Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Shale Oil and Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

2

Technically recoverable Devonian shale gas in Ohio  

SciTech Connect (OSTI)

The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

1983-07-01T23:59:59.000Z

3

E-Print Network 3.0 - accumulated recoverable oil Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recoverable oil Search Powered by Explorit Topic List Advanced Search Sample search results for: accumulated recoverable oil Page: << < 1 2 3 4 5 > >> 1 Published in Energy Volume...

4

Technically recoverable Devonian shale gas in Kentucky  

SciTech Connect (OSTI)

This report evaluates the natural gas potential of the Devonian Age shales of Kentucky. For this, the study: (1) compiles the latest geologic and reservoir data to establish the gas in-place; (2) analyzes and models the dominant gas production mechanisms; and (3) examines alternative well stimulation and production strategies for most efficiently recovering the in-place gas. The major findings of the study include the following: (1) The technically recoverable gas from Devonian shale (Lower and Upper Huron, Rhinestreet, and Cleveland intervals) in Kentucky is estimated to range from 9 to 23 trillion cubic feet (Tcf). (2) The gas in-place for the Devonian shales in eastern Kentucky is 82 Tcf. About one half of this amount is found in the Big Sandy gas field and its immediate extensions. The remainder is located in the less naturally fractured, but organically rich area to the west of the Big Sandy. (3) The highly fractured shales in the Big Sandy area in southeast Kentucky and the more shallow shales of eastern Kentucky respond well to small-scale stimulation. New, larger-scale stimulation technology will be required for the less fractured, anisotropic Devonian shales in the rest of the state. 44 refs., 49 figs., 24 tabs.

Kuuskraa, V.A.; Sedwick, K.B.; Thompson, K.B.; Wicks, D.E.

1985-05-01T23:59:59.000Z

5

A Methodology to Determine both the Technically Recoverable Resource and the Economically Recoverable Resource in an Unconventional Gas Play  

E-Print Network [OSTI]

generations of engineers and leaders of Saudi Arabia. vii NOMENCLATURE Bcf billion cubic feet CBM coalbed methane CDF cumulative distribution function DOE Department of Energy EIA Energy Information Administration ERR economically....2?Resource Triangle for Natural Gas. (Holditch, 2006) ................................... 4 1.3?Growth of US Technically Recoverable Natural Gas Resources. (EIA, 2010b...

Almadani, Husameddin Saleh A.

2010-10-12T23:59:59.000Z

6

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

7

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

Kujawa, P.

1981-02-01T23:59:59.000Z

8

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

9

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Broader source: Energy.gov (indexed) [DOE]

renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical...

10

Tracking Oil from the Deepwater Horizon Oil Spill in Barataria Bay Sediments  

E-Print Network [OSTI]

technically recoverable resources (UTRR) of oil and 50% of the UTRR of natural gas within the United States (Hagerty, 2010). On April 2001, British Petroleum (BP) acquired a contract with the Deepwater Horizon (DWH) mobile oil-drilling rig for oil and gas... technically recoverable resources (UTRR) of oil and 50% of the UTRR of natural gas within the United States (Hagerty, 2010). On April 2001, British Petroleum (BP) acquired a contract with the Deepwater Horizon (DWH) mobile oil-drilling rig for oil and gas...

Dincer, Zeynep

2013-05-03T23:59:59.000Z

11

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Broader source: Energy.gov (indexed) [DOE]

Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This...

12

Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution  

Broader source: Energy.gov [DOE]

Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England.

13

Recoverable Resource Estimate of Identified Onshore Geopressured...  

Office of Scientific and Technical Information (OSTI)

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad...

14

Horizontal oil well applications and oil recovery assessment. Technical progress report, January--March 1994  

SciTech Connect (OSTI)

The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through five tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves. Accomplishments for this quarter are presented.

McDonald, W.J.

1994-06-01T23:59:59.000Z

15

EIA - Assumptions to the Annual Energy Outlook 2009 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2009 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.1. Crude Oil Technically Recoverable Resources. Need help, contact the Naitonal Energy Information Center at 202-586-8800. printer-friendly version Table 9.2. Natural Gas Technically Recoverable Resources. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.2. Continued printer-friendly version Table 9.3. Assumed Size and Initial Production year of Major Announced Deepwater Discoveries. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 9.4. Assumed Annual Rates of Technological Progress for Conventional Crude Oil and Natural Gas Sources. Need help, contact the National Energy Information Center at 202-586-8800.

16

Horizontal oil well applications and oil recovery assessment. Technical progress report, April--June 1994  

SciTech Connect (OSTI)

Thousands of horizontal wells are being drilled each year in the U.S.A. and around the world. Horizontal wells have increased oil and gas production rates 3 to 8 times those of vertical wells in many areas and have converted non-economic oil reserves to economic reserves. However, the use of horizontal technology in various formation types and applications has not always yielded anticipated success. The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through six tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. Canadian horizontal technology will also be documented with an emphasis on lessons the US industry can learn from Canada`s experience. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves.

McDonald, W.J.

1993-06-03T23:59:59.000Z

17

Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base

18

NOAA Technical Memorandum NOS OR&R 42 Deepwater Horizon Oil Spill  

E-Print Network [OSTI]

NOAA Technical Memorandum NOS OR&R 42 Deepwater Horizon Oil Spill: Salt Marsh Oiling Conditions, evaluating, and responding to threats to coastal environments, including oil and chemical spills, releases to prepare for and respond to oil and chemical releases. Determines damage to natural resources from

19

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential for a renewable heating oil substitution fuel in New England - Agenda Time Pre-Conference Presentation and Discussion (Grenier Room) May 8, 2012; Manchester New Hampshire...

20

Estimates of incremental oil recoverable by carbon dioxide flooding and related carbon dioxide supply requirements for flooding major carbonate reservoirs in the Permian, Williston, and other Rocky Mountain basins  

SciTech Connect (OSTI)

The objective of the work was to build a solid engineering foundation (in) carbonate reservoirs for the purpose of extending the technology base in carbon dioxide miscible flooding. This report presents estimates of incremental oil recovery and related carbon dioxide supply requirements for selected carbonate reservoirs in the Permian, Williston, and Rocky Mountain Basins. The estimates presented here are based on calculations using a volumetric model derived and described in this report. The calculations utilized data developed in previous work. Calculations were made for a total of 279 reservoirs in the Permian, Williston, and several smaller Rocky Mountain Basins. Results show that the carbonate reservoirs of the Permian Basin constitute an order of magnitude larger target for carbon dioxide flooding than do all the carbonate reservoirs of the Williston and Rocky Mountain intermontane basins combined. Review of the calculated data in comparison with information from earlier work indicates that the figures given here are probably optimistic in that incremental oil volumes may be biased toward the high side while carbon dioxide supply requirements may be biased toward the low side. However, the information available would not permit further practical refinement of the calculations. Use of the incremental oil figures given for individual reservoirs as an official estimate is not recommended because of various uncertainties in individual field data. Further study and compilation of data for field projects as they develop appears warranted to better calibrate the calculation procedures and thus to develop more refined estimates of incremental oil potential and carbon dioxide supply requirements. 11 figures, 16 tables.

Goodrich, J.H.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technical assessment of an oil-fired residential cogeneration system  

SciTech Connect (OSTI)

The definition of cogeneration, within the context of this project, is the simultaneous production of electricity and heat energy from a single machine. This report will present the results of an engineering analysis of the efficiency and energy-conservation potential associated with a unique residential oil-fired cogeneration system that provides both heat and electric power. The system operates whenever a thermostat signals a call for heat in the home, just as a conventional heating system. However, this system has the added benefit of cogenerating electricity whenever it is running to provide space heating comfort. The system is designed to burn No. 2 heating oil, which is consumed in an 11-horsepower, two cylinder, 56.75-cubic-inch, 1850-RPM diesel engine. This unit is the only pre-production prototype residential No. 2 oil-fired cogeneration system known to exist in the world. As such, it is considered a landmark development in the field of oil-heat technology.

McDonald, R.J.

1993-01-01T23:59:59.000Z

22

Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical Report  

E-Print Network [OSTI]

Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical agency thereof. #12;Page | ii Oil and Gas Production and Economic Growth in New Mexico James Peach and C Mexico's marketed value of oil and gas was $19.2 billion (24.0 percent of state GDP). This paper

Johnson, Eric E.

23

Report Title: The Economic Impact of Oil and Gas Extraction in New Mexico Type of Report: Technical Report  

E-Print Network [OSTI]

Report Title: The Economic Impact of Oil and Gas Extraction in New Mexico Type of Report: Technical of oil and gas extraction in New Mexico are presented in terms of output, value added, employment presented. Historical oil and gas production, reserves, and price data are also presented and discussed. #12

Johnson, Eric E.

24

Oil Reserves and Production  

Science Journals Connector (OSTI)

...research-article Oil Reserves and Production Eric Drake The growth of world energy requirements over the last...remaining proved recoverable reserves will probably decline continuously...to grow. The declining reserves will be insufficient to...

1974-01-01T23:59:59.000Z

25

E-Print Network 3.0 - associations kaoko belt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and the resulting burial... Petroleum Resources Project An Estimate of Recoverable Heavy Oil Resources of the Orinoco Oil Belt... barrels of technically recoverable heavy oil in...

26

Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States  

SciTech Connect (OSTI)

A critical examination of the potential and the technical constraint that inhibit the application of enhanced oil recovery techniques in the United States has been initiated and is expected to continue. The examination is based on the results of extensive laboratory and field applications now underway under various forms of Department of Energy support. This interim report will be amplified as data become available and as progress is made toward resolving technical constraints. Comments on the approach and substance of the information contained herein are welcome.

Not Available

1980-05-01T23:59:59.000Z

27

Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States  

SciTech Connect (OSTI)

In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

Not Available

1984-01-01T23:59:59.000Z

28

NETL: Oil & Natural Gas Projects 00516 North Dakota Refining Capacity Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Dakota Refining Capacity Study North Dakota Refining Capacity Study DE-FE0000516 Goal The objective of the North Dakota Refining Capacity study is to assess the feasibility of increasing the oil refinery capacity in North Dakota, and, if possible, determine the scale of such an expansion, the slate of refined product(s) that would produce the most economic benefit, and the preferred ownership model, i.e., private, public or private-public. Performer North Dakota Association of Rural Electric Cooperatives (NDAREC) Corval Group, partnered with Purvin & Gertz and Mustang Engineering Background The genesis of this study came from an April 2008 report issued by the U.S. Geological Survey (USGS) asserting that North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. This assessment shows a 25-fold increase in the amount of recoverable oil compared to the USGS 1995 estimate of 151 million barrels of oil. The Bakken Formation estimate is larger than all other current USGS oil assessments of the lower 48 states and is the largest "continuous" oil accumulation ever assessed by the USGS. The new report points out that the new geologic models applied to the Bakken Formation, advances in drilling and production technologies, and recent oil discoveries have resulted in these substantially larger technically recoverable oil volumes. About 105 million barrels of oil were produced from the Bakken Formation by the end of 2007. In 2008, the formation produced another 27.2 million barrels of oil, which represented 43% of the stateÂ’s annual oil production of some 62.3 million barrels. Even though oil prices have dropped significantly in recent months, it appears that oil production from this formation will continue strong for decades to come. Most recently, a major production find has occurred in the Three Forks formation underlying the Bakken. This find is still undergoing significant testing, but early evidence suggests it represents another significant recoverable pool of oil in western North Dakota.

29

Table 17. Recoverable Coal Reserves and Average Recovery Percentage...  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2012 (million short tons) U.S. Energy Information...

30

A Systems Approach to Bio-Oil Stabilization - Final Technical Report  

SciTech Connect (OSTI)

The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic products: condensable vapors, non-condensable gases, and liquid aerosols. Traditionally these are recovered by a spray quencher or a conventional shell and tube condenser. The spray quencher or condenser is typically followed by an electrostatic precipitator to yield 1 or 2 distinct fractions of bio-oil. The pyrolyzer system developed at Iowa State University incorporates a proprietary fractionating condenser train. The system collects the bio-oil into five unique fractions. For conditions typical of fluidized bed pyrolyzers, stage fractions have been collected that are carbohydrate-rich (anhydrosugars), lignin-rich, and an aqueous solution of carboxylic acids and aldehydes. One important feature is that most of the water normally found in bio-oil appears in the last stage fraction along with several water-soluble components that are thought to be responsible for bio-oil aging (low molecular weight carboxylic acids and aldehydes). Research work on laser diagnostics for hot-vapor filtration and bio-oil recovery centered on development of analytical techniques for in situ measurements during fast pyrolysis, hot-vapor filtration, and fractionation relative to bio-oil stabilization. The methods developed in this work include laser-induced breakdown spectroscopy (LIBS), laser-induced incandescence (LII), and laser scattering for elemental analysis (N, O, H, C), detection of particulates, and detection of aerosols, respectively. These techniques were utilized in simulated pyrolysis environments and applied to a small-scale pyrolysis unit. Stability of Bio-oils is adversely affected by the presence of particulates that are formed as a consequence of thermal pyrolysis, improving the CFD simulations of moving bed granular filter (MBGF) is useful for improving the design of MBGF for bio-oil production. The current work uses fully resolved direct numerical simulation (where the flow past each granule is accurately represented) to calculate the filter efficiency that is used in the CFD model at all flow speeds. This study shows that fully-resolved direct numerical simulation (DNS

Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

2011-12-23T23:59:59.000Z

31

Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumption to the Annual Energy Outlook Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. Table 50. Crude Oil Technically Recoverable Resources (Billion barrels) Printer Friendly Version Crude Oil Resource Category As of January 1, 2002 Undiscovered 56.02 Onshore 19.33 Northeast 1.47 Gulf Coast 4.76 Midcontinent 1.12 Southwest 3.25 Rocky Moutain 5.73 West Coast 3.00 Offshore 36.69 Deep (>200 meter W.D.) 35.01 Shallow (0-200 meter W.D.) 1.69 Inferred Reserves 49.14 Onshore 37.78 Northeast 0.79 Gulf Coast 0.80 Midcontinent 3.73 Southwest 14.61 Rocky Mountain 9.91 West Coast 7.94

32

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas  

Broader source: Energy.gov [DOE]

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

33

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

34

Assessment of oil-shale technology in Brazil. Final technical report, October 27, 1980-July 27, 1981  

SciTech Connect (OSTI)

The development of an oil shale industry in the United States will require the solution of a variety of technical, economic, environmental, and health and safety problems. This assessment investigates whether US oil shale developers might benefit from the experience gained by the Brazilians in the operation of their Usina Prototipo do Irati oil shale demonstration plant at Sao Mateus do Sul, and from the data generated from their oil shale research and development programs. A chapter providing background information on Brazil and the Brazilian oil shale deposits is followed by an examination of the potential recovery processes applicable to Brazilian oil shale. The evolution of the Brazilian retorting system is reviewed and compared with the mining and retorting proposed for US shales. Factors impacting on the economics of shale oil production in Brazil are reviewed and compared to economic analyses of oil shale production in the US. Chapters examining the consequences of shale development in terms of impact on the physical environment and the oil shale worker complete the report. Throughout the report, where data permits, similarities and differences are drawn between the oil shale programs underway in Brazil and the US. In addition, research areas in which technology or information transfer could benefit either or both countries' oil shale programs are identified.

Not Available

1981-07-27T23:59:59.000Z

35

Recoverable Mobile Environments: Design and Trade-o Analysis  

E-Print Network [OSTI]

Recoverable Mobile Environments: Design and Trade-o Analysis Dhiraj K. Pradhan P. Krishna Nitin H-053 Abstract The mobile wireless environment poses challenging fault-tolerant data management prob- lems due to mobility of users, and limited bandwidth on the wireless link. Traditional fault- tolerance schemes

Vaidya, Nitin

36

A recoverable versatile photo-polymerization initiator catalyst  

E-Print Network [OSTI]

A photo-polymerization initiator based on an imidazolium and an oxometalate, viz., (BMIm)2(DMIm) PW12O40 (where, BMIm = 1-butyl-3-methylimizodium, DMIm = 3,3'-Dimethyl-1,1'-Diimidazolium) is reported. It polymerizes several industrially important monomers and is recoverable hence can be reused. The Mn and PDI are controlled and a reaction pathway is proposed.

Chen, Dianyu; Roy, Soumyajit

2012-01-01T23:59:59.000Z

37

A new method to optimize the fracture geometry of a frac-packed well in unconsolidated sandstone heavy oil reservoirs  

Science Journals Connector (OSTI)

The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil. Owing to weakly consolidated formation, sand production is an important problem encountered during oil p...

XiaoBing Bian; ShiCheng Zhang; JingChen Zhang…

2012-06-01T23:59:59.000Z

38

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

39

Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England  

Broader source: Energy.gov [DOE]

This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and compatibility, and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast

40

Drunk On Oil: Russian Foreign Policy 2000-2007  

E-Print Network [OSTI]

world’s largest natural gas reserves, about twice that oftotal recoverable reserves. 139 Gas fields are declining asgas. 12 Russia has around 6% to 10% of the world’s known oil reserves.

Brugato, Thomas

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Observations of an oil spill bioremediation activity in Galveston Bay, Texas. Technical memo  

SciTech Connect (OSTI)

Bioremediation is a technology that attempts to accelerate microbial degradation of oil or other substances. This involves the application of nutrients or microbial products to contaminated environments. The goal is to enhance the natural process of chemical degradation. The report summarizes observations on the application and monitoring of a bioremediation activity in oiled marshes of Galveston Bay, Texas in August 1990.

Mearns, A.J.

1991-06-01T23:59:59.000Z

42

Migration and oil industry employment of north slope Alaska natives. Technical report (Final)  

SciTech Connect (OSTI)

This study has two purposes: To find out why people migrate to and within the North Slope; To find out if working for the oil industry at Prudhoe Bay or Kuparuk makes North Slope Natives more likely to migrate. This is the first study of Alaska Native migration based on interviews of Alaska North Slope Native migrants, of non-Native migrants, and of Alaska North Slope Natives who are oil industry employees. It has two major chapters: one on household migration and the other on oil industry employment. The report is based on interviews conducted in March 1992.

Marshall, D.

1993-01-01T23:59:59.000Z

43

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Technical progress report  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. This is the third quarterly technical progress report for the project. Significant technical achievements accomplished include the drilling of four horizontal wells (two producers and two steam injectors) utilizing a new and lower cost drilling program, the drilling of five observation wells to monitor the horizontal steamflood pilot, the installation of a subsurface harbor channel crossing for delivering steam to an island location, and a geochemical study of the scale minerals being created in the wellbore. Cyclic steam injection into the two horizontal injection wells began in mid-December 1995 utilizing the new 2400 ft steam line under the Cerritos channel and the wells will be placed on production in May. Cyclic steam injection into the two horizontal producers will start in May. Work on the basic reservoir engineering is expected to be completed in March 1996. The deterministic geologic model was improved to add eight layers to the previous ten.

Hara, S.

1996-05-06T23:59:59.000Z

44

Oil and gas resources in the West Siberian Basin, Russia  

SciTech Connect (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

45

Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage

46

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre Arctic National Wildlife Refuge is the largest unexplored, potentially productive geologic onshore basin in the United States. The primary area of the coastal plain is the 1002 Area of ANWR established when ANWR was created. A decision on permitting the exploration and development of the 1002 Area is up to Congress and has not been approved to date. Also included in the Coastal Plain are State lands to the 3-mile offshore limit and Native Inupiat land near the village of Kaktovik. The USGS estimated: a 95 percent probability that at least 5.7 billion barrels of technically recoverable undiscovered oil are in the ANWR coastal plain,

47

Concentration of oil shale by froth flotation. Monthly technical letter report, May 1-31, 1983  

SciTech Connect (OSTI)

Highlights of findings during May 1983, are briefly summarized. Batches of shale were ground in a 14-inch ball mill. Froth flotation of the ground shales were carried out using pine oil as a frother. Shale used was a high grade eastern shale (New Albany shale). (DMC)

Krishnan, G.

1983-10-14T23:59:59.000Z

48

The future of oil: Geology versus technology  

Science Journals Connector (OSTI)

Abstract We discuss and reconcile the geological and economic/technological views concerning the future of world oil production and prices, and present a nonlinear econometric model of the world oil market that encompasses both views. The model performs far better than existing empirical models in forecasting oil prices and oil output out-of-sample. Its point forecast is for a near doubling of the real price of oil over the coming decade, though the error bands are wide, reflecting sharply differing judgments on the ultimately recoverable reserves, and on future price elasticities of oil demand and supply.

Jaromir Benes; Marcelle Chauvet; Ondra Kamenik; Michael Kumhof; Douglas Laxton; Susanna Mursula; Jack Selody

2015-01-01T23:59:59.000Z

49

Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983  

SciTech Connect (OSTI)

Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).

Evans, R.A.

1998-06-01T23:59:59.000Z

50

A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report  

SciTech Connect (OSTI)

The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

Kabadi, V.N.

1992-10-01T23:59:59.000Z

51

oil supply | OpenEI  

Open Energy Info (EERE)

oil supply oil supply Dataset Summary Description CIA: World Factbook assessment of proved reserves of crude oil in barrels (bbl). Proved reserves are those quantities of petroleum which, by analysis of geological and engineering data, can be estimated with a high degree of confidence to be commercially recoverable from a given date forward, from known reservoirs and under current economic conditions. Estimated as of January 1st, 2010. Source CIA Date Released January 01st, 2010 (4 years ago) Date Updated Unknown Keywords crude oil energy energy data international oil oil supply Data text/csv icon 2010 Proved Oil Reserves (csv, 4.6 KiB) text/plain icon Original Text Format (txt, 6.5 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency

52

A model of peak production in oil fields  

Science Journals Connector (OSTI)

We developed a model for oil production on the basis of simple physical considerations. The model provides a basic understanding of Hubbert’s empirical observation that the production rate for an oil-producing region reaches its maximum when approximately half the recoverable oil has been produced. According to the model the oil production rate at a large field must peak before drilling peaks. We use the model to investigate the effects of several drilling strategies on oil production. Despite the model’s simplicity predictions for the timing and magnitude of peak production match data on oil production from major oil fields throughout the world.

