2014-11-15T23:59:59.000Z

145

18th Annual International Conference of the IEEE Engineering in MIedicineand BiollogySociety, Amsterdam 1996 3.3.1: MR Imaging Systems and Reconstruction Techniques  

E-Print Network [OSTI]

Society, Amsterdam 1996 3.3.1: MR Imaging Systems and Reconstruction Techniques MEASURINGAC MAGNETIC FIELD is given in Fig.1. In the absence of an applied AC current, this pulse sequence is the same asthe one used by Maudsley A.A. et.al. to calculate the DC magnetic field inhomo se RP .,A_ II I f 0Gz I " v - who & - Fig.1

Ider, Yusuf Ziya

146

Automated GIS-based derivation of urban ecological indicators using hyperspectral remote sensing and height information  

Science Journals Connector (OSTI)

Abstract Urban ecological indicators allow the objective and quantitative characterisation of ecological conditions in a spatially continuous way by evaluating the influence of urban surface types with respect to ecological functions and ecosystem services. Although the concept had already been developed in the 1980s, the variety of existing indicators had not been widely applied yet in urban planning practice, because of the high manual mapping effort that is required for spatially differentiated urban surface mapping. This paper presents a new automated remote sensing and GIS-based system for the flexible and user-defined derivation of urban ecological indicators. The system is based on automated surface material mapping using airborne hyperspectral image data and height information. Because the material classes obtained from remote sensing analysis differ in part from the surface types needed for the calculation of urban ecological indicators, they have been transformed into so-called linking categories representing the basis for the automated GIS-based derivation of urban ecological indicators. For this purpose, a computer-based system for flexible indicator derivation has been developed, allowing the user-defined integration of indicators based on the variable determination of mapping units, linking categories and respective weighting factors. Based on a comprehensive review of existing ecological indicators, 14 indicators have been selected and implemented in the system. To demonstrate the potential of the new system, a variety of indicators has been derived for two test sites situated in the German cities of Dresden and Potsdam, using city blocks defined by the municipal authorities as spatial mapping units. The initial mapping of surface materials was automatically performed on the basis of airborne hyperspectral image data acquired by the HyMAP system. The results of subsequent GIS-based indicator calculation were validated using results from field-based reference mapping that had been carried out for selected city blocks situated in both cities. An accuracy assessment for these reference city blocks has revealed mean errors of approximately 4%, confirming the suitability of the developed automated GIS-based system for flexible and efficient indicator calculation.

Robert Behling; Mathias Bochow; Saskia Foerster; Sigrid Roessner; Hermann Kaufmann

2015-01-01T23:59:59.000Z

147

Ground-based Technologies for Cotton Root Rot Control  

E-Print Network [OSTI]

. The effects of multiple plant stressors on the accuracy of this technique are unknown. A similar classification process was done using hyperspectral images by Yang et al. (2010). Their study showed that both hyperspectral and multispectral methods could...

Cribben, Curtis D

2013-04-24T23:59:59.000Z

148

Hyperspectral microscopy using an external cavity quantum cascade laser and its applications for explosives detection  

SciTech Connect (OSTI)

A hyperspectral infrared microscope using external cavity quantum cascade laser illumination and a microbolometer focal plane array is used to characterize nanogram-scale particles of the explosives RDX, tetryl, and PETN at fast acquisition rates.

Phillips, Mark C.; Suter, Jonathan D.; Bernacki, Bruce E.

2012-04-01T23:59:59.000Z

149

Safety and efficacy for new techniques and imaging using new equipment to support European legislation: an EU coordination action  

Science Journals Connector (OSTI)

......JAFROC) 2.0 software. A method for...ethical issues in radiation protection research...medical imaging, safety dilemmas and...special issue of Radiation Protection Dosimetry...Open-Source software that was regarded...use of ionising radiation in this field...efficacy and safety in IR, the achievements......

J. Zoetelief; K. Faulkner

2008-08-01T23:59:59.000Z

150

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration-  

Open Energy Info (EERE)

Mineral Mapping In Support Of Geothermal Exploration- Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Details Activities (2) Areas (2) Regions (0) Abstract: Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic

151

Information-Efficient Spectral Imaging Sensor With Tdi  

DOE Patents [OSTI]

A programmable optical filter for use in multispectral and hyperspectral imaging employing variable gain time delay and integrate arrays. A telescope focuses an image of a scene onto at least one TDI array that is covered by a multispectral filter that passes separate bandwidths of light onto the rows in the TDI array. The variable gain feature of the TDI array allows individual rows of pixels to be attenuated individually. The attenuations are functions of the magnitudes of the positive and negative components of a spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. This system provides for a very efficient determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

Rienstra, Jeffrey L. (Albuquerque, NM); Gentry, Stephen M. (Albuquerque, NM); Sweatt, William C. (Albuquerque, NM)

2004-01-13T23:59:59.000Z

152

M-BAND IMAGING OF THE HR 8799 PLANETARY SYSTEM USING AN INNOVATIVE LOCI-BASED BACKGROUND SUBTRACTION TECHNIQUE  

SciTech Connect (OSTI)

Multi-wavelength observations/spectroscopy of exoplanetary atmospheres are the basis of the emerging exciting field of comparative exoplanetology. The HR 8799 planetary system is an ideal laboratory to study our current knowledge gap between massive field brown dwarfs and the cold 5 Gyr old solar system planets. The HR 8799 planets have so far been imaged at J- to L-band, with only upper limits available at M-band. We present here deep high-contrast Keck II adaptive optics M-band observations that show the imaging detection of three of the four currently known HR 8799 planets. Such detections were made possible due to the development of an innovative LOCI-based background subtraction scheme that is three times more efficient than a classical median background subtraction for Keck II AO data, representing a gain in telescope time of up to a factor of nine. These M-band detections extend the broadband photometric coverage out to {approx}5 {mu}m and provide access to the strong CO fundamental absorption band at 4.5 {mu}m. The new M-band photometry shows that the HR 8799 planets are located near the L/T-type dwarf transition, similar to what was found by other studies. We also confirm that the best atmospheric fits are consistent with low surface gravity, dusty, and non-equilibrium CO/CH{sub 4} chemistry models.

Galicher, Raphael; Marois, Christian [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Macintosh, Bruce; Konopacky, Quinn [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Barman, Travis, E-mail: raphael.galicher@nrc-cnrc.gc.ca [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

2011-10-01T23:59:59.000Z

153

Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

Malone, Robert; Celeste, John; Celliers, Peter; Frogget, Brent; Robert Guyton,,; Kaufman, Morris; Lee, Tony; MacGowan, Brian; Ng, Edmend; Reinbachs, Imants; Robinson, Ronald; Tunnell, Thomas; Watts, Phillip

2007-08-01T23:59:59.000Z

154

Estimating biodiversity of dry forests and coral reefs with hyperspectral data: a NASA EPSCOR project at UPRM  

E-Print Network [OSTI]

Estimating biodiversity of dry forests and coral reefs with hyperspectral data: a NASA EPSCOR and modelsensing and field data to assess and model components of ecosystem biodiversity · Utilize hyperspectral service in PR and PR department ofp Natural Resources #12;What is ecosystem biodiversity ?biodiversity ? D

Gilbes, Fernando

155

Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Electrical Techniques Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the electrical resistivity of the

156

Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana  

SciTech Connect (OSTI)

Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

2009-11-01T23:59:59.000Z

157

Information-efficient spectral imaging sensor  

DOE Patents [OSTI]

A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

Sweatt, William C. (Albuquerque, NM); Gentry, Stephen M. (Albuquerque, NM); Boye, Clinton A. (Albuquerque, NM); Grotbeck, Carter L. (Albuquerque, NM); Stallard, Brian R. (Albuquerque, NM); Descour, Michael R. (Tucson, AZ)

2003-01-01T23:59:59.000Z

158

A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers  

E-Print Network [OSTI]

This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds...

Cai, Weiwei; Kaminski, Clemens F.

2014-01-21T23:59:59.000Z

159

Nanometric Optical Imaging Frontiers in Chemical Imaging  

E-Print Network [OSTI]

Nanometric Optical Imaging Frontiers in Chemical Imaging Seminar Series Presented by... Professor growing field which has provided for nanometric optical imaging in the near-field. Even though a variety of techniques are being developed with nanometric optical imaging potential, near-field optics remains the most

160

Dual Plane Imaging  

E-Print Network [OSTI]

We outline a technique called Dual Plane Imaging which should significantly improve images which would otherwise be blurred due to atmospheric turbulence. The technique involves capturing all the spatial, directional and temporal information about the arriving photons and processing the data afterwards to produce the sharpened images. The technique has particular relevance for imaging at around 400-1000nm on extremely large telescopes (ELTs).

Parry, Ian

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Metamaterial microwave holographic imaging system  

Science Journals Connector (OSTI)

We demonstrate a microwave imaging system that combines advances in metamaterial aperture design with emerging computational imaging techniques. The flexibility inherent to...

Hunt, John; Gollub, Jonah; Driscoll, Tom; Lipworth, Guy; Mrozack, Alex; Reynolds, Matthew S; Brady, David J; Smith, David R

2014-01-01T23:59:59.000Z

162

Masked deposition techniques for achieving multilayer period variations required for short-wavelength (68-Å) soft-x-ray imaging optics  

Science Journals Connector (OSTI)

Practical issues in the development of multilayer coatings for reflective imaging systems operating at ? ? 68 Å are discussed. The 1% bandpass of Ru/B4C multilayers at this...

Kortright, J B; Gullikson, E M; Denham, P E

1993-01-01T23:59:59.000Z

163

Inductively coupled plasma chemistry examinations with visible acousto-optic tunable filter hyperspectral imaging{  

E-Print Network [OSTI]

to be a powerful tool for plasma chemistry research. Introduction Inductively coupled plasma optical emission

Duffin, Kirk

164

Hyperspectral Imaging in Diabetic Foot Wound Care Dmitry Yudovsky, M.S.,1  

E-Print Network [OSTI]

, Los Angeles, CA; 2 Department of Surgery, UCLA/Olive View Medical Center, Sylmar, CA; and 3 Biomedical of California, Los Angeles, CA Abbreviations: (CCD) charge-coupled device, (LED) light-emitting diode, (MAD

Pilon, Laurent

165

Mapping Localized Surface Plasmons within Silver Nanocubes Using Cathodoluminescence Hyperspectral Imaging  

Science Journals Connector (OSTI)

The vial cap was replaced loosely, and approximately 9 min was allowed to elapse before addition of 1.5 mL of the PVP solution in two 0.75 mL aliquots, followed immediately by 0.5 mL of the AgNO3 solution. ... The emitted luminescence was collected and collimated using a Schwarzschild-type reflecting objective with a numerical aperture of 0.28 that was oriented with its optical axis perpendicular to the beam. ... The collimated light was brought to an f/#-matched focus at the 100-?m entrance slit of a 1/8-m spectrograph using an off-axis paraboloidal mirror and detected using an Andor-cooled electron-multiplying charge-coupled device (EMCCD). ...

Paul R. Edwards; David Sleith; Alastair W. Wark; Robert W. Martin

2011-06-27T23:59:59.000Z

166

Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal  

E-Print Network [OSTI]

, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55(5), 34 (2002). 13. Daylight Solutions, Inc., www.daylightsolutions.com; Block Engineering LLC, www.blockeng.com. 14. B. G. Lee, M. A

Capasso, Federico

167

Supporting Information for: Hyperspectral imaging of structure and composition in atomically thin heterostructures  

E-Print Network [OSTI]

The central mirror of a Schwarzschild objective obscures the central portion of the collected light cone (see. Light exiting the monochromator is focused with parabolic mirrors into a solarization a reflective (Schwarzschild) objective with an N.A. of 0.65, an effective magnification of ~100Ã?, and spatial

McEuen, Paul L.

168

Project 1640: the world's first ExAO coronagraphic hyperspectral imager for comparative planetary science  

E-Print Network [OSTI]

Zimmermang a American Museum of Natural History, Dept. of Astrophysics, Central Park West at 79th Street, New of inquiry. Exoplanetary science (the study of planets exterior to the solar system), which is nearly two These measurements and associated survey work have transformed our view of the solar neighborhood. It is full

169

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science/Techniques Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

170

Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair  

SciTech Connect (OSTI)

Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons.

Anna-Liisa Brownell

2003-11-28T23:59:59.000Z

171

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science/Techniques Print Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

172

Visual Speech Recognition Using Image Moments and Multiresolution Wavelet Images  

Science Journals Connector (OSTI)

This paper describes a new technique for recognizing speech using visual speech information. The video data of the speaker's mouth is represented using grayscale images named as motion history image (MHI). MHI is generated by applying accumulative image ... Keywords: visual speech recognition, motion history image, image moments, discrete stationary wavelet transform

Wai C. Yau; Dinesh K. Kumar; Sridhar P. Arjunan; Sanjay Kumar

2006-07-01T23:59:59.000Z

173

Dismantling techniques  

SciTech Connect (OSTI)

Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

Wiese, E.

1998-03-13T23:59:59.000Z

174

Deformation correction in ultrasound imaging in an elastography framework  

E-Print Network [OSTI]

Tissue deformation in ultrasound imaging is an inevitable phenomenon and poses challenges to the development of many techniques related to ultrasound image registration, including multimodal image fusion, freehand ...

Sun, Shih-Yu

2010-01-01T23:59:59.000Z

175

Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Remote Sensing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Remote Sensing Techniques: Remote sensing utilizes satellite and/or airborne based sensors to collect information about a given object or area. Remote sensing data collection methods can be passive or active. Passive sensors (e.g., spectral imagers) detect natural radiation that is emitted or reflected by the object or area

176

Image Logs | Open Energy Information  

Open Energy Info (EERE)

Image Logs Image Logs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Image Logs Details Activities (2) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, grain size, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip, thickness, and geometry of rock strata in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Locate zones of aquifer inflow/outflow Thermal:

177

Magnetic Imaging Wolfgang Kuch  

E-Print Network [OSTI]

Magnetic Imaging Wolfgang Kuch Freie Universit¨at Berlin, Institut f¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials

Kuch, Wolfgang

178

Full-Volume, Three-Dimensional, Transient Measurements of Bubbly Flows Using Particle Tracking Velocimetry and Shadow Image Velocimetry Coupled with Pattern Recognition Techniques  

SciTech Connect (OSTI)

Develop a state-of-the-art non-intrusive diagnostic tool to perform simultaneous measurements of both the temporal and three-dimensional spatial velocity of the two phases of a bubbly flow. These measurements are required to provide a foundation for studying the constitutive closure relations needed in computational fluid dynamics and best-estimate thermal hydraulic codes employed in nuclear reactor safety analysis and severe accident simulation. Such kinds of full-field measurements are not achievable through the commonly used point-measurement techniques, such as hot wire, conductance probe, laser Doppler anemometry, etc. The results can also be used in several other applications, such as the dynamic transport of pollutants in water or studies of the dispersion of hazardous waste.

Yassin Hassan

2001-11-30T23:59:59.000Z

179

Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash  

SciTech Connect (OSTI)

Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

2013-01-21T23:59:59.000Z

180

Novel imaging techniques, integrated with mineralogical, geochemical and microbiological characterizations to determine the biogeochemical controls on technetium mobility in FRC sediments  

SciTech Connect (OSTI)

The objective of this research program was to take a highly multidisciplinary approach to define the biogeochemical factors that control technetium (Tc) mobility in FRC sediments. The aim was to use batch and column studies to probe the biogeochemical conditions that control the mobility of Tc at the FRC. Background sediment samples from Area 2 (pH 6.5, low nitrate, low {sup 99}Tc) and Area 3 (pH 3.5, high nitrate, relatively high {sup 99}Tc) of the FRC were selected (http://www.esd.ornl.gov/nabirfrc). For the batch experiments, sediments were mixed with simulated groundwater, modeled on chemical constituents of FRC waters and supplemented with {sup 99}Tc(VII), both with and without added electron donor (acetate). The solubility of the Tc was monitored, alongside other biogeochemical markers (nitrate, nitrite, Fe(II), sulfate, acetate, pH, Eh) as the 'microcosms' aged. At key points, the microbial communities were also profiled using both cultivation-dependent and molecular techniques, and results correlated with the geochemical conditions in the sediments. The mineral phases present in the sediments were also characterized, and the solid phase associations of the Tc determined using sequential extraction and synchrotron techniques. In addition to the batch sediment experiments, where discrete microbial communities with the potential to reduce and precipitate {sup 99}Tc will be separated in time, we also developed column experiments where biogeochemical processes were spatially separated. Experiments were conducted both with and without amendments proposed to stimulate radionuclide immobilization (e.g. the addition of acetate as an electron donor for metal reduction), and were also planned with and without competing anions at high concentration (e.g. nitrate, with columns containing Area 3 sediments). When the columns had stabilized, as determined by chemical analysis of the effluents, we used a spike of the short-lived gamma emitter {sup 99m}Tc (50-200 MBq; half life 6 hours) and its mobility was monitored using a {gamma}-camera. Incorporation of low concentrations of the long-lived 99Tc gave a tracer that can be followed by scintillation counting, should the metastable form of the radionuclide decay to below detection limits before the end of the experiment (complete immobilization or loss of the Tc from the column). After the Tc was reduced and immobilized, or passed through the system, the columns were dismantled carefully in an anaerobic cabinet and the pore water geochemistry and mineralogy of the columns profiled. Microbial community analysis was determined, again using molecular and culture-dependent techniques. Experimental results were also modeled using an established coupled speciation and transport code, to develop a predictive tool for the mobility of Tc in FRC sediments. From this multidisciplinary approach, we hoped to obtain detailed information on the microorganisms that control the biogeochemical cycling of key elements at the FRC, and we would also be able to determine the key factors that control the mobility of Tc at environmentally relevant concentrations at this site.

Jonathan R. Lloyd

2009-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing  

Broader source: Energy.gov (indexed) [DOE]

Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2 Department of Geography, University of South Carolina, Columbia, SC 29208, USA; E-Mail: johnj@mailbox.sc.edu 3 Department of Geography, Brigham Young University, Provo, UT 84605, USA; E-Mail: ryan.jensen@byu.edu 4 Savannah River National Laboratory, Department of Energy, Aiken, SC 29808, USA;

182

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach  

SciTech Connect (OSTI)

Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

Filippi, Anthony M [ORNL; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

183

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach  

SciTech Connect (OSTI)

For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

Fillippi, Anthony [Texas A& M University; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

184

Imaging and sensing based on muon tomography  

DOE Patents [OSTI]

Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

2012-10-16T23:59:59.000Z

185

Multispectral Imaging At Fort Bliss Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Multispectral Imaging At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Multispectral Imaging Activity Date Usefulness not...

186

A laser speckle based position sensing technique  

E-Print Network [OSTI]

This thesis presents the design and development of a novel laser-speckle-based position sensing technique. In our prototype implementation, a He-Ne laser beam is directed at the surface of an air-bearing spindle. An imaging ...

Shilpiekandula, Vijay, 1979-

2004-01-01T23:59:59.000Z

187

Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation  

SciTech Connect (OSTI)

We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

2014-06-23T23:59:59.000Z

188

Image Forensic of Glare Feature for Improving Image Retrieval Using Benford's Law  

E-Print Network [OSTI]

Image Forensic of Glare Feature for Improving Image Retrieval Using Benford's Law Ghulam Qadir proposed technique is novel and has a potential to be an image forensic tool for quick image analysis. I. INTRODUCTION The field of digital image forensics is striving hard to restore the lost trust in digital content

Doran, Simon J.

189

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

to Geothermal Prospecting Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Use of Geophysical Techniques...

190

Image Mining by Matching Exemplars Using Entropy Clark F. Olson  

E-Print Network [OSTI]

different sensors (e.g. CCD versus FLIR). Current matching techniques are effi- cient for single images

Olson, Clark F.

191

Imaging Vertically Oriented Defects with Multi-Saft  

Science Journals Connector (OSTI)

Imaging vertically oriented defects using the Synthetic Aperture Focusing Technique (SAFT) requires special consideration. When the faces...

M. Lorenz; U. Stelwagen; A. J. Berkhout

1991-01-01T23:59:59.000Z

192

Image fusion for a nighttime driving display  

E-Print Network [OSTI]

An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

Herrington, William Frederick

2005-01-01T23:59:59.000Z

193

Surface Imaging Using UHV-CTEM  

Science Journals Connector (OSTI)

......review-article Review Surface Imaging Using UHV-CTEM Katsumichi Yagi Physics Department...conventional transmission electron microscopies (UHV-CTEM) is reviewed. Techniques for routine...surface dynamic processes. surface imaging|UHV-CTEM|surface structure| Review / Electron......

Katsumichi Yagi

1995-10-01T23:59:59.000Z

194

Modern Imaging Technology: Recent Advances  

SciTech Connect (OSTI)

This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

Welch, Michael J.; Eckelman, William C.

2004-06-18T23:59:59.000Z

195

NASA High Contrast Imaging for Exoplanets  

Science Journals Connector (OSTI)

Described is NASA's ongoing program for detection and characterization of exo-solar planets via high-contrast imaging. Some of the more promising proposed techniques under assessment...

Lyon, Richard

196

Handbook on research techniques  

Science Journals Connector (OSTI)

Handbook on research techniques ... A request for contributions to a handbook entitled "Handbook of Research Techniques" for gifted children. ...

William Marina

1972-01-01T23:59:59.000Z

197

Estimating radiological background using imaging spectroscopy  

SciTech Connect (OSTI)

Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

2014-06-13T23:59:59.000Z

198

Molecular Imaging Applications in Nanomedicine  

Science Journals Connector (OSTI)

The purpose of this article is to explore how molecular imaging techniques can be used as useful adjunts in the development of “nanomedicine” and in personalizing treatment of patients....

King C.P. Li; Sunil D. Pandit; Samira Guccione…

2004-06-01T23:59:59.000Z

199

Quantum Imaging Technologies  

E-Print Network [OSTI]

Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum ghost imaging and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of methods for characterizing the elusive quantum state itself. In this document, we describe new technologies that use the quantum properties of light for security. The first is a technique that extends the principles behind QKD to the field of imaging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that are secure against intercept-resend jamming attacks. The second technology presented in this article is based on an extension of quantum ghost imaging. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this document is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. We discuss the development of two OAM-QKD protocols based on the BB84 and Ekert QKD protocols. The fourth and final technology presented in this article is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state. We use this technique to characterize the quantum state of a photon with a dimensionality of d=27, and measure its rotation in the natural basis of OAM.

Mehul Malik; Robert W. Boyd

2014-06-06T23:59:59.000Z

200

Tiny images  

E-Print Network [OSTI]

The human visual system is remarkably tolerant to degradations in image resolution: in a scene recognition task, human performance is similar whether $32 \\times 32$ color images or multi-mega pixel images are used. With ...

Torralba, Antonio

2007-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

X-ray Imaging Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

202

Multispectral Imaging | Open Energy Information  

Open Energy Info (EERE)

Multispectral Imaging Multispectral Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Multispectral Imaging Details Activities (35) Areas (22) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: relative mineral maps Stratigraphic/Structural: aerial photographs can show structures Hydrological: delineate locations of surface water features Thermal: vegetation maps can show plants stressed due to nearby thermal activity Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sq. mile Median Estimate (USD): 370.2337,023 centUSD

203

Image texture analysis of elastograms  

E-Print Network [OSTI]

generated elastograms to obtain effective texture features. Four image analysis techniques, co-occurrence statistics, wavelet decomposition, fractal analysis and granulomeay are used to extract a number of features from each image. The inclusions...-RESOLUTION FRACTAL ANALYSIS . . . . . . E. GRANULOMETRIC FEATURES . . F. DATA NORMALIZATION . G. SEPARABILITY MEASURE 13 13 . . . . . 14 . . . . . 20 . . . . . 29 33 36 36 IV TEXTURE ANALYSIS OF SIMULATED ELASTOGRAMS. . . . . . . . . . . 38 A. SIMULATION...

Hussain, Fasahat

2012-06-07T23:59:59.000Z

204

3D-FFT for Signature Detection in LWIR Images  

SciTech Connect (OSTI)

Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier space can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.

Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.; Nuffer, Lisa L.; Foote, Harlan P.

2007-11-20T23:59:59.000Z

205

Confidence-Driven Image Co-matting Linbo Wanga  

E-Print Network [OSTI]

, the task of estimating accurate foreground opacity from a given image, is a severely ill stack than applying state-of-the-art single image matting techniques individually on each image fore- ground opacity from natural images. Specifically, given an input image I, it estimates

Wang, Jue

206

Fluorescent microthermographic imaging  

SciTech Connect (OSTI)

In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

Barton, D.L.

1993-09-01T23:59:59.000Z

207

Phase-space representation of digital holographic and light field imaging with application to two-phase flows  

E-Print Network [OSTI]

In this thesis, two computational imaging techniques used for underwater research, in particular, two-phase flows measurements, are presented. The techniques under study, digital holographic imaging and light field imaging, ...

Tian, Lei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

208

September 2006 FORENSIC TECHNIQUES  

E-Print Network [OSTI]

September 2006 FORENSIC TECHNIQUES: HELPING ORGANIZATIONS IMPROVE THEIR RESPONSES TO INFORMATION SECURITY INCIDENTS FORENSIC TECHNIQUES: HELPING ORGANIZATIONS IMPROVE THEIR RESPONSES TO INFORMATION and Technology National Institute of Standards and Technology Digital forensic techniques involve the application

209

Definition: Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Magnetotelluric Techniques Jump to: navigation, search Dictionary.png Magnetotelluric Techniques Magnetotellurics is an electromagnetic geophysical method used to image the electrical resistivity structure of the subsurface through the measurement of electrical and magnetic fields at the earth's surface.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

210

Understanding User Intentions in Vertical Image Search  

E-Print Network [OSTI]

proposed for solving the image matching problem and object location problem in crowded scenes. Such method was further developed in [Stricker and Orengo, 1995] with improved indexing techniques to color information in dig- ital images. In [Huang et al...-tree, R-tree and its variant R+-tree and R?-tree, are usually not scalable to dimensions higher than 20 [White and Jain, 1996]. 2.2 Image annotation Image annotation or image tagging is an area closely related to image retrieval. Image anno- tation...

Chen, Yuxin

211

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

212

Technique for ship/wake detection  

DOE Patents [OSTI]

An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.

Roskovensky, John K. (Albuquerque, NM)

2012-05-01T23:59:59.000Z

213

Shadowgraph illumination techniques for framing cameras  

SciTech Connect (OSTI)

Many pulse power applications in use at the Pegasus facility at the Los Alamos National Laboratory require specialized imaging techniques. Due to the short event duration times, visible images are recorded by high-speed electronic framing cameras. Framing cameras provide the advantages of high speed movies of back light experiments. These high-speed framing cameras require bright illumination sources to record images with 10 ns integration times. High-power lasers offer sufficient light for back illuminating the target assemblies; however, laser speckle noise lowers the contrast in the image. Laser speckle noise also limits the effective resolution. This discussion focuses on the use of telescopes to collect images 50 feet away. Both light field and dark field illumination techniques are compared. By adding relay lenses between the assembly target and the telescope, a high-resolution magnified image can be recorded. For dark field illumination, these relay lenses can be used to separate the object field from the illumination laser. The illumination laser can be made to focus onto the opaque secondary of a Schmidt telescope. Thus, the telescope only collects scattered light from the target assembly. This dark field illumination eliminates the laser speckle noise and allows high-resolution images to be recorded. Using the secondary of the telescope to block the illumination laser makes dark field illumination an ideal choice for the framing camera.

Malone, R.M.; Flurer, R.L.; Frogget, B.C. [Bechtel Nevada, Los Alamos, NM (United States). Los Alamos Operations; Sorenson, D.S.; Holmes, V.H.; Obst, A.W. [Los Alamos National Lab., NM (United States)

1997-12-31T23:59:59.000Z

214

Simplified image processing system for softcopy presentation  

E-Print Network [OSTI]

-based i, echniques for its particular application. In the field of astronomy, digital image processing techniques are used to process images acquired through earth-based telescopes as well as earth orbiting outward- looking satellites jfij, I7j, j8... and analysis is being used to support computerized axial tomography and ultrasound scanning systems ]9]. Typical digital techniques used in biomedical applications include image enhancement, geometric transformation, edge detection, color and pseudo color...

Corleto-Mena, Jose Gilberto

1984-01-01T23:59:59.000Z

215

In Vivo Metabolic Fingerprinting of Neutral Lipids with Hyperspectral Stimulated Raman Scattering Microscopy  

Science Journals Connector (OSTI)

Coherent anti-Stokes Ramam scattering (CARS) and Stimulated Raman scattering (SRS) largely overcome this problem by improving the imaging sensitivity by 4–5 orders of magnitude. ... (25) The yeast mutant strains—FYS252 (lacking Are1 and Are2) and FYS242 (lacking Dga1 and Lro1)—have defective SE and TAG synthesis, respectively. ...

Dan Fu; Yong Yu; Andrew Folick; Erin Currie; Robert V. Farese, Jr.; Tsung-Huang Tsai; Xiaoliang Sunney Xie; Meng C. Wang

2014-05-28T23:59:59.000Z

216

People Images  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Images People Images Several hundred of the 1700 U.S. scientists contributing to the LHC accelerator and experiments gathered in June 2008 in CERN's building 40 CE0252 Joel...

217

Multimodal medical image fusion using autoassociative neural network  

Science Journals Connector (OSTI)

In this paper, a principal component extraction based image fusion technique, using auto-associative neural network, has been implemented and analyzed. Fusion of images taken at different resolutions, intensity and by different techniques, helps physicians ... Keywords: RLS learning, auto-associative neural network, image fusion

Suprava Patnaik; Tapasmini Sahoo

2008-04-01T23:59:59.000Z

218

Assessor Training Assessment Techniques  

E-Print Network [OSTI]

NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment

219

Weather Forecasting System Based on Satellite Imageries Using Neuro-fuzzy Techniques  

Science Journals Connector (OSTI)

We have built an automated Satellite Images Forecasting System with Neuro-Fuzzy techniques. Firstly, Subtractive Clustering is applied on to a satellite image to extract the locations of the clouds. This is follo...

Chien-Wan Tham; Sion-Hui Tian; Liya Ding

2002-01-01T23:59:59.000Z

220

Semi-Automatic Image Annotation Using Event and Torso Identification  

E-Print Network [OSTI]

Semi-Automatic Image Annotation Using Event and Torso Identification Bongwon Suh, Benjamin B. Bulk annotation, where multiple images are annotated at once, is a desired feature for image management for automatically creating meaningful image clusters for efficient bulk annotation. These techniques are not perfect

Golbeck, Jennifer

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

IRIS - a system for image and video retrieval  

Science Journals Connector (OSTI)

The abundance of available multimedia information (e.g.videos, audio, images) requires efficient and effective annotation and retrieval methods. The IRIS system is designed for content-based retrieval of single images. Techniques and methods from computer ...

P. Alshuth; Th. Hermes; Ch. Klauck; J. Kreyß; M. Röper

1996-11-01T23:59:59.000Z

222

Ames Lab 101: Real-Time 3D Imaging  

ScienceCinema (OSTI)

Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

Zhang, Song

2012-08-29T23:59:59.000Z

223

Image Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mosaic of earth and sky images Mosaic of earth and sky images Image Resources Free image resources covering energy, environment, and general science. Here are some links to energy- and environment-related photographic databases. Berkeley Lab Photo Archive Berkeley Lab's online digital image collection. National Science Digital Library (NSDL) NSDL is the Nation's online library for education and research in science, technology, engineering, and mathematics. The World Bank Group Photo Library A distinctive collection of over 11,000 images that illustrate development through topics such as Agriculture, Education, Environment, Health, Trade and more. Calisphere Compiles the digital collections of libraries, museums, and cultural heritage organizations across California, and organizes them by theme, such

224

Ultrasonic flow imaging system: A feasibility study  

SciTech Connect (OSTI)

This report examines the feasibility and potential problems in developing a real-time ultrasonic flow imaging instrument for on-line monitoring of mixed-phased flows such as coal slurries. State-of-the-art ultrasonic imaging techniques are assessed for this application. Reflection and diffraction tomographies are proposed for further development, including image-reconstruction algorithms and parallel processing systems. A conventional ultrasonic C-scan technique is used to demonstrate the feasibility of imaging the particle motion in a solid/water flow. 13 refs., 11 figs.

Sheen, S.H.; Lawrence, W.P.; Chien, H.T.; Raptis, A.C.

1991-09-01T23:59:59.000Z

225

Enhancement of two-phase flow images obtained using dynamic neutron radiography  

E-Print Network [OSTI]

Though both film and video radiographic image techniques are available in neutron radiography, radiographic video cameras are commonly used to capture the dynamic flow patterns in a rapid sequence of images. These images may be useful to verify two...

Johns, Russell Craig

2012-06-07T23:59:59.000Z

226

E-Print Network 3.0 - adaptive filtering techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

adaptive filtering techniques Page: << < 1 2 3 4 5 > >> 1 Applications of the Fourier Transform in Imaging Highpass and Lowpass Filters Summary: in the frequency domain. We present...

227

EMSL - Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imaging en Diffusional Motion of Redox Centers in Carbonate Electrolytes . http:www.emsl.pnl.govemslwebpublicationsdiffusional-motion-redox-centers-carbonate-electrolytes

228

Multispectral Imaging At Columbus Salt Marsh Area (Shevenell...  

Open Energy Info (EERE)

Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Columbus Salt Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful...

229

Data Image  

Science Journals Connector (OSTI)

Data image refers to the sum of all information 74/100,000 available in all datasets linked to a specific name; to all those who have access to databases that name is actually the data image of the real person...

2008-01-01T23:59:59.000Z

230

Data Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Data Techniques: The collection, processing, and interpretation of data from various methods so accurate interpretations can be made about the subject matter. Other definitions:Wikipedia Reegle Introduction Data techniques are any technique where data is collected and organized in a manner so that the information is useful for geothermal purposes. The

231

Fuel Equivalence Ratio Imaging for Methane Jets  

Science Journals Connector (OSTI)

A 2-D fuel/oxygen equivalence ratio imaging system has been developed. The technique exploits the efficient quenching of the fluorescence of organic molecules by molecular oxygen in...

Ni, T Q; Melton, L A

1993-01-01T23:59:59.000Z

232

Segmentation of medical images under topological constraints  

E-Print Network [OSTI]

Major advances in the field of medical imaging over the past two decades have provided physicians with powerful, non-invasive techniques to probe the structure, function, and pathology of the human body. This increasingly ...

Ségonne, Florent, 1976-

2006-01-01T23:59:59.000Z

233

Efficient implementation schemes for image enhancement filters  

E-Print Network [OSTI]

Generalized median filtering techniques that have appeared in previous literature suffer from some severe disadvantages. They are not only hardware intensive and time consuming but also tend to smear image edges. These shortcomings can be overcome...

Yusuf, Khadem Mahmud

2012-06-07T23:59:59.000Z

234

Printed 3D Multi-View Images  

Science Journals Connector (OSTI)

The technique to produce full-parallax 3D multi-view still pictures is described. The matrix of source views (from 6x6 to 15x15 views) is built from computer-generated images or...

Kim, Sung-Sik; Son, Kwang-Hun; Saveljev, V V; Son, Jung-Young

2001-01-01T23:59:59.000Z

235

Wetpaint: Scraping Through Multi-Layered Images  

E-Print Network [OSTI]

We introduce a technique for exploring multi-layered images by scraping arbitrary areas to determine meaningful relationships. Our system, called Wetpaint, uses perceptual depth cues to help users intuitively navigate ...

Bonanni, Leonardo Amerigo

236

Offshore hydraulic fracturing technique  

SciTech Connect (OSTI)

This paper describes the frac-and-pack completion technique currently being used in the Gulf of Mexico, and elsewhere, for stimulation and sand control. The paper describes process applications and concerns that arise during implementation of the technique and discusses the completion procedure, treatment design, and execution.

Meese, C.A. (Marathon Oil Co., Houston, TX (United States)); Mullen, M.E. (Marathon Oil Co., Lafayette, LA (United States)); Barree, R.D. (Marathon Oil Co., Littleton, CO (United States))

1994-03-01T23:59:59.000Z

237

Analog signal isolation techniques  

SciTech Connect (OSTI)

This paper discusses several techniques for isolating analog signals in an accelerator environment. The techniques presented here encompass isolation amplifiers, voltage-to-frequency converters (VIFCs), transformers, optocouplers, discrete fiber optics, and commercial fiber optic links. Included within the presentation of each method are the design issues that must be considered when selecting the isolation method for a specific application.