Daniel M. Abrams; Richard J. Wiener

2010-01-01T23:59:59.000Z

53

Devonian oil shale of the eastern United States: a major American energy resource  

SciTech Connect (OSTI)

The eastern Devonian oil shale resource can yield 400 billion (400 X 10/sup 9/) bbl of synthetic oil, if all surface and near-surface shales were strip or deep mined for above-ground hydroretorting. Experimental work, in equipment capable of processing up to 1 ton/h of shale, has confirmed the technical and economic feasibility of aboveground hydroretorting of oil shales. Work done to date on nearly 500 samples from 12 states indicates that the HYTORT Process can give organic carbon recoveries from 2 to 2.5 times those of conventional retorting of the Devonian shales, so that the HYTORT Process yields 25 to 30 gallons per ton on syncrude at many localities, compared with 10 to 15 gallons per ton using Fischer Assay retort methods. Criteria for inclusion of shale in estimates of recoverable resources for the HYTORT Process are: (1) organic carbon of at least 10% by weight; (2) overburden of less than 200 feet (59 meters); (3) volumetric stripping ratios of less than 2.5 to 1; and (4) stratigraphic thickness of 10 feet (3 meters) or more. Resource estimates include: Kentucky (Ohio, New Albany, and Sunbury shales), 190 billion (190 X 10/sup 9/) barrels (bbl); Ohio (Ohio and Sunbury shales), 140 billion bbl; Tennessee (Chattanooga shale), 44 billion bbl; Indiana (New Albany shale), 40 billion bbl; Michigan (Antrim shale), 5 billion bbl; and Alabama (Chattanooga shale), 4 billion bbl. Recoverable resources have not been identified in West Virginia, Georgia, Oklahoma, Illinois, Arkansas, or Missouri outcrops. Co-production of uranium and metals is a possibility in the areas favorable for syncrude production.

Matthews, R.D.; Janka, J.C.; Dennison, J.M.

1980-01-01T23:59:59.000Z

54

CO{sub 2} HUFF-n-PUFF process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, [January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Technical progress is reported for geostatitical realizations; paramatric simulation; waterflood review; and reservoir characterization.

Cole, R.; Prieditis, J.; Vogt, J.; Wehner, S.

1995-04-21T23:59:59.000Z

55

CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Second quarterly technical progress report, [April 1995--June 1995  

SciTech Connect (OSTI)

The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals. Technical progress is summarized for; geostatistical realizations; site-specific simulation;waterflood review; and reservoir characterization.

Cole, R.; Prieditis, J.; Vogt, J.; Wehner, S.

1995-07-11T23:59:59.000Z

56

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment, was prepared for the U.S. Senate Committee on Energy and Natural Resources at the request of Chairman Frank H. Murkowski in a letter dated March 10, 2000. The request asked the Energy Information Administration (EIA) to develop plausible scenarios for Arctic National Wildlife Refuge (ANWR) supply development consistent with the most recent U.S. Geological Survey (USGS) resource assessments. This report contains EIA projections of future daily production rates using recent USGS resource estimates. The Coastal Plain study area includes 1.5 million acres in the ANWR 1002 Area, 92,000 acres of Native Inupiat lands and State of Alaska offshore lands out to the 3-mile limit which are expected to be explored and developed if and when ANWR is developed. (Figure ES1) About 26 percent of the technically recoverable oil resources are in the Native and State lands.

57

SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report  

SciTech Connect (OSTI)

The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

Not Available

1983-09-01T23:59:59.000Z

58

D-optimal design for Rapid Assessment Model of CO2 flooding in high water cut oil reservoirs  

Science Journals Connector (OSTI)

Abstract Most of major oilfields in China have reached high water cut stage, but still, they contribute to more than 70% of domestic oil production. How to extract more oil from mature oilfields has become a hot topic in petroleum engineering. Carbon dioxide flooding is a win–win strategy because it can enhance oil recovery and simultaneously reduce CO2 emissions into the atmosphere. In order to evaluate the potentials of CO2 flooding in high water cut oil reservoirs, various 3-D heterogeneous geological models were built based on Guan 104 fault block in Dagang Oilfield to perform reservoir simulations. The D-optimal design was applied to build and verify the Rapid Assessment Model of CO2 flooding in high water cut oil reservoirs. Five quantitative variables were considered, including average horizontal permeability, permeability variation coefficient, ratio of vertical to horizontal permeability, net thickness of formation and percentage of recoverable reserves by water flooding. The process of weighting emphasized the contributions of linear terms, quadratic terms and first-order interactions of five quantitative parameters to improved recovery factor and Net Present Value of CO2 flooding. Using the Rapid Assessment Model of CO2 flooding in high water cut oil reservoirs, significant first-order interactions were sorted out and type curves were established and analyzed for the evaluation of technical and economic efficiency of CO2 flooding in high water cut oil reservoirs. Aimed at oil reservoirs with the similar geological conditions and fluid properties as Guan 104 fault block, the Rapid Assessment Model and type curves of CO2 flooding in high water cut oil reservoirs can be applied to predict improved recovery factor and Net Present Value of water-alternating-CO2 flooding at different conditions of reservoir parameters and development parameter. The approach could serve as a guide for the application and spread of CO2-EOR projects.

Zhaojie Song; Zhiping Li; Chunsheng Yu; Jirui Hou; Mingzhen Wei; Baojun Bai; Yunpeng Hu

2014-01-01T23:59:59.000Z

59

Methods of monitoring the Persian Gulf oil spill using digital and hardcopy multiband data. Technical report, January-July 1991  

SciTech Connect (OSTI)

A quick response demonstration was performed during the Persian Gulf War that showed a capability to monitor the path of oil dumped into the bay near Kuwait City using commercial satellite imagery. Both manual and semi-automated methods of image analysis were performed on AVHRR and Landsat TM imagery. Estimates of the oil area coverage were obtained using conventional classification methods. A hardcopy generation and reproduction capability was also demonstrated.

Rand, R.S.; Satterwhite, M.B.; Davis, D.A.; Anderson, J.E.

1992-08-01T23:59:59.000Z

60

CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, July--September, 1995  

SciTech Connect (OSTI)

The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.

Cole, R.; Prieditis, J.; Vogt, J. Wehner, S.

1995-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Investigation of the recoverable degradation of PEM fuel cell operated under drive cycle and different humidities  

Science Journals Connector (OSTI)

Abstract Recoverable degradation of a proton exchange membrane fuel cell (PEMFC) under different relative humidities (RHs) after a whole night rest was investigated. A single cell was operated under drive cycle to simulate the working conditions of fuel cell vehicle. It was found that the cell performance decreased after 5 h operation and recovered mostly after one night rest at higher humidities, i.e. 100%, 75% and 50% RH for both cathode and anode sides; while continuous decrease took place at lower humidity, 35%RH. Polarization curve, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were conducted before and after every 5 h drive cycle for investigating the mechanism of the recoverable degradation. It was found that water content, current density and thermal management might be the main contributions to the performance degradation, by impacting the membrane conductivity, internal resistance, electrode kinetics, and catalyst utilization. A good understanding of voltage recovery phenomenon after several hours rest and its effect on durability will be helpful in improving the reliability and durability of PEMFC.

Feijie Wang; Daijun Yang; Bing Li; Hao Zhang; Chuanpu Hao; Fengrui Chang; Jianxin Ma

2014-01-01T23:59:59.000Z

62

Process for removing copper in a recoverable form from solid scrap metal  

DOE Patents [OSTI]

A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.

Hartman, Alan D. (Albany, OR); Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR)

1995-01-01T23:59:59.000Z

63

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, July--September 1995  

SciTech Connect (OSTI)

Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. This report represents the thirteenth quarterly technical summary for the study ``Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations.`` Activities associated with Tasks 3 through 8 are discussed in this report.

Gettleson, D.A.

1995-10-31T23:59:59.000Z

64

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska, Open File Report 98-34, 1999) provided basic information used in this study. A prior assessment was completed in 1987 by the USGS. Information from recent offset drilling, offsetting discoveries, and new geologic and geophysical data were used to update the oil and gas resource potential. An evaluation was made of each of 10 petroleum plays (similar geologic settings). For each play, USGS constructed statistical distributions of the number and size of potential accumulations based on a probabilistic range of geologic attributes. Minimum accumulation size was 500 million barrels. The resulting distributions were subjected to three risk parameters. Risk was assigned for the occurrence of adequate generation and migration of petroleum to meet the minimum size requirements, for the occurrence of reservoir rock to contain the minimum volume, and for the occurrence of a trapping mechanism to seal the petroleum in the reservoir. USGS analysts applied an appropriate recovery factor to the estimated oil in place that was calculated for each play to obtain an estimate of technically recoverable petroleum resources. The combined recovery factor for the entire study area averages approximately 37 percent of the initial oil in place. It is likely that the actual recovery factor of potential large fields would exceed 37 percent, because the nearby giant Prudhoe Bay field recovery factor will exceed 50 percent.

65

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

66

SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II  

SciTech Connect (OSTI)

Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

2011-10-31T23:59:59.000Z

67

Sensitivity of seismic reflections to variations in anisotropy in the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Upper Devonian–Lower Mississippian Bakken Formation in the Williston Basin is estimated to have significant amount of technically recoverable oil and gas. The objective of… (more)

Ye, Fang, geophysicist.

2010-01-01T23:59:59.000Z

68

This Week In Petroleum Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

one billion barrels of estimated technically recoverable resources. However, the chemistry of the oil within the ROZ prevents it from moving without additional treatment....

69

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

70

Research Projects to Address Technical Challenges Facing Small...  

Energy Savers [EERE]

Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Research Projects to Address Technical...

71

Interaction of Escherichia coli B and B/4 and Bacteriophage T4D with Berea Sandstone Rock in Relation to Enhanced Oil Recovery  

Science Journals Connector (OSTI)

...mated two-thirds of the world's oil, or some 1012 barrels of petroleum reserves, are not recoverable by...by U.S. Department of Energy Contract DE-AS19-81BC10508...Oil Recovery. Bartlesville Energy Technology Center, Bartlesville...

Philip L. Chang; Teh Fu Yen

1984-03-01T23:59:59.000Z

72

Long-term assessment of the oil spill at Bahia Las Minas, Panama. Interim report. Volume 2: Technical report  

SciTech Connect (OSTI)

On April 27, 1986, at least 8 million liters of medium-weight crude oil spilled from a ruptured storage tank into the Bahia Las Minas on the Caribbean Coast of Panama. Coral reefs, seagrass communities, and mangroves were affected. The area of the spill was also the location of the Smithsonian Tropical Research Institute's Galeta Laboratory where resident and visiting scientists have been studying the ecology of the Bahia Las Minas and the adjacent areas for over 15 years. Because this was a unique opportunity to assess the immediate biological effects following a major spill in the Caribbean region and to monitor the subsequent recovery, the U.S. Department of the Interior Minerals Management Service supported a 5-year environmental study. The objectives of the study are to identify any long-term changes in the marine environment that may have resulted from the spill and to understand the ecological processes causing such changes. This is the first report from the study and addresses the effects observed during the first two years of the effort.

Keller, B.D.; Jackson, J.B.C.

1991-10-01T23:59:59.000Z

73

Environmental and economic assessment of discharges from Gulf of Mexico Region Oil and Gas Operations. Quarterly technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports detailing the study procedures, results, and conclusions which contribute to the transfer of technology to the scientific community, petroleum industry, and state and federal programs.

Gettleson, D.A.

1994-04-21T23:59:59.000Z

74

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Major Oil Plays in Utah and Vicinity/PUMP 2 Major Oil Plays in Utah and Vicinity/PUMP 2 DE-FC26-02NT15133 Goal The primary goal of this study is to increase recovery of oil reserves from existing reservoirs and from new discoveries by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. The overall objectives of this study are to: 1) increase recoverable oil from existing reservoirs, 2) add new discoveries, 3) prevent premature abandonment of numerous small fields, 4) increase deliverability through identifying the latest drilling, completion, and secondary/tertiary recovery techniques, and 5) reduce development costs and risk. Performer Utah Geological Survey (UGS), Salt Lake City, UT

75

Dominant Middle East oil reserves critically important to world supply  

SciTech Connect (OSTI)

This paper reports that the location production, and transportation of the 60 million bbl of oil consumed in the world each day is of vital importance to relations between nations, as well as to their economic wellbeing. Oil has frequently been a decisive factor in the determination of foreign policy. The war in the Persian Gulf, while a dramatic example of the critical importance of oil, is just the latest of a long line of oil-influenced diplomatic/military incidents, which may be expected to continue. Assuming that the world's remaining oil was evenly distributed and demand did not grow, if exploration and development proceeded as efficiently as they have in the U.S., world oil production could be sustained at around current levels to about the middle of the next century. It then would begin a long decline in response to a depleting resource base. However, the world's remaining oil is very unevenly distributed. It is located primarily in the Eastern Hemisphere, mostly in the Persian Gulf, and much is controlled by the Organization of Petroleum Exporting Countries. Scientific resource assessments indicate that about half of the world's remaining conventionally recoverable crude oil resource occurs in the Persian Gulf area. In terms of proved reserves (known recoverable oil), the Persian Gulf portion increase to almost two-thirds.

Riva, J.P. Jr. (Library of Congress, Washington, DC (United States). Congressional Research Service)

1991-09-23T23:59:59.000Z

76

The twentieth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

Gary, J.H.

1987-01-01T23:59:59.000Z

77

Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)  

SciTech Connect (OSTI)

An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

Esposito, A.; Augustine, C.

2011-10-01T23:59:59.000Z

78

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recoverable Resource Estimate of Identified Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NREL/PR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore fluids under high confining pressures and high temperatures with correspondingly large quantities of dissolved methane o Soft geopressure: Hydrostatic to 15.83 kPa/m o Hard geopressure: 15.83- 22.61 kPa/m (lithostatic pressure gradient) * Common Geopressured Geothermal Reservoir Structure o Upper thick low permeability shale o Thin sandstone layer o Lower thick low permeability shale * Three Potential Sources of Energy o Thermal energy (Temperature > 100°C - geothermal electricity generation)

79

Courting the oil that plays hard to get  

SciTech Connect (OSTI)

Marathon Oil first applied its patented oilfield polymer-making plant at the Wyoming Byron Field in 1982. The polymer-augmented waterflooding process improves recoverability. The concept is now in use in oil fields in Oregon and Texas at a reasonable cost. The additional oil available through polymer-augmented waterflooding will reduce imports and make a significant contribution to domestic production. Five patents were necessary for the process, which has been under development since the 1960s, with 19 patents still pending. 8 figures.

Not Available

1984-01-01T23:59:59.000Z

80

Utah Heavy Oil Program  

SciTech Connect (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Technical Demonstration and Economic Validation of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing OilGas Wells in Texas Technical Demonstration and Economic Validation of...

82

Coal availability and coal recoverability studies: A reevaluation of the United States coal resources  

SciTech Connect (OSTI)

A cooperative program between the US Geological Survey (USGS), US Bureau of Mines (USBM), and geological agencies of the principal coal-bearing States has began to (1) identify and delineate current major land-use/environmental and technologic/geologic restrictions on the availability of coal resources; (2) estimate the amount of remaining coal resources that may be available for development under those constraints; (3) estimate the amount that can be economically extracted and marketed; and (4) identify possible social and economic disruptions that could occur within local and regional economies as coal resources are exhausted. Within major coal-producing regions, selected 7.5-minute quadrangles are chosen to represent variations in geology, topography, and land-use patterns so that results might be extrapolated throughout the entire region. After identifying State and Federal coal mining regulations, USGS and State scientists consult with local coal-industry engineers, geologists, and mine operators to ascertain local mining practices. Coal bed outcrop lines, current and past mined areas, and restrictions to mining are plotted at 1:24,000 scale and geographic information system (GIS) techniques are applied. Coal availability/recoverability studies have expanded into the central and northern Appalachian regions, Illinois basin, and Powder River basin. The first four basins, with 75% of current US coal production, should be completed by 1998. The total program is designed to cover 150 quadrangles from within the 11 major coal regions of the US. These 11 regions represent 97% of current US coal production. Planned project completion is 2001.

Carter, M.D. [Geological Survey, Reston, VA (United States); Teeters, D.D. [Bureau of Mines, Denver, CO (United States)

1995-12-31T23:59:59.000Z

83

NETL: News Release - DOE Oil Recovery Project Extends Success through  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 , 2007 5 , 2007 DOE Oil Recovery Project Extends Success through Technology Transfer New Technologies & Techniques Boost U.S. Proved Oil Reserves, Travel the Globe WASHINGTON, DC - A groundbreaking oil-recovery project funded by the U.S. Department of Energy (DOE) is coming to a close, but its success will continue to be felt throughout the United States and the world. MORE INFO Read 03.10.06 Techline: DOE-Funded Project Revives Aging California Oilfield The project, titled "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterizations and Thermal Production Technologies," began in 1995 with the goal of increasing recoverable heavy oil reserves in those sections of the Wilmington oilfield operated by Long

84

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

tar sands/ extra-heavy oil and shale have zero Resource-D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Report

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

85

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

86

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect (OSTI)

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

87

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

88

Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of  

Broader source: Energy.gov (indexed) [DOE]

Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of barrels of oil that could increase domestic supply, help reduce imports, and increase U.S. energy security may be potentially recoverable from residual oil zones, according to initial findings from a study supported by the U.S. Department of Energy's Office of Fossil Energy (FE). The recently completed study, conducted by researchers at the University of Texas-Permian Basin (UTPB), is one of several FE-supported research projects providing insight that will help tap this valuable-but-overlooked resource. Residual oil zones, called ROZs, are areas of immobile oil found below the oil-water contact of a reservoir. ROZs are similar to reservoirs in the

89

E-Print Network 3.0 - alto orinoco venezuela Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Interior U.S. Geological Survey Summary: barrels of technically recoverable heavy oil in the Orinoco Oil Belt Assessment Unit of the East Venezuela... PACIFIC OCEAN ATLANTIC...

90

Technical Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review for Technical Standards of Interest Legend: Red Technical Standards Program Activities and Responsibilities Blue Directives Program Activities and Responsibilities...

91

Fracture mechanics investigation of oil shale to aid in understanding the explosive fragmentation process. Final technical report, January 1983-July 1984  

SciTech Connect (OSTI)

This report summarizes goals and findings achieved in developing technologies to improve the overall efficiency of oil shale recovery processes. The objectives are to (a) develop theoretical fracture mechanics tools that are applicable to transversely isotropic materials such as sedimentary rock, more particularly oil shale; and (b) develop a fracture mechanics test procedure that can be conveniently used for rock specimens. Such a test procedure would: utilize the geometry of a typical rock core for the test; require a minimum amount of specimen machining; and provide meaningful, reproducible data that corresponds well to test data obtained from conventional fracture mechanics tests. Critical review of the state-of-the-art of fracture mechanics on layered rocks has been completed. Recommendations are made for innovative and promising methods for oil shale fracture mechanics. Numerical and analytical studies of mixed mode fracture mechanics are investigated. Transversely isotropic properties of oil shale are input using isoparametric finite elements with singular elements at the crack tip. The model is a plate with an edge crack whose angle with the edge varies to study the effect of mixed mode fracture under various conditions. The three-dimensional plate is in tension, and stress, energy methods are used in the fracture analysis. Precracked disks of oil shale cored perpendicular to bedding planes are analyzed numerically. Stress intensity factors are determined by (i) strain energy method, and (ii) elliptic simulation method. 47 refs., 12 figs., 1 tab.

Chong, K.P.

1984-09-01T23:59:59.000Z

92

RMOTC - Library - Technical Papers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Papers & Presentations Technical Papers & Presentations General presentations What is RMOTC? A general overview of RMOTC's capabilities and facilities including the production, drilling, energy assurance, produced water management, carbon management, enhanced oil recovery, and alternative energy programs. RMOTC's renewable partnerships Renewable projects past, present, and future RMOTC: America's premier field testing facility An overview of RMOTC's unique capabilities History Of Teapot Dome A look back at Teapot Dome's rich history Fossil & renewable energy partnership opportunities Exploring renewable energy use in the oil field GPS & GIS - Managing Spatial Data Risk associated with current practice in managing spatial data RMOTC White Papers Oil & gas reservoirs in U.S. like the producing formations at NPR-3

93

SRC burn test in 700-hp oil-designed boiler. Annex Volume B. DOE-Pittsburgh Energy Technology Center report. Final technical report  

SciTech Connect (OSTI)

Solvent Refined Coal (SRC) combustion tests were conducted at the U.S. Department of Energy's Pittsburgh Energy Technology Center. Combustion and flue-gas treatment of three different physical forms of SRC, as well as a No. 6 fuel oil, were evaluated. The three SRC fuels were (1) pulverized SRC Fuel; (2) SRC Residual Fuel Oil; and (3) SRC/Water Slurry. The SRC Residual Fuel Oil was a solution of SRC Fuel dissolved in heated process solvent. Approximately 500 tons of pulverized SRC Fuel and 30,000 gallons of SRC Residual Fuel Oil were combusted in a 700 hp (30 x 130 x 10/sup 6/ Btu/hr fuel input) oil-designed watertube package boiler. Sixty four-hour ASME combustion tests with three different SRC fuels were successfully concluded. The principal parameters evaluated were excess air levels and combustion air preheat temperature levels. Extensive data were collected on flue-gas levels of O/sub 2/, CO/sub 2/, CO, unburned hydrocarbons, SO/sub x/, NO/sub x/, uncontrolled particulates, uncontrolled opacity and carbon content of the flue-gas particulates. Boiler and combustion efficiencies were measured. The particulates were characterized via mass loadings, impactors, in-situ resistivity measurements, ultra-fine sampling, optical large particle sampling, five-stage cyclone sampling and chemical analysis of various cut sizes. A three-field pilot electrostatic precipitator (ESP) containing over 1000 square feet of plate collection area, a reverse air fabric filter pilot dust collector and a commercial pulse-jet fabric filter dust collector were operated at high collection efficiency. The results will be valuable in making recommendations for future tests and will provide a basis for conversion of industrial oil-fired boilers to SRC fuels. 11 references, 20 figures, 29 tables.