Beadle, E.R.

1992-01-01T23:59:59.000Z

238

Analog signal isolation techniques  

SciTech Connect (OSTI)

This paper discusses several techniques for isolating analog signals in an accelerator environment. The techniques presented here encompass isolation amplifiers, voltage-to-frequency converters (VIFCs), transformers, optocouplers, discrete fiber optics, and commercial fiber optic links. Included within the presentation of each method are the design issues that must be considered when selecting the isolation method for a specific application.

Beadle, E.R.

1992-12-31T23:59:59.000Z

239

Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geochemical Techniques Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Techniques: No definition has been provided for this term. Add a Definition Related Techniques Geochemical Techniques Geochemical Data Analysis Geothermometry Gas Geothermometry Isotope Geothermometry Liquid Geothermometry Cation Geothermometers Multicomponent Geothermometers Silica Geothermometers Thermal Ion Dispersion

240

Reaction product imaging  

SciTech Connect (OSTI)

Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Radiographic Technique With Heavy Ion Microbeams  

SciTech Connect (OSTI)

In this work, we introduce a new technique to perform densitometric and multielemental analysis of samples at the same time using a simple detector with heavy ion micro-beams. It consists in the simultaneous analysis of X-rays induced in the sample and in a secondary target arranged behind the specimen. The X-rays originated in the secondary target are attenuated when crossing the specimen producing a radiographic image with a monochromatic source.

Muscio, J. [ECyT, UNSAM, 1650 San Martin, Buenos Aires (Argentina); Somacal, H.; Burlon, A. A.; Debray, M. E.; Valda, A. A. [ECyT, UNSAM, 1650 San Martin, Buenos Aires (Argentina); U.A. Fisica, Laboratorio TANDAR, CNEA, 1650 San Martin, Buenos Aires (Argentina); Kreiner, A. J. [U.A. Fisica, Laboratorio TANDAR, CNEA, 1650 San Martin, Buenos Aires (Argentina); ECyT, UNSAM, 1650 San Martin, Buenos Aires (Argentina); CONICET (Argentina); Kesque, J. M.; Minsky, D. M. [U.A. Fisica, Laboratorio TANDAR, CNEA, 1650 San Martin, Buenos Aires (Argentina)

2007-02-12T23:59:59.000Z

242

Ultrasonic techniques for process monitoring and control.  

SciTech Connect (OSTI)

Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

Chien, H.-T.

1999-03-24T23:59:59.000Z

243

A STUDY OF PULSE-ECHO IMAGE FORMATION USING NON-QUADRATIC  

E-Print Network [OSTI]

techniques (e.g., B-mode and synthetic aperture focusing techniques (SAFT)). Methodology: Two- dimensional. INTRODUCTION B-mode, synthetic aperture focusing techniques (SAFT) and array imaging have been studied

Illinois at Urbana-Champaign, University of

244

Category:Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Well Log Techniques page? For detailed information on Well Log Techniques as exploration techniques, click here. Category:Well Log Techniques Add.png Add a new Well Log Techniques Technique Pages in category "Well Log Techniques" The following 17 pages are in this category, out of 17 total. A Acoustic Logs C Caliper Log Cement Bond Log Chemical Logging Cross-Dipole Acoustic Log D Density Log F FMI Log G Gamma Log I Image Logs M Mud Logging N Neutron Log P Pressure Temperature Log R Resistivity Log Resistivity Tomography S Single-Well and Cross-Well Resistivity Spontaneous Potential Well Log Stoneley Analysis

245

Imaging of near-Earth space plasma  

Science Journals Connector (OSTI)

...Thompson Imaging of near-Earth space plasma Cathryn N. Mitchell Department of Electronic...include the whole near-Earth space-plasma realm is yet to be realized, and provides...planets| Imaging of near-Earth space plasma. | This paper describes the technique...

2002-01-01T23:59:59.000Z

246

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

247

Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geophysical Techniques Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Techniques Details Activities (2) Areas (1) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: may be inferred Stratigraphic/Structural: may be inferred Hydrological: may be inferred Thermal: may be inferred Dictionary.png Geophysical Techniques: Geophysics is the study of the structure and composition of the earth's interior. Other definitions:Wikipedia Reegle Introduction Geophysical techniques measure physical phenomena of the earth such as gravity, magnetism, elastic waves, electrical and electromagnetic waves.

248

Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Techniques Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Techniques Details Activities (0) Areas (0) Regions (0) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Magnetotelluric Techniques:

249

Child Guidance Techniques.  

E-Print Network [OSTI]

TDOC Z TA24S.7 8873 NO.1314 Child Guidance Techniques The Texas MM University System ~ Texas Agricultural Extension Service DMia! C. Pfannstiel . Director College Station B-1314 ... 2 Contents Helpful Guidance T echniques...

Fraiser, Roberta C.

1982-01-01T23:59:59.000Z

250

Identification of Fissionable Materials Using the Tagged Neutron Technique  

SciTech Connect (OSTI)

This summary describes experiments to detect and identify fissionable materials using the tagged neutron technique. The objective of this work is to enhance homeland security capability to find fissionable material that may be smuggled inside shipping boxes, containers, or vehicles. The technique distinguishes depleted uranium from lead, steel, and tungsten. Future work involves optimizing the technique to increase the count rate by many orders of magnitude and to build in the additional capability to image hidden fissionable materials. The tagged neutron approach is very different to other techniques based on neutron die-away or photo-fission. This work builds on the development of the Associated Particle Imaging (API) technique at the Special Technologies Laboratory (STL) [1]. Similar investigations have been performed by teams at the Oak Ridge National Laboratory (ORNL), the Khlopin Radium Institute in Russia, and by the EURITRACK collaboration in the European Union [2,3,4].

R.P. Keegan, J.P. Hurley, J.R. Tinsley, R. Trainham

2009-06-30T23:59:59.000Z

251

Definition: Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search Dictionary.png Remote Sensing Techniques Remote sensing utilizes satellite and/or airborne based sensors to collect information about a given object or area. Remote sensing data collection methods can be passive or active. Passive sensors (e.g., spectral imagers) detect natural radiation that is emitted or reflected by the object or area being observed. In active remote sensing (e.g., radar) energy is emitted and the resultant signal that is reflected back is measured.[1] View on Wikipedia Wikipedia Definition Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object. In modern usage, the term generally refers to the use of aerial sensor technologies

252

Definition: Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Techniques Electromagnetic Techniques The objective of electromagnetic (EM) techniques is to image the electrical resistivity structure of the subsurface through the measurement of naturally- or artificially-generated electromagnetic fields.[1] View on Wikipedia Wikipedia Definition The electromagnetic force is one of the four fundamental interactions in nature, the other three being the strong interaction, the weak interaction, and gravitation. This force is described by electromagnetic fields, and has innumerable physical instances including the interaction of electrically charged particles and the interaction of uncharged magnetic force fields with electrical conductors. The word electromagnetism is a compound form of two Greek terms, ἢλεκτρον, ēlektron, "amber", and μαγνήτης, magnētēs, "magnet". The science

253

Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(10) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

254

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

255

Infrared Optical Imaging Techniques for Gas Visualization and Measurement  

E-Print Network [OSTI]

detection of natural gas from a pipeline. The capability of an infrared camera to detect a fugitive gas leak was combined with the simulation of vapor discharge and dispersion in order to obtain a correlation between the emission rates and the sizes...

Safitri, Anisa

2012-07-16T23:59:59.000Z

256

Techniques on Analysis of Photo Phase Shift Imaging  

E-Print Network [OSTI]

, and DKFZ Heidelberg, 69120 Heidelberg, Germany (e-mail: s.woerz@dkfz.de). H. von Tengg-Kobligk and H.-U. Kauczor are with the Department of Diagnostic and Interventional Radiology, University of Heidelberg, 69120 Heidelberg, Germany (e-mail: h....vontengg@dkfz-heidelberg.de; hans-ulrich. kauczor@med.uni-heidelberg.de). V. Henninger and F. Rengier are with the Department of Radiology, Ger- man Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany (e-mail: v.henninger@dkfz-heidelberg.de; f...

Terry, Robin 1990-

2012-04-12T23:59:59.000Z

257

3D thermography imaging standardization technique for inflammation diagnosis  

E-Print Network [OSTI]

Ju,X. Nebel,J.C. Siebert,J.P. Photonics Asia 2004, Proceedings of SPIE, Vol. 5640-46, 8-12 November 2004, Beijing, China pp 5640-46 Society of photo optical instrumentation engineers

Ju, X.

258

Integration of Enhanced Optical Tracking Techniques and Imaging in IGRT  

Science Journals Connector (OSTI)

......evaluate the efficacy of conven- tional manual patient positioning in the clinical practise of breast radiotherapy. Kruskal-Wallis Anova test, with dis- placement direction (latero-lateral, cranio-caudal, antero- posterior) as independent......

Guido Baroni; Marco Riboldi; Maria Francesca Spadea; Barbara Tagaste; Cristina Garibaldi; Roberto Orecchia; Antonio Pedotti

2007-03-01T23:59:59.000Z

259

Lensless imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co-workers. Their implementation of the technique is an extension of lensless Fourier transform holography to the x-ray regime, which detects the far field diffraction pattern of a...

260

History Images  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History Images History Images Los Alamos History in Images Los Alamos has a proud history and heritage of almost 70 years of science and innovation. The people of the Laboratory work on advanced technologies to provide the best scientific and engineering solutions to many of the nation's most crucial security challenges. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Back in the day Back in the day LA bridge in Los Alamos LA bridge in Los Alamos 1945 Army-Navy "E" Award 1945 Army-Navy "E" Award Louis Rosen Louis Rosen Bob Van Ness Robert Kuckuck and Michael Anastasio Bob Van Ness Robert Kuckuck and Michael Anastasio TA-18 TA-18 Elmer Island TU-4 assembly area Elmer Island TU-4 assembly area

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine  

E-Print Network [OSTI]

The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic ...

Shapiro, Mikhail G.

262

Video and Image Processing in Multimedia Systems (Video Processing)  

E-Print Network [OSTI]

COT 6930 Video and Image Processing in Multimedia Systems (Video Processing) Instructor: Borko. Content-based image and video indexing and retrieval. Video processing using compressed data. Course concepts and structures 4. Classification of compression techniques 5. Image and video compression

Furht, Borko

263

Vertebrate heart development: Lessons learnt from live imaging  

E-Print Network [OSTI]

Vertebrate heart development: Lessons learnt from live imaging California Institute of Technology employing different imaging techniques. Sub resolution imaging of beating zebrafish heart has however remained a challenge owing Embryonic heart is a 100 moving quasi-periodically at few Hertz frequency, over

Shyamasundar, R.K.

264

Simulating realistic imaging conditions for in situ liquid microscopy  

SciTech Connect (OSTI)

In situ transmission electron microscopy enables the imaging of biological cells, macromolecular protein complexes, nanoparticles, and other systems in a near-native environment. In order to improve interpretation of image contrast features and also predict ideal imaging conditions ahead of time, new virtual electron microscopic techniques are needed. A technique for virtual fluid-stage high-angle annular dark-field scanning transmission electron microscopy with the multislice method is presented that enables the virtual imaging of model fluid-stage systems composed of millions of atoms. The virtual technique is exemplified by simulating images of PbS nanoparticles under different imaging conditions and the results agree with previous experimental findings. General insight is obtained on the influence of the effects of fluid path length, membrane thickness, nanoparticle position, defocus and other microscope parameters on attainable image quality.

Welch, David A.; Faller, Roland; Evans, James E.; Browning, Nigel D.

2013-12-01T23:59:59.000Z

265

Enhancing retinal images by nonlinear registration  

E-Print Network [OSTI]

Being able to image the human retina in high resolution opens a new era in many important fields, such as pharmacological research for retinal diseases, researches in human cognition, nervous system, metabolism and blood stream, to name a few. In this paper, we propose to share the knowledge acquired in the fields of optics and imaging in solar astrophysics in order to improve the retinal imaging at very high spatial resolution in the perspective to perform a medical diagnosis. The main purpose would be to assist health care practitioners by enhancing retinal images and detect abnormal features. We apply a nonlinear registration method using local correlation tracking to increase the field of view and follow structure evolutions using correlation techniques borrowed from solar astronomy technique expertise. Another purpose is to define the tracer of movements after analyzing local correlations to follow the proper motions of an image from one moment to another, such as changes in optical flows that would be o...

Molodij, Guillaume; Glanc, Marie; Chenegros, Guillaume

2014-01-01T23:59:59.000Z

266

Nondestructive imaging of an ultracold lattice gas  

E-Print Network [OSTI]

We demonstrate the nondestructive imaging of a lattice gas of ultracold bosons. Atomic fluorescence is induced in the simultaneous presence of degenerate Raman sideband cooling. The combined influence of these processes controllably cycles an atom between a dark state and a fluorescing state while eliminating heating and loss. Through spatially resolved sideband spectroscopy following the imaging sequence, we demonstrate the efficacy of this imaging technique in various regimes of lattice depth and fluorescence acquisition rate. Our work provides an important extension of quantum gas imaging to the nondestructive detection, control and manipulation of atoms in optical lattices. In addition, our technique can also be extended to atomic species that are less amenable to molasses-based lattice imaging.

Y. S. Patil; L. M. Aycock; S. Chakram; M. Vengalattore

2014-04-22T23:59:59.000Z

267

Whole Slide Image Analysis Quantification using Aperio Digital Imaging in a Mouse Lung Metastasis Ronne L. Surface2  

E-Print Network [OSTI]

Whole Slide Image Analysis Quantification using Aperio Digital Imaging in a Mouse Lung Metastasis, Indiana University School of Medicine Digital whole slide imaging is the technique of digitizing a microscope slide at the highest resolution to produce a "digital virtual microscope slide". This digital

Zhou, Yaoqi

268

Infrared Inspection Techniques  

E-Print Network [OSTI]

. By means of a TV monitor tube, a thermal picture is formed where lighter parts represent areas with higher temperatures. Absolute temperature levels of objects can be measured with this technique from -300C to +20000C. A conventional camera is attached...

Hill, A. B.; Bevers, D. V.

1979-01-01T23:59:59.000Z

269

GARDIENNAGE Help Desk technique  

E-Print Network [OSTI]

--> Relais vers Garde GTPW ASCENSEURS 1ère impulsion Dispatching UCL (Système EBI Honeywell GTPW) Dispatching UCL --> SECURITAS LEW ALARMES CDC (Système EBI -Enterprise Building Integrator -Honeywell GTPW téléphonique ) TECHNIQUES CDC (Système EBI Honeywell GTPW) GTPW (Heures ouvrables) CDC (En dehors des heures

Nesterov, Yurii

270

Multi-exposure imaging for measurements in rubber production  

Science Journals Connector (OSTI)

In the paper, the application of high dynamic range and exposure fusion techniques to image-based measurement systems is described. The advantages of such techniques are discussed, and their performances are compared to the original high-contrast images and between them. Results will show the improvements of measurement reliability achieved with the technique presented in the case of length measurements of industrial products characterized by different surface reflectance.

M Bevilacqua; G Di Leo; M Landi; A Paolillo

2013-01-01T23:59:59.000Z

271

Query Optimization Techniques Class Hierarchies  

E-Print Network [OSTI]

Query Optimization Techniques Exploiting Class Hierarchies Sophie Cluet 1 Guido Moerkotte 2 1 INRIA Since the introduction of object base management systems (OBMS), many query optimization techniques tailored for object query languages have been proposed. They adapt known optimization techniques

Mannheim, Universität

272

Gamma-ray Imaging Methods  

SciTech Connect (OSTI)

In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

2006-10-05T23:59:59.000Z

273

Quantitative imaging of turbulent and reacting flows  

SciTech Connect (OSTI)

Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

274

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

275

Imaging bolometer  

DOE Patents [OSTI]

Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.

Wurden, Glen A. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

276

Imaging bolometer  

DOE Patents [OSTI]

Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.

Wurden, G.A.

1999-01-19T23:59:59.000Z

277

Miniaturization Techniques for Accelerators  

SciTech Connect (OSTI)

The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

Spencer, James E.

2003-05-27T23:59:59.000Z

278

Technique Subgroupings Spectroscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and NSLS-II beamlines according to DOE Technique Scheme and NSLS-II beamlines according to DOE Technique Scheme Technique Subgroupings Spectroscopy 01 - Low Energy Spectroscopy Infrared Photoemission U12IR, U4IR / MET* U5UA, U13 / ESM 02 - Soft X-Ray Spectroscopy Soft X-ray Spectroscopy Tender XAS U4B, U7A, X24A / SST, SSS* X15B, X19A / TES* 03 - Hard X-ray Spectroscopy EXAFS X3A, X3B, X11A, X11B, X18A, X18B, X23A2 / ISS, BMM, QAS*, XAS* 04 - Optics/Calibration/Metrology U3C,X8A/ OFT,MID Scattering 05 X-ray Diffraction X-Ray Powder Diffraction Extreme Conditions Energy Dispersive Micro-Beam Diffraction X7B,X10B,X14A,X16C,X17A / XPD,IXD* X17B2,X17B3,X17C / XPD, TEC*, 4DE* X17B1, X17B2 / NA X13B / MXD* 06 MX, footprinting Protein Crystallography X-ray footprinting X4A, X4C, X6A, X12B, X12C, X25, X29 / FMX, AMX, NYX;

279

Soviet image pattern recognition research  

SciTech Connect (OSTI)

This report is an assessment of the published Soviet image pattern recognition (IPR) research and was written by a panel of six US academic experts in that research field. Image pattern recognition is a set of technological research topics involving automatic or interactive computer processing of pictorial information, utilizing optical, electronic, and computer technologies. This report focuses on IPR system configuration (optical, hybrid, digital), and current research. The topical chapter headings are Image Processing Hardware and Software Preprocessing, Statistical Pattern Recognition, Computer Vision, and Optical Techniques and Systems. Soviet research in all areas of IPR is strong in theory, but limited by poor availability of equipment for generating and handling digital images, and digital computer hardware and software. Nevertheless, some Soviet IPR achievements compare favorably with those of the West. There is strong Soviet research in statistical pattern recognition, where fundamental relationships related to the factors determining error rates in classification of images are being developed. There has been good Soviet work in enhancement and restoration of images (visible and radar) of the surface of Venus. There is a strong Soviet development program in optics and optical processing related to IPR. Nevertheless, the state of Soviet research in computer vision is ten to fifteen years behind the West, because of the lack of adequate hardware and software. The Soviet scientists in the area appear competent and knowledgeable of Western work, so that any improvement in their research output would be derived from access to more capable equipment. 402 refs., 4 figs., 4 tabs.

McKenney, B.L.; McGrain, M. (eds.) (Science Applications International Corp., McLean, VA (USA). Foreign Applied Sciences Assessment Center); Klinger, A. (California Univ., Los Angeles, CA (USA). Dept. of Computer Science); Aggarwal, J.K. (Texas Univ., Austin, TX (USA)); George, N.J. (Rochester Univ., NY (USA). Inst. of Optics); Haralick, R.M. (Washington Univ., Seattle, WA (USA). Dept. of Electric

1989-12-01T23:59:59.000Z

280

Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gravity Techniques | Open Energy Information  

Open Energy Info (EERE)

Gravity Techniques Gravity Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

282

Applied ALARA techniques  

SciTech Connect (OSTI)

The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

Waggoner, L.O.

1998-02-05T23:59:59.000Z

283

Automating Shallow Seismic Imaging  

SciTech Connect (OSTI)

This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could make SSR surveying considerably more efficient and less expensive, particularly when geophone intervals of 25 cm or less are required. The most recent research analyzed the difference in seismic response of the geophones with variable geophone spike length and geophones attached to various steel media. Experiments investigated the azimuthal dependence of the quality of data relative to the orientation of the rigidly attached geophones. Other experiments designed to test the hypothesis that the data are being amplified in much the same way that an organ pipe amplifies sound have so far proved inconclusive. Taken together, the positive results show that SSR imaging within a few meters of the earth's surface is possible if the geology is suitable, that SSR imaging can complement GPR imaging, and that SSR imaging could be made significantly more cost effective, at least in areas where the topography and the geology are favorable. Increased knowledge of the Earth's shallow subsurface through non-intrusive techniques is of potential benefit to management of DOE facilities. Among the most significant problems facing hydrologists today is the delineation of preferential permeability paths in sufficient detail to make a quantitative analysis possible. Aquifer systems dominated by fracture flow have a reputation of being particularly difficult to characterize and model. At chemically contaminated sites, including U.S. Department of Energy (DOE) facilities and others at Department of Defense (DOD) installations worldwide, establishing the spatial extent of the contamination, along with the fate of the contaminants and their transport-flow directions, is essential to the development of effective cleanup strategies. Detailed characterization of the shallow subsurface is important not only in environmental, groundwater, and geotechnical engineering applications, but also in neotectonics, mining geology, and the analysis of petroleum reservoir analogs. Near-surface seismology is in the vanguard of non-intrusive approaches to increase knowledge of the shallow subsurface; our

Steeples, Don W.

2004-12-09T23:59:59.000Z

284

FUSION OF VISIBLE AND INFRARED IMAGES USING EMPIRICAL MODE DECOMPOSITION TO IMPROVE FACE RECOGNITION  

E-Print Network [OSTI]

FUSION OF VISIBLE AND INFRARED IMAGES USING EMPIRICAL MODE DECOMPOSITION TO IMPROVE FACE of Tennessee, Knoxville, TN-37996 ABSTRACT In this effort, we propose a new image fusion technique, utilizing). In this method, we decompose images from different imaging modalities into their IMFs. Fusion is performed

Koschan, Andreas

285

Autofluorescence detection and imaging of bladder cancer realized through a cystoscope  

DOE Patents [OSTI]

Near infrared imaging using elastic light scattering and tissue autofluorescence and utilizing interior examination techniques and equipment are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and/or tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

Demos, Stavros G. (Livermore, CA); deVere White, Ralph W. (Sacramento, CA)

2007-08-14T23:59:59.000Z

286

RSNA 2002: Image Fusion Image Fusion  

E-Print Network [OSTI]

of anatomical feature #12;RSNA 2002: Image Fusion Types of Data to be Registered Anatomic CT, MRI, US DigitizedRSNA 2002: Image Fusion Image Fusion: Introduction to the Technology Charles A. Pelizzari, Ph.D. Department of Radiation and Cellular Oncology The University of Chicago #12;RSNA 2002: Image Fusion "Fusion

Pelizzari, Charles A.

287

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

288

Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera  

DOE Patents [OSTI]

A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

Majewski, Stanislaw (Morgantown, VA); Umeno, Marc M. (Woodinville, WA)

2011-09-13T23:59:59.000Z

289

ARTIFICIAL NEURAL NETWORK ANALYSIS IN INTERFEROMETRIC THz IMAGING FOR DETECTION OF LETHAL AGENTS  

Science Journals Connector (OSTI)

In the context of a non-invasive, non-contact method to detect concealed lethal agents employing stand-off imaging in the Terahertz (THz) range using an interferometric detector array, the techniques of image ana...

Aparajita Bandyopadhyay; Amartya Sengupta…

2006-08-01T23:59:59.000Z

290

Multi-scale texture analysis of remote sensing images using gabor filter banks and wavelet transforms  

E-Print Network [OSTI]

to texture information extraction and utilization. This research focuses on the use of multi-scale image texture analysis techniques using Gabor filter banks and Wavelet transformations. Gabor filter banks model texture as irradiance patterns in an image over...

Ravikumar, Rahul

2009-05-15T23:59:59.000Z

291

4D dynamic imaging of the eye using ultrahigh speed SS-OCT  

E-Print Network [OSTI]

Recent advances in swept-source / Fourier domain optical coherence tomography (SS-OCT) technology enable in vivo ultrahigh speed imaging, offering a promising technique for four-dimensional (4-D) imaging of the eye. Using ...

Grulkowski, Ireneusz

292

Modern dental imaging: a review of the current technology and clinical applications in dental practice  

Science Journals Connector (OSTI)

A review of modern imaging techniques commonly used in dental practice and their clinical applications is presented. The current dental examinations consist of intraoral imaging with digital indirect and direc...

Bart Vandenberghe; Reinhilde Jacobs; Hilde Bosmans

2010-11-01T23:59:59.000Z

293

Contrast Detail Curves on Digital Mammography: Performance Comparison of Raw and Filtered Images  

Science Journals Connector (OSTI)

Detection of low contrast and very small size objects is of great importance on digital mammography imaging techniques. Hence, when comparing image quality performance for different equipments, it would be des...

Pedro Collado-Chamorro; Camilo Sanz-Freire; José Gómez-Amez…

2010-01-01T23:59:59.000Z

294

High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe  

E-Print Network [OSTI]

Optical coherence microscopy (OCM) is a promising technique for high resolution cellular imaging in human tissues. An OCM system for high-speed en face cellular resolution imaging was developed at 1060 nm wavelength at ...

Aguirre, Aaron Dominic

295

Data Analysis in the Radio Astr 257: Modern Astronomical Techniques  

E-Print Network [OSTI]

Data Analysis in the Radio Emma Storm Astr 257: Modern Astronomical Techniques May 28th, 2013 Storm (Astr257) Radio Data Analysis 05/28/13 1 / 36 #12;Radio Data Analysis interferometers measure antenna to raw, uncalibrated data need to manually calibrate image processing depends on science goals Storm

California at Santa Cruz, University of

296

An evaluation of the neutron radiography facility at the Nuclear Science Center for dynamic imaging of two-phase hydrogenous fluids  

E-Print Network [OSTI]

Though both film and video radiographic image techniques are available in neutron radiography, radiographic cameras are commonly used to capture the dynamic flow patterns in a rapid sequence of images. These images may be useful to verify two...

Carlisle, Bruce Scott

2012-06-07T23:59:59.000Z

297

Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

298

Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Bulk and trace element analysis of rocks, minerals, and sediments. Identify and document surface geology and mineralogy. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Locates active faults in the area of interest. Map fault and fracture patterns, kinematic information. Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

299

Processing Visual Images  

SciTech Connect (OSTI)

The back of the eye is lined by an extraordinary biological pixel detector, the retina. This neural network is able to extract vital information about the external visual world, and transmit this information in a timely manner to the brain. In this talk, Professor Litke will describe a system that has been implemented to study how the retina processes and encodes dynamic visual images. Based on techniques and expertise acquired in the development of silicon microstrip detectors for high energy physics experiments, this system can simultaneously record the extracellular electrical activity of hundreds of retinal output neurons. After presenting first results obtained with this system, Professor Litke will describe additional applications of this incredible technology.

Litke, Alan (UC Santa Cruz) [UC Santa Cruz

2006-03-27T23:59:59.000Z

300

Tomographic image reconstruction from optical projections in light-diffusing media  

Science Journals Connector (OSTI)

The recent developments in light generation and detection techniques have opened new possibilities for optical medical imaging, tomography, and diagnosis at tissue penetration depths...

Colak, S B; Papaioannou, D G; ’t Hooft, G W; van der Mark, M B; Schomberg, H; Paasschens, J C J; Melissen, J B M; van Asten, N A A J

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cell Division Stage in C. elegans Imaged Using Third Harmonic Generation Microscopy  

Science Journals Connector (OSTI)

C. elegans embryogenesis, at the cell division stage, was imaged using third harmonic generation microscopy employing ultrashort pulsed lasers at 1028nm and 1550nm. This technique...

Aviles-Espinosa, Rodrigo; Tserevelakis, G J; Santos, Susana I c o; Filippidis, G; Krmpot, A J; Vlachos, M; Tavernarakis, N; Brodschelm, A; Kaenders, W; Artigas, David; Loza-Alvarez, Pablo

302

Diffraction with a coherent X-ray beam: dynamics and imaging  

Science Journals Connector (OSTI)

Techniques for coherent X-ray scattering measurements are detailed. Applications in the study of the dynamics of fluctuations and in lensless high-resolution imaging are described.

Livet, F.

2007-02-15T23:59:59.000Z

303

Applications of single molecule and nanoparticle imaging in chemical separation, photocatalysis, and drug delivery.  

E-Print Network [OSTI]

??This dissertation includes five chapters. Chapter 1 introduces single molecule and nanoparticle imaging techniques and their applications. Chapter 2 is a study of electrophoretic migration… (more)

Han, Rui

2014-01-01T23:59:59.000Z

304

E-Print Network 3.0 - advanced x-ray imaging Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new... reconstruction technique (SART) algorithm for image reconstruction from projection data generated by an x-ray... discuss relevant issues and conclude the paper. II....

305

Integrated magnetic resonance imaging methods for speech science and technology  

Science Journals Connector (OSTI)

This presentation introduces our integration of magnetic resonance imaging(MRI) techniques at ATRBrain Activity Imaging Center (Kyoto Japan) toward research into speech science and technology. The first breakthrough in our application of MRI to speech research was the motion imaging of the speechorgans in articulation using a cardiac cine?MRI method. It enables us to acquire information in the time?space domain to reconstruct successive image frames using utterance repetitions synchronized with MRI scans. This cine?technique was further improved for high?quality imaging and expanded into three?dimensional (3D) visualization of articulatory movements. Using this technique we could successfully obtain temporal changes of vocal?tract area function during a Japanese five?vowel sequence. This effort also contributed to developing other techniques to overcome the limitations of MRI such as the post?hoc inclusion of teeth images in 3D volumes or the phonation?synchronized scan for crystal?sharp static imaging. Further a custom high?sensitivity coil was developed to visualize the fine structures of the lip muscles and laryngeal airway. The potentials of new MRI approaches such as ultra?high?resolution imaging with a higher?field scanner or real?time motion imaging during a single utterance will be discussed toward future contributions to speech science and technology.

Shinobu Masaki; Yukiko Nota; Sayoko Takano; Hironori Takemoto; Tatsuya Kitamura; Kiyoshi Honda

2008-01-01T23:59:59.000Z

306

The feasibility of Quadrupole Dip Imaging with PMRI: focus on multiple sclerosis  

E-Print Network [OSTI]

Magnetic Resonance (MR) techniques provide valuable information for the diagnosis, monitoring, treatment, and study of many diseases. However, limitations on the sensitivity and specificity warrant the development of new imaging techniques...

Jeter, Edward Hilton

2013-02-22T23:59:59.000Z

307

Ghost imaging with a single detector  

SciTech Connect (OSTI)

We experimentally demonstrate pseudothermal ghost imaging and ghost diffraction using only a single detector. We achieve this by replacing the high-resolution detector of the reference beam with a computation of the propagating field, following a recent proposal by Shapiro [Phys. Rev. A 78, 061802(R) (2008)]. Since only a single detector is used, this provides experimental evidence that pseudothermal ghost imaging does not rely on nonlocal quantum correlations. In addition, we show the depth-resolving capability of this ghost imaging technique.

Bromberg, Yaron; Katz, Ori; Silberberg, Yaron [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

2009-05-15T23:59:59.000Z

308

Split image optical display  

DOE Patents [OSTI]

A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

Veligdan, James T. (Manorville, NY)

2007-05-29T23:59:59.000Z

309

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

310

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

311

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

312

Lensless X-Ray Imaging in Reflection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

313

Standoff concealed weapon detection using a 350 GHz radar imaging system  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff concealed weapon detection. The prototype radar imaging system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. Recent improvements to the system include increased imaging speed using improved balancing techniques, wider bandwidth, and image display techniques.

Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick LJ

2010-04-01T23:59:59.000Z

314

Gas imaging by infrared gas-correlation spectrometry  

Science Journals Connector (OSTI)

We describe a new method for visualization of gas flows based on infrared absorption and gas-correlation techniques. This result is a gray-scale or false color-coded image showing the...

Sandsten, Jonas; Edner, Hans; Svanberg, Sune

1996-01-01T23:59:59.000Z

315

Functional lung imaging in humans using Positron Emission Tomography  

E-Print Network [OSTI]

This thesis deals with a method of functional lung imaging using Positron Emission Tomography (PET). In this technique, a radioactive tracer, nitrogen-13, is dissolved in saline solution, and injected into a peripheral ...

Layfield, Dominick, 1971-

2003-01-01T23:59:59.000Z

316

millionImaging research infrastructure  

E-Print Network [OSTI]

Centre for Imaging Technology Commercialization, led by Aaron Fenster $34 million Hybrid imaging infrastructureimaging #12;IMAGING Investment $100 millionImaging research infrastructure Formation

Denham, Graham

317

Multispectral Imaging (Monaster And Coolbaugh, 2007) | Open Energy  

Open Energy Info (EERE)

Multispectral Imaging (Monaster And Coolbaugh, 2007) Multispectral Imaging (Monaster And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging (Monaster And Coolbaugh, 2007) Exploration Activity Details Location Unspecified Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown References Francis C. Monastero, Mark F. Coolbaugh (2007) Advances In Geothermal Resource Exploration Circa 2007 Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_(Monaster_And_Coolbaugh,_2007)&oldid=510998" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

318

Measurement of underwater vibration by ultrasonic speckle stroboscopic technique  

Science Journals Connector (OSTI)

Abstract Ultrasonic speckles are widely used in medical imaging, but are not commonly accepted in industry. An ultrasonic speckle stroboscopic technique for industrial applications is introduced in this manuscript. In this technique, a whole field ultrasonic speckle image converter is no longer needed as in B-mode scanning, and neither is the process of searching for the maximum correlation coefficient among sub-sets in the ultrasonic speckle field. In pulse-echo working mode, by the modulation of sweeping frequency and trigger delay and performing a digital speckle correlation calculation, it can be obtained point-to-point the vibration frequency, amplitude and phase difference of underwater solid surfaces. Compared with traditional vibration measurement techniques, ultrasonic speckle stroboscopic technique can perform on-line, underwater, noncontact experiments, and is insensitive to the environment and the sample surface roughness. In this manuscript this technique was applied to a vibrating cantilever underwater. The experimental results were in good agreement with other testing methods. Therefore, the noncontact testing technique for vibration coefficient, especially the vibration phase difference, provides an alternative method for the mode analysis of industrial constructions, which is a piece of very important work for industrial underwater structure design.

Zhihua Luo; Jun Chu; Lei Shen; Peng Hu; Hongmao Zhu; Lili Hu

2014-01-01T23:59:59.000Z

319

Dose Reduction Techniques  

SciTech Connect (OSTI)

As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

WAGGONER, L.O.

2000-05-16T23:59:59.000Z

320

Applications of holography to x-ray imaging  

SciTech Connect (OSTI)

In this paper we consider various applications of holographic techniques to the problem of soft x-ray imaging. We give special attention to imaging biological material using x-rays in the wavelength range 24 to 45A. We describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Applications of holography to X-ray imaging  

SciTech Connect (OSTI)

In this paper the authors consider various applications of holographic techniques to the problem of soft x-ray imaging. Special attention is given to imaging biological material using x-rays in the wavelength range 24-45A. The authors describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

1985-01-01T23:59:59.000Z

322

Spatial patch blending for artefact reduction in pattern-based inpainting techniques  

E-Print Network [OSTI]

Spatial patch blending for artefact reduction in pattern-based inpainting techniques Maxime Daisy Juin, 14050 Caen/France, {maxime.daisy,david.tschumperle,olivier.lezoray}@ensicaen.fr Abstract. Patch regions in images, by iteratively du- plicating blocks of known image data (patches) inside the area

Lezoray, Olivier

323

Nuclear magnetic resonance imaging  

Science Journals Connector (OSTI)

Nuclear magnetic resonance imaging (NMRI) is a powerful imaging modality having a range of important applications to medicine and industry. The basic principles of NMRI are reviewed in...

Rothwell, William P

1985-01-01T23:59:59.000Z

324

Quantum-secured imaging  

E-Print Network [OSTI]

We have built an imaging system that uses a photon's position or time-of-flight information to image an object, while using the photon's polarization for security. This ability allows us to obtain an image which is secure against an attack in which the object being imaged intercepts and resends the imaging photons with modified information. Popularly known as "jamming," this type of attack is commonly directed at active imaging systems such as radar. In order to jam our imaging system, the object must disturb the delicate quantum state of the imaging photons, thus introducing statistical errors that reveal its activity.