Not Available

1983-09-01T23:59:59.000Z

94

Superclean coal-water slurry combustion testing in an oil-fired boiler. Quarterly technical progress report, November 15, 1989--February 15, 1990  

SciTech Connect (OSTI)

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the US Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) operations and disposition. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, slagging and fouling factors, erosion and corrosion limits, and fuel transport, storage, and handling can be accommodated in an oil-designed boiler. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress for this quarter is summarized.

Miller, B.G.; Walsh, P.M.; Elston, J.T.; Scaroni, A.W.

1990-04-06T23:59:59.000Z

95

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Crude Oil and Lease Condensate, Total Technically Dry Natural Gas, Total Technically Recoverable Resources Recoverable Resources Crude Oil and Lease Condensate by Type Dry Natural Gas by Type 88 U.S. Energy Information Administration / Annual Energy Review 2011 58% 25% 18% 48 States¹ Onshore 48 States¹ Offshore Alaska 20% 13% 13% 54% 48 States¹ Onshore 48 States¹ Offshore Gas Alaska Tight Gas, Shale Gas, and Coalbed Methane Total 220 billion barrels Reserves Resources Technically Recoverable Resources Total 2,203 trillion cubic feet 22 198 220 Proved Unproved Total 0 50 100 150 200 250 Billion Barrels 273 1,931 2,203 Proved Unproved Total 0 500 1,000 1,500 2,000 2,500 Trillion Cubic Feet Reserves Technically Recoverable Resources

96

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1997, based on contained zinc recoverable from  

E-Print Network [OSTI]

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting: 1993 1994 1995 1996 1997e Production: Mine, recoverable 488 570 614 600 6071 Primary slab zinc 240 217

97

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1999, based on contained zinc recoverable from  

E-Print Network [OSTI]

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting: 1995 1996 1997 1998 1999e Production: Mine, recoverable1 614 600 605 722 775 Primary slab zinc 232 226

98

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1998, based on contained zinc recoverable from  

E-Print Network [OSTI]

192 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining--United States: 1994 1995 1996 1997 1998e Production: Mine, recoverable 570 614 598 605 6551 Primary slab zinc

99

Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996  

SciTech Connect (OSTI)

The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

Miller, B.G.; Scaroni, A.W.

1997-06-03T23:59:59.000Z

100

Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT Process. Quarterly report, January 1-March 31, 1980  

SciTech Connect (OSTI)

Objective is to demonstrate the technical and economic feasibility of the HYTORT process for both Eocene and Devonian shales. The program is divided into five major task areas: laboratory program, bench-scale program, process development unit tests, process environmental assessment, and process design and economics. (DLC)

None

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Petrochemicals: Dow Chemical and oil company YPF explore shale gas in Argentina  

Science Journals Connector (OSTI)

With eyes on what could be the first shale gas project in Argentina, Dow Chemical has signed a memorandum of understanding with the Argentinian oil company YPF to develop a gas-rich area of the country. ... According to the U.S. Energy Information Administration and consulting firm Advanced Resources International, Argentina has 774 trillion cu ft of recoverable shale gas reserves, the third-largest amount after the U.S. and China. ...

ALEX TULLO

2013-04-08T23:59:59.000Z

102

Identification and evaluation of fluvial-dominated deltaic (Class 1 oil) reservoirs in Oklahoma. Yearly technical progress report, January 1--December 31, 1994  

SciTech Connect (OSTI)

The Oklahoma Geological Survey and the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection, evaluation, and distribution of information on all of Oklahoma`s FDD oil reservoirs and the recovery technologies that can be applied to those reservoirs with commercial success. To date, the lead geologists have defined the initial geographic extents of Oklahoma`s FDD plays, and compiled known information about those plays. Nine plays have been defined, all of them Pennsylvanian in age and most from the Cherokee Group. A bibliographic database has been developed to record the literature sources and their related plays. Trend maps are being developed to identify the FDD portions of the relevant reservoirs, through accessing current production databases and through compiling the literature results. A reservoir database system also has been developed, to record specific reservoir data elements that are identified through the literature, and through public and private data sources. The project team is working with the Oklahoma Nomenclature Committee of the Mid-Continent Oil and Gas Association to update oil field boundary definitions in the project area. Also, team members are working with several private companies to develop demonstration reservoirs for the reservoir characterization and simulation activities. All of the information gathered through these efforts will be transferred to the Oklahoma petroleum industry through a series of publications and workshops. Additionally, plans are being developed, and hardware and software resources are being acquired, in preparation for the opening of a publicly-accessible computer users laboratory, one component of the technology transfer program.

Mankin, C.J. [Oklahoma Geological Survey, Norman, OK (United States)] [Oklahoma Geological Survey, Norman, OK (United States); Banken, M.K. [Oklahoma Univ., Norman, OK (United States)] [Oklahoma Univ., Norman, OK (United States)

1995-11-21T23:59:59.000Z

103

Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993  

SciTech Connect (OSTI)

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

104

Technical Articles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Articles science-innovationassetsimagesicon-science.jpg Technical Articles National security depends on science and technology. The United States relies on Los...

105

New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil |  

Broader source: Energy.gov (indexed) [DOE]

CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil March 3, 2006 - 11:40am Addthis WASHINGTON , D.C. - The Department of Energy (DOE) released today reports indicating that state-of-the-art enhanced oil recovery techniques could significantly increase recoverable oil resources of the United States in the future. According to the findings, 89 billion barrels or more could eventually be added to the current U.S. proven reserves of 21.4 billion barrels. "These promising new technologies could further help us reduce our reliance on foreign sources of oil," Energy Secretary Samuel W. Bodman said. "By using the proven technique of carbon sequestration, we get the double

106

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

107

Scientific research and field applications of polymer flooding in heavy oil recovery  

Science Journals Connector (OSTI)

The heavy oil resources worldwide are estimated at 3,396 billion barrels. With depletion of light oil, we have to face the technical and economical challenges of developing heavy oil fields. Due to severe visc...

Chang Hong Gao

2011-12-01T23:59:59.000Z

108

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

SciTech Connect (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

109

Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT Process. Project 61040 quarterly report, April 1-June 30, 1980  

SciTech Connect (OSTI)

Progress is reported on the HYTORT Process development work conducted from April 1 through June 30, 1980. Thermobalance tests have been conducted on samples of shale from each large multiton sample prior to large-scale tests and these test results have been fit with specific kinetic expressions. Approximately 80% of the instrumentation for the laboratory-scale reactor has been received. Fabrication of the reactor, feed hopper, and residue receiver is about 95% complete. Two successful moving-bed tests were conducted in the bench-scale reactor during this quarter. A large, 50-ton sample of the Lower Huron member of the Ohio Shale was mined and readied for shipment to IGT. Modification of the bench-scale steam-oxygen unit was completed. Spent shale from PDU tests was prepared for use in these tests. A set of five screening runs on New Albany shale oil and a set of four screening runs on Sunbury shale oil were conducted during this quarter. The nitrogen content of these oils was reduced to the 0.16 to 0.30 weight percent range in the bench-scale hydrotreating unit. Design of the laboratory test system for mist-size control studies was completed. Methods are being studied for measuring mist particle size. Shakedown and initial testing of the liquid-sealed lockhopper were performed during this quarter. Two runs were made in the PDU with Kentucky shales using a sample of the Cleveland member of the Ohio shale and a sample of New Albany shale. Samples for environmental analysis were taken during the PDU runs discussed above. On-line sampling equipment was installed prior to the PDU run with New Albany shale and samples were taken of the Stage 2 raw product gases.

None

1980-11-01T23:59:59.000Z

110

Establishment and maintenance of an oil shale sample bank: Technical progress report, October-November 1986. [Samples from eastern and western USA  

SciTech Connect (OSTI)

Western Shales - Discussions were held with Union Oil - Parachute, Colorado, concerning sampling of high grade Mahogany zone shale from their mine (35 gpt). Permission was granted by Union for acquisition of a Reference Shale. DOE declined the opportunity because of the proximity of this shale to the EXXON Colony Mine reference shale already acquired (approx. 27 gpt). A substantial effort was expended in discussions with the USBLM regarding sampling at the White River Oil Shale Mine, Vernal, Utah. Permission to sample is pending during preparation of a Land Use Plan by the BLM. We are now evaluating a road cut near Rock Springs, Wyoming as a potential source for the FY-1986 reference shale. The cut is near US I-80 west of Rock Springs. Channel samples have been obtained for Fischer Assay. Formal application to the land owners (USBLM or the Wyoming Grazing Association) for permission to sample will be made pending the outcome of the Fischer Assays. We investigated potential sources of spent shale for use by the University of Wyoming. A report summarizing these efforts is attached. Preliminary analytical results for the FY-86 reacquired Western Shale are attached. Eastern Shale - The FY-86 reference shale was reacquired in October. We resampled the Clegg Creek Member of the New Albany shale at the exposure in Knieriem's Quarry, Louisville, Kentucky. Ten sample splits were submitted for characterization. We agreed to provide up to 20 Fischer Assays of core recovered by HYCRUDE from a quarry in Michigan. Pending actual submittal of samples for analysis and adequate oil yields, we will submit the site for consideration as the source of the FY-87 Eastern Reference Shale.

Not Available

1986-12-15T23:59:59.000Z

111

Process evaluation - steam reforming of diesel fuel oil. Final technical report 24 Apr-24 Dec 79 on phases 1-4  

SciTech Connect (OSTI)

This project is an evaluation of a proprietary catalyst as a means of steam-reforming diesel fuel oil (Fed. Spec. VV-F-800B, symbol DF-2). A system for testing the catalyst has been designed, built and successfully used to screen operating conditions of temperature, space velocity, and H2O/C ratio. A duration test has been conducted showing the catalyst capable of steam reforming diesel fuel, but with the production of naphthalene after 30 hours. Hydrogen production remained stable through the 86 hours of the test.

Jarvi, G.A.; Bowman, R.M.; Camara, E.H.; Lee, A.L.

1980-02-15T23:59:59.000Z

112

Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near - term. Technical progress report, June 17, 1994--June 17, 1995  

SciTech Connect (OSTI)

Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of water injection wells with solids as a result of poor water quality. In many instances the lack of reservoir management is due to lack of (1) data collection and organization, (2) integrated analysis of existing data by geological and engineering personnel, and (3) identification of optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in the project. The Stewart Field (on the latter stage of primary production) is located in Finney County, Kansas, and was operated by Sharon Resources, Inc. and is now operated by North American Resources Company. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

NONE

1996-07-01T23:59:59.000Z

113

Recovery of bypassed oil in the Dundee Formation using horizontal drains, Quarterly technical report, 1/1/97--3/31/97  

SciTech Connect (OSTI)

This Class 11 field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a rate of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two subsequent wells, the Frost 5-3 and the Happy Holidays 6-3, have not been as successful. Both are currently producing 10 BOPD with 90% water cut. Efforts are underway to determine why these wells are performing so poorly and to see if the situation can be remedied. The reasons for these poor performances of the new wells are not clear at this time. It is possible that the wells entered the Dundee too low and missed pay higher in the section. When the TOW 1-3 was drilled, a vertical probe well was also drilled and cored. That probe well penetrated the pay zone and helped guide the horizontal well. The important lesson may be that vertical probe wells are a crucial step in producing these old fields and should not be eliminated simply to save what amounts to a small incremental cost. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Additional project work involved the characterization of 28 other Dundee fields in Michigan to aid in determining appropriate additional candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling. The project was a cooperative venture involving the US Department of Energy, Michigan Technological University (MTU), Western Michigan University (WMU), and Terra Energy (now Cronus Development Co.) in Traverse City, MI.

NONE

1997-03-30T23:59:59.000Z

114

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

115

The Peak of the Oil Age – Analyzing the world oil production Reference Scenario in World Energy Outlook 2008  

Science Journals Connector (OSTI)

The assessment of future global oil production presented in the IEA’s World Energy Outlook 2008 (WEO 2008) is divided into 6 fractions; four relate to crude oil, one to non-conventional oil, and the final fraction is natural-gas-liquids (NGL). Using the production parameter, depletion-rate-of-recoverable-resources, we have analyzed the four crude oil fractions and found that the 75 Mb/d of crude oil production forecast for year 2030 appears significantly overstated, and is more likely to be in the region of 55 Mb/d. Moreover, analysis of the other fractions strongly suggests lower than expected production levels. In total, our analysis points to a world oil supply in 2030 of 75 Mb/d, some 26 Mb/d lower than the IEA predicts. The connection between economic growth and energy use is fundamental in the IEA’s present modelling approach. Since our forecast sees little chance of a significant increase in global oil production, our findings suggest that the “policy makers, investors and end users” to whom WEO 2008 is addressed should rethink their future plans for economic growth. The fact that global oil production has very probably passed its maximum implies that we have reached the Peak of the Oil Age.

Kjell Aleklett; Mikael Höök; Kristofer Jakobsson; Michael Lardelli; Simon Snowden; Bengt Söderbergh

2010-01-01T23:59:59.000Z

116

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 20, 2012 Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Nine new research projects aimed...

117

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, April--June 1993  

SciTech Connect (OSTI)

Continental Shelf Associates, Inc. (CSA) was contracted to conduct a three-year study of the environmental and health related impacts of produced water and sand discharges from oil and gas operations. Data on naturally occurring radioactive materials (NORM), heavy metals, and hydrocarbons in water, sediment, and biota will be collected and evaluated. Health related impacts will be studied through field collections and analyses of commercially- and recreationally-important fish and shellfish tissues. Additionally, information on seafood catch, consumption, and use patterns for the Gulf of Mexico will be gathered and analyzed. The facilities to be studied will include both offshore and coastal facilities in the Gulf of Mexico. Coastal sites will be additionally studied to determine ecological recovery of impacted wetland and open bay areas. The economic impact of existing and proposed effluent federal and state regulations will also be evaluated. The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of four terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana and Texas; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. Accomplishments for this period are described.

Gettleson, D.A.

1993-07-26T23:59:59.000Z

118

Coal availability and coal recoverability studies of the Matewan 7.5-minute quadrangle, Kentucky -- A USGS National Coal Resources Data System (NCRDS) CD-ROM  

SciTech Connect (OSTI)

The Coal Availability Study program was initiated in 1987 by the US Geological survey (USGS) and State Geological Surveys of the major coal-bearing regions. The purpose of the program is to identify areas of societal and technologic restrictions to mining and to estimate the amount of coal remaining in the ground that may be available for development under current regulatory and general economic and technologic conditions. In 1990, the US Bureau of Mines (USBM) began a follow-on Coal Recoverability Study program to determine the recoverability and marketability of the coal within these same study areas. The Matewan, Kentucky, study area was the first of the Coal Availability and Coal Recoverability Studies to be completed. Coal bed crop lines, mined areas, and restrictions to mining were plotted on 1:24,000-scale maps and geographic information system (GIS) analytical techniques provided by the NCRDS were applied to delineate coal availability. This CD-ROM contains both graphical images of the original GIS files created during the project and the original GIS files. Thickness and geochemical data for the coal beds that were utilized for the study are also included. The CD-ROM will be part of the USGS Digital Data Series and will be available from the USGS Branch of Coal Geology. Ultimately it will be available on Internet. The CD-ROM will be on both MSDOS and Macintosh platforms.

Carter, M.D.; Levine, M.J. [Geological Survey, Reston, VA (United States); Teeters, D.D. [Bureau of Mines, Denver, CO (United States); Sergeant, R.E. [Kentucky Geological Survey, Lexington, KY (United States)

1995-12-31T23:59:59.000Z

119

RMOTC to Test Oil Viscosity Reduction Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Test Oil Viscosity Reduction Technology to Test Oil Viscosity Reduction Technology The Rocky Mountain Oilfield Testing Center (RMOTC) announces that the "Teapot Dome" oil field in Wyoming is hosting a series of tests funded by STWA, Inc. ("STWA") to determine the performance of its Applied Oil Technology (AOT(tm)) in reducing crude oil's viscosity to lower transportation costs for pipeline operators. The testing is managed by RMOTC, and conducted at Naval Petroleum Reserve No. 3, also known as the Teapot Dome oil field. RMOTC is providing the infrastructure and technical expertise to support companies such as STWA in their efforts to validate new technologies and bring those products and

120

RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Sub-basin and the Conecuh Sub-basin of Louisiana, Mississippi, Alabama and Florida panhandle. This task includes identification of the petroleum systems in these basins and the characterization of the overburden, source, reservoir and seal rocks of the petroleum systems and of the associated petroleum traps. Second, emphasis is on petroleum system modeling. This task includes the assessment of the timing of deep (>15,000 ft) gas generation, expulsion, migration, entrapment and alteration (thermal cracking of oil to gas). Third, emphasis is on resource assessment. This task includes the volumetric calculation of the total in-place hydrocarbon resource generated, the determination of the volume of the generated hydrocarbon resource that is classified as deep (>15,000 ft) gas, the estimation of the volume of deep gas that was expelled, migrated and entrapped, and the calculation of the potential volume of gas in deeply buried (>15,000 ft) reservoirs resulting from the process of thermal cracking of liquid hydrocarbons and their transformation to gas in the reservoir. Fourth, emphasis is on identifying those areas in the onshore interior salt basins with high potential to recover commercial quantities of the deep gas resource.

Ernest A. Mancini

2004-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Post waterflood CO{sub 2} miscible flood in light oil fluvial dominated deltaic reservoirs. Second quarterly technical progress report, [January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

Production from the Marg Area 1 at Port Neches is averaging 392 barrels of oil per day (BOPD) for this quarter. The production drop is due to fluctuation in both GOR and BS&W on various producing well, coupled with low water injectivity in the reservoir. We were unable to inject any tangible amount of water in the reservoir since late January. Both production and injection problems are currently being evaluated to improve reservoir performance. Well Kuhn (No. 6) was stimulated with 120 MMCF of CO{sub 2}, and was placed on production in February 1, 1995. The well was shut in for an additional month after producing dry CO{sub 2} initially. The well was opened again in early April and is currently producing about 40 BOPD. CO{sub 2} injection averaged 11.3 MMCFD including 4100 MMCFD purchased from Cardox, while water injection averaged 1000 BWPD with most of the injection occurring in the month of January.

NONE

1995-07-01T23:59:59.000Z

122

Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993  

SciTech Connect (OSTI)

There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

Peng, F.F.

1996-05-01T23:59:59.000Z

123

Environmental and economic assessment of discharges from Gulf of Mexico region oil and gas operations. Quarterly technical progress report, April 1995--June 1995  

SciTech Connect (OSTI)

Progress is described on the determination of environmental impacts from waste discharges to the aquatic ecosystems from oil and gas operations. Task 2 (Preparation of the Sampling and Analysis Plan) activities involved revisions and additions to the Sampling and Analysis Plan. Task 3 (Environmental Field Sampling and Analysis of NORM, Heavy Metals, and Organics) work included analyses of water, sediment, and tissue samples as well as data management. Task 4 (Monitoring of the Recovery of Impacted Wetland and Open Bay Produced Water Discharge Sites in Coastal Louisiana and Texas) activities involved the continued analyses of samples and conducting field sampling at Bay de Chene. Task 5 (Assessment of Economic Impacts of Offshore and Coastal Discharge Requirements on Present and Future Operations in the Gulf of Mexico Region) activities included preparing a draft final report and review by the Scientific Review Committee (SRC). Task 6 (Synthesis of Gulf of Mexico Seafood Consumption and Use Patterns) work involved the preparation of the draft final report and review by the SRC. Task 7 (Technology Transfer Plan) activities involved the presentation of four papers. Task 8 (Project Management and Deliverables) activities involved the submission of the necessary reports and routine management.

Gettleson, D.A.

1995-07-31T23:59:59.000Z

124

Technical Guidance  

Broader source: Energy.gov [DOE]

The Office of Technical Guidance, within the Office of Health, Safety and Security develops and issues Government-wide and Department-wide technical guidance to ensure that classified nuclear...