Mehul Malik; Omar S. Magaña-Loaiza; Robert W. Boyd

2012-12-11T23:59:59.000Z

325

Calibration, Reconstruction, and Rendering of Cylindrical Millimeter-Wave Image Data  

SciTech Connect (OSTI)

Cylindrical millimeter-wave imaging systems and technology have been under development at the Pacific Northwest National Laboratory for many years. This technology has been commercialized, and systems are currently being deployed widely across the United States and internationally. These systems are effective at screening for concealed items of all types, however, new sensor designs, image reconstruction techniques, and image rendering algorithms, could potentially improve performance. At PNNL, a number of specific techniques have been developed recently to improve cylindrical imaging methods including wideband techniques, combining data from full 360 degree scans, polarimetric imaging techniques, calibration methods, and 3-D data visualization techniques. Many of these techniques exploit the three-dimensionality of the cylindrical imaging technique by optimizing the depth resolution of the system and using this information to enhance detection. Other techniques, such as polarimetric methods, exploit scattering physics of the millimeter-wave interaction with concealed targets on the body. In this paper, calibration, reconstruction, and three-dimensional rendering techniques will be described that optimize the depth information in these images and the display of the images to the operator.

Sheen, David M.; Hall, Thomas E.

2011-05-25T23:59:59.000Z

326

Formation Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Formation Testing Techniques Formation Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Formation Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Formation Testing Techniques: No definition has been provided for this term. Add a Definition References No exploration activities found. Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Formation_Testing_Techniques&oldid=601973" Categories: Downhole Techniques Exploration Techniques

327

High-Dynamic-Range Imaging for artists  

Science Journals Connector (OSTI)

An introduction and overview of the practical applications and uses of high-dynamic-range imaging (HDRI) from a production point of view. The course begins with a brief overview of HDRI and pre-production, production, and post-production techniques. ...

Kirt Witte

2009-12-01T23:59:59.000Z

328

Simulation on Improving Imaging Resolution of SAFT  

Science Journals Connector (OSTI)

Concrete is one of the main construction materials in civil engineering. Among the existing Nondestructive Testing (NDT) methods, the imaging techniques that can give a graphic display of the inner structure of the concrete elements have received great ... Keywords: ultrasonic test, concrete, SAFT, WDT

Qiufeng Li; Xinhong Jin; Min Zhao; Lihua Shi; Zhixue Shao

2009-04-01T23:59:59.000Z

329

Wetpaint: scraping through multi-layered images  

Science Journals Connector (OSTI)

We introduce a technique for exploring multi-layered images by scraping arbitrary areas to determine meaningful relationships. Our system, called Wetpaint, uses perceptual depth cues to help users intuitively navigate between corresponding layers of ... Keywords: large screen, restoration, tangible user interface, touch interface, visualization

Leonardo Bonanni; Xiao Xiao; Matthew Hockenberry; Praveen Subramani; Hiroshi Ishii; Maurizio Seracini; Jurgen Schulze

2009-04-01T23:59:59.000Z

330

Inverse transport calculations in optical imaging with subspace optimization algorithms  

Science Journals Connector (OSTI)

Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the ... Keywords: Diffuse optical tomography, Fluorescence optical tomography, Inverse problems, Inverse transport problems, Optical imaging, Radiative transport equation, Singular value decomposition, Subspace optimization method

Tian Ding, Kui Ren

2014-09-01T23:59:59.000Z

331

NONLINEAR ACOUSTIC IMAGING OF STRUCTURAL DAMAGES IN LAMINATED COMPOSITES  

E-Print Network [OSTI]

NONLINEAR ACOUSTIC IMAGING OF STRUCTURAL DAMAGES IN LAMINATED COMPOSITES L. Pieczonka1 , A. Klepka1 for imaging of structural damage in a laminated composite plate. The techniques that have been considered are performed on a carbon fiber/epoxy laminated composite plate with barely visible impact damage

Boyer, Edmond

332

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

333

Acousto-optic Bragg imaging of biological tissue  

Science Journals Connector (OSTI)

Acousto-optic Bragg imaging is a technique that uses the interaction of light with ultrasound to optically image obstructions in acoustical fields. Existing reports of acousto-optic Bragg imaging based on transmission of acoustic fields through obstructions exhibit strong acoustic impedance mismatches manifested by poor image quality and missing details of physical structures of obstructions. In this work the image quality was improved to exhibit detailed physical structures of an object by using an improved Bragg imaging system described in Sec. III below. This paper investigates the possibility of extending an acoustic Bragg imaging technique in transmission mode to image animal or plant tissues; a small azalea leaf is used as an illustration in this case. The Bragg image produced clearly shows the veins of the vascular azalea leaf serving as a proof of concept for cost-effective potential application of acoustic Bragg imaging of biological objects in the medical field. Moreover acousto-optic Bragg imaging is potentially harmless to biological cells and is sensitive to density and elastic variations in the tissue.

Alem Teklu; Nico F. Declercq; Michael McPherson

2014-01-01T23:59:59.000Z

334

Chapter Twenty One - Rabies Diagnosis: MR Imaging  

Science Journals Connector (OSTI)

In vivo magnetic resonance imaging (MRI) techniques provide clues for the differential diagnosis of rabies and other encephalitides. Clinical status of the subjects, conscious or comatose, must be taken into account. Blood brain barrier (BBB) integrity and lesional extent can vary accordingly. Subtle brain MR abnormalities in symmetrical distribution, however, preclude its use as a confirmatory diagnostic test. Quantitative advanced MRI techniques, such as voxel-based morphometric diffusion tensor imaging (DTI) based on whole-brain probabilistic tractography maps in assessing mean diffusivity (MD), and fractional anisotropy (FA) values, have been introduced to study evolving disease processes, particularly during the non-comatose phase. Iron imaging of the brain, albeit conventionally used for detecting hemorrhage, may be potentially useful in tracking inflammatory reactions.

Jiraporn Laothamatas; Witaya Sungkarat; Thiravat Hemachudha

2014-01-01T23:59:59.000Z

335

System for imaging plutonium through heavy shielding  

SciTech Connect (OSTI)

A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi /sup 57/Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% /sup 240/Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures.

Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

1984-04-01T23:59:59.000Z

336

Dynamic imaging with electron microscopy  

ScienceCinema (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-05-30T23:59:59.000Z

337

Dynamic imaging with electron microscopy  

SciTech Connect (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-02-20T23:59:59.000Z

338

techniques | OpenEI Community  

Open Energy Info (EERE)

about and discussion of smart grid technologies, tools, and techniques. The Smart Grid Investment Grant (SGIG) program is authorized by the Energy Independence and Security...

339

Tracking Elevated Pollution Layers with a Newly Developed Hyperspectral Sun/Sky Spectrometer (4STAR): Results from the TCAP 2012 and 2013 Campaigns  

SciTech Connect (OSTI)

Total columnar amounts of water vapor, nitrogen dioxide (NO2) and ozone (O3) are derived from a newly developed, hyperspectral airborne sun-sky spectrometer (4STAR) for the first time during the two intensive phases of the Two Column Aerosol Project (TCAP) in summer 2012 and winter 2013 aboard the DOE G-1 aircraft. We compare results with coincident measurements. We find 0.045 g/cm2 (4.2%) negative bias and 0.28 g/cm2 (26.3%) root-mean-square (RMS) difference in water vapor layer comparison with in-situ hygrometer, and an overall RMS difference of 1.28 g/m3 (38%) water vapor amount in profile by profile comparisons, with differences distributed evenly around zero in most cases. The RMS differences for O3 values average to 3%, with a 1% negative bias for 4STAR compared with the spaceborne Ozone Measuring Instrument (OMI) along the aircraft flight-track for 14 flights during both TCAP phases. Ground-based comparisons with the Pandora spectrometer system at the Goddard Space Flight Center (GSFC), Greenbelt, Maryland showed excellent agreement between the instruments for both O3 and NO2, further emphasizing 4STAR’s new capabilities. During the summer phase, we have succeeded in identifying variations in elevated pollution layers corresponding to urban pollution outflow and transported biomass burning. This was done using clustering analysis of the retrieved products (e.g. Ångstrom exponent, NO2 and columnar water vapor), and was confirmed by aerosol type identification by HSRL2 aboard the NASA B-200 aircraft. These newly demonstrated 4STAR capabilities are expected to be instrumental in improving our understanding of atmospheric composition variability and aerosol-trace-gas interactions; they open new horizons and opportunities in airborne sunphotometry.

Segal Rozenhaimer, Michal; Russell, P. B.; Schmid, Beat; Redemann, Jens; Livingston, J. M.; Flynn, Connor J.; Johnson, Roy R.; Dunagan, Stephen; Shinozuka, Yohei; Herman, J. R.; Cede, A.; Abuhassan, N.; Comstock, Jennifer M.; Hubbe, John M.; Zelenyuk, Alla; Wilson, Jacqueline M.

2014-03-16T23:59:59.000Z

340

NMR imaging of materials  

SciTech Connect (OSTI)

Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Application of 2-dimensional analytic signals with single-quadrant spectra for processing of SAFT-reconstructed images  

Science Journals Connector (OSTI)

The Synthetic Aperture Focusing Technique (SAFT) is an algorithm applied in non-destructive ultrasonic testing which provides an image of flaws within a specimen. The image is reconstructed from A-scans measured at different positions. Reliable evaluation ... Keywords: Analytic signal, Complex signal, Image processing, SAFT image

Christian Höhne; Rainer Boehm; Jens Prager

2014-10-01T23:59:59.000Z

342

Seismic Imaging and Monitoring  

SciTech Connect (OSTI)

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

343

Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois  

Broader source: Energy.gov (indexed) [DOE]

Using an Innovative Technique to Retrieve Oil in Lawrence County, Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois April 25, 2012 - 5:07pm Addthis The ASP flooding technique is helping to retrieve 65-75 barrels of oil a day, an increase from the previous retrieval of 16 barrels a day. | Image by Hantz Leger. The ASP flooding technique is helping to retrieve 65-75 barrels of oil a day, an increase from the previous retrieval of 16 barrels a day. | Image by Hantz Leger. Amanda Scott Amanda Scott Former Managing Editor, Energy.gov How does it work? This three part flooding technique uses alkaline, surfactant, and polymers. Alkaline works to help lower the bond attachment between the oil and the field. Then surfactant works as a soap to break the oil free.

344

Manhattan Project: Trinity Images  

Office of Scientific and Technical Information (OSTI)

IMAGES IMAGES Trinity Test Site (July 16, 1945) Resources > Photo Gallery The first 0.11 seconds of the Nuclear Age These seven photographs of the Trinity test were taken by time-lapse cameras. The last is 109 milliseconds, or 0.109 seconds, after detonation. Scroll down to view each individual image. The photographs are courtesy the Los Alamos National Laboratory, via the Federation of American Scientists web site. The animation is original to the Office of History and Heritage Resources. The dawn of the Nuclear Age (Trinity image #1) The dawn of the Nuclear Age Trinity image #2 Trinity image #3 Trinity image #4 Trinity image #5 Trinity, 0.09 seconds after detonation (Trinity image #6) Trinity, 0.09 seconds after detonation Trinity, 0.11 seconds after detonation (Trinity image #7)

345

Design of a near-field coded aperture cameras for high-resolution medical and industrial gamma-ray imaging  

E-Print Network [OSTI]

Coded Aperture Imaging is a technique originally developed for X-ray astronomy, where typical imaging problems are characterized by far-field geometry and an object made of point sources distributed over a mainly dark ...

Accorsi, Roberto, 1971-

2001-01-01T23:59:59.000Z

346

Diagnosing the Sensitivity of Binary Image Measures to Bias, Location, and Event Frequency within a Forecast Verification Framework  

Science Journals Connector (OSTI)

While the use of binary distance measures has a substantial history in the field of image processing, these techniques have only recently been applied in the area of forecast verification. Designed to quantify the distance between two images, ...

Benjamin R. J. Schwedler; Michael E. Baldwin

2011-12-01T23:59:59.000Z

347

Nuclear medicine technology and techniques  

SciTech Connect (OSTI)

The book is separated into two sections approximately equal in length. Basic sciences are well represented with chapters on mathematics, physics, instrumentation, laboratory sciences, radiopharmacy, radiation safety and computer science. The section on clinical nuclear medicine contains 12 chapters, ranging in length from 5 to 37 pages and covering all organ systems, the previously mentioned patient care and pediatric imaging chapters, radioimmunoassay, and a chapter devoted to inflammatory disease and tumor imaging.

Bernier, D.L.; Langan, J.K.; Wells, L.D. (eds.)

1981-01-01T23:59:59.000Z

348

FORENSIC TECHNIQUES FOR CELL PHONES  

E-Print Network [OSTI]

June 2007 FORENSIC TECHNIQUES FOR CELL PHONES FORENSIC TECHNIQUES FOR CELL PHONES Shirley Radack cell phones are widely used for both personal and professional applications, the technology of cell forensics usually do not cover cell phones, especially those with advanced capabilities. The digital

349

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

350

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

351

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

352

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

353

Quality Enhancement and Nerve Fibre Layer Artefacts Removal in Retina Fundus Images by Off Axis Imaging  

SciTech Connect (OSTI)

Retinal fundus images acquired with non-mydriatic digital fundus cameras are a versatile tool for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relative low cost, these cameras are employed worldwide by retina specialists to diagnose diabetic retinopathy and other degenerative diseases. Even with relative ease of use, the images produced by these systems sometimes suffer from reflectance artefacts mainly due to the nerve fibre layer (NFL) or other camera lens related reflections. We propose a technique that employs multiple fundus images acquired from the same patient to obtain a single higher quality image without these reflectance artefacts. The removal of bright artefacts, and particularly of NFL reflectance, can have great benefits for the reduction of false positives in the detection of retinal lesions such as exudate, drusens and cotton wool spots by automatic systems or manual inspection. If enough redundant information is provided by the multiple images, this technique also compensates for a suboptimal illumination. The fundus images are acquired in straightforward but unorthodox manner, i.e. the stare point of the patient is changed between each shot but the camera is kept fixed. Between each shot, the apparent shape and position of all the retinal structures that do not exhibit isotropic reflectance (e.g. bright artefacts) change. This physical effect is exploited by our algorithm in order to extract the pixels belonging to the inner layers of the retina, hence obtaining a single artefacts-free image.

Giancardo, Luca [ORNL] [ORNL; Meriaudeau, Fabrice [ORNL] [ORNL; Karnowski, Thomas Paul [ORNL] [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Tobin Jr, Kenneth William [ORNL] [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

354

Definition: Image Logs | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Image Logs Jump to: navigation, search Dictionary.png Image Logs Well logging techniques which create images of the inside of a borehole. A 360° view camera is used that can be lowered into a borehole via logging cable. The camera's purpose is to provide live images of the borehole walls. View on Wikipedia Wikipedia Definition Well logging, also known as borehole logging is the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole. The log may be based either on visual inspection of samples brought to the surface (geological logs) or on physical measurements made by instruments lowered into the hole (geophysical logs). Well logging can

355

Workshop on NEUtron WAVElength Dependent Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEUtron WAVElength Dependent Imaging NEUtron WAVElength Dependent Imaging (NEUWAVE-4) Workshop October 2 - 5, 2011 Spallation Neutron Source * Oak Ridge National Laboratory * Gatlinburg, TN, USA About the Workshop Workshop Agenda Contact Information Important Dates NEUWAVE-4 Program Registration Lodging Social Events Tourist Information Organizing Committee Program Committee Workshop Flyer filler About the Workshop The Oak Ridge National Laboratory's Neutron Sciences Directorate and Energy & Environmental Sciences Directorate are pleased to host the 4th Workshop on NEUtron WAVElength Dependent Imaging (NEUWAVE-4). This meeting discusses the latest development in energy selective imaging techniques, applications and existing and future instrumentation. This meeting follows the successful meeting held in Garching, Germany (April 2008,) Abingdon, UK (June 2009,) and Hokkaido University (June 2010.)

356

Doppler Imaging of Exoplanets and Brown Dwarfs  

E-Print Network [OSTI]

Doppler Imaging produces 2D global maps of rotating objects using high-dispersion spectroscopy. When applied to brown dwarfs and extrasolar planets, this technique can constrain global atmospheric dynamics and/or magnetic effects on these objects in un- precedented detail. I present the first quantitative assessment of the prospects for Doppler Imaging of substellar objects with current facilities and with future giant ground-based telescopes. Observations will have the greatest sensitivity in K band, but the H and L bands will also be useful for these purposes. To assess the number and availability of targets, I also present a compilation of all measurements of photometric variability, rotation period (P), and projected rotational velocity (v sin i) for brown dwarfs and exoplanets. Several bright objects are already accessible to Doppler Imaging with currently available instruments. With the development of giant ground-based telescopes, Doppler Imaging will become feasible for many dozens of brown dwarfs and...

Crossfield, Ian J M

2014-01-01T23:59:59.000Z

357

Image registration method for medical image sequences  

DOE Patents [OSTI]

Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

Gee, Timothy F.; Goddard, James S.

2013-03-26T23:59:59.000Z

358

Category:Data Techniques | Open Energy Information  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data Techniques page? For detailed information on Data Techniques as exploration techniques,...

359

High performance acoustic three-dimensional image processing system  

SciTech Connect (OSTI)

The reactor vessel of a fast breeder reactor (FBR) is filled with optically opaque liquid sodium, and, therefore, the ultrasonic imaging technique is useful for inspecting in-vessel structures in sodium. The authors have developed a high-speed and high-resolution three-dimensional image processing technique. For imaging in the sodium, a two-dimensional matrix transducer and the M-series transmitting signal were used. The cross correlation processing between the transmitted signal and received signal was used for enhancing the S/N ratio. The image synthesis also attempts the enhancement of resolution by the synthetic aperture focusing technique (SAFT). High-speed processing could be realized by use of parallel processing boards.

Suzuki, T.; Nagai, S.; Maruyama, F. [Toshiba Corp., Yokohama (Japan); Furukawa, H. [JEOL System Technology Co., Ltd., Tokyo (Japan)

1995-08-01T23:59:59.000Z

360

Synthesis of zirconium oxide nanoparticle by sol-gel technique  

SciTech Connect (OSTI)

Zirconium oxide nanoparticle is synthesized using sol-gel technique. Various mole ratio of ammonia solution and nitric acid relative to zirconium propoxide is added in the reaction to study the effect on the crystallinity and particle size on zirconium oxide particle. Zirconium oxide synthesized with nitric acid have the smallest particle size under FESEM image and show the increasing formation of crystalline tetragonal phase under XRD diffractogram.

Lim, H. S.; Ahmad, A.; Hamzah, H. [School of Chemical Science and Food Technology, Faculty of Science and Technology, National University of Malaysia, 43600 Bangi (Malaysia)

2013-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fast bilateral filtering for the display of high-dynamic-range images  

Science Journals Connector (OSTI)

We present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. ... Keywords: contrast reduction, edge-preserving filtering, image processing, tone mapping, weird maths

Frédo Durand; Julie Dorsey

2002-07-01T23:59:59.000Z

362

Mining Image Datasets Using Perceptual Association Rules Jelena Tesic, Shawn Newsam and B. S. Manjunath  

E-Print Network [OSTI]

Mining Image Datasets Using Perceptual Association Rules Jelena Tesi´c, Shawn Newsam and B. S for applying traditional data mining techniques to the non-traditional domain of image datasets for the purpose association rules, are used to distill the frequent perceptual events in large image datasets in order to dis

California at Santa Barbara, University of

363

Review : integration of EMI technique with global vibration technique  

E-Print Network [OSTI]

In the last decade, the development of Structural Health Monitoring (SHM) has been skyrocketing because of the serious consequences that come with structural failure. Traditional damage detection techniques, also known as ...

Ni, Suteng

2013-01-01T23:59:59.000Z

364

Thermal NDE techniques-from photoacoustics to thermosonics  

Science Journals Connector (OSTI)

The evolution of thermal wave imaging and materials characterization is traced from its origins during the time of the First International Workshop on Photoacoustics and Photothermal Phenomena in Ames Iowa in 1979 to the present and with an eye to the future. In the early days the heat sources consisted of amplitude-modulated lasers focused to a spot and step-scanned across the surface of the object under evaluation. A variety of lock-in detection schemes were used including microphones in gas cells (photoacoustics) laser optical probes (the mirage effect) photothermal defection thermoreflectance and infrared (IR) detection. With the commercial availability of IR cameras rapid and wide-area synchronous imaging became possible both in the frequency domain (lock-in imaging) and the time-domain (box-car imaging). Recently the photoacoustic technique has been “flipped ” with a pulse of sound being used as the energy source and with an IR camera monitoring the subsequent photons emitted in the vicinity of a surface or subsurface defect. This new technique (thermosonics) is described along with selected applications to crack detection in a variety of materials and objects.

Robert L. Thomas

2002-01-01T23:59:59.000Z

365

Optical Synchrotron Radiation Beam Imaging with a Digital Mask  

SciTech Connect (OSTI)

We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

Fiorito, R. B. [University of Maryland, College Park, MD (United States); Zhang, H. D. [University of Maryland, College Park, MD (United States); Corbett, W. J. [SLAC, Menlo Park, CA (United States); Fisher, A. S. [SLAC, Menlo Park, CA (United States); Mok, W. Y. [SLAC, Menlo Park, CA (United States); Tian, K. [SLAC, Menlo Park, CA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wilson, F. G. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Mitsuhashi, T. M. [KEK, Tsukuba (Japan); Shkvarunets, A. G. [University of Maryland, College Park, MD (United States)

2012-11-01T23:59:59.000Z

366

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

367

NMR imaging of components and materials for DOE application  

SciTech Connect (OSTI)

The suitability for using NMR imaging to characterize liquid, polymeric, and solid materials was reviewed. The most attractive applications for NMR imaging appear to be liquid-filled porous samples, partially cured polymers, adhesives, and potting compounds, and composite polymers/high explosives containing components with widely varying thermal properties. Solid-state NMR line-narrowing and signal-enhancing markedly improve the imaging possibilities of true solid and materials. These techniques provide unique elemental and chemical shift information for highly complex materials and complement images with similar spatial resolution, such as X-ray computed tomography (CT).

Richardson, B.R.

1993-12-01T23:59:59.000Z

368

Image Segmentation and Uncertainty  

Science Journals Connector (OSTI)

From the Publisher:Presents the first unified theory of image segmentation, written by the winners of the 1985 Pattern Recognition Society medal. Until now, image processing algorithms have always been beset by uncertainties, no one method proving completely ...

Roland 1949- Wilson; Michael Spann

1988-02-01T23:59:59.000Z

369

Estimation theoretical image restoration  

E-Print Network [OSTI]

In this thesis, we have developed an extensive study to evaluate image restoration from a single image, colored or monochromatic. Using a mixture of Gaussian and Poisson noise process, we derived an objective function to ...

Dolne, Jean J

2008-01-01T23:59:59.000Z

370

Innovative Exploration Techniques for Geothermal Assessment at Jemez  

Open Energy Info (EERE)

Exploration Techniques for Geothermal Assessment at Jemez Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This collaborative project will perform the following tasks to fully define the nature and extent of the geothermal reservoir underlying the Jemez Reservation: - Conduct 1-6,000-scale geologic mapping of 6 mi2 surrounding the Indian Springs area. - Using the detailed geologic map, locate one N-S and two E-W seismic lines and run a seismic survey of 4 mi2; reduce and analyze seismic data using innovative high-resolution seismic migration imaging techniques developed by LANL, and integrate with 3-D audio-frequency MT/MT data acquired at the same area for fault and subsurface structure imaging and resource assessment.

371

SSRL Beam Lines by Technique | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technique Technique SSRL Beam Line Map | Beam Lines by Number | SPEAR3 Parameters Supported Technique(s) Beam Line X-ray Absorption Spectroscopy Biological x-ray absorption spectroscopy 4-3, 7-3, 9-3, 14-3 Materials / catalysis / chemistry x-ray absorption spectroscopy 4-1, 4-3, 11-2, 14-3 MEIS x-ray absorption spectroscopy 4-1, 4-3, 11-2, 14-3 X-ray absorption spectroscopy imaging 2-3, 6-2a, 10-2a,14-3 Single crystal x-ray absorption spectroscopy 9-3 Grazing incidence x-ray absorption spectroscopy 11-2 Tender x-ray absorption spectroscopy 4-3, 14-3 Tender x-ray absorption spectroscopy imaging 14-3 Photoemission spectroscopy 8-1a, 8-1b, 8-2, 10-1, 13-2 X-ray absorption spectroscopy, near edge, soft energy 8-2, 10-1, 13-2 Elliptic polarization, soft energy photoemission spectroscopy 13-2

372

Development of under sodium inspection techniques for FBR  

SciTech Connect (OSTI)

The reactor vessel of a fast breeder reactor (FBR) is filled with opaque liquid sodium and ultrasonic inspection techniques are effective and useful for observing the in-vessel structures under sodium. Firstly, in the development of the under sodium visual inspection technique, the synthetic aperture focusing technique (SAFT) and cross-correlation processing have been applied to realize ultrasonic 3-dimensional cross-correlation image processing with high resolution. Cross-correlation processing improves the S/N ratio of the ultrasonic echoes which are deteriorated by sodium wetting, and realizes high-density integration of the matrix arrayed transducer. Matrix arrayed transducer, in which 100 piezoelectric elements are arranged as a 10 x 10 matrix array, has been manufactured for the in-water visualizing test. Secondly, in the development of the under sodium volumetric inspection technique, a prototype electric scanning UT sensor has been developed for the volumetric test of the core support structures in the reactor vessel. The UT sensor consists of 60 arrayed piezoelectric elements, non-organic materials such as ceramic backing. Ultrasonic echoes transmitted from the elements is scanned electronically and real-time B-scope images of the structures can be realized. A prototype UT sensor has been tested to evaluate the acoustic characteristics in water and confirm the heat-proof performance under high temperature silicon oil. The performance of the UT sensor satisfied the requirements.

Karasawa, H.; Suzuki, T.; Nagai, S.; Izumi, M.; Kobayashi, T. [Toshiba Corp., Yokohama (Japan); Sasaki, S.; Ota, S.; Kai, M. [Japan Atomic Power Co., Tokyo (Japan)

1996-08-01T23:59:59.000Z

373

Sequential Covariance Calculation for Exoplanet Image Processing  

E-Print Network [OSTI]

Direct imaging of exoplanets involves the extraction of very faint signals from highly noisy data sets, with noise that often exhibits significant spatial, spectral and temporal correlations. As a results, a large number of post-processing algorithms have been developed in order to optimally decorrelate the signal from the noise. In this paper, we explore four such closely related algorithms, all of which depend heavily on the calculation of covariances between large data sets of imaging data. We discuss the similarities and differences between these methods, and demonstrate how the use sequential calculation techniques can significantly improve their computational efficiencies.

Savransky, Dmitry

2015-01-01T23:59:59.000Z

374

Video image position determination  

DOE Patents [OSTI]

An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.

Christensen, Wynn (Los Alamos, NM); Anderson, Forrest L. (Bernalillo, NM); Kortegaard, Birchard L. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

375

Thermal techniques for characterizing magma body geometries | Open Energy  

Open Energy Info (EERE)

techniques for characterizing magma body geometries techniques for characterizing magma body geometries Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal techniques for characterizing magma body geometries Details Activities (1) Areas (1) Regions (0) Abstract: The surface heat flux distribution resulting from emplaced magma bodies can be used to help characterize the magma source. Closed-form analytical solutions for the conduction heat transfer from various idealized magma geometries (dikes, sills, and spheres) are obtained using either the Schwarz-Christoffel transformation theorem (dikes and sills) or the 'method of images' with superposition (spheres). Comparison of these analytically determined heat flux distributions with field data from active geothermal areas at Yellowstone, Avachinsky volcano, Kilauea Iki,

376

A laboratory on the four-point probe technique  

Science Journals Connector (OSTI)

We describe how a classic electrostaticsexperiment can be modified to be a four-point probe lab experiment. Students use the four-point probe technique to investigate how the measured resistance varies as a function of the position of the electrodes with respect to the edge of the sample. By using elementary electromagnetism concepts such as the superposition principle the continuity equation the relation between electric field and electric potential and Ohm’s law a simple model is derived to describe the four-point probe technique. Although the lab introduces the students to the ideas behind the Laplace equation and the methods of images advanced mathematics is avoided so that the experiment can be done in trigonometry and algebra based physics courses. In addition the experiment introduces the students to a standard measurement technique that is widely used in industry and thus provides them with useful hands-on experience.

Andrew P. Schuetze; Wayne Lewis; Chris Brown; Wilhelmus J. Geerts

2004-01-01T23:59:59.000Z

377

Human Functional Brain Imaging  

E-Print Network [OSTI]

Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review #12;2 | Portfolio Review: Human Functional Brain ImagingThe Wellcome Trust is a charity registered in England and Wales, no's role in supporting human functional brain imaging and have informed `our' speculations for the future

Rambaut, Andrew

378

Human Functional Brain Imaging  

E-Print Network [OSTI]

Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review Summary Brain Imaging #12 Dale ­ one of our first Trustees. Understanding the brain remains one of our key strategic aims today three-fold: · to identify the key landmarks and influences on the human functional brain imaging

Rambaut, Andrew

379

Near-electrode imager  

DOE Patents [OSTI]

An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmont, IL); Woelk, Klaus (Wachtberg, DE); Gerald, II, Rex E. (Brookfield, IL)

2000-01-01T23:59:59.000Z

380

Medical imaging systems  

DOE Patents [OSTI]

A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

Frangioni, John V

2013-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

382

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

383

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

384

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques (Redirected from Electromagnetic Sounding Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

385

Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Active Seismic Techniques Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

386

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

387

Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques Borehole Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Borehole Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation Thermal: High temperatures and pressure impact the compressional and shear wave velocities

388

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

389

Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Passive Seismic Techniques Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

390

X-ray Imaging Shows Feather Patterns of First Birds | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

X-ray Imaging Shows Feather Patterns of First Birds X-ray Imaging Shows Feather Patterns of First Birds X-ray Imaging Shows Feather Patterns of First Birds June 30, 2011 - 2:56pm Addthis A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Through x-ray fluorescent imaging techniques developed at the

391

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

392

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

393

Nanotechnology for Molecular Imaging and Image-Guided Surgery  

Science Journals Connector (OSTI)

Recent development in bioconjugated nanoparticles opens new opportunities for in-vivo molecular imaging and image-guided cancer surgery.

Nie, Shuming

394

Automation in image cytometry : continuous HCS and kinetic image cytometry  

E-Print Network [OSTI]

OF CALIFORNIA, SAN DIEGO Automation in Image Cytometry:xiv Abstract of Dissertation Automation in Image Cytometry:

Charlot, David J.

2012-01-01T23:59:59.000Z

395

Astronomical Images from the Very Large Array (VLA) FIRST Survey Images from the STScI Archive (Faint Images of the Radio Sky at Twenty-cm)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

FIRST, Faint Images of the Radio Sky at Twenty-Centimeters was a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North Galactic Cap. Using the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA) in its B-configuration, the Survey acquired 3-minute snapshots covering a hexagonal grid. The binary data are available in detailed source catalogs, but the full images themselves, developed through special techniques, are also available for public access. Note that the images are fairly large, typically 1150x1550 pixels. Access to the images is simple through the search interface; the images are also available via anonymous ftp at ftp://archive.stsci.edu/pub/vla_first/data. Another convenient way to obtain images is through the FIRST Cutout Server, which allows an image section to be extracted from the coadded image database at a user-specified position. The cutout server is also linked to the FIRST Search Engine, so that the catalog can be searched for sources of interest and then images can be obtained for those objects. All images taken through 2011 are available through the cutout server at http://third.ucllnl.org/cgi-bin/firstcutout.

396

Review of uranium bioassay techniques  

SciTech Connect (OSTI)

A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

Bogard, J.S.

1996-04-01T23:59:59.000Z

397

Free focus radiography with miniaturized dental x-ray machines: a comparison of ''midline'' and ''lateral'' techniques  

SciTech Connect (OSTI)

The use of free focus radiography (FFR) employing miniaturized dental x-ray machines with radiation probes has never been generally accepted in dentistry despite its recognized radiographic potential. The present investigation studied ways to improve imaging and lower radiation burdens in dental free focus radiography. Relatively high air exposures ranging from 42,050 mR per film for high-resolution images to 3,214 mR per film for lower-resolution images using a current midline radiographic technique for panoramic FFR were found. In a proposed lateral FFR panoramic technique, reduced exposures ranged from 420 mR per film for high-resolution images to 14 mR per film for lower-resolution images. In each technique the lower exposure was obtained with a rare earth imaging system. A proposed modification of the current midline FFR technique using a rare earth imaging system and heavy added copper filtration was found to produce exposures in the range normally used in dentistry (207 mr), and the resultant image was high in contrast with relatively low detail. A comparison of essential characteristics of midline and lateral FFR techniques failed to identify specific advantages for the midline technique in current use. Lateral exposure modes in dental FFR should receive increased attention in the interest of good imaging and radiation control. It was noted that existing miniaturized dental x-ray machines may have been designed specifically for use of the midline FFR exposure technique, and modification of this equipment to support reliable lateral exposure modes was recommended.

Jensen, T.W.

1983-08-01T23:59:59.000Z

398

Application of infrared imaging in ferrocyanide tanks  

SciTech Connect (OSTI)

This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

1994-09-28T23:59:59.000Z

399

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

400

Image Logs At Coso Geothermal Area (2011) | Open Energy Information  

Open Energy Info (EERE)

Image Logs At Coso Geothermal Area (2011) Image Logs At Coso Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Image Logs At Coso Geothermal Area (2011) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Image Logs Activity Date 2011 Usefulness useful DOE-funding Unknown Exploration Basis Determine crustul stress heterogeneity Notes Borehole induced structures in image logs of wells from the Coso Geothermal Field (CGF) record variation in the azimuth of principal stress. Image logs of these structures from five wells were analyzed to quantify the stress heterogeneity for three geologically distinct locations: two wells within the CGF (one in an actively produced volume), two on the margin of the CGF and outside the production area, and a control well several tens of km

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

402

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

403

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

404

SNAP Image Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Images Images Cutaway image of SNAP A cutaway illustration of SNAP showing some of the interior optics. Cutaway image of SNAP A computer generated cutaway illustration of SNAP Cutaway image of SNAP's primary mirror A computer generated cutaway illustration of SNAP's primary mirror image of SNAP spacecraft A computer generated illustration of the SNAP spacecraft computer generated image of SNAP A computer generated illustration of SNAP Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift supernovae discovered by the Supernova Cosmology Project in March, 1998. Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift supernovae discovered in March, 1998. This observaton showed that the expansion of the universe was accelerarting. Credit: High Redshift Supernova Search Supernova Cosmology Project

405

APS 7-BM Beamline: Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motivation Motivation The major thrust of the 7-BM beamline is the application of synchrotron radiation tools to examine complex fluid flowfields. Two major techniques are applied: radiography and x-ray fluorescence spectroscopy. While optical techniques are often ideally suited to the study of fluid flowfields, there are certain flowfields for which optical diagnostics have significant challenges. These include: Multiphase flows: Visible light interacts strongly with phase boundaries. This leads to strong refraction, scattering, and attenuation of light. These effects hinder quantitative measurements of dense multiphase flowfields. Opaque media. Flows with strong refractive effects. Luminous flames: The strong light emission from sooting flames can hinder certain optical diagnostics.

406

NASA's Future HyspIRI Mission and the EO-1 Hyperion Collections  

Science Journals Connector (OSTI)

NASA’s Hyperspectral Infrared Imager (HyspIRI) concept for a global survey mission with two instruments, a visible-shortwave infrared imaging spectrometer ...

Middleton, Betsy

407

Three-dimensional nuclear magnetic resonance imaging of green-state ceramics  

SciTech Connect (OSTI)

Objective is the development of nuclear magnetic resonance imaging techniques and technology applicable to the nondestructive characterization of green-state ceramics. To this end, a three-dimensional (3-D) NMR imaging technique has been developed, based on a back-projection acquisition protocol in combination with image reconstruction techniques that are based on 3-D Radon transform inversion. The method incorporates the experimental flexibility to overcome many of the difficulties associated with imaging of solid and semisolid broad-line materials, and also provides contiguously sampled data in three dimensions. This technique has been evaluated as a nondestructive characterizauon method for determining the spatial distribution of organic additves in green-state injection-molded cylindrical Si{sub 3}N{sup 4} tensile specimens. The technique has been evaluated on the basis of providing moderate image resolution over large sample volumes, high resolution over smaller specimen volumes, and sensitivity to variations in the concentration of organics. Resolution of 200{mu}m has been obtained with excellent sensitivity to concentration. A detailed account of the 3-D imaging results obtained from the study, a discussion of the difficulties and limitations of the imaging technique, and suggestions for technique and system improvements are included.