125

Operation of the Wilsonville solvent-refined coal pilot plant: startup, calibration, and initial operation of the H-oil ebullated-bed hydrotreater unit. Technical evaluation  

SciTech Connect (OSTI)

This report presents initial operating data and analyses for the H-Oil Ebullated-Bed Hydrotreater (HTR) unit at the Wilsonville Solvent Refined Coal Pilot Plant in Wilsonville, Alabama. The focus of the report is on the initial period when the HTR unit operated with catalyst (May to June 1981). Additional data relates to the problems and adjustments during pre-operational testing (December 1980 to April 1981), solvent-SRC circulation testing (April to May 1981), and equipment repairs (July 1981). During the first two runs with catalyst (American Cyanamid HDS-1442B), the R1235 Reactor was operated at 756/sup 0/F and 825/sup 0/F. Equal amounts of hydrotreater solvent and deashed SRC were blended to make up the HTR unit feed. At these conditions, SRC conversion was 30 and 53%, respectively, and 82 and 88% of the sulfur was removed from the SRC feed. The total solvent yield was 26 and 39% of the SRC for the two temperatures, 756 and 825/sup 0/F, respectively. Most of the preasphaltenes were converted (less than 0.5% in the solid product). Hydrogen consumption was estimated to be 3 to 4% of the feed SRC. The quality of the HTR solvent was evaluated in short and long microautoclave tests (80% and 80 to 88% THF conversion, respectively) and the values obtained were consistently higher than those for SRC unit solvent. It was noted that the HTR unit solvent gave higher results by the long test than the short test, whereas the opposite is true for SRC unit solvent.

Not Available

1982-07-01T23:59:59.000Z

126

„Peak Oil  

Science Journals Connector (OSTI)

Wissenschaftliche Voraussagen deuten auf „Peak Oil“, das Maximum globaler Erdölförderung, in unserer ... der demokratischen Systeme führen. Psychoanalytische Betrachtung darf „Peak Oil“ für die Zivilisation als e...

Dr. Manuel Haus; Dr. med. Christoph Biermann

2013-03-01T23:59:59.000Z

127

Microsoft Word - NETL-TRS-6-2014_Imaging Techniques Applied to...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of oil that are now technically recoverable due to advances in horizontal drilling and hydraulic fracturing (U.S. EIA, 2013). The same properties that allow shale formations to...

128

Logistic curves, extraction costs and effective peak oil  

Science Journals Connector (OSTI)

Debates about the possibility of a near-term maximum in world oil production have become increasingly prominent over the past decade, with the focus often being on the quantification of geologically available and technologically recoverable amounts of oil in the ground. Economically, the important parameter is not a physical limit to resources in the ground, but whether market price signals and costs of extraction will indicate the efficiency of extracting conventional or nonconventional resources as opposed to making substitutions over time for other fuels and technologies. We present a hybrid approach to the peak-oil question with two models in which the use of logistic curves for cumulative production are supplemented with data on projected extraction costs and historical rates of capacity increase. While not denying the presence of large quantities of oil in the ground, even with foresight, rates of production of new nonconventional resources are unlikely to be sufficient to make up for declines in availability of conventional oil. Furthermore we show how the logistic-curve approach helps to naturally explain high oil prices even when there are significant quantities of low-cost oil yet to be extracted.

Robert J. Brecha

2012-01-01T23:59:59.000Z

129

Recoverable distributed shared memory  

E-Print Network [OSTI]

Distributed Shared Memory (DSM) is a model for interprocess communication, implemented on top of message passing systems. In this model, processes running on separate hosts can access a shared, coherent memory address space, provided...

Kanthadai, Sundarrajan S

2012-06-07T23:59:59.000Z

130

Recoverable Robust Knapsacks: ?-Scenarios  

E-Print Network [OSTI]

width capacity to be partitioned among the users in the area covered by the antenna. ..... instances were generated for 51 antennas with 15 to 221 traffic nodes ( ...

2011-02-24T23:59:59.000Z

131

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

89 89 Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels) 48 States 3 Onshore ........................................................................... 14.2 112.6 126.7 48 States 3 Offshore ........................................................................... 4.6 50.3 54.8 Alaska ................................................................................................. 3.6 35.0 38.6 Total U.S. ........................................................................................... 22.3 197.9 220.2

132

Technical information  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Home> Commercial Buildings Home> Technical Information > Estimation of Standard Errors Estimation of Standard Errors Sampling error is the difference between the survey estimate...

133

Technical Report  

E-Print Network [OSTI]

Dec 12, 2013 ... Technical Report Series: DCC-2013-13. Departamento de Ciência de Computadores. Faculdade de Ciências da Universidade do Porto.

Filipe Brandao

2013-12-12T23:59:59.000Z

134

The efficiency of technical retrofitting of cogeneration stations using combined-cycle plants  

Science Journals Connector (OSTI)

We consider the problem of technical retrofitting of gas-and-oil fired steam-turbine cogeneration stations by converting them into combined-cycle plants...

L. S. Popyrin; M. D. Dil’man; G. M. Belyaeva

2006-02-01T23:59:59.000Z

135

Peak Oil  

Science Journals Connector (OSTI)

At the start of the new millennium, the expression “Peak Oil” was unknown. Nevertheless, a discussion about when the world’s rate of oil production would reach its maximum had already ... . King Hubbert presented...

Kjell Aleklett

2012-01-01T23:59:59.000Z

136

Peak Oil  

Science Journals Connector (OSTI)

Between 2000 and 2010, world oil prices advanced from approximately $25 per barrel to more than $100 per barrel. The price appreciation of oil over the decade was around ten times the rate of inflation.

Robert Rapier

2012-01-01T23:59:59.000Z

137

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (seventh quarter), April 1--June 30, 1997  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program -- based on advanced reservoir management methods -- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized.

NONE

1997-07-30T23:59:59.000Z

138

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction  

E-Print Network [OSTI]

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A.E. FINAN, K. MIU, A.C. KADAK Massachusetts Institute of Technology Department of Nuclear Science the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed

139

EIA - International Energy Outlook 2008-Defining the Limits of Oil  

Gasoline and Diesel Fuel Update (EIA)

Defining the Limits of Oil Production Defining the Limits of Oil Production Preparing mid-term projections of oil production requires an assessment of the availability of resources to meet production requirements, particularly for the later years of the 2005-2030 projection period in IEO2008. The IEO2008 oil production projections were limited by three factors: the estimated quantity of petroleum in place before production begins (“petroleum-initially-in-place” or IIP), the percentage of IIP extracted over the life of a field (ultimate recovery factor), and the amount of oil that can be produced from a field in a single year as a function of its remaining reserves. Total IIP resources are the quantities of petroleum—both conventional and unconventional—estimated to exist originally in naturally occurring accumulations.a IIP resources are those quantities of petroleum which are estimated, on a given date, to be contained in known accumulations, plus those quantities already produced, as well as those estimated quantities in accumulations yet to be discovered. The estimate of IIP resources includes both recoverable and unrecoverable resources.

140

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

SciTech Connect (OSTI)

The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

Ernest A. Mancini; Donald A. Goddard

2004-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydrogen Production Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Production Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

142

Dobson Butte field, Williston basin, Stark County, North Dakota: nontypical oil production  

SciTech Connect (OSTI)

The Dobson Butte field (T139N, R96W), Stark County, North Dakota, was discovered in 1982 following a detailed seismic program. Production is primarily from a structural trap in the Interlake Formation of Silurian age. Three oil wells are presently producing from a dolomite reservoir at about 11,000 ft in depth. Primary recoverable reserves of these three producing wells is calculated to be about 2 million bbl of oil. Additional reserves will come from further development of the Interlake reservoir as well as from the deeper Red River (Ordovician) Formation. The Dobson Butte field is a nontypical oil field within the Williston basin as to its high pour point oil (90/sup 0/F), high production water cuts (85-95%), lack of good oil shows in samples, unpredictable noncontinuous oil-producing reservoirs throughout the entire 600-ft Interlake Formation, difficulty in log interpretations, and difficulty in determining the source bed. The interpretation of these nontypical characteristics of Interlake oil production in the Dobson Butte field compared to other Interlake oil production within the Williston basin will have a profound effect upon future Interlake exploration.

Guy, W.J.

1987-05-01T23:59:59.000Z

143

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1996 (fifth quarter)  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques while comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program, can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results so far are described on geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1997-01-31T23:59:59.000Z

144

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, April 1, 1996--June 30, 1996  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the U.S. oil and gas industry.

Murphy, M.B.

1996-07-26T23:59:59.000Z

145

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, July 1--September 30, 1996 (fourth quarter)  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. Results obtained to date are summarized on the following: geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1996-10-31T23:59:59.000Z

146

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, January 1--March 31, 1998  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized for the following: geostatistics and reservoir mapping; reservoir engineering; reservoir characterization/reservoir simulation; miscible recovery simulations; and technology transfer.

NONE

1998-04-30T23:59:59.000Z

147

Technical Report Documentation Page 1. Report No.  

E-Print Network [OSTI]

and metropolitan areas. Economists have also predicted that oil prices will rise in real terms during the same: National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 19. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of Pages

148

Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository  

SciTech Connect (OSTI)

The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

Smith, M.W. (REM Engineering Services, Morgantown, WV); Shadle, L.J.; Hill, D. (REM Engineering Services, Morgantown, WV)

2007-01-01T23:59:59.000Z

149

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

150

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

151

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III  

SciTech Connect (OSTI)

This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

2001-08-07T23:59:59.000Z

152

The future of oil and gas in Northern Alaska  

SciTech Connect (OSTI)

The North Slope accounts for about 98 percent of Alaska`s total oil production or about 1.6 MMBOPD (million barrels of oil per day). This makes Alaska the number two oil-producing State, contributing about 25% of the Nation`s daily oil production. Cumulative North Slope production at year-end 1993 was 9.9 BBO (billion barrels of oil). Natural gas from the North Slope is not marketable for lack of a gas transportation system. At year-end 1993, North Slope reserves as calculated by the State of Alaska stood at 6.1 BBO and 26.3 TCFG. By 1988, production from Prudhoe Bay and three other oil fields peaked at 2 MMBOPD; since then production has declined to the current rate of 1.6 MMBOPD in spite of six more oil fields coming into production. Undiscovered, economically recoverable oil resources, as of 1987, were estimated at 0-26 BBO (mean probability, 8 BBO) for the onshore region and adjacent State waters by USGS and 0-5 BBO (mean probability, oil fields and all future oil field development is the continued operation of TAPS (Trans-Alaska Pipeline System). Recent studies by the U.S. Department of Energy have assumed a range of minimum throughput rates to to illustrate the effects of a shutdown of TAPS. Using reserve and production rate numbers from existing fields, a TAPS shutdown is predicted for year-end 2014 assuming minimum rates of 200 MBOPD. In both cases, producible oil would be left in the ground: 1,000 MMBO for the 2008 scenario and 500 MMBO for the 2014 scenario. Because the time between field discovery or decision-to-develop and first production is about 10 years, new or discovered fields may need to be brought into production by 1998 to assure continued operation of the pipeline and maximum oil recovery.

Bird, K.J.; Cole, F.; Howell, D.G.; Magoon, L.B. [Geological Survey, Menlo Park, CA (United States)

1995-04-01T23:59:59.000Z

153

Oil shale technology. Final report  

SciTech Connect (OSTI)

This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

NONE

1995-03-01T23:59:59.000Z

154

OIL IMPORTS: For and Against  

Science Journals Connector (OSTI)

OIL IMPORTS: For and Against ... The eight—Ashland Oil, Atlantic Richfield, Cities Service, Marathon Oil, Mobil Oil, Standard Oil (Ind.), ...

1969-07-28T23:59:59.000Z

155

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

156

Bioconversion of Heavy oil.  

E-Print Network [OSTI]

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

157

The oil and gas potential of the South Caspian Sea  

SciTech Connect (OSTI)

For 150 years, the oil fountains of Baku have fueled the imaginations of oilmen around the world. The phrase {open_quotes}another Baku{close_quotes} often has been used to describe major new discoveries. The production of oil and gas from onshore Azerbaijan and from the shallower waters of the Caspian Sea offers tantalizing evidence for the hydrocarbon yet to be discovered. Today, the Azeri, Guneshli, and Chirag oil fields, with over four billion barrels of recoverable reserves, have refocused the attention of the petroleum industry on Baku. The rapid subsidence of the South Caspian Basin and accumulation of over 20 kilometers of Late Mesozoic and Cenozoic sediments have resulted in that rare combination of conditions ideal for the generation and entrapment of numerous giant oil and gas accumulations. Working with existing geological, geophysical, and geochemical data, SOCAR geologists, geophysicists, and geochemists have identified numerous structural and stratigraphic prospects which have yet to be tested by drilling. In the South Caspian Basin, undrilled prospects remain in relatively shallow water, 200-300 meters. As these shallow-water prospects are exhausted, exploration will shift farther offshore into deeper water, 300-1000 meters. The deepwater region of the South Caspian is unquestionably prospective. Exploration and development of oil and gas fields in water depths in excess of 300 meters will require the joint efforts of international companies and the Azerbaijan petroleum enterprises. In the near future, water depth and drilling depth will not be limiting factors in the exploration of the Caspian Sea. Much work remains to be done; and much oil and gas remain to be found.

Jusufzade, K.B.

1995-08-01T23:59:59.000Z

158

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network [OSTI]

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

159

Research and information needs for management of oil shale development  

SciTech Connect (OSTI)

This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

Not Available

1983-05-01T23:59:59.000Z

160

SEMI-ANNUAL TECHNICAL PROGRESS REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach Final Scientific/ Technical Report Reporting Period Start Date: 8/21/2006 Reporting Period End Date: 3/30/2011 Principal Author: Amy M. Childers July 25, 2011 DOE Award No.: DE-FC26-06NT42937 Interstate Oil and Gas Compact Commission P.O. Box 53127 Oklahoma City, OK 53127-3127 This page left blank intentionally 2 DISCLAIMER This report was prepared as an accounting of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Techno-economic study of re-refining waste lubricating oils in the Arabian Gulf countries  

Science Journals Connector (OSTI)

Waste oil reclaimation by re-refining is a promising process for recycling valuable polutant waste. In Arabian Gulf countries, a limited volume of waste oil is recycled. A technical and economical evaluation of some reclaimation methods to produce lubricating oil has been conducted.

M.I. Al-Ahmad; I.S. Al-Mutaz

1991-01-01T23:59:59.000Z

162

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

Anthony R. Kovscek

2002-07-01T23:59:59.000Z

163

of oil yields from enhanced oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

164

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

165

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

166

INL Technical Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Publications This site contains Idaho National Laboratory scientific and technical information products that have been issued for unlimited distribution. Those products...

167

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect (OSTI)

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

168

depleted underground oil shale for the permanent storage of carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

169

Near Shore Submerged Oil Assessment  

E-Print Network [OSTI]

) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

170

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

171

Technical Consultant Contract  

Broader source: Energy.gov [DOE]

Technical Consultant Contract, from the Tool Kit Framework: Small Town University Energy Program (STEP).

172

DOE Approved Technical Standards  

Broader source: Energy.gov [DOE]

The DOE Technical Standards Program promotes the use of voluntary consensus standards at DOE, manages and facilitates DOE's efforts to develop and maintain necessary technical standards, and communicates information on technical standards activities to people who develop or use technical standards in DOE.

173

Technical Consultant Report Template  

Broader source: Energy.gov [DOE]

Technical Consultant Report Template, from the Tool Kit Framework: Small Town University Energy Program (STEP).

174

LLNL oil shale project review: METC third annual oil shale contractors meeting  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

Cena, R.J.; Coburn, T.T.; Taylor, R.W.

1988-01-01T23:59:59.000Z

175

Annual resources report. [Glossary on technical terms  

SciTech Connect (OSTI)

The report is separated into the following sections: acknowledgments; a table of contents; a list of tables and figures; a glossary; an introduction; an overview of the role of energy resources in New Mexico; separate sections on oil and gas, coal, electrical generation, uranium, and geothermal energy; a section on the geologic setting of oil and gas, coal, and uranium; an appendix of additional tables pertaining to oil and gas development; and a listing of selected references. The glossary is a brief listing of technical terms used in the report with simplified definitions for the reader's use. The overview contains highlights of data found in the report as well as comparisons of New Mexico's resources with those of other states and the nation. In general, each section covering a resource area describes reserves, production, prices, consumption, transportation, employment, and revenue statistics over the past ten or more years and projections to the year 2000.

Not Available

1982-01-01T23:59:59.000Z

176

Research on oil recovery mechanisms in heavy oil reservoirs. Final report  

SciTech Connect (OSTI)

The Research on Heavy Oil Recovery Mechanisms at Stanford University has been ongoing for the past twenty years. During this span of time, 106 technical reports have been published by the Department of Energy, over 200 technical papers have been presented at meetings of professional societies, and most importantly, over 120 students have performed research as graduate research assistants and are now employed by the oil industry or research institutions. Funding was provided by the Department of Energy and also by a group of oil companies. The support of industry is very important to us, not only from the financial viewpoint, but also from the constant exchange of ideas with technical experts from the companies. Meetings are held yearly with industry representatives and informal exchange of information is constant. Support from industry has been steady since 1980. SUPRI personnel is also active in participating in technical meetings and seminars organized by technical societies and other research organizations. We strongly believe that information exchange is one of the most cost effective way to improve research.

NONE

1996-08-01T23:59:59.000Z

177

Electrochemical Energy Storage Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

178

Fuel Pathway Integration Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Pathway Integration Fuel Pathway Integration Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Fuel Pathway Integration Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

179

Electromagnetic Heating Methods for Heavy Oil Reservoirs  

SciTech Connect (OSTI)

The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

Sahni, A.; Kumar, M.; Knapp, R.B.

2000-05-01T23:59:59.000Z

180

FAR Card: Technical specifiers  

Broader source: Energy.gov (indexed) [DOE]

specifiers specifiers Technical specifiers You've been told: You've been told: "I can't get you that product." "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers You've been told: "I can't get you that product." Technical specifiers Technical specifiers You've been told: You've been told: "I can't get you that product." "I can't get you that product."

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

China's Global Oil Strategy  

E-Print Network [OSTI]

capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

182

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

183

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

184

Understanding Crude Oil Prices  

E-Print Network [OSTI]

business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

185

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

186

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

187

China's Global Oil Strategy  

E-Print Network [OSTI]

by this point, China’s demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

Thomas, Bryan G

2009-01-01T23:59:59.000Z

188

Understanding Crude Oil Prices  

E-Print Network [OSTI]

and Income on Energy and Oil Demand,” Energy Journal 23(1),2006. “China’s Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

189

Senior Technical Safety Manager  

Broader source: Energy.gov (indexed) [DOE]

Technical Program Technical Program Manager Qualification Standard DOE-STD-1178-2004 May 2013 Reference Guide The Functional Area Qualification Standard References Guides are developed to assist operators, maintenance personnel, and the technical staff in the acquisition of technical competence and qualification within the Technical Qualification Program. Please direct your questions or comments related to this document to the Office of Leadership and Career Manager, Technical Qualification Program (TQP), Albuquerque Complex. This page is intentionally blank. Table of Contents i FIGURES ....................................................................................................................................... ii TABLES ......................................................................................................................................... ii

190

Beginning of an oil shale industry in Australia  

SciTech Connect (OSTI)

This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

1989-01-01T23:59:59.000Z

191

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

192

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

193

China's Global Oil Strategy  

E-Print Network [OSTI]

China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

194

Tall oil pitch  

Science Journals Connector (OSTI)

n....Undistilled residue from the distillation of crude tall oil. It is generally recognized that tall oil pitches contain some high-boiling esters and neutral...

2007-01-01T23:59:59.000Z

195

China's Global Oil Strategy  

E-Print Network [OSTI]

Analysts agree that the Persian Gulf region will continue tos oil imports. 17 The Persian Gulf region is particularlyaccess to oil from the Persian Gulf because of conflict

Thomas, Bryan G

2009-01-01T23:59:59.000Z

196

oil1990.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(dollars) (dollars) (dollars) (dollars) Table 1. Consumption and Expenditures in U.S. Households that Use Fuel OilKerosene, 1990 Residential Buildings Average Fuel Oil...

197

Oil Sands Feedstocks  

Broader source: Energy.gov (indexed) [DOE]

Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National Centre...

198

Crude Oil Domestic Production  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net...

199

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

200

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technical Information Officers | Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Technical Information Officers Technical Information Officers Print page Print page Email page Email page Technical Information Officers (TIO) serve as the principal DOE or NNSA office point of contact and assistant to, and liaison with, the DOE Office of Scientific and Technical Information (OSTI) that serves as the Department's office charged with the Scientific and Technical Information Program (STIP). The TIOs are to be familiar with the STI Programs within their Office they represent (given they have contracting financial assistance and/or acquisition activities) and for their major site/facility management contractor(s) STI Program to discern compliance with the DOE O 241.1B. They must maintain an up-to-date knowledge-base of the STI Program activities and provide timely feedback on issues as they emerge. While

202

Federal Technical Capability Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

2004-05-18T23:59:59.000Z

203

Microsoft Word - TEV-1091_ExSituOilShaleRetort.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Evaluation Study Project No. 23843 Integration of HTGRs and an Ex Situ Oil Shale Retort 121310 Form 412.09 (Rev. 10) Idaho National Laboratory INTEGRATION OF HTGRS...

204

The evaluation of CO2-based vapour extraction (VAPEX) process for heavy-oil recovery  

Science Journals Connector (OSTI)

Vapor extraction (VAPEX) has been proposed as an alternative for heavy-oil recovery in reservoirs where thermal methods face technical and economic problems. In VAPEX, a pair of horizontal injector-producer we...

Farshid Torabi; Benyamin Yadali Jamaloei…

2012-07-01T23:59:59.000Z

205

Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis  

SciTech Connect (OSTI)

A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

Ringer, M.; Putsche, V.; Scahill, J.

2006-11-01T23:59:59.000Z

206

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells  

Broader source: Energy.gov [DOE]

The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

207

Opportunities for Energy Efficiency Improvements in Oil Production in Kansas: A Case Study  

E-Print Network [OSTI]

be made to operating oil wells in Kansas which could reduce their pumping costs. Preliminary results from four wells selected for a case study show that while technical modifications and/or improvements in existing wells generally reduce pumping costs...