Dieckman, S.L.; Gopalsami, N.; Ford, J.M.; Raptis, A.C.; Ellingson, W.A. (Argonne National Lab., IL (United States)); Rizo, P. (CEA Centre d'Etudes Nucleaires de Grenoble, 38 (France). Lab. d'Electronique et de Technologie de l'Informatique); Tracey, D.M.; Pujari, V.K. (Norton Co., Northboro, MA (United States))

1991-09-01T23:59:59.000Z

408

Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data and Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, and fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

409

Absolute calibration of imaging atmospheric Cherenkov telescopes  

E-Print Network [OSTI]

A calibrated laser pulse propagating through the atmosphere produces a flash of Rayleigh scattered light with an intensity that can be calculated very accurately when atmospheric conditions are good. This is used in a technique developed for the absolute calibration of ultra high energy cosmic ray fluorescence telescopes, and it can also be applied to imaging atmospheric Cherenkov telescopes (IACTs). In this paper we present the absolute calibration system being constructed and tested for the VERITAS project.

N. Shepherd; J. H. Buckley; O. Celik; J. Holder; S. LeBohec; H. Manseri; F. Pizlo; M. Roberts

2005-07-04T23:59:59.000Z

410

Low-Intrusion Techniques and Sensitive Information Management for Warhead Counting and Verification: FY2012 Annual Report  

SciTech Connect (OSTI)

Progress in the second year of this project is described by the series of technical reports and manuscripts that make up the content of this report. These documents summarize successes in our goals to develop our robust image-hash templating and material-discrimination techniques and apply them to test image data.

Jarman, Kenneth D.; McDonald, Benjamin S.; Robinson, Sean M.; Gilbert, Andrew J.; White, Timothy A.; Pitts, W. Karl; Misner, Alex C.; Seifert, Allen

2012-11-01T23:59:59.000Z

411

Multislice Spiral Computed Tomography of the Heart: Technique, Current Applications, and Perspective  

SciTech Connect (OSTI)

Multislice spiral computed tomography (MSCT) is a rapidly evolving, noninvasive technique for cardiac imaging. Knowledge of the principle of electrocardiogram-gated MSCT and its limitations in clinical routine are needed to optimize image quality. Therefore, the basic technical principle including essentials of image postprocessing is described. Cardiac MSCT imaging was initially focused on coronary calcium scoring, MSCT coronary angiography, and analysis of left ventricular function. Recent studies also evaluated the ability of cardiac MSCT to visualize myocardial infarction and assess valvular morphology. In combination with experimental approaches toward the assessment of aortic valve function and myocardial viability, cardiac MSCT holds the potential for a comprehensive examination of the heart using one single examination technique.

Mahnken, Andreas H., E-mail: mahnken@rad.rad.rwth-aachen.de; Wildberger, Joachim E. [Aachen University of Technology, Department of Diagnostic Radiology (Germany); Koos, Ralf [Aachen University of Technology, Medical Clinic I (Germany); Guenther, Rolf W. [Aachen University of Technology, Department of Diagnostic Radiology (Germany)

2005-05-15T23:59:59.000Z

412

Multispectral Imaging (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Multispectral Imaging (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Multispectral Imaging Activity Date Usefulness not indicated DOE-funding Unknown Notes Design of Sampling Strategies to Detect CO2 Emissions From Hidden Geothermal Systems, Lewicki, Oldenburg and Kennedy. The objective of this project is to investigate geothermal CO2 monitoring in the near surface as a tool to discover hidden geothermal reservoirs. A primary goal of this project is to develop an approach that places emphasis on cost and time-efficient near-surface exploration methods and yields results to guide

413

A multi-frame, megahertz CCd imager  

SciTech Connect (OSTI)

To record high-speed, explosively driven, events, a high efficiency, high speed, imager has been fabricated which is capable of framing rates of 2 MHz. This device utilizes a 512 x 512 pixel charge coupled device (CCD) with a 25cm{sup 2} active area, and incorporates an electronic shutter technology designed for back-illuminated CCD's, making this the largest and fastest back-illuminated CCD in the world. Characterizing an imager capable of this frame rate presents unique challenges. High speed LED drivers and intense radioactive sources are needed to perform the most basic measurements. We investigate properties normally associated with single-frame CCD's such as read noise, full-well capacity, sensitivity, signal to noise ratio, linearity and dynamic range. In addition, we investigate several properties associated with the imager's multi-frame operation such as transient frame response and frame-to-frame isolation while contrasting our measurement techniques and results with more conventional devices.

Mendez, Jacob [Los Alamos National Laboratory; Balzer, Stephen [Los Alamos National Laboratory; Watson, Scott [Los Alamos National Laboratory; Reich, Robert [MIT-LL

2010-01-01T23:59:59.000Z

414

Data Mining: Concepts and Techniques  

E-Print Network [OSTI]

1 Data Mining: Concepts and Techniques (3rd ed.) -- Chapter 3 -- Jiawei Han, Micheline Kamber. All rights reserved. #12;2013/08/12 2 #12;33 Chapter 3: Data Preprocessing n Data Preprocessing: An Overview n Data Quality n Major Tasks in Data Preprocessing n Data Cleaning n Data Integration n Data

Geldenhuys, Jaco

415

Category:Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on Geophysical Techniques as exploration techniques, click here. Category:Geophysical Techniques Add.png Add a new Geophysical Techniques Technique Subcategories This category has the following 4 subcategories, out of 4 total. E [+] Electrical Techniques‎ (2 categories) 5 pages G [×] Gravity Techniques‎ 3 pages M [×] Magnetic Techniques‎ 3 pages S [+] Seismic Techniques‎ (2 categories) 2 pages Pages in category "Geophysical Techniques" The following 5 pages are in this category, out of 5 total. D DC Resistivity Survey (Mise-Á-La-Masse) E Electrical Techniques G Gravity Techniques M Magnetic Techniques

416

Updated Satellite Technique to Forecast Heavy Snow  

Science Journals Connector (OSTI)

Certain satellite interpretation techniques have proven quite useful in the heavy snow forecast process. Those considered best are briefly reviewed, and another technique is introduced. This new technique was found to be most valuable in cyclonic ...

Edward C. Johnston

1995-06-01T23:59:59.000Z

417

ARM - Measurement - Hydrometeor image  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

image image ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor image Images of hydrometeors from which one can derive characteristics such as size and shape. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments LEARJET : Lear Jet PARTIMG : Particle imager UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments SPEC-CPI : Stratton Park Engineering Company - Cloud particle imager UAV-PROTEUS : UAV Proteus

418

Video Toroid Cavity Imager  

DOE Patents [OSTI]

A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

2004-08-10T23:59:59.000Z

419

Category:Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electrical Techniques page? For detailed information on Electrical Techniques as exploration techniques, click here. Category:Electrical Techniques Add.png Add a new Electrical Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [+] Direct-Current Resistivity Survey‎ (2 categories) 3 pages E [+] Electromagnetic Techniques‎ (1 categories) 2 pages Pages in category "Electrical Techniques"

420

Sub-Rayleigh quantum imaging using single-photon sources  

SciTech Connect (OSTI)

We propose a technique capable of imaging a distinct physical object with sub-Rayleigh resolution in an ordinary far-field imaging setup using single-photon sources and linear optical tools only. We exemplify our method for the case of a rectangular aperture and two or four single-photon emitters obtaining a resolution enhanced by a factor of 2 or 4, respectively.

Thiel, C.; Zanthier, J. von [Institut fuer Optik, Information und Photonik, Universitaet Erlangen-Nuernberg, 91058 Erlangen (Germany); Bastin, T. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liege, 4000 Liege (Belgium); Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Manhattan Project: Places Images  

Office of Scientific and Technical Information (OSTI)

PLACES IMAGES PLACES IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. Remains of a Shinto Shrine, Nagasaki, October 1945 (courtesy the United States Marine Corps, Lieutenant R. J. Battersby, photographer, via the National Archives); 2. University of California, Berkeley, 1940 (courtesy the Lawrence Berkeley National Laboratory); 3. Aerial photograph of the Trinity Site after the test (courtesy the Federation of American Scientists); 4. Aerial photograph of Hiroshima before the bombing; 5. Columbia University, 1903 (courtesy the Library of Congress; this photograph originated from the Detroit Publishing Company; it was a 1949 gift to the Library of Congress from the State Historical Society of Colorado).

422

Quantitative luminescence imaging system  

DOE Patents [OSTI]

The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

Erwin, David N. (San Antonio, TX); Kiel, Johnathan L. (San Antonio, TX); Batishko, Charles R. (West Richland, WA); Stahl, Kurt A. (Richland, WA)

1990-01-01T23:59:59.000Z

423

Quantitative luminescence imaging system  

DOE Patents [OSTI]

The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

1990-08-14T23:59:59.000Z

424

EMSL - image superimposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

image-superimposition en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structu...

425

image superimposition | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

superimposition image superimposition Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

426

Low background techniques in XMASS  

SciTech Connect (OSTI)

The XMASS project aims to detect pp and {sup 7}Be solar neutrinos, neutrino-less double beta decay, and dark matter searches using ultra-pure liquid xenon. The first stage of XMASS project is concentrated on dark matter searches using 800 kg liquid xenon detector which requires low background and low threshold. Several techniques applied to XMASS detector for low background will be presented.

Takeda, Atsushi [Kamioka Observatory, ICRR, University of Tokyo, 456 Higashi-Mozumi, Kamioka-cho, Hida, Gifu, 506-1205 (Japan)

2011-04-27T23:59:59.000Z

427

Chapter 6 - Seismic Inversion Techniques  

Science Journals Connector (OSTI)

Abstract Seismic inversion techniques were developed as a discipline at the same time that seismic technologies were widely applied in oil exploration and development starting in the 1980s. Except for basic theories and principles, seismic inversion techniques are different from traditional seismic exploration methods in geological tasks, involving basic information as well as study approaches. In the early stages of exploration, the geological task of seismic exploration was to find structures and identify traps, and seismic exploration techniques always focused on the ups and downs of reflection interfaces. They mainly relied on the travel time for structural interpretation. The main work of reservoir geophysics is to study the heterogeneity of a reservoir, and the main geological task is to make predictions on the reservoir parameters. Scientists focus on the lateral variation of reservoir characteristics and conduct seismic interpretation based on the information extracted from the results of reservoir seismic inversion. Seismic inversion has developed rapidly in recent years, including recursive inversion, log-constrained inversion, and multiparameter lithological seismic inversion. We choose different methods according to the geological characteristics and specific problems of the study area.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

428

Edge-based correlation image registration for multispectral imaging  

DOE Patents [OSTI]

Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

Nandy, Prabal (Albuquerque, NM)

2009-11-17T23:59:59.000Z

429

Template:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

'ExplorationTechnique' template. To define a new Exploration 'ExplorationTechnique' template. To define a new Exploration Technique, please use the Exploration Technique Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - ParentExplorationTechnique - parent technique for relationship tree LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

430

DATA FUSION IN 2D AND 3D IMAGE PROCESSING: AN OVERVIEW Isabelle BLOCH, Henri MA^ITRE  

E-Print Network [OSTI]

DATA FUSION IN 2D AND 3D IMAGE PROCESSING: AN OVERVIEW Isabelle BLOCH, Henri MA^ITRE Ecole of the art in image fusion, with an emphasis on the emergence of new techniques, often issued from other the aim of data fusion and its speci city when image informationhas to be combined, with emphasis

431

Multiple Reference Fourier Transform Holography: Five Images for the Price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multiple Reference Fourier Transform Multiple Reference Fourier Transform Holography: Five Images for the Price of One Improving the quality of a high magnification image on an optical microscope is simply a matter of cranking up the intensity of the illumination lamp. The same is true for x-ray microscopes, but complications arise when there just aren't enough x-rays or even worse when the sample is susceptible to damage caused by the intense x-ray beam. To address these challenges we have demonstrated a novel technique for improving the quality of a microscopic image without increasing the x-ray exposure to the specimen. This affords new opportunities to explore materials prone to soft x-ray damage, like polymer or biological samples. Our technique uses coherent x-ray scattering to simultaneously acquire multiple images of a specimen, which can easily be combined later to enhance the image quality. Applying our technique in the weak illumination limit we imaged a nanoscale test object by detecting only 2500 photons.

432

The study of flame dynamics and structures in an industrial-scale gas turbine combustor using digital data processing and computer vision techniques  

Science Journals Connector (OSTI)

In this paper, a combined effort has been made to study the flame dynamics and structures in a gas turbine combustor using a range of imaging and digital data processing techniques. The acoustic characteristics of the combustor have been investigated extensively. It is found that there is no straightforward way to alter the peak frequency of one of the peculiar combustion modes of the rig. High speed imaging is applied to investigate the flame dynamics and quantitative analysis of the image database has been demonstrated. The results show that the frequency spectrum of the mean pixel image intensity of seeded flame is in good agreement with the acoustic spectrum. To recover the loss in depth information present in conventional imaging technique, both the optical and digital stereo imaging techniques have been applied. The important flame position relative to the combustion chamber could be resolved.

W.B. Ng; K.J. Syed; Y. Zhang

2005-01-01T23:59:59.000Z

433

Directional Multiresolution Image Representations  

E-Print Network [OSTI]

) are not necessarily best suited for images. Thus, there is a strong motivation to search for more powerful schemes consid´er´ees comme de bonnes repr´esentations des images na- turelles. Le lien entre les courbelettes et

Do, Minh N.

434

Medical imaging systems  

DOE Patents [OSTI]

A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

Frangioni, John V. (Wayland, MA)

2012-07-24T23:59:59.000Z

435

DOUBLE MAJORS Imaging Science + ...  

E-Print Network [OSTI]

DOUBLE MAJORS Imaging Science + ... Applied Mathematics Biomedical Sciences Computer Science Undergraduate Research Internships and Cooperative Education (Co-op) (optional) Study Abroad WHY IMAGING SCIENCE Science: BS, MS, PhD Color Science: MS, PhD BS + MS/PhD Combos HUMAN VISION BIO- MEDICAL ASTRO- PHYSICS

Zanibbi, Richard

436

Heart imaging method  

DOE Patents [OSTI]

A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

Collins, H. Dale (Richland, WA); Gribble, R. Parks (Richland, WA); Busse, Lawrence J. (Littleton, CO)

1991-01-01T23:59:59.000Z

437

Seismic image waves  

Science Journals Connector (OSTI)

......involved in the seismic imaging process, for example the migration...revisited, 60th Ann. Int. Mtg., Soc. Expl. Geophys...involved in the seismic imaging process, for example the migration...revisited, 60th Ann. Int. Mtg., SOC. Expl. Geophys......

Peter Hubral; Martin Tygel; Jörg Schleicher

1996-05-01T23:59:59.000Z

438

Acoustic imaging in a water filled metallic pipe  

SciTech Connect (OSTI)

A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

Kolbe, W.F.; Turko, B.T.; Leskovar, B.

1984-04-01T23:59:59.000Z

439

Adaptive wiener image restoration kernel  

DOE Patents [OSTI]

A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

Yuan, Ding (Henderson, NV)

2007-06-05T23:59:59.000Z

440

A New Neutron Detection Technique: Fissile Resistors  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Technique

M. Roche; J. Morin; R. Musart; B. Pierre

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

User Science Images  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Science Images User Science Images User Science Images Sort by: Default | Name | Date (low-high) | Date (high-low) | Category NIMROD-1.png FES: NIMROD Simulation February 18, 2010 | Author(s): Dr. Charlson C. Kim (University of Washington) | Category: Fusion Energy | URL: https://nimrodteam.org/ Download Image: NIMROD-1.png | png | 1.5 MB Trajectory of an energetic ion in a Field Reverse Configuration (FRC) magnetic field. Magnetic separatrix denoted by green surface. Spheres are colored by azimuthal velocity. Image courtesy of Charlson Kim, University of Washington; NERSC repos m487, mp21, m1552 Scheibe.png BER: Pore-Scale Fluid Flow for Subsurface Reactive Transport January 1, 2008 | Author(s): Timothy D. Scheibe, PNNL | Category: Environmental Science | URL: http://http://subsurface.pnl.gov/

442

Manhattan Project: Image Retouching`  

Office of Scientific and Technical Information (OSTI)

Image Retouching Image Retouching Resources > Photo Gallery Smyth Report (original) Smyth Report (retouched) Images on this web site have sometimes been "retouched." In every case, however, the intention has been only to restore the image as much as possible to its original condition. Above is a rather extreme example-"before and after" versions of the cover of the Smyth Report (Henry DeWolf Smyth, Atomic Energy for Military Purposes: The Official Report on the Development of the Atomic Bomb under the Auspices of the United States Government, 1940-1945 (Princeton, NJ: Princeton University Press, 1945)). The Smyth Report was commissioned by Leslie Groves and originally issued by the Manhattan Engineer District. Princeton University Press reprinted it in book form as a "public service" with "reproduction in whole or in part authorized and permitted.") Larger versions of the same images are below.

443

GTL Image Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Human Genome Project Information • Genomic Science • Microbial Genome Program • sitemap • home Human Genome Project Information • Genomic Science • Microbial Genome Program • sitemap • home Announcing the New Image Gallery Visit the new Image Gallery for an expanded suite of images Biofuels Browse the 2010 "Bioenergy Research Centers: An Overview of the Science" Brochure Gallery. Browse the 2006 "Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda" Report Gallery. Browse more biofuels images (includes the June 2006 "Understanding Biomass" Primer Gallery). Systems Biology Browse the August 2005 "Genomics:GTL Roadmap: Systems Biology for Energy and Environment" Gallery. Basic Genomics Browse the Human Chromosome Gallery. Browse more Basic Genomics images. Carbon Cycling

444

Time encoded radiation imaging  

DOE Patents [OSTI]

The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

Marleau, Peter; Brubaker, Erik; Kiff, Scott

2014-10-21T23:59:59.000Z

445

Fast ultrasonic imaging in a liquid filled pipe  

SciTech Connect (OSTI)

A new method is described for the imaging of the interior of a liquid filled metallic pipe using acoustical techniques. The experimental system incorporates an array of 20 acoustical transducers and is capable of capturing the images of moving bubbles at a frame rate in excess of 300/s. The transducers are mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echoes reflected from vapor bubbles in the interior are detected, digitized and processed by a computer to generate an image. The high rate of speed was achieved by the use of newly developed software and electronic circuitry. This approach has eliminated most of the spurious echo signals which degraded the performance of previous imaging systems. The capability of the method is illustrated by imaging actual vapor bubbles in rapid sequence in the pipe. 13 refs.