Egbert, R. I.; King, J. E.

208

The efficiency of using gas turbine technologies in developing small oil-and-gas-condensate deposits  

Science Journals Connector (OSTI)

The paper considers the technical and economic features of using stream-gas and gas-turbine power generators in developing small oil-and-gas-condensate deposits in Irkutsk oblast under conditions of carrying o...

A. M. Karasevich; A. V. Fedyaev; G. G. Lachkov; O. N. Fedyaeva

2012-02-01T23:59:59.000Z

209

Technical Standards Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

1999-11-19T23:59:59.000Z

210

Federal Technical Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

2009-11-19T23:59:59.000Z

211

Technical Standards Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

2011-02-23T23:59:59.000Z

212

"Developing the technical and policy knowledge needed to reduce the  

E-Print Network [OSTI]

that will impact shale gas development, enhanced oil recovery, and GCS. � Published an open-source meta"Developing the technical and policy knowledge needed to reduce the impacts of engineered systems Sustainable Technologies Laboratory (VESTlab) is focused on understanding engineering strategies we can use

Acton, Scott

213

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect (OSTI)

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

214

Ships After Oil  

Science Journals Connector (OSTI)

Ships After Oil ... Special self-propelled tenders planned for offshore drilling operations in Gulf ...

1956-07-02T23:59:59.000Z

215

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

216

Technical Information Officers | Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Technical Information Officers Technical Information Officers Print page Print page Email page Email page Technical Information Officers: Serve as the DOE element representatives to STIP and ensure that STI objectives and requirements are incorporated into strategic planning, management information plans, life-cycle procedures from project initiation to close-out, and contract language as appropriate. Coordinate with contractor STI managers and have adequate familiarity with STI activities to discern contractor compliance with the CRD portion of this directive. Coordinate the implementation of appropriate review and release procedures by DOE elements, DOE contractors, and financial assistance recipients as appropriate. Serve as Releasing Officials or coordinate designation and official

217

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanisms by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-04-01T23:59:59.000Z

218

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from July 1 through September, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, work focused on completing project tasks in the area of multiphase flow and rock properties. The area of interest is the production mechanisms of oil from porous media at high temperature. Temperature has a beneficial effect on oil recovery and reduces residual oil saturation. Work continued to delineate how the wettability of reservoir rock shifts from mixed and intermediate wet conditions to more water-wet conditions as temperature increases. One mechanism for the shift toward water-wet conditions is the release of fines coated with oil-wet material from pore walls. New experiments and theory illustrate the role of temperature on fines release.

Anthony R. Kovscek; Louis M. Castanier

2004-03-01T23:59:59.000Z

219

Oil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

220

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

5. Differences in crude oil and natural gas assumptions across three cases 5. Differences in crude oil and natural gas assumptions across three cases Reference Resource Average Range Low Oil and Gas Resource High Oil and Gas Resource Shale gas, tight gas, and tight oil Estimated Ultimate Recovery (EUR) Shale gas (billion cubic feet per well) 1.04 0.01-11.32 50% lower 100% higher Tight gas (billion cubic feet per well) 0.5 0.01-11.02 50% lower 100% higher Tight oil (thousand barrels per well) 135 1-778 50% lower 100% higher Incremental technically recoverable resource Natural gas (trillion cubic feet) -- -- (522) 1,044 Crude oil (billion barrels) -- -- (29) 58 Well spacing (acres) 100 20-406 No change 20-40 Incremental technically recoverable resource Natural gas (trillion cubic feet) -- -- No change 3,601

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

5. Differences in crude oil and natural gas assumptions across three cases 5. Differences in crude oil and natural gas assumptions across three cases Reference Resource Average Range Low Oil and Gas Resource High Oil and Gas Resource Shale gas, tight gas, and tight oil Estimated Ultimate Recovery (EUR) Shale gas (billion cubic feet per well) 1.04 0.01-11.32 50% lower 100% higher Tight gas (billion cubic feet per well) 0.5 0.01-11.02 50% lower 100% higher Tight oil (thousand barrels per well) 135 1-778 50% lower 100% higher Incremental technically recoverable resource Natural gas (trillion cubic feet) -- -- (522) 1,044 Crude oil (billion barrels) -- -- (29) 58 Well spacing (acres) 100 20-406 No change 20-40 Incremental technically recoverable resource Natural gas (trillion cubic feet) -- -- No change 3,601

222

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network [OSTI]

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions… (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

223

Greater Burgan of Kuwait: world's second largest oil field  

SciTech Connect (OSTI)

Greater Burgan (Main burgan, Magwa, and Ahmadi) field is located in the Arabian Platform geologic province and the stable shelf tectonic environment of the Mesopotamian geosyncline, a sedimentary basin extending from the Arabian shield on the west to the complexly folded and faulted Zagros Mountains on the east. The structural development in Cretaceous time represents a major anticlinorium bounded by a basin to the west and a synclinorium to the east. Greater Burgan is located within this anticlinorium. The field consists of three dome structures 25 km wide and 65 km long with gentle dips of only few degrees. Faults have little throw and did not contribute to the trapping mechanism. The structural deformation may have been caused by halokinetic movements and most likely by basement block faulting that may have started in the Paleozoic. Greater Burgan was discovered in 1938. All production during the last 40 years has been by its natural pressure. Although natural gas injection has been carried out for some time, no waterflooding has been initiated yet. Recoverable reserves of the field are 87 billion bbl of oil. During the last 5 years giant reserves have been added in this field from the deeper strata of Jurassic age. Several deep wells have been drilled to the Permian for the purpose of discovering gas. So far, no Permian gas has been found in Kuwait. The Permian is 25,000 ft deep, and it is unlikely gas will be found there in the future. However, the potential of the Jurassic reservoirs will be a major target in the future. Also, there is a great possibility of discovering oil in stratigraphic traps, as several producing strata in the nearby fields pinch out on the flanks of this giant structure. Enhanced oil recovery should add significant reserves in the future.

Youash, Y.Y.

1989-03-01T23:59:59.000Z

224

Turbine cooling waxy oil  

SciTech Connect (OSTI)

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

225

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

226

Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3  

SciTech Connect (OSTI)

The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

NONE

1997-05-01T23:59:59.000Z

227

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

228

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

229

Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. 1. Flammability and Toxicity  

Science Journals Connector (OSTI)

The first bio-oil burner fuel standard in ASTM D7544 was approved in 2010. ... A technical specification for a quality specification for pyrolysis oil suitable for gasification feedstock for production of syngas and synthetic biofuels ... Because of the severity of the dermal changes (erythema/edema i.e., burns) and for ethical reasons, the eye irritation test was not run. ...

Anja Oasmaa; Anssi Källi; Christian Lindfors; Douglas C. Elliott; Dave Springer; Cordner Peacocke; David Chiaramonti

2012-05-04T23:59:59.000Z

230

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

231

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

CAKIR, NIDA

2013-01-01T23:59:59.000Z

232

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network [OSTI]

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

233

Economics of Peak Oil  

Science Journals Connector (OSTI)

Abstract ‘Peak oil’ refers to the future decline in world production of crude oil and the accompanying potentially calamitous effects. The peak oil literature typically rejects economic analysis. This article argues that economic analysis is indeed appropriate for analyzing oil scarcity because standard economic models can replicate the observed peaks in oil production. Moreover, the emphasis on peak oil is misplaced as peaking is not a good indicator of scarcity, peak oil techniques are overly simplistic, the catastrophes predicted by the peak oil literature are unlikely, and the literature does not contribute to correcting identified market failures. Efficiency of oil markets could be improved by instead focusing on remedying market failures such as excessive private discount rates, environmental externalities, market power, insufficient innovation incentives, incomplete futures markets, and insecure property rights.

S.P. Holland

2013-01-01T23:59:59.000Z

234

Secretary Bodman Hosts Iraqi Ministers of Oil and Electricity | Department  

Broader source: Energy.gov (indexed) [DOE]

Iraqi Ministers of Oil and Electricity Iraqi Ministers of Oil and Electricity Secretary Bodman Hosts Iraqi Ministers of Oil and Electricity July 26, 2006 - 4:34pm Addthis Energy Leaders sign MOU to further promote electricity cooperation WASHINGTON, DC - U.S. Department of Energy Secretary Samuel W. Bodman today hosted Iraq's Minister of Oil Hussein al-Shahristani and Minster of Electricity Karim Wahid Hasan to discuss the rehabilitation and expansion of Iraq's energy infrastructure. The Ministers' visit to the Department follows up on Secretary Bodman's invitation to them to come to the United States to talk to professionals in electricity generation, transmission and distribution, and oil sector development. "The U.S. government is committed to providing scientific and technical assistance to help the Iraqi people expand their energy sector," Secretary

235

The peak of oil production—Timings and market recognition  

Science Journals Connector (OSTI)

Energy is essential for present societies. In particular, transportation systems depend on petroleum-based fuels. That world oil production is set to pass a peak is now a reasonably accepted concept, although its date is far from consensual. In this work, we analyze the true expectations of the oil market participants about the future availability of this fundamental energy source. We study the evolution through time of the curves of crude oil futures prices, and we conclude that the market participants, among them the crude oil producers, already expect a near-term peak of oil production. This agrees with many technical predictions for the date of peak production, including our own, that point to peak dates around the end of the present decade. If this scenario is confirmed, it can cause serious social and economical problems because societies will have little time to perform the necessary adjustments.

Pedro de Almeida; Pedro D. Silva

2009-01-01T23:59:59.000Z

236

Apparatus for distilling shale oil from oil shale  

SciTech Connect (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

237

Technical Review Panel Report  

Broader source: Energy.gov (indexed) [DOE]

TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 Advanced Reactor Concepts Technical Review Panel Report Evaluation and Identification of future R&D on eight Advanced Reactor Concepts, conducted April - September 2012 December 2012 Public release version 2 Public release version 3 Table of Contents Summary ................................................................................................................................... 4 1. Overview of the Technical Review Panel Process ............................................................... 5 2. Technical Review Panel Criteria ......................................................................................... 6 3. Concept Summaries ........................................................................................................... 8

238

Web Survey Technical Report  

E-Print Network [OSTI]

Glisson,W.B. Welland,R.C. DCS Technical Report Series pp 27 Dept of Computing Science, University of Glasgow

Glisson, W.B.; Welland, R.C.

239

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

240

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Overview of Applications of Biomass Fast Pyrolysis Oil  

Science Journals Connector (OSTI)

National Bioenergy Center NREL, 1617 Cole Boulevard, Golden, Colorado 80401, and Bio-Energy Research Group, Aston University, Birmingham B4 7ET, UK ... The paper critically reviews scientific and technical developments in applications of bio-oil to date and concludes with some suggestions for research and strategic developments. ... Literature Review. ...

S. Czernik; A. V. Bridgwater

2004-02-26T23:59:59.000Z

242

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect (OSTI)

This technical progress report describes work performed from October 1 through December 31, 2002 , for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, experimental data regarding multidimensional imbibition was analyzed to obtain shape factors appropriate for dual-porosity simulation. It is shown that the usual assumption of constant, time-independent shape factors is incorrect. In other work, we continued to study the mechanisms by which oil is produced from fractured media at high pressure and high temperature. High temperature significantly increased the apparent wettability and affected water relative permeability of cores used in previous experiments. A phenomenological and mechanistic cause for this behavior is sought. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-01-01T23:59:59.000Z

243

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

244

China's Global Oil Strategy  

E-Print Network [OSTI]

21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

Thomas, Bryan G

2009-01-01T23:59:59.000Z

245

Using Oils As Pesticides  

E-Print Network [OSTI]

Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

2006-10-30T23:59:59.000Z

246

Residential heating oil price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

247

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

248

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

249

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

250

US Crude oil exports  

Gasoline and Diesel Fuel Update (EIA)

2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since...

251

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900° to 1100° F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

252

Federal Technical Capability Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

2000-06-05T23:59:59.000Z

253

About Technical Assistance  

Broader source: Energy.gov [DOE]

As technologies proceed along the development pipeline, most face major hurdles as they attempt to enter commercial markets. Our Technical Assistance program helps lower a range of institutional barriers to prepare innovative, energy-efficient technologies and energy management systems for full commercial deployment. These projects and activities address barriers that are not technical, Technology Readiness Level 9.

254

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

255

Federal Technical Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg. 1 dated 9-20-11 Cancels DOE O 426.1. Cancels DOE P 426.1.

2009-11-19T23:59:59.000Z

256

Technical College Buildings  

Science Journals Connector (OSTI)

... should have such a paucity of literature dealing with material needs in the matter of buildings and equipment necessary for its field of activity. Books dealing with laboratories can be ... is therefore to be specially welcomed, particularly at the present time when the demands for buildings for technical education are so marked (London: Association of Technical Institutions and the Association ...

1935-08-10T23:59:59.000Z

257

Biochemical upgrading of oils  

DOE Patents [OSTI]

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

258

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

Levi, Ran

259

Safety and Technical Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Technical Services Safety and Technical Services Minimize The Safety and Technical Services (STS) organization is a component of the Office of Science's (SC's) Oak Ridge Integrated Support Center. The mission of STS is to provide excellent environmental, safety, health, quality, and engineering support to SC laboratories and other U.S. Department of Energy program offices. STS maintains a full range of technically qualified Subject Matter Experts, all of whom are associated with the Technical Qualifications Program. Examples of the services that we provide include: Integrated Safety Management Quality Assurance Planning and Metrics Document Review Tracking and trending analysis and reporting Assessments, Reviews, Surveillances and Inspections Safety Basis Support SharePoint/Dashboard Development for Safety Programs

260

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

262

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

263

INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT  

SciTech Connect (OSTI)

This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

2002-02-28T23:59:59.000Z

264

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

265

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect (OSTI)

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

266

20 InsideGNSS SEP T EMBER /OC T OBER 2011 www.insidegnss.com he Arctic houses an estimated 90 billion barrels of  

E-Print Network [OSTI]

billion barrels of undiscovered, technically recoverable oil and 44 billion barrels of natural gas liquids) reference stations in or near the Arctic, integration of Iridium satellites with GNSS, and use of multi, and MSAS. More specifically, it analyzes the potential benefit of adding new SBAS reference stations

Stanford University

267

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

volatility in the United States while creating American jobs and reducing greenhouse gas emissions. It could replace over 30 million barrels of petroleum-based fuels each year,...

268

Technical Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Deployment Technical Reports Technical Reports A wide range of resources addressing the many benefits of combined heat and power (CHP) is available,...

269

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 22, quarter ending March 31, 1980  

SciTech Connect (OSTI)

This report contains statements of objectives and summaries of technical progress on all DOE contracts pertaining to enhanced oil recovery and improved drilling techniques. Subject categories include chemical flooding; carbon dioxide injection; thermal recovery of heavy oil; resource assessment; improved drilling technology; residual oil; environmental; petroleum technology; and microbial enhanced oil recovery. An index containing the names of the companies and institutions involved is included. Current publications resulting from the DOE contractual program are listed. (DMC)

Linville, B. (ed.)

1980-07-01T23:59:59.000Z

270

Technical Publications by System  

Broader source: Energy.gov [DOE]

Technical Publications include Sourcebooks, Handbooks, Market Assessments, and other technical documents. Sourcebooks give the detailed technical information necessary for comprehensive understanding of energy system components, including how to analyze facility needs, optimize performance, and identify and implement energy efficiency and productivity improvements. Handbooks provide the detailed information necessary to assess and squeeze the greatest efficiency out of industrial systems. They provide hands-on advice for engineers and equipment operators. Market assessments describe the state of the market for industrial systems, components, and energy efficiency services; customer awareness of and desire for efficient systems; and the potential market for more efficient technology.

271

Carcinogenicity Studies of Estonian Oil Shale Soots  

E-Print Network [OSTI]

determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

A. Vosamae

272

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

273

Gasflooding-assisted cyclic solvent injection (GA-CSI) for enhancing heavy oil recovery  

Science Journals Connector (OSTI)

Abstract Cyclic solvent injection (CSI) process has showed great potential to enhance heavy oil recovery because it takes advantages of solution-gas drive and foamy oil flow for oil production. However, CSI suffers from solvent release during the production period so that the viscosity of the solvent-diluted heavy oil is re-increased and its mobility is re-decreased. How to effectively recover the solvent-diluted heavy oil becomes a key technical challenge in a CSI process. This paper first experimentally analyzed a conventional CSI process that used a solvent injector as an oil producer alternately. It is found that foamy oil was induced and flowed to the producer during the production period of a cycle but some foamy oil was pushed back by solvent during the solvent injection period of the following cycle. Such “back-and-forth” movement of foamy oil seriously hindered the productivity of the CSI process. On the basis of this knowledge, this study proposed a new process, gasflooding-assisted cyclic solvent injection (GA-CSI), to enhance the performance of CSI. In a GA-CSI process, the solvent injector and the oil producer were placed horizontally apart. An additional solvent gasflooding process was applied immediately after the pressure drawdown process to produce the foamy oil that lost its mobility due to solvent release. The experimental results showed that the oil production rate of the newly proposed GA-CSI process is 3?4 times of that for a conventional CSI process.

Xinfeng Jia; Fanhua Zeng; Yongan Gu

2015-01-01T23:59:59.000Z

274

Crude Oil Analysis Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

275

External Technical Review Report  

Broader source: Energy.gov (indexed) [DOE]

External Technical Review Report External Technical Review Report March 2010 U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t External Technical Review (ETR) Process Guide September 2008 U.S. DOE Office of Environmental Management September 2008 External Technical Review Process Guide Page 2 of 37 TABLE OF CONTENTS 1.0 INTRODUCTION ....................................................................................................................... 3 1.1 Purpose of Process ............................................................................................................ 3 1.2 Background .........................................................................................................................

276

Technical Reports & Briefs  

Broader source: Energy.gov [DOE]

This page contains links to technical reports and briefs published by the U.S. Department of Energy, plus information on current studies under way. These reports are intended to present objective...

277

Technical Standards Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes the DOE Technical Standards Program. Cancels DOE O 252.1 and DOE G 252.1-1. Admin Chg 1, dated 3-12-13 cancels DOE O 252.1A.

2011-02-23T23:59:59.000Z

278

OSH technical reference manual  

SciTech Connect (OSTI)

In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

Not Available

1993-11-01T23:59:59.000Z

279

Approved DOE Technical Standards  

Office of Environmental Management (EM)

ehss908241 Approved DOE Technical Standards en DOE-STD-3009-2014 http:energy.govehssdownloadsdoe-std-3009-2014

280

Technical Planning Basis  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide assists DOE/NNSA field elements and operating contractors in identifying and analyzing hazards at facilities and sites to provide the technical planning basis for emergency management programs. Cancels DOE G 151.1-1, Volume 2.

2007-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technical Report Technologically Enhanced  

E-Print Network [OSTI]

.......................................................................................1-6 Geology and Distribution of Uranium................................................ ..........1Technical Report on Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium of Mines and Geology, and William Chenoweth. EPA is especially appreciative of the comments provided

282

Technical Standards, Style Guide- August 1, 2000  

Broader source: Energy.gov [DOE]

Style Guide for the Preparation of DOE Technical Standards (Standards, Handbooks, and Technical Standards Lists)

283

Opportunities to improve oil productivity in unstructured deltaic reservoirs  

SciTech Connect (OSTI)

This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

Not Available

1991-01-01T23:59:59.000Z

284

The Department of Energy's Scientific Response to the Oil Spill |  

Broader source: Energy.gov (indexed) [DOE]

The Department of Energy's Scientific Response to the Oil Spill The Department of Energy's Scientific Response to the Oil Spill The Department of Energy's Scientific Response to the Oil Spill May 28, 2010 - 12:00am Addthis At the request of President Obama, Secretary Chu and the Department of Energy's National Laboratories are providing round-the-clock scientific support to help inform strategies to stop the BP oil spill. Secretary Chu has spent several days in Houston monitoring the top kill attempt, analyzing the data as it comes in and helping to develop strategies to give it the best chances of success. In the days leading up to the "top kill" attempt, the Secretary and his team of scientists provided expert advice and technical support to test the assumptions behind BP's work and to offer analytical rigor. When diagnostic and pressure tests

285

Oil Bypass filter technology evaluation final report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6-01355 6-01355 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report TECHNICAL REPORT Larry Zirker James Francfort Jordan Fielding March 2006 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-06-01355 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report Larry Zirker James Francfort Jordan Fielding March 2006 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

286

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

287

American Samoa Initial Technical Assessment Report  

SciTech Connect (OSTI)

This document is an initial energy assessment for American Samoa, the first of many steps in developing a comprehensive energy strategy. On March 1, 2010, Assistant Secretary of the Interior Tony Babauta invited governors and their staff from the Interior Insular Areas to meet with senior principals at the National Renewable Energy Laboratory (NREL). Meeting discussions focused on ways to improve energy efficiency and increase the deployment of renewable energy technologies in the U.S. Pacific Territories. In attendance were Governors Felix Camacho (Guam), Benigno Fitial (Commonwealth of the Northern Mariana Islands), and Togiola Tulafono, (American Samoa). This meeting brought together major stakeholders to learn and understand the importance of developing a comprehensive strategic plan for implementing energy efficiency measures and renewable energy technologies. For several decades, dependence on fossil fuels and the burden of high oil prices have been a major concern but never more at the forefront as today. With unstable oil prices, the volatility of fuel supply and the economic instability in American Samoa, energy issues are a high priority. In short, energy security is critical to American Samoa's future economic development and sustainability. Under an interagency agreement, funded by the Department of Interior's Office of Insular Affairs, NREL was tasked to deliver technical assistance to the islands of American Samoa. Technical assistance included conducting an initial technical assessment to define energy consumption and production data, establish an energy consumption baseline, and assist with the development of a strategic plan. The assessment and strategic plan will be used to assist with the transition to a cleaner energy economy. NREL provided an interdisciplinary team to cover each relevant technical area for the initial energy assessments. Experts in the following disciplines traveled to American Samoa for on-island site assessments: (1) Energy Efficiency and Building Technologies; (2) Integrated Wind-Diesel Generation; (3) Transmission and Distribution; (4) Solar Technologies; and (5) Biomass and Waste-to-Energy. In addition to these core disciplines, team capabilities also included expertise in program analysis, project financing, energy policy and energy planning. The intent of the technical assessment was to provide American Samoa with a baseline energy assessment. From the baseline, various scenarios and approaches for deploying cost effective energy efficiency and renewable energy technologies could be created to meet American Samoa's objectives. The information provided in this energy assessment will be used as input in the development of a draft strategic plan and the development of scenarios and strategies for deploying cost-effective energy efficiency and renewable products.