Kolbe, W.F.; Turko, B.T.; Leskovar, B.

1985-10-01T23:59:59.000Z

446

Imaging Catalytic Surfaces by Multiplexed Capillary Electrophoresis With Absorption Detection  

SciTech Connect (OSTI)

A new technique for in situ imaging and screening heterogeneous catalysts by using multiplexed capillary electrophoresis with absorption detection was developed. By bundling the inlets of a large number of capillaries, an imaging probe can be created that can be used to sample products formed directly from a catalytic surface with high spatial resolution. In this work, they used surfaces made of platinum, iron or gold wires as model catalytic surfaces for imaging. Various shapes were recorded including squares and triangles. Model catalytic surfaces consisting of both iron and platinum wires in the shape of a cross were also imaged successfully. Each of the two wires produced a different electrochemical product that was separated by capillary electrophoresis. Based on the collected data they were able to distinguish the products from each wire in the reconstructed image.

Michael Christodoulou

2002-08-27T23:59:59.000Z

447

Image analysis of ocular fundus for retinopathy characterization  

SciTech Connect (OSTI)

Automated analysis of ocular fundus images is a common procedure in countries as England, including both nonemergency examination and retinal screening of patients with diabetes mellitus. This involves digital image capture and transmission of the images to a digital reading center for evaluation and treatment referral. In collaboration with the Optometry Department, University of California, Berkeley, we have tested computer vision algorithms to segment vessels and lesions in ground-truth data (DRIVE database) and hundreds of images of non-macular centric and nonuniform illumination views of the eye fundus from EyePACS program. Methods under investigation involve mathematical morphology (Figure 1) for image enhancement and pattern matching. Recently, we have focused in more efficient techniques to model the ocular fundus vasculature (Figure 2), using deformable contours. Preliminary results show accurate segmentation of vessels and high level of true-positive microaneurysms.

Ushizima, Daniela; Cuadros, Jorge

2010-02-05T23:59:59.000Z

448

Category:Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Techniques page? For detailed information on Field Techniques as exploration techniques, click here. Category:Field Techniques Add.png Add a new Field Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [×] Data Collection and Mapping‎ 5 pages F [+] Field Sampling‎ (2 categories) 4 pages Pages in category "Field Techniques" The following 4 pages are in this category, out of 4 total. D Data Collection and Mapping F Field Sampling H Hand-held X-Ray Fluorescence (XRF) P Portable X-Ray Diffraction (XRD) Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Techniques&oldid=689815"

449

Applications of photoacoustic sensing techniques  

Science Journals Connector (OSTI)

This paper reviews the theory and applications of photoacoustic (also called optoacoustic) methods belonging to the more general area of photothermal measurement techniques. The theory covers excitation of gaseous or condensed samples with modulated continuous light beams or pulsed light beams. The applications of photoacoustic methods include spectroscopy, monitoring deexcitation processes, probing physical properties of materials, and generating mechanical motions. Several other related photothermal methods, as well as particle-acoustics and wave-acoustics methods are also described. This review complements an earlier and narrower review [Rev. Mod. Phys. 53, 517 (1981)] that is mainly concerned with sensitive detection by pulsed photoacoustic spectroscopy in condensed matter.

Andrew C. Tam

1986-04-01T23:59:59.000Z

450

Non-Destructive Testing of Subsurface Infrastructure using Induced Polarization and Electrical Resistivity Imaging  

E-Print Network [OSTI]

critical component of the assessment. While this issue is not new, current techniques are typically invasive or costly. This research explores the feasibility and effectiveness of induced polarization (IP) and electrical resistivity imaging (ERI), near...

Tucker, Stacey Elizabeth

2013-07-05T23:59:59.000Z

451

Fish population and behavior revealed by instantaneous continental-shelf scale imaging  

E-Print Network [OSTI]

The application of a technique to instantaneously image and continuously monitor the abundance, spatial distribution, and behavior of fish populations over thousands of square kilometers using Ocean Acoustic Waveguide ...

Symonds, Deanelle T

2008-01-01T23:59:59.000Z

452

Geophysical imaging methods for analysis of the Krafla Geothermal Field, NE Iceland  

E-Print Network [OSTI]

Joint geophysical imaging techniques have the potential to be reliable methods for characterizing geothermal sites and reservoirs while reducing drilling and production risks. In this study, we applied a finite difference ...

Parker, Beatrice Smith

2012-01-01T23:59:59.000Z

453

E-Print Network 3.0 - anode image sensor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biofilm, using techniques... on the anode surface have been greatly improved by the development of a real-time imaging MFC 100. This MFC... into anodic and cathodic chambers, an...

454

Experimental study on bubble collapse phenomena in subcooled water with three-dimensional particle image velocimetry  

E-Print Network [OSTI]

The purpose of this study is to apply three-Micrographics. dimensional particle image velocimetry (PlV) technique to study bubble collapse phenomenon. Simultaneous stereoscopic views of the tracer-seeded flow were recorded by three charged couple...

Yang, Yu-Hsiang

2012-06-07T23:59:59.000Z

455

Segmentation of Spin-Echo MRI brain images: a comparison study of Crisp and Fuzzy algorithms  

E-Print Network [OSTI]

This thesis presents a scheme for segmenting Spin-Echo MRI brain images based on Fuzzy C-Mean (FCM) clustering techniques. This scheme consists of feature extraction, feature conditioning or evaluation, and thresholded FCM clustering. Feature...

Chung, Maranatha

2012-06-07T23:59:59.000Z

456

X-ray imaging crystal spectroscopy for use in plasma transport research  

E-Print Network [OSTI]

This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain ...

Bitter, M.

457

Model building techniques for analysis.  

SciTech Connect (OSTI)

The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the product definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.

Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald; Cordova, Theresa Elena; Henry, Ronald C.; Brooks, Sean; Martin, Wilbur D.

2009-09-01T23:59:59.000Z

458

Polarization transfer NMR imaging  

DOE Patents [OSTI]

A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

Sillerud, Laurel O. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM)

1990-01-01T23:59:59.000Z

459

Quantum ghost imaging through turbulence  

SciTech Connect (OSTI)

We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a specific experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost-imaging central image plane, we are able to dramatically increase the ghost-image quality. When imaging a test pattern through turbulence, this method increases the imaged pattern visibility from V=0.15{+-}0.04 to 0.42{+-}0.04.

Dixon, P. Ben; Howland, Gregory A.; Howell, John C. [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Chan, Kam Wai Clifford [Rochester Optical Manufacturing Company, Rochester, New York 14606 (United States); O'Sullivan-Hale, Colin; Rodenburg, Brandon [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Hardy, Nicholas D.; Shapiro, Jeffrey H. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Simon, D. S.; Sergienko, A. V. [Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 (United States); Boyd, R. W. [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

2011-05-15T23:59:59.000Z

460

Scanning computed confocal imager  

DOE Patents [OSTI]

There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

George, John S. (Los Alamos, NM)

2000-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Crowded Cluster Cores: Algorithms for Deblending in Dark Energy Survey Images  

E-Print Network [OSTI]

Deep optical images are often crowded with overlapping objects. This is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. We present new software called the Gradient And INterpolation based deblender (GAIN) as a secondary deblender to improve deblending the images of cluster cores. This software relies on using image intensity gradient and using an image interpolation technique usually used to correct flawed terrestrial digital images. We test this software on Dark Energy Survey coadd images. GAIN helps extracting unbiased photometry measurement for blended sources. It also helps improving detection completeness while introducing only a modest amount of spurious detections. For example, when applied to deep images simulated with high level o...

Zhang, Yuanyuan; Bertin, Emmanuel; Jeltema, Tesla; Miller, Christopher J; Rykoff, Eli; Song, Jeeseon

2014-01-01T23:59:59.000Z

462

The PA projection of the clavicle: a dose-reducing technique  

Science Journals Connector (OSTI)

......Carver E. , Carver B. Medical Imaging Techniques...Rando-Phantom and its Medical Applications. (1973...Manning D. J. Ambient lighting: effect of illumination...Interpretation and Uses of Medical Statistics. (2000...Hourihan S. P. The cost-effectiveness of carbon-fibre......

Mark F. Mc Entee; Catherine Kinsella

2010-06-01T23:59:59.000Z

463

Improving resolution and depth of astronomical observations via modern mathematical methods for image analysis  

E-Print Network [OSTI]

In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

Castellano, Marco; Fontana, Adriano; Merlin, Emiliano; Pilo, Stefano; Falcone, Maurizio

2015-01-01T23:59:59.000Z

464

Oblique Aerial & Ground Visible Band & Thermographic Imaging | Open Energy  

Open Energy Info (EERE)

Oblique Aerial & Ground Visible Band & Thermographic Imaging Oblique Aerial & Ground Visible Band & Thermographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Oblique Aerial & Ground Visible Band & Thermographic Imaging Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 400.0040,000 centUSD 0.4 kUSD 4.0e-4 MUSD 4.0e-7 TUSD / Subject Median Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / Subject High-End Estimate (USD): 6,000.00600,000 centUSD

465

High-Throughput Screening Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Throughput Throughput Screening Techniques for Biomass Conversion Stephen R. Decker & Roman Brunecky & Melvin P. Tucker & Michael E. Himmel & Michael J. Selig Published online: 14 October 2009 # US Government 2009 Abstract High-throughput (HTP) screening of biomass or biomass-degrading enzymes, regardless of the desired outcome, is fraught with obstacles and challenges not typically faced in more traditional biotechnology. The enzyme systems are complex and synergistic and the substrate is highly heterogeneous, insoluble, and difficult to dispense. Digestions are often carried out for days at temperatures of 50°C or higher, leading to significant challenges regarding evaporation control in small well volumes. Furthermore, it is often desirable to condition or "pretreat" the biomass at extreme temperatures and/or pH to enhance enzyme digestibility.

466

Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture  

DOE Patents [OSTI]

Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

2013-01-08T23:59:59.000Z

467

Manhattan Project: People Images  

Office of Scientific and Technical Information (OSTI)

PEOPLE IMAGES PEOPLE IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. J. Robert Oppenheimer, Enrico Fermi, and Ernest Lawrence (courtesy the Lawrence Berkeley National Laboratory); 2. Hanford, Washington, workers sending money home (reproduced from the photo insert in F. G. Gosling, The Manhattan Project: Making the Atomic Bomb (Washington: History Division, Department of Energy, October 2001)); 3. Oppenheimer and Leslie Groves at the Trinity Site, September 1945 (reproduced from the cover of the Office of History and Heritage Resources publication: The Signature Facilities of the Manhattan Project (Washington: History Division, Department of Energy, 2001)); 4. A WAC detachment marching at Oak Ridge, Tennessee, June 1945 (courtesy the Army Corps of Engineers; it is reprinted in Rachel Fermi and Esther Samra, Picturing the Bomb: Photographs from the Secret World of the Manhattan Project (New York: Harry N. Abrams, Inc., Publishers, 1995), 40);

468

Manhattan Project: Science Images  

Office of Scientific and Technical Information (OSTI)

SCIENCE IMAGES SCIENCE IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. Fission (this graphic is adapted from a graphic originally produced by the Washington State Department of Health; the modifications are original to the History Division, now Office of History and Heritage Resources, 2003); 2. Fat Man (plutonium bomb), August 1945 (courtesy the U.S. Army Corps of Engineers (via theNational Archives)); 3. F Reactor Plutonium Production Complex Hanford, Washington, 1945; 4. A Cockroft-Walton machine at Los Alamos, New Mexico (courtesy the Los Alamos National Laboratory; it is reprinted in John F. Hogerton, ed., "Cockroft-Walton Machine," The Atomic Energy Deskbook (New York: Reinhold Publishing Corporation, 1963, prepared under the auspices of the Division of Technical Information, U.S. Atomic Energy Commission), 102);

469

Practical image based lighting  

E-Print Network [OSTI]

In this thesis, we present a user-friendly and practical method for seamless integration of computer-generated images (CG) with real photographs and video. In general such seamless integration is extremely hard and requires recovery of real world...

Lee, Jaemin

2012-06-07T23:59:59.000Z

470

Photothermal imaging scanning microscopy  

DOE Patents [OSTI]

Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

2006-07-11T23:59:59.000Z

471

Overview of Image Reconstruction  

SciTech Connect (OSTI)

Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on Rn is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references. (RWR)

Marr, R.B.

1980-04-01T23:59:59.000Z

472

Image Content Engine (ICE)  

SciTech Connect (OSTI)

The Image Content Engine (ICE) is being developed to provide cueing assistance to human image analysts faced with increasingly large and intractable amounts of image data. The ICE architecture includes user configurable feature extraction pipelines which produce intermediate feature vector and match surface files which can then be accessed by interactive relational queries. Application of the feature extraction algorithms to large collections of images may be extremely time consuming and is launched as a batch job on a Linux cluster. The query interface accesses only the intermediate files and returns candidate hits nearly instantaneously. Queries may be posed for individual objects or collections. The query interface prompts the user for feedback, and applies relevance feedback algorithms to revise the feature vector weighting and focus on relevant search results. Examples of feature extraction and both model-based and search-by-example queries are presented.

Brase, J M

2007-03-26T23:59:59.000Z

473

JOB OPPORTUNITIES Breast imaging  

E-Print Network [OSTI]

Genitourinary Radiology Head and Neck Radiology Musculoskeletal Radiology Neuroradiology Pediatric RadiologyJOB OPPORTUNITIES Breast imaging Chest Radiology Emergency Radiology Gastrointestinal Radiology Interventional Radiology Nuclear Radiology Radiation Oncology What Can I Do With a Major in... Radiological

Jiang, Huiqiang

474

Methods for spectral image analysis by exploiting spatial simplicity  

DOE Patents [OSTI]

Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

Keenan, Michael R. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

475

On-Chip Rayleigh Imaging and Spectroscopy of Carbon Nanotubes  

Science Journals Connector (OSTI)

We report a novel on-chip Rayleigh imaging technique using wide-field laser illumination to measure optical scattering from individual single-walled carbon nanotubes (SWNTs) on a solid substrate with high spatial and spectral resolution. This method in ...

Daniel Y. Joh; Lihong H. Herman; Sang-Yong Ju; Jesse Kinder; Michael A. Segal; Jeffreys N. Johnson; Garnet K. L. Chan; Jiwoong Park

2010-08-02T23:59:59.000Z

476

BUBBLE RECOGNITION FROM IMAGE SEQUENCES Dachuan Cheng and Hans Burkhardt  

E-Print Network [OSTI]

BUBBLE RECOGNITION FROM IMAGE SEQUENCES Da­chuan Cheng and Hans Burkhardt Institute for Pattern In this paper, we present an algorithm which can automatically recognize vapor bubbles in a seething liquid from and the bubble recognition. In the first step, the technique for auto­focus was applied for the determination

477

Hindawi Publishing Corporation International Journal of Biomedical Imaging  

E-Print Network [OSTI]

algebraic reconstruction technique (SART) for image reconstruction from a limited number of projections concerns on radiation induced genetic, cancerous, and other diseases [1­3]. Computed tomography (CT, and then the signal is exactly recovered with an overwhelming probability from the limited amount of data via the 1

Virginia Tech

478

LASER ULTRASONIC IMAGING FOR IMPACT DAMAGE VISUALIZATION IN COMPOSITE STRUCTURE  

E-Print Network [OSTI]

LASER ULTRASONIC IMAGING FOR IMPACT DAMAGE VISUALIZATION IN COMPOSITE STRUCTURE Chao Zhang1 , Jinhao Qiu1* , Hongli Ji1 1 State Key Laboratory of Mechanics and Control of Mechanical Structures ultrasonic scanning technique has great potential for damage evaluation in various applications. In order

Boyer, Edmond

479

A Semantic Content-Based Retrieval Method for Histopathology Images  

E-Print Network [OSTI]

-learning techniques. The semantic mapper is trained using images labeled by a pathologist. The system was tested], that is to say, the existing distance between conceptual interpretation at a high level and the low-level feature to discriminate both situations. The inductive approach has many advantages: it just relays on the expert

Gonzalez, Fabio

480

Ultrasonic Imaging of Immersed Objects using Migration Tomas Olofsson  

E-Print Network [OSTI]

The synthetic aperture focusing technique (SAFT) is often used for imaging in non-destructive ultrasonic testing. Con- ventional SAFT is well suited for contact testing of homogeneous objects because of the constant of immersion tests has so far prevented a widespread use of SAFT for such data. Fortunately, the problem

Note: This page contains sample records for the topic "technique hyperspectral imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Automatic Solar Flare Tracking Using Image Processing Qu Ming and Shih Frank (shih@njit.edu)  

E-Print Network [OSTI]

using solar H images obtained from Big Bear Solar Observatory in California. In this paper, we studyAutomatic Solar Flare Tracking Using Image Processing Techniques Qu Ming and Shih Frank (shih Center for Solar-Terrestrial Research, New Jersey Institute of Technology Newark, NJ 07102 Big Bear Solar

482

Image-Based Chemical Screening Identifies Drug Efflux Inhibitors in Lung Cancer Cells  

Science Journals Connector (OSTI)

...high-throughput studies using the SP technique. On the other hand, recently, automated image analysis aided by high-performance computing has enabled rapid advances in the development of high-throughput image-based assays (19-22). Considering...

Xiaofeng Xia; Jian Yang; Fuhai Li; Ying Li; Xiaobo Zhou; Yue Dai; Stephen T.C. Wong

2010-10-01T23:59:59.000Z

483

ELSEVIER Surface Science 329 (1995) 255-268 Predicting STM images of molecular adsorbates  

E-Print Network [OSTI]

ELSEVIER Surface Science 329 (1995) 255-268 Predicting STM images of molecular adsorbates V of a simple computational method for predicting scanning tunneling microscopy images for molecules adsorbed onto metal surfaces. Development of the technique is described, including adsorbate geometry selection

Chiang, Shirley

484

M-FISH IMAGE REGISTRATION AND CLASSIFICATION Yu-Ping Wang  

E-Print Network [OSTI]

M-FISH IMAGE REGISTRATION AND CLASSIFICATION Yu-Ping Wang School of Computing and Engineering hybridization (M-FISH) imaging is a recently developed cytogenetic technique for cancer diagnosis and research on genetic disorders. By simultaneously viewing the multiple-labeled specimens in different color channels, M-FISH

Poirazi, Yiota

485