Busche, S.; Conrad, M.; Funk, K.; Kandt, A.; McNutt, P.

2011-09-01T23:59:59.000Z

288

World Oil: Market or Mayhem?  

E-Print Network [OSTI]

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

Smith, James L.

2008-01-01T23:59:59.000Z

289

Technical Assistance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance Technical Assistance Technical Assistance Photo courtesy of Dennis Schroeder, NREL 18022 Photo courtesy of Dennis Schroeder, NREL 18022 The U.S. Department of Energy offers technical assistance supporting energy efficiency and renewable energy. This technical assistance can include direct advice on issues or goals, tools and maps, and training. Some select technical assistance offerings are listed below. For States and Communities The State and Local Solution Center provides states and communities with resources addressing strategic energy planning, policy, financing, data management, and technologies to help them implement successful energy efficiency and renewable energy projects. The Weatherization Assistance Program Technical Assistance Center provides

290

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Authors: Robert Hunter (ASRC Energy), Scott Digert (BPXA), Tim Collett (USGS), Ray Boswell (USDOE) Venue: AAPG National Meeting Gas Hydrate session, Oral Presentation, San Antonio, TX, April 22, 2008 (http://www.AAPG.org [external site]) Abstract: This BP-DOE collaborative research project is helping determine whether or not gas hydrate can become a technically and economically recoverable gas resource. Reservoir characterization, development modeling, and associated studies indicate that 0-0.34 trillion cubic meters (TCM) gas may be technically recoverable from the estimated 0.92 TCM gas-in-place within the Eileen gas hydrate accumulation on the Alaska North Slope (ANS). Reservoir modeling indicates sufficient potential for technical recovery to justify proceeding into field operations to acquire basic reservoir and fluid data from the Mount Elbert gas hydrate prospect in the Milne Point Unit (MPU). Successful drilling and data acquisition in the Mount Elbert-01 stratigraphic test well was completed during February 3-19, 2007. Data was acquired from 131 meters of core (30.5 meters gas hydrate-bearing), extensive wireline logging, and wireline production testing operations using Modular Dynamics Testing (MDT). The stratigraphic test validated the 3D seismic interpretation of the MPU gas hydrate-bearing Mount Elbert prospect. Onsite core sub- sampling preserved samples for later analyses of interstitial water geochemistry, physical properties, thermal properties, organic geochemistry, petrophysics, and mechanical properties. MDT testing was accomplished within two gas hydrate-bearing intervals, and acquired during four long shut-in period tests. Four gas samples and one pre-gas hydrate dissociation formation water sample were collected. MDT analyses are helping to improve understanding of gas hydrate dissociation, gas production, formation cooling, and long-term production potential as well as help calibrate reservoir simulation models.

291

Vegetable oil fuel  

SciTech Connect (OSTI)

In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

Bartholomew, D.

1981-04-01T23:59:59.000Z

292

US oil consumption, oil prices, and the macroeconomy  

Science Journals Connector (OSTI)

Since the oil price shock of 1973–74, researchers have waged ... national income. Studies examining the relationship between oil prices, oil consumption, and real output have produced remarkably ... to dramatical...

Ali F. Darrat; Otis W. Gilley; Don J. Meyer

1996-01-01T23:59:59.000Z

293

Lower oil prices also cutting winter heating oil and propane...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in...

294

Effects of Oil and Oil Dispersants on the Marine Environment  

Science Journals Connector (OSTI)

13 April 1971 research-article Effects of Oil and Oil Dispersants on the Marine Environment R. G. J. Shelton In the context of marine pollution, the term 'oil' can cover a very wide range of substances and usually...

1971-01-01T23:59:59.000Z

295

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Fuel Future Oil Demands Enhanced Oil Recovery to Fuel Future Oil Demands Trevor Kirsten 2013.10.02 I'm Trevor Kirsten and I lead a team of GE researchers that investigate a...

296

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

297

Waste oil reduction: GKN  

SciTech Connect (OSTI)

This report details the steps required to establish a waste oil management program. Such a program can reduce operational costs, cut wastewater treatment costs and produce a better quality wastewater effluent through such means as: reducing the volume of oils used; segregating oils at the source of generation for recovery and reuse; and reducing the quality of oily wastewater generated. It discusses the metal-working fluid recovery options available for such a program, namely settling, filtration, hydrocyclone, and centrifugation. Included are source lists for vendors of oil skimmer equipment and coolant recovery systems.

Hunt, G.

1995-08-01T23:59:59.000Z

298

Understanding Crude Oil Prices  

E-Print Network [OSTI]

disruptions, and the peak in U.S. oil production account foroil increased 81.1% (logarithmically) between January 1979 and the peak

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

299

What substitutes for oil?  

Science Journals Connector (OSTI)

... bagasse, ethyl alcohol, vegetable oils, methane and hydrogen; as well as hydro and nuclear power generation, conservation methods, and solar, wind and tidal energy.

David Spurgeon

1978-06-29T23:59:59.000Z

300

Crude Oil Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 2002 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

302

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 2000 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

303

Crude Oil Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

304

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

305

NETL: Oil & Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

306

Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990  

SciTech Connect (OSTI)

The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

1991-05-01T23:59:59.000Z

307

Technology experience and economics of oil shale mining in Estonia  

SciTech Connect (OSTI)

The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1995-11-01T23:59:59.000Z

308

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Office of Environmental Management (EM)

Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

309

Lead Corrosion and Oil Oxidation  

Science Journals Connector (OSTI)

... tests the horn was AISI 304, the balls were variously high purity Al, Cu, SAE 52100 steel, and Pb. The oil was a refined paraffinic mineral oil into which ... oil Bearing

J. K. APPELDOORN; P. PACOR; V. RIDDEI

1972-10-20T23:59:59.000Z

310

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

311

Peak Oil profiles through the lens of a general equilibrium assessment  

Science Journals Connector (OSTI)

This paper disentangles the interactions between oil production profiles, the dynamics of oil prices and growth trends. We do so through a general equilibrium model in which Peak Oil endogenously emerges from the interplay between the geological, technical, macroeconomic and geopolitical determinants of supply and demand under non-perfect expectations. We analyze the macroeconomic effects of oil production profiles and demonstrate that Peak Oil dates that differ only slightly may lead to very different time profiles of oil prices, exportation flows and economic activity. We investigate Middle-East's trade-off between different pricing trajectories in function of two alternative objectives (maximisation of oil revenues or households’ welfare) and assess its impact on OECD growth trajectories. A sensitivity analysis highlights the respective roles of the amount of resources, inertia on the deployment of non conventional oil and short-term oil price dynamics on Peak Oil dates and long-term oil prices. It also examines the effects of these assumptions on OECD growth and Middle-East strategic tradeoffs.

Henri Waisman; Julie Rozenberg; Olivier Sassi; Jean-Charles Hourcade

2012-01-01T23:59:59.000Z

312

DOE to Unveil New Online Database of Oil and Natural Gas Research Results |  

Broader source: Energy.gov (indexed) [DOE]

DOE to Unveil New Online Database of Oil and Natural Gas Research DOE to Unveil New Online Database of Oil and Natural Gas Research Results DOE to Unveil New Online Database of Oil and Natural Gas Research Results October 2, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy plans to introduce a new, user-friendly online repository of oil and natural gas research results at the Society of Petroleum Engineers' Annual Technical Conference and Exhibition, to be held in New Orleans, La., October 4-7, 2009. By providing easy access to the results of nearly four decades of research supported by the Office of Fossil Energy's Oil and Natural Gas Program, the knowledge management database could ultimately help boost recovery of the nation's oil and gas resources. The database largely evolved from a recommendation made by the Federal

313

Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S.

1996-08-05T23:59:59.000Z

314

DOE Technical Standards Program: Procedures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy Technical Standards Procedures Department of Energy Technical Standards Procedures Office of Nuclear Safety The following procedures should be used to write, revise, or maintain a DOE technical standard. They are also used to convert a DOE technical standard to a non-government standard or to form a topical committee. Table of Contents (TSPP-00) Program Overview and Responsibilities (TSPP-01) Initiating DOE Technical Standards (TSPP-02) Use of Voluntary Consensus Standards and Interaction with Standards Development Organizations (TSPP-03) Developing DOE Technical Standard (TSPP-04) Coordination of Technical Standards (TSPP-05) - Draft In Concurrence Resolution - TSPP-06-2009 is the currently approved TSPP that addresses coordination of DOE Technical Standards. Approving and Issuing DOE Technical Standards (TSPP-06)

315

Federal Technical Capability Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Technical Capability Federal Technical Capability Program (FTCP) Home About the FTCP FTCP Topics FTCP Meetings Performance Indicator Reports Guiding Documents Qualifying Official Training Approaches FTCP Plans, Reports & Issue Papers Workforce Analysis & Staffing Site Specific Information Nuclear Executive Leadership Training General Information 2004-1 FTCP Commitments FTCP Correspondence Site Map Contact Us Quick Reference Departmental Representative to the DNFSB Facility Representative Safety System Oversight DOE Integrated Safety Management National Training Center DOE Directives Program DOE Technical Standards Program DOE Phone Book HSS Logo FTCP FTCP Topics DOE Strategic Human Capital Plan (FY 2006 - 2011) New Directions in Learning: Building a DOE University System May 4, 2007, the Deputy Secretary memorandum designating Karen Boardman the FTCP Chairperson.

316

Derived Concentration Technical Standard  

Broader source: Energy.gov (indexed) [DOE]

196-2011 196-2011 April 2011 DOE STANDARD DERIVED CONCENTRATION TECHNICAL STANDARD U.S. Department of Energy AREA ENVR Washington, D.C. 20585 Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/standard/standard.html DOE-STD-1196-2011 ACKNOWLEDGEMENTS This Derived Concentration Technical Standard was a collaborative effort sponsored by the DOE Office of Environmental Policy and Assistance, with support from Department subject matter experts (SMEs) in the field of radiation protection. This standard, which complements DOE Order (O) 458.1, Radiation Protection of the Public and the Environment, was developed taking

317

CONGRESS BLASTS OIL INDUSTRY  

Science Journals Connector (OSTI)

IN PACKED HEARINGS last week before angry members of Congress, the heads of BP, ExxonMobil, Chevron, ConocoPhillips, and Shell Oil defended their industry in light of the April 20 BP oil rig explosion in the Gulf of Mexico, which has led to the worst ...

JEFF JOHNSON

2010-06-21T23:59:59.000Z

318

Oil Quantity : The histori  

E-Print Network [OSTI]

model for Prudhoe Bay. Figure 11: Historical Prudhoe Bay oil production data, modeled economically Production (million bbl per Month) Historical Production Best Fit (Hist. Tax w/ELF, Ref. P) High Price 120 140 160 19 Oil Quantity Con Wel N E A N N ng Results e Bay : The histori Bay over tim : Prudhoe Ba

Lin, C.-Y. Cynthia

319

The Geopolitics of Oil  

Science Journals Connector (OSTI)

...reduce their production by a similar...barrels ofoil a day. Although the...barrels of oil per day. It is likely...Virtually all the OPEC producers, particularly...their oil. In 1973, 90 percent...increase indigenous production, and ac-celerate...

1980-12-19T23:59:59.000Z

320

Balancing oil and environment... responsibly.  

SciTech Connect (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .and Productivity in Venezuela and Mexico . . . . . . . . OilEllner, ”Organized Labor in Venezuela 1958-1991: Behavior

CAKIR, NIDA

2013-01-01T23:59:59.000Z

322

Chinaâs Oil Diplomacy with Russia.  

E-Print Network [OSTI]

??In Chinaâs view, it is necessary to get crude oil and oil pipeline. Under Russia and China strategic partnership, China tries to obtain âlong term… (more)

Chao, Jiun-chuan

2011-01-01T23:59:59.000Z

323

Peak oil: diverging discursive pipelines.  

E-Print Network [OSTI]

??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as… (more)

Doctor, Jeff

2012-01-01T23:59:59.000Z

324

oil | OpenEI  

Open Energy Info (EERE)

oil oil Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA end-of-year reserves gas oil Data application/vnd.ms-excel icon AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions- Reference Case (xls, 58.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

325

Chapter 5 - Crude Oil  

Science Journals Connector (OSTI)

Abstract Oil has been the number one source of energy in the world since the middle of the twentieth century. The world is very dependent on petroleum for transportation fuels, petrochemicals and asphalt. But ever increasing demand has caused the price of oil to spike in recent years, and only the world economic crisis has been able to temper demand and bring the price down to more reasonable levels. However, the demand and price are likely to shoot up again when the economy recovers. At the same time, the peak oil theory of M. King Hubbert predicts that world oil production is likely to peak soon. This prediction raises questions about what source of energy will come to the fore when oil is not able to keep up.

Brian F. Towler

2014-01-01T23:59:59.000Z

326

Approved DOE Technical Standards  

Broader source: Energy.gov (indexed) [DOE]

approved-doe-technical-standards Forrestal Building approved-doe-technical-standards Forrestal Building 1000 Independence Avenue, SW Washington, DC 205851.800.dial.DOE en DOE-STD-1150-2013 http://energy.gov/hss/downloads/doe-std-1150-2013 DOE-STD-1150-2013

327

DOE Technical Assistance Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrieving Customer Usage Data from Utilities Retrieving Customer Usage Data from Utilities The Parker Ranch installation in Hawaii Collection of Customer Data for Better Buildings Guidelines For Retrieving Customer Usage Data from Utility Keith Freischlag and Curtis Framel Southwest Energy Efficiency Project DOE Technical Assistance Program Team 4 - Program & Project Development & Implementation December 16, 2010 Guidelines for Retrieving Customer Usage Data from Utilities Webinar Overview * Technical Assistance Program (TAP) * Discussion of Identifying Utility Stakeholders * Discussion of Procuring Customer Usage Data * Suggestions to Streamline Data Collection Processes * Overview of Data Reporting Requirements * Q&A Guidelines for Retrieving Customer Usage Data from Utilities * Questions and discussion after presentation

328

Technical Assistance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance Technical Assistance Technical Assistance The Technical Assistance program is managed through the Center for Sustainable Soil and Groundwater Solutions at SRNL. The Technical Assistance program provides teams of nationally recognized experts from across the complex to support both DOE's smaller sites, such as Paducah, Portsmouth, Pinellas, Ashtabula, Fernald, Mound and Kansas City Plant, and larger sites such as Oak Ridge, Los Alamos, Lawrence Livermore and Savannah River. Solutions that reduce technical risk and uncertainty Focus on science and engineering issues and strategic implementation of remedial systems Independent reviews facilitate regulatory and stakeholder acceptance of solutions. Contacts Karen Skubal karen.skubal@em.doe.gov (301) 903-6524 Justin Marble

329

Technical Report Confirms Reliability of Yucca Mountain Technical Work |  

Broader source: Energy.gov (indexed) [DOE]

Technical Report Confirms Reliability of Yucca Mountain Technical Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis developed by the USGS has a strong conceptual foundation and is corroborated by independently-derived scientific conclusions, and provides a solid underpinning for the 2002 site recommendation," said OCRWM's Acting Director Paul Golan. "We are committed to opening Yucca Mountain based only on sound science. The work

330

CHP Technical Assistance Partnerships (CHP TAPs) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat & Power Deployment CHP Technical Assistance Partnerships (CHP TAPs) CHP Technical Assistance Partnerships (CHP TAPs) DOE's CHP Technical Assistance Partnerships...

331

Technical Standards, Program Project Justification Statement...  

Office of Environmental Management (EM)

More Documents & Publications DOE-TSPP-2-2013, Initiating DOE Technical Standards DOE-TSPP-7-2013, Maintaining DOE Technical Standards Technical Standards Newsletter - March 2014...

332

GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN  

SciTech Connect (OSTI)

Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated. Data from over 1,700 Illinois waterflood units and waterflood areas have been entered into an Access{reg_sign} database. The waterflood area data has also been assimilated into the ISGS Oracle database for mapping and dissemination on the ArcIMS website. Formation depths for the Beech Creek Limestone, Ste. Genevieve Limestone and New Albany Shale in all of the oil producing region of Illinois have been calculated and entered into a digital database. Digital contoured structure maps have been constructed, edited and added to the ILoil website as map layers. This technology/methodology addresses the long-standing constraints related to information access and data management in Illinois by significantly simplifying the laborious process that industry presently must use to identify underdeveloped pay zones in Illinois.

Beverly Seyler; John Grube

2004-12-10T23:59:59.000Z

333

Technical Information Network  

Broader source: Energy.gov [DOE]

DOE's Technical Information Network for Solid-State Lighting (TINSSL) increases awareness of SSL technology, performance, and appropriate applications. TINSSL members include representatives from regional energy efficiency organizations and program sponsors, utilities, state and local energy offices, lighting trade groups, and other stakeholders.

334

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network [OSTI]

Kuwait, Middle East, oil and gas fields, oil refinery, oil waste, oil well,Equipment Kuwait Oil Co. 1991. Mideast well fire, oil spillKuwait, Persian Gulf, Saudia Arabia, Oil spill, cleanup, oil spills, crude, oil spill incidents, oil spills-pipeline, warfare, oil skimmers, oil wells,

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

335

Outer Continental Shelf oil and gas activities in the Gulf of Alaska (including Lower Cook Inlt) and their onshore impacts: a summary report, September 1980  

SciTech Connect (OSTI)

The search for oil and gas on the Outer Continental Shelf (OCS) in the Gulf of Alaska subregion of the Alaska leasing region began in 1967, when geophysical surveys of the area were initiated. Two lease sales have been held in the subregion. Lease Sale 39, for the Northern Gulf of Alaska, was held on April 13, 1976, and resulted in the leasing of 76 tracts. Lease Sale CI, for Lower Cook Inlet, was held on October 27, 1977, and resulted in the leasing of 87 tracts. Exploratory drilling on the tracts leased in Sale 39 began in September 1976, and exploratory drilling on tracts leased in Sale CI began in July 1978. Commercial amounts of hydrocarbons have not been found in any of the wells drilled in either sale area. Seventy-four of the leases issued in the Northern Gulf of Alaska have been relinquished. As of June 1980, exploratory drilling in both areas had ceased, and none was planned for the near future. The next lease sale in the Gulf of Alaska, Sale 55, is scheduled for October 1980. Lease Sale 60 (Lower Cook Inlet and Shelikof Strait) is scheduled for September 1981, and Lease Sale 61 (OCS off Kodiak Island) is scheduled for April 1983. Sale 60 will be coordinated with a State lease sale in adjacent State-owned waters. The most recent estimates (June 1980) by the US Geological Survey of risked, economically recoverable resources for the 2 tracts currently under lease in the Northern Gulf of Alaska are negligible. For the 87 tracts currently under lease in Lower Cook Inlet, the USGS has produced risked, economically recoverable resource estimates of 35 million barrels of oil and 26 billion cubic feet of gas. These resource estimates for the leased tracts in both areas are short of commercially producible amounts. Onshore impacts from OCS exploration have been minimal. Two communities - Yakutat and Seward - served as support bases for the Northern Gulf of Alaska.

Jackson, J.B.; Dorrier, R.T.

1980-01-01T23:59:59.000Z

336

Technical Potential for Local Distributed  

E-Print Network [OSTI]

the impact of high penetrations of solar PV on wholesale power markets (energy and capacity Technical Potential for Local Distributed Photovoltaics in California Preliminary.391.5100 www.ethree.com Technical Potential for Local Distributed Photovoltaics in California Preliminary

337

Electrical and Electronics Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

33This 33This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). Electrical and Electronics Technical Team Roadmap June 2013 HV Battery 120/220 V AC On-Board Battery Charger Bi-directional DC/DC Converter Electric Motor Inverter DC-DC

338

RUNNING OUT OF AND INTO OIL: ANALYZING GLOBAL OIL DEPLETION AND TRANSITION THROUGH 2050  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 RUNNING OUT OF AND INTO OIL: ANALYZING GLOBAL OIL DEPLETION AND TRANSITION THROUGH 2050 October 2003 David L. Greene Corporate Fellow Janet L. Hopson Research Assistant Jia Li Senior Research Technician DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

339

Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report  

SciTech Connect (OSTI)

Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

340

Maintenance of DOE Technical Standards  

Broader source: Energy.gov (indexed) [DOE]

TECHNICAL STANDARDS TECHNICAL STANDARDS PROGRAM PROCEDURES DOE-TSPP-9 Revision: 5 Date: August 1, 2000 MAINTENANCE OF DOE TECHNICAL STANDARDS U.S. Department of Energy Office of Nuclear Safety Policy and Standards Washington, D.C. 20585 DOE-TSPP-9 Maintenance Revision: 5 Date: August 1, 2000 DOE Technical Standards Program i CONTENTS Paragraph Page 1. SCOPE........................................................................................................................................... 1 1.1 Purpose ................................................................................................................... 1 1.2 Applicability.............................................................................................................. 1

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

OpenEI - oil  

Open Energy Info (EERE)

/0 en AEO2011: Oil and Gas /0 en AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions http://en.openei.org/datasets/node/805 This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. 

License
Type of License: 

342

Expansion of the commercial output of Estonian oil shale mining and processing  

SciTech Connect (OSTI)

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

343

Achieving sustainable urban transport mobility in post peak oil era  

Science Journals Connector (OSTI)

Peak oil is the term used to describe the point at which global oil production will peak and thereafter start to decline. Recognising that transport uses a significant portion of global energy, the shortage of fossil fuel in post peak oil era will pose a global challenge in the transport sector. The paper presents an assessment of international research to illustrate the possible time frame of peak oil. It investigates the key implications of the oil shortage that threaten to render the urban transport system of Australia ineffective. Synthesis of documented research evidence suggests three major implications in the urban transport sector: (1) a reduction of mobility for individuals, (2) an increase of transport disadvantage, and (3) a disruption of urban freight movement. In addition, the paper explores strategies to cope with the devastating effects of the shortage of the fossil fuel in the post peak oil era. A number of strategies to achieve sustainable mobility in the future urban transport system are presented. These strategies are summarised into three main themes: (1) a mode shift to alternate transport modes, (2) an integration of land use and transport planning, and (3) a global technical effort for alternate fuels and vehicles. It is expected that a concerted global effort in this regard can have a far-reaching effect in achieving sustainability in urban transport mobility.

Md Aftabuzzaman; Ehsan Mazloumi

2011-01-01T23:59:59.000Z

344

HS_Oil_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

Oil Oil Fossil Energy Study Guide: Oil Pet roleum-or cr ude oil-is a fossil fuel that is found in large quantities beneath the Earth's sur face and is often used as a fuel or raw material in the chemical indust r y. It is a smelly, yellow-to-black liquid and is usually found in underg round areas called reser voirs. If you could look down an oil well and see oil where Nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-an "oil reservoir"-looks very much like any other rock formation. Oil exists in this underground formation as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th

345

MS_Oil_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

LOOKING DOWN AN OIL WELL LOOKING DOWN AN OIL WELL Ever wonder what oil looks like underground, down deep, hundreds or thousands of feet below the surface, buried under millions of tons of rock and dirt? If you could look down an oil well and see oil where nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-called an "oil reservoir" -looks very much like any other rock formation. It looks a lot like...well, rock. Oil exists underground as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th e "pores" and the oil droplets can be seen only through a microscope. Th e droplets cling to the rock, like drops of water cling

346

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

347

Oil Price Volatility  

U.S. Energy Information Administration (EIA) Indexed Site

Speculation and Oil Price Volatility Speculation and Oil Price Volatility Robert J. Weiner Robert J. Weiner Professor of International Business, Public Policy & Professor of International Business, Public Policy & Public Administration, and International Affairs Public Administration, and International Affairs George Washington University; George Washington University; Membre Associ Membre Associ é é , GREEN, Universit , GREEN, Universit é é Laval Laval EIA Annual Conference Washington Washington 7 April 2009 7 April 2009 1 FACTORS DRIVNG OIL PRICE VOLATILITY FACTORS DRIVNG OIL PRICE VOLATILITY ► ► Market fundamentals Market fundamentals . . Fluctuations in supply, Fluctuations in supply, demand, and market power demand, and market power Some fundamentals related to expectations of Some fundamentals related to expectations of

348

Winter Crude Oil and  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: While the relatively low stock forecast (although not as low as last winter) adds some extra pressure to prices, the price of crude oil could be the major factor affecting heating oil prices this winter. The current EIA forecast shows residential prices averaging $1.29 this winter, assuming no volatility. The average retail price is about 7 cents less than last winter, but last winter included the price spike in November 2000, December 2000, and January 2001. Underlying crude oil prices are currently expected to be at or below those seen last winter. WTI averaged over $30 per barrel last winter, and is currently forecast to average about $27.50 per barrel this winter. As those of you who watch the markets know, there is tremendous uncertainty in the amount of crude oil supply that will be available this winter. Less

349

Oil Market Assessment  

Gasoline and Diesel Fuel Update (EIA)

Logo Oil Market Assessment - September Logo Oil Market Assessment - September 12, 2001 EIA Home Page Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon. Rumors of scattered closures of U.S. refineries, pipelines, and terminals were reported, and Louisiana Offshore Oil Port operations were partially suspended. While the NYMEX and New York Harbor were temporarily closed, operations are expected to resume soon. Most, if not all petroleum industry infrastructure is expected to resume normal operations today or in the very near term. Prices at all levels (where markets were open) posted increases yesterday, but many prices fell today, as initial reactions

350

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

351

India: Becoming well oiled  

Science Journals Connector (OSTI)

... been stirred into vigorous action and its redoubled efforts to find more oil onshore and offshore are beginning to yield results. From onshore fields in Assam and Gujarat, production this ... figure will go up to 11 million tonnes.

Correspondent

1976-04-01T23:59:59.000Z

352

Production of Shale Oil  

E-Print Network [OSTI]

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

353

Steadying of oil prices  

Science Journals Connector (OSTI)

Oil prices have fallen below the 30 dollar mark ... in the lower half of OPEC’s target price band. Will OPEC manage to maintain high prices and revenues by restricting production?

Klaus Matthies

354

Imbibition assisted oil recovery  

E-Print Network [OSTI]

analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

Pashayev, Orkhan H.

2004-11-15T23:59:59.000Z

355

Sound Oil Company  

Broader source: Energy.gov (indexed) [DOE]

Sound Oil Company Sound Oil Company file:///C|/Documents%20and%20Settings/blackard/Desktop/EIA/LEE0152.HTM[11/29/2012 2:30:44 PM] DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Application for Exception Name of Petitioner: Sound Oil Company Date of Filing: August 16, 1994 Case Number: LEE-0152 On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Sound requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied.

356

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

357

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

358

Federal Technical Capability Program - Quarterly Performance Indicator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quarterly Performance Indicator Reports Quarterly Performance Indicator Reports 2013 Quarterly Report on Federal Technical Capability August 16, 2013 Quarterly Report on Federal Technical Capability June 5, 2013 Quarterly Report on Federal Technical Capability February 20, 2013 2012 Quarterly Report on Federal Technical Capability November 20, 2012 Quarterly Report on Federal Technical Capability August 8, 2012 Quarterly Report on Federal Technical Capability May 30, 2012 Quarterly Report on Federal Technical Capability March 6, 2012 2011 Quarterly Report on Federal Technical Capability November 10, 2011 Quarterly Report on Federal Technical Capability August 24, 2011 Quarterly Report on Federal Technical Capability May 18, 2011 Quarterly Report on Federal Technical Capability February 23, 2011

359

Oil shale research in China  

SciTech Connect (OSTI)

There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

1989-01-01T23:59:59.000Z

360

Energy Department Announces Technical Assistance Opportunity...  

Energy Savers [EERE]

Announces Technical Assistance Opportunity for Tribal Clean Energy Deployment Energy Department Announces Technical Assistance Opportunity for Tribal Clean Energy Deployment...

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biocatalysis in Oil Refining  

SciTech Connect (OSTI)

Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

Borole, Abhijeet P [ORNL; Ramirez-Corredores, M. M. [BP Global Fuels Technology

2007-01-01T23:59:59.000Z

362

Oil spill response resources  

E-Print Network [OSTI]

from Marathon Oil Company for their encouragement and support. Last, but not least, I would like to thank Lynette Schlandt for her help during my stay at this University. vu TABLE OF CONTENTS Page ABSTRACT. . . . . nl DEDICATION... tool for control. The State of Texas passed and implemented OSPRA (Oil Spill Prevention and Response Act) of 1991. The most significant requirement for both these laws was the need for a Facility Response Plan for the companies. This would help a...

Muthukrishnan, Shankar

2012-06-07T23:59:59.000Z

363

Projects Selected to Boost Unconventional Oil and Gas Resources |  

Broader source: Energy.gov (indexed) [DOE]

Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next

364

Development of a shallow heavy-oil deposit in Missouri  

SciTech Connect (OSTI)

Shallow deposits of heavy-oil in western Missouri have become more attractive to exploit recently. Aside from problems of producing the low-gravity, viscous oil, part of the difficulty in successfully developing these deposits has been the geologic nature of the reservoir sandstone. Recognition of the origin of the reservoir sandstone in Eastburn field as a series of point bars in an upper deltaic, fluvial distributary environment has affected the selection of drilling locations, drilling and coring procedures, estimation of reserves, and location of producing facilities. Recognition of the uneven distribution of permeability, the intergranular type of porosity, and the presence of potentially troublesome clays and iron-bearing minerals in this sandstone influenced the methods selected for evaluation, completion, and stimulation of producing wells. This teamwork approach between geologists and engineers is important in maximizing the chances for success of technically difficult enhanced oil recovery projects.

Ebanks, J.W.J.; Weber, J.F.

1982-09-27T23:59:59.000Z

365

LCA of a spent lube oil Re-refining process  

Science Journals Connector (OSTI)

Although re-refining of spent lubricating oils (used oils) has been practiced with varying technical and commercial success for over the past 50 years, a sustainable processing technology has yet to become widely accepted. Poor on-stream efficiency, inconsistent product quality, and careless management of feedstock contaminants and byproducts have often resulted in widespread environmental problems and poor economics. Environmentally-conscious design of processes and products is increasingly viewed as an integral strategy in the sustainable development of new refining and chemical processes. Life cycle assessment is becoming the preferred methodology for comparing the environmental impacts of competing processes. A life cycle analyses of a promising new re-refining technology, the HyLubeTM process, has been undertaken to quantify the intrinsic benefits of HyLube re-refining over the current practice of recovering used oils for fuel value

Tom N. Kalnes; David R. Shonnard; Andreas Schuppel

2006-01-01T23:59:59.000Z

366

Technical Assistance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance Technical Assistance Technical Assistance The DOE Office of Indian Energy and the Office of Energy Efficiency and Renewable Energy Tribal Energy Program provide federally recognized Indian Tribes, bands, nations, tribal energy resource development organizations, and other organized groups and communities-including Alaska Native villages or regional and village corporations-with technical assistance designed to advance renewable energy and energy efficiency projects. Technical assistance is typically limited to 40 hours and may include, but is not limited to, the following priority areas: Strategic energy planning Grantee support Transmission/interconnection Project development Finance Lease agreements DOE's National Renewable Energy Laboratory and Sandia National

367

Technical Highlights - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Highlights for November 2013 Technical Highlights for November 2013 The Oak Ridge National Laboratory (ORNL) cited in Article Published in Inside Science ORNL's recent achievement in ionic liquid (IL) additives for engine lubrication is featured in an article "Molten Salts Could Improve Fuel Economy," published in Inside Science, http://www.insidescience.org/content/molten-salts-could-improve-fuel-economy/1492. The article is syndicated to subscribers at FOXnews.com, NBCnews.com, LiveScience, and others. Dual-Fuel Combustion with Additives Capability A new capability was added to the multi-cylinder advanced combustion research engine at ORNL allowing dual fuel combustion with gasoline and gasoline doped with additives to increase the reactivity. The new configuration allows precise control over fuel temperature to allow for

368

Spring 2009 Technical Workshop  

Broader source: Energy.gov (indexed) [DOE]

Spring 2009 Technical Workshop Spring 2009 Technical Workshop in Support of U.S. Department of Energy 2009 Congestion Study Webcast, transcript, and presentations available at: http://www.congestion09.anl.gov/ Crowne Plaza Chicago O'Hare Hotel & Conference Center March 25-26, 2009 Agenda Day 1 - Wednesday, March 25, 2009 9:00 a.m. Registration Check-In & Continental Breakfast 10:00 a.m. DOE Welcome/Purpose of Workshop David Meyer, Senior Policy Advisor, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy (DOE-OE) 10:15 a.m. Session 1 - Historic Congestion in the Western Interconnection The Western Electric Coordinating Council Transmission Expansion Planning and Policy Committee has conducted an analysis of historic congestion in the Western

369

Active DOE Technical Standards  

Broader source: Energy.gov (indexed) [DOE]

Active DOE Technical Standards Active DOE Technical Standards Document Number Document Title Responsible SLM DOE-HDBK-1001-96 DOE-HDBK-1002-96 DOE-HDBK-1003-96 DOE-HDBK-1010-92 DOE-HDBK-1011/1-92 DOE-HDBK-1011/2-92 DOE-HDBK-1011/3-92 DOE-HDBK-1011/4-92 DOE-HDBK-1012/1-92 DOE-HDBK-1012/2-92 DOE-HDBK-1012/3-92 DOE-HDBK-1013/1-92 DOE-HDBK-1013/2-92 DOE-HDBK-1014/1-92 DOE-HDBK-1014/2-92 DOE-HDBK-1015/1-93

370

WHOLE FROG TECHNICAL REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WHOLE FROG TECHNICAL REPORT WHOLE FROG TECHNICAL REPORT WING NIP, CRAIG LOGAN Imaging and Distributed Computing Group Information and Computing Sciences Division Lawrence Berkeley Laboratory Berkeley, CA 94720 Publication number: LBL-35331 Credits CONTENT INTRODUCTION MRI DATA PHOTOGRAPH DATA (CRYOTOME) SEGMENTATION VISUALIZATION IN 3D PROBLEMS ENCOUNTERED Photographing Lighting Misalignment Digitizing Lighting Segmentation Inconsistent Data Higher Resolution Desire IMPROVEMENT INTRODUCTION The goal of the Whole Frog Project is to be able to represent the anatomy of a frog in a computer in 3D space in such a way that a high school student will find it useful in learning physiology, hopefully developing a sense of interest in using computers at the same time. MRI DATA The original plan is to make use of Magnetic Resonance Imaging (MRI) to

371

Final Technical Report  

SciTech Connect (OSTI)

The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

Maxwell, Mike, J., P.E.

2012-08-30T23:59:59.000Z

372

Honda Transmission Technical Center  

High Performance Buildings Database

Russells Point, OH The Honda Transmission Technical Center is located on the Honda of America Manufacturing Plant facility site in Russells Point, Ohio. This facility is used for product engineering and market quality testing and analysis of automatic transmissions. The building contains a large workshop area for ten cars, a future dynamometer, two laboratories, an open office area, three conference rooms, a break room, restrooms, and related support areas.

373

Technical Surveillance Countermeasures Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe policies, responsibilities and authorities to establish Department of Energy (DOE) Technical Surveillance Countermeasures (TSCM) Program. This order implements the DOE TSCM Procedural Guide, DOE TSCM Operations Manual, DOE TSCM Report Writing Guide and Threat Assessment Scheduling System (TASS) which contain classified policies and procedures concerning the DOE TSCM Program. Cancels DOE 5636.3A. Canceled by DOE O 471.2 dated 9-28-95.

1993-06-18T23:59:59.000Z

374

Technical approach document  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law 95-604 (PL95-604), grants the Secretary of Energy the authority and responsibility to perform such actions as are necessary to minimize radiation health hazards and other environmental hazards caused by inactive uranium mill sites. This Technical Approach Document (TAD) describes the general technical approaches and design criteria adopted by the US Department of Energy (DOE) in order to implement remedial action plans (RAPS) and final designs that comply with EPA standards. It does not address the technical approaches necessary for aquifer restoration at processing sites; a guidance document, currently in preparation, will describe aquifer restoration concerns and technical protocols. This document is a second revision to the original document issued in May 1986; the revision has been made in response to changes to the groundwater standards of 40 CFR 192, Subparts A--C, proposed by EPA as draft standards. New sections were added to define the design approaches and designs necessary to comply with the groundwater standards. These new sections are in addition to changes made throughout the document to reflect current procedures, especially in cover design, water resources protection, and alternate site selection; only minor revisions were made to some of the sections. Sections 3.0 is a new section defining the approach taken in the design of disposal cells; Section 4.0 has been revised to include design of vegetated covers; Section 8.0 discusses design approaches necessary for compliance with the groundwater standards; and Section 9.0 is a new section dealing with nonradiological hazardous constituents. 203 refs., 18 figs., 26 tabs.

Not Available

1989-12-01T23:59:59.000Z

375

Oil/gas collector/separator for underwater oil leaks  

DOE Patents [OSTI]

An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, Carl D. (Livermore, CA)

1993-01-01T23:59:59.000Z

376

Oil from Coal*  

Science Journals Connector (OSTI)

... as most reprehensible the present arrangements by which Imperial Chemical Industries Ltd., enjoying a rebate of over £1,000,000 a year from taxation, is required to disclose technical ...

C. H. LANDER

1938-09-10T23:59:59.000Z

377

Impact of the Presence of Carbon Monoxide and Carbon Dioxide on Gas Oil Hydrotreatment: Investigation on Liquids from Biomass Cotreatment with Petroleum Cuts  

Science Journals Connector (OSTI)

Impact of the Presence of Carbon Monoxide and Carbon Dioxide on Gas Oil Hydrotreatment: Investigation on Liquids from Biomass Cotreatment with Petroleum Cuts ... A potential way of utilizing these bioliquids as fuels could be the direct hydrotreatment(6) or the cohydrotreatment with petroleum fractions,(7) such as atmospheric gas oils, to achieve the technical and environmental fuel standards, especially in terms of sulfur content. ...

Ana Pinheiro; Nathalie Dupassieux; Damien Hudebine; Christophe Geantet

2011-01-18T23:59:59.000Z

378

Optimising the Use of Spent Oil Shale.  

E-Print Network [OSTI]

??Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and high quality, and could… (more)

FOSTER, HELEN,JANE

2014-01-01T23:59:59.000Z

379

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

Fox, J.P.

2010-01-01T23:59:59.000Z

380

Enhanced Oil Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between...

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Oil Prices and Long-Run Risk.  

E-Print Network [OSTI]

??I show that relative levels of aggregate consumption and personal oil consumption provide anexcellent proxy for oil prices, and that high oil prices predict low… (more)

READY, ROBERT

2011-01-01T23:59:59.000Z

382

heavy_oil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy Oil Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Heavy oil is a vast U.S. oil resource that is...

383

Deepwater Oil & Gas Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

384

Recoverable Robust Knapsacks: the Discrete Scenario Case  

E-Print Network [OSTI]

evaluate the effectiveness of our new class of valid inequalities. keywords: ..... The decision if the total profit of a feasible first stage solution X is greater or equal

kutschka

385

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum

386

Economic effects of peak oil  

Science Journals Connector (OSTI)

Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market.

Christian Lutz; Ulrike Lehr; Kirsten S. Wiebe

2012-01-01T23:59:59.000Z

387

Microsoft Word - Oil Shale Research in the United States 2011_Draft2.doc  

Broader source: Energy.gov (indexed) [DOE]

Oil Shale Research in the United States Oil Shale Research in the United States ______________________________________________________________________________ Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies Prepared by INTEK, Inc. For the U.S. Department of Energy * Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Third Edition: September 2011 3 rd Edition Acknowledgements This report was prepared by INTEK, Inc. for the Department of Energy (DOE), Office of Naval Petroleum and Oil Shale Reserves (DOE/NPOSR) as a part of the AOC Petroleum Support Services, LLC (AOC-PSS) Contract Number DE-FE0000175 (Task 30). Mr. James C. Killen of DOE served as Technical Monitor and Mr. Khosrow Biglarbigi of INTEK, Inc. served as the Project Manager.

388

Weatherization and Intergovernmental Program: Technical Assistance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Assistance Technical Assistance Site Map Printable Version Share this resource Send a link to Weatherization and Intergovernmental Program: Technical Assistance to someone by E-mail Share Weatherization and Intergovernmental Program: Technical Assistance on Facebook Tweet about Weatherization and Intergovernmental Program: Technical Assistance on Twitter Bookmark Weatherization and Intergovernmental Program: Technical Assistance on Google Bookmark Weatherization and Intergovernmental Program: Technical Assistance on Delicious Rank Weatherization and Intergovernmental Program: Technical Assistance on Digg Find More places to share Weatherization and Intergovernmental Program: Technical Assistance on AddThis.com... Quick Links Solution Center Weatherization Assistance Program Technical Assistance Center

389

Abandoned oil fields in Oklahoma  

SciTech Connect (OSTI)

Data are presented for approximately 165 abandoned oil fields in Oklahoma that have produced 10,000 or more barrels of oil prior to abandonment. The following information is provided for each field: county; DOE field code; field name; AAPG geologic province code; discovery date of field; year of last production, if known; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; and cumulative production of gas from fields. (ATT)

Chism, J.

1983-08-01T23:59:59.000Z

390

Used oil re-refining  

SciTech Connect (OSTI)

Used oils, especially used lubricating oils which are normally considered waste and are discarded or burned, are reclaimed for reuse by a re-refining procedure involving the steps of: heat soaking the used oil; distilling the heat soaked oil; passing the distillate through a guard bed of activated material; hydrotreating the guard bed treated distillate under standard hydrotreating conditions. If the used oil to be re-refined contains a quantity of water and/or fuel fraction which the practioner considers sufficiently large to be detrimental, the used oil may be subjected to a dewatering/defueling step prior to being heat soaked.

Reid, L. E.; Ryan, D. G.; Yao, K. C.

1985-04-23T23:59:59.000Z

391

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

392

Enhanced Oil Recovery and Other Oil Resources projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources CO2 EOR | Other EOR & Oil Resources | Environmental | Completed Oil Projects Project Number Project Name Primary Performer DE-FE0013723 Development of Nanoparticle-Stabilized Foams To Improve Performance of Water-less Hydraulic Fracturing The University of Texas at Austin DE-FE0010799 Small Molecular Associative Carbon Dioxide (CO2) Thickeners for Improved Mobility Control University of Pittsburgh DE-FE0006011 Development of Real Time Semi-autonomous Geophysical Data Acquisition and Processing System to Monitor Flood Performance White River Technologies DE-FE0005979 Nanoparticle-stabilized CO2 Foam for CO2 EOR Application New Mexico Institute of Mining and Technology

393

Oil Prices, Opec and the Poor Oil Consuming Countries  

Science Journals Connector (OSTI)

In 1950, the year O.P.E.C. (Organisation of Petroleum Exporting Countries) was formed, the world oil industry was dominated by a group of seven oligopolistic major international oil companies, who were collective...

Biplab Dasgupta

1976-01-01T23:59:59.000Z

394

FEDERAL TECHNICAL CAPABILITY PROGRAM  

Broader source: Energy.gov (indexed) [DOE]

FEDERAL TECHNICAL CAPABILITY PROGRAM C C A A L L E E N N D D A A R R Y Y E E A A R R S S 2 2 0 0 1 1 1 1 - - 2 2 0 0 1 1 2 2 B B I I E E N N N N I I A A L L R R E E P P O O R R T T UNITED STATES DEPARTMENT OF ENERGY November 2013 INTENTIONALLY BLANK FTCP 2011-2012 Biennial Report ~ 2 ~ Table of Contents Section Title Page 1.0 Purpose and Scope .......................................................................................... 3 2.0 2011/2012 Accomplishments.......................................................................... 3

395

RADTRAN 6 technical manual.  

SciTech Connect (OSTI)

This Technical Manual contains descriptions of the calculation models and mathematical and numerical methods used in the RADTRAN 6 computer code for transportation risk and consequence assessment. The RADTRAN 6 code combines user-supplied input data with values from an internal library of physical and radiological data to calculate the expected radiological consequences and risks associated with the transportation of radioactive material. Radiological consequences and risks are estimated with numerical models of exposure pathways, receptor populations, package behavior in accidents, and accident severity and probability.

Weiner, Ruth F.; Neuhauser, Karen Sieglinde; Heames, Terence John; O'Donnell, Brandon M.; Dennis, Matthew L.

2014-01-01T23:59:59.000Z

396

Compare All CBECS Activities: Fuel Oil Use  

Gasoline and Diesel Fuel Update (EIA)

of fuel oil in 1999. Only six building types had any statistically significant fuel oil usage, with education buildings using the most total fuel oil. Figure showing total fuel oil...

397

Generation of Oil-Like Pyrolyzates from Organic-Rich Shales  

Science Journals Connector (OSTI)

...CHARACTERIZATION OF OIL TYPES IN WILLISTON BASIN, AAPG BULLETIN-AMERICAN ASSOCIATION...the western margin of the North American basin should also be considered in this light...1976). 11. A. F. Amos, The New York Bight and Hudson Canyon in October 1974 (Technical...

M. D. LEWAN; J. C. WINTERS; J. H. MCDONALD

1979-03-02T23:59:59.000Z

398

Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87  

SciTech Connect (OSTI)

Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

NONE

1997-10-01T23:59:59.000Z

399

DOE Technical Standards Program Procedures  

Broader source: Energy.gov (indexed) [DOE]

0 0 Revision: 4 Date: August 1, 2000 CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS U.S. Department of Energy Office of Nuclear Safety Policy and Standards Washington, D.C. 20585 DOE-TSPP-10 Conversion Revision: 4 Date: August 1, 2000 DOE Technical Standards Program i CONTENTS Paragraph Page 1. SCOPE........................................................................................................................................... 1 1.1 Purpose ................................................................................................................... 1 1.2 Applicability.............................................................................................................. 1 2. CONVERSION OF DOE TECHNICAL STANDARDS.................................................................... 1

400

Mechanical Engineering Department Technical Review  

SciTech Connect (OSTI)

The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

Carr, R.B.; Denney, R.M. (eds.)

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Technical Standards Program Procedures  

Broader source: Energy.gov (indexed) [DOE]

8 8 Revision: 4 Date: August 1, 2000 APPROVING AND ISSUING DOE TECHNICAL STANDARDS U.S. Department of Energy Office of Nuclear Safety Policy and Standards Washington, D.C. 20585 DOE-TSPP-8 Approval Revision: 4 Date: August 1, 2000 DOE Technical Standards Program i CONTENTS Paragraph Page 1. SCOPE........................................................................................................................................... 1 1.1 Purpose ................................................................................................................... 1 1.2 Applicability.............................................................................................................. 1 2. APPROVING AND ISSUING DOE TECHNICAL STANDARDS .................................................... 1

402

NETL: News Release - New Carbon Drill Pipe Signals Technical Achievement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 17, 2004 May 17, 2004 New Carbon Drill Pipe Signals Technical Achievement Technology May Benefit American Energy Production WASHINGTON, DC -- The Department of Energy (DOE) announced today the development of a new "composite" drill pipe that is lighter, stronger and more flexible than steel, which could significantly alter the ability to drain substantially more oil and gas from rock than traditional vertical wells. MORE INFO Read about January, 2003 field test Read about October, 2003 field test - "This is another example of the technology breakthroughs in the arena of domestic energy production being carried out by our Office of Fossil Energy," said Secretary of Energy Spencer Abraham. "To reach and recover untapped domestic oil and gas reserves, we must have the ability to

403

Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irrigating with Treated Oil and Gas Product Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT Prepared By Terry Brown, Jeffrey Morris, Patrick Richards and Joel Mason Western Research Institute October 1, 2008 to September 1, 2010 DOE Award Number: DE-NT0005681 Report Issued December, 2010 Western Research Institute 365 N 9 th Street Laramie WY 82072 ii DOE DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

404

Coal-slurry pump development. Technical progress report No. 42  

SciTech Connect (OSTI)

The Coal-Slurry Pump Development Program was initiated in October 1979 and planned for completion in December 1982. A proposal has been submitted to extend the end date to 30 June 1983 and the program is continuing with the revised schedule. In the first phase an experimental prototype of a two-stage, high pressure, centrifugal slurry pump was fabricated and assembled into a test unit. In the second phase the experimental pump was delivered to the Colorado School of Mines Research Institute test facility for initial testing in hot oil and subsequent testing in a coal-oil slurry environment. Rocketdyne will supply technical support and coordination on test facility interface requirements and for testing of the experimental pump to evaluate hydraulic, mechanical, material and operational performance characteristics. Because of the recent significant activities accomplished, this monthly report will cover the period up to 12 April 1983.

Wong, G.S.

1983-04-15T23:59:59.000Z

405

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".  

E-Print Network [OSTI]

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

Maroncelli, Mark

406

Maximum Hydrogen Production by Autothermal Steam Reforming of Bio-oil With NiCuZnAl Catalyst  

Science Journals Connector (OSTI)

Autothermal steam reforming (ATR) of bio-oil, which couples the endothermic steam reforming reaction with the exothermic partial oxidation, offers many advantages from a technical and economic point of view. Effective production of hydrogen through ATR of bio-oil was performed at lower temperature with NiCuZnAl catalyst. The highest hydrogen yield from bio-oil reached 64.3% with a nearly complete bio-oil conversion at 600 °C, the ratio of steam to carbon fed (S/C) of 3 and the oxygen to carbon ratio (O/C) of 0.34. The reaction conditions in ATR including temperature, O/C, S/C and weight hourly space velocity can be used to control both hydrogen yield and products distribution. The comparison between the ATR and common steam reforming of bio-oil was studied. The mechanism of the ATR of bio-oil was also discussed.

Shi-zhi Yan; Qi Zhai; Quan-xin Li

2012-01-01T23:59:59.000Z

407

Spot-Oiling Johnsongrass.  

E-Print Network [OSTI]

I TEXAS AGRICULTURAL EXTENSIO-N SERVICE G. G. Gibson, Director, College Station, Texas [Blank Page in Original Bulletin] I the bast I ir used the low I . .. 1 the fol or mort , needed SPOT-OILING JOHNSONGRASS H. E. Rea, M. J. Norris..., and Fred C. Elliott* Texas A. & M. College System ~HNSONGRASS CAN BE killed to the i ground by the application of 1 / 3 teaspoonful of a herbicidal oil to the crown of each stem. Eradication of established Johnsongrass can be obtained in a single...

Elliott, Fred C.; Norris, M. J.; Rea, H. E.

1955-01-01T23:59:59.000Z

408

Technical Assistance | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assistance Assistance Technical Assistance Best practice-based technical assistance is provided through a combination of OE staff, and nationally-recognized experts at the Lawrence Berkeley National Laboratory, the Regulatory Assistance Project, the National Council on Electricity Policy, the National Council of State Legislatures, and the National Governors Association, and others. With these entities, the expert technical assistance is provided on an as-requested basis to State public utility commissions, State legislatures, regional State associations, regional transmission organizations/independent system operators, Federal officials, Governors' offices, State energy offices, and sometimes individual electric utilities. Technical Assistance on EPA Rules Implementation to States and the Utility

409

Technical Publications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

project reports, conference proceedings and journal articles, technical presentations, Web sites, and other formats. Hydrogen General Production Delivery Storage Fuel Cells...

410

DOE and NREL Technical Assistance  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights the technical assistance provided by the U.S. Department of Energy’s National Renewable Energy Laboratory to Greensburg, Kansas.

411

Technical Assistance | Department of Energy  

Office of Environmental Management (EM)

Assistance The Federal Energy Management Program (FEMP) offers technical assistance to help agencies implement energy- and water-efficient technologies into Federal buildings and...

412

Technical Reports | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Oak Ridge National Laboratory (ORNL) technical report collections at the Research Library include ORNL authored reports as well as those from many other institutions. Most...

413

Scientific and Technical Information Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements and responsibilities for managing DOE's scientific and technical information. Cancels DOE O 241.1. Canceled by DOE O 241.1B.

2003-10-14T23:59:59.000Z

414

STEO September 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

oil production forecast to rise almost 700,000 bpd this oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil nationwide has increased by around 200 so far this year to just under 1,400 rigs." Higher domestic oil production will help cut U.S. petroleum imports. The share of total U.S.

415

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

One of the first places where consumers are feeling the impact of One of the first places where consumers are feeling the impact of this winter's market pressures is in home heating oil prices. This chart shows prices through February 28, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of heating oil

416

Oil and Gas Conservation (Montana)  

Broader source: Energy.gov [DOE]

Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

417

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to 4.02 per gallon. That's up 1.7 cents from a year ago, based on the...

418

Residential heating oil price decreases  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year ago, based on the...

419

Residential heating oil price decreases  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 3.22 per gallon. That's down 73.6 cents from a year ago, based on the...

420

Residential heating oil price decreases  

Gasoline and Diesel Fuel Update (EIA)

heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to 2.82 per gallon. That's down 1.36 from a year ago, based on the...

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Residential heating oil prices decline  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to 3.36 per gallon. That's down 52.5 cents from a year ago, based on the...

422

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the...

423

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

424

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

425

Residential heating oil prices decrease  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year ago, based on the...

426

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year ago, based on the...

427

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

428

Residential heating oil price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

429

Residential heating oil prices decline  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 3.08 per gallon. That's down 90.3 cents from a year ago, based on the...

430

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to 3.33 per gallon. That's down 59.1 cents from a year ago, based on the...

431

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to 4.04 per gallon. That's up 4.9 cents from a year ago, based on the...

432

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based...

433

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

434

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by...

435

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

436

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to 4.18 per gallon. That's up 13 cents from a year ago, based on the...

437

Cooling power of quenching oils  

Science Journals Connector (OSTI)

Industrial oils 20 and 20V have the best cooling powers of all quenching oils (used in the USSR). They secure high cooling rates at low temperatures, have a satisfactory...

L. V. Petrash

1959-07-01T23:59:59.000Z

438

Virent is Replacing Crude Oil  

Broader source: Energy.gov [DOE]

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

439

THERMAL PROCESSING OF OIL SHALE/SANDS  

E-Print Network [OSTI]

)-based simulation tools to a modified in-situ process for production of oil from oil shale. The simulation tools

Michal Hradisky; Philip J. Smith; Doe Award; No. De-fe

2009-01-01T23:59:59.000Z

440

invert(ed) (oil) emulsion (drilling) mud  

Science Journals Connector (OSTI)

invert(ed) (oil) emulsion (drilling) mud, water-in-oil (drilling) mud ? Wasser-in-Öl-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

water-in-oil (drilling) mud  

Science Journals Connector (OSTI)

water-in-oil (drilling) mud, invert(ed) (oil) emulsion (drilling) mud ? Wasser-in-Öl-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

442

Process for the production of refrigerator oil  

SciTech Connect (OSTI)

A process for producing a high quality refrigerator oil from an oil fraction boiling at a temperature within boiling point of lubricating oil by contacting said oil fraction with a solvent to extract undesirable components thereby lowering % C..cap alpha.. of said oil fraction, hydrogenating said solvent extracted fraction under the specific conditions, and then contacting said hydrogenated oil with a solid absorbant to remove impurities; said oil fraction being obtained from a low grade naphthenic crude oil.

Kunihiro, T.; Tsuchiya, K.

1985-06-04T23:59:59.000Z

443

Biomass Derivatives Competitive with Heating Oil Costs.  

Broader source: Energy.gov [DOE]

Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs.

444

Final Technical Report  

SciTech Connect (OSTI)

The following report contributes to our knowledge of how to economically produce wildlife-friendly grass mixtures for future fuel feedstocks in the northern plains. It investigates northern-adapted cultivars; management and harvest regimes that are good for yields, soils and wildlife; comparative analysis of monocultures and simple mixtures of native grasses; economic implications of growing grasses for fuel feedstocks in specific locations in the northern plains; and conversion options for turning the grasses into useful chemicals and fuels. The core results of this study suggest the following: ? Native grasses, even simple grass mixtures, can be produced profitably in the northern plains as far west as the 100th meridian with yields ranging from 2 to 6 tons per acre. ? Northern adapted cultivars may yield less in good years, but have much greater long-term sustainable yield potential than higher-yielding southern varieties. ? Grasses require very little inputs and stop economically responding to N applications above 56kg/hectare. ? Harvesting after a killing frost may reduce the yield available in that given year but will increase overall yields averaged throughout multiple years. ? Harvesting after a killing frost or even in early spring reduces the level of ash and undesirable molecules like K which cause adverse reactions in pyrolysis processing. Grasses can be managed for biomass harvest and maintain or improve overall soil-health and carbon sequestration benefits of idled grassland ? The carbon sequestration activity of the grasses seems to follow the above ground health of the biomass. In other words plots where the above ground biomass is regularly removed can continue to sequester carbon at the rate of 2 tons/acre/year if the stand health is strong and yielding significant amounts of biomass. ? Managing grasses for feedstock quality in a biomass system requires some of the same management strategies as managing for wildlife benefit. We believe that biomass development can be done in such a way that also maximizes or improves upon conservation and other environmental goals (in some cases even when compared to idled land). ? Switchgrass and big bluestem work well together in simple mixture plots where big bluestem fills in around the switchgrass which alone grows in bunches and leaves patches of bare soil open and susceptible to erosion. ? Longer-term studies in the northern plains may also find that every other year harvest schemes produce as much biomass averaged over the years as annual harvests ? Grasses can be grown for between $23 and $54/ton in the northern plains at production rates between 3 and 5 tons/acre. ? Land costs, yields, and harvest frequency are the largest determining factors in the farm scale economics. Without any land rent offset or incentive for production, and with annual harvesting, grass production is likely to be around $35/ton in the northern plains (farm gate). ? Average transportation costs range from $3 to $10/ton delivered to the plant gate. Average distance from the plant is the biggest factor - $3/ton at 10 miles, $10/ton at 50 miles. ? There is a substantial penalty paid on a per unit of energy produced basis when one converts grasses to bio-oil, but the bio-oil can then compete in higher priced fuel markets whereas grasses alone compete directly with relatively cheap coal. ? Bio oil or modified bio-oil (without the HA or other chemical fraction) is a suitable fuel for boiler and combustion turbines that would otherwise use residual fuel oil or number 2 diesel. ? Ensyn has already commercialized the use of HA in smokey flavorants for the food industry but that market is rather small. HA, however, is also found to be a suitable replacement for the much larger US market for ethanolamines and ethalyne oxides that are used as dispersants. ? Unless crude oil prices rise, the highest and best use of grass based bio-oil is primarily as a direct fuel. As prices rise, HA, phenol and other chemical fractions may become more attractive ? Although we were

Sara Bergan, Executive Director; Brendan Jordan, Program Manager; Subcontractors as listed on the report.

2007-06-06T23:59:59.000Z

445

Nineteenth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

446

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

447

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

448

Oil shale: Technology status report  

SciTech Connect (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

449

OIL ANALYSIS LAB TRIVECTOR ANALYSIS  

E-Print Network [OSTI]

OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

450

ASSESSMENT OF TECHNICAL QUALIFICATION AND FEDERAL TECHNICAL CAPABILITY PROGRAMS  

Broader source: Energy.gov (indexed) [DOE]

And TQP Assessment Crads 11 2012 Smooth (2) 1 11/29/12 And TQP Assessment Crads 11 2012 Smooth (2) 1 11/29/12 ASSESSMENT OF TECHNICAL QUALIFICATION AND FEDERAL TECHNICAL CAPABILITY PROGRAMS This document provides guidance and objectives and criteria to support assessments required by DOE O 426.1 Federal Technical Capability (FTC), Section 4. REQUIREMENTS, paragraph b. FTC Program Implementation, subparagraph (7) Self- Assessment. This FTC Order paragraph requires self-assessment of TQP and FTC Program implementation within one's organization. To ensure effective implementation of the Technical Qualification Programs (TQP), Headquarters and field elements conduct self-assessments of these programs. The Federal Technical Capability Panel (FTCP) also reviews the results of the TQP self-assessments and determines if further action is

451

Cyclone oil shale retorting concept. [Use it all retorting process  

SciTech Connect (OSTI)

A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

Harak, A.E.; Little, W.E.; Faulders, C.R.

1984-04-01T23:59:59.000Z

452

Technical Reference and Technical Database for Hydrogen Compatibility of  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279738 Varnish cache server Technical Reference and Technical Database for Hydrogen Compatibility of Materials Dataset Summary Description Technical Reference for Hydrogen Compatibility of MaterialsGuidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures.To support the needs of the hydrogen community, Sandia National Laboratories is conducting an extensive review of reports and journal publications to gather existing materials data for inclusion in the Technical Reference for Hydrogen Compatibility of Materials. Additionally, Sandia is working internationally with collaborators to acquire newly generated data for inclusion in the Technical Reference. SAND2012-7321 is an archival report issued by Sandia National Laboratories representing the reference information compiled as of September 2012. Updates and additions of individual sections of this report are available at http://www.sandia.gov/matlsTechRef.Technical Database for Hydrogen Compatibility of MaterialsThe Technical Database for Hydrogen Compatibility of Materials is intended to be a complement to the Technical Reference for Hydrogen Compatibility of Materials. Although still in the development stage, the Technical Database will provide a repository of technical data measured in hydrogen and is meant to be an engineering tool to aid the selection of materials for use in hydrogen.

453

Strategic plan for oil shale siting reresearch. Proceedings of a planning exercise, November 4-5, 1985, Denver, Colorado  

SciTech Connect (OSTI)

A strategic planning exercise on environmental research and policy to guide oil shale development was held in November 1985. Seventeen participants representing a cross section of interests and technical disciplines identified, from almost 200 suggested issues, 13 strategic issues in four general categories: policy, source characterization and pollutant generation, transport and impact, and risk assessment. The group reached a consensus on the technical objective for each issue and recommendations to address the objective. Each participant has at least several years' experience in some phase of oil shale endeavor. Therefore, a consensus from this group can be a valuable guide for agencies seeking to develop the oil shale resource while also protecting the environment and public health. This document is an attempt to concisely state the issues discussed by the group and thereby serve as a planning guide for oil shale environmental research.

Hinman, G.; Barr, S.; Peterson, E.J.; Williams, M.D. (eds.)

1986-07-01T23:59:59.000Z

454

Baltic oil: Moving offshore  

Science Journals Connector (OSTI)

... the consortium of Soviet, Polish and East German oil interests, will sink its first offshore bore-hole in the Baltic. This move follows four years of intensive prospecting, which ... findings. For a time, plans were afort to buy or hire a Vexco drilling rig, but when these had to be abondoned for lack of hard currency, the shut ...

Vera Rich

1980-06-19T23:59:59.000Z

455

Oil from Coal  

Science Journals Connector (OSTI)

... sources are not capable of indefinite expansion, since their industrial stability is dependent upon adequate markets for the main products—coke of various kinds or gas. They were, however, ... gallon and remain in operation until 1950, and that it should be extended to include diesel oil used in motor vehicles. It might be feared that this extension would involve ...

C. H. LANDER

1938-04-09T23:59:59.000Z

456

Naphthenic lube oils  

SciTech Connect (OSTI)

A process is disclosed for increasing the volume of lubricating oil base stocks recovered from a crude oil. A fraction having an atmospheric boiling range of about 675/sup 0/ to 1100/sup 0/ F. is recovered by vacuum distillation. This fraction is treated with furfural to extract a hydrocarbon mixture containing at least 50 volume % aromatic hydrocarbons. The raffinate is a lubricating oil base stock very high in paraffinic hydrocarbons and low in naphthenic hydrocarbons. The fraction extracted by the furfural contains at least about 50 volume % aromatic hydrocarbons and less than about 10 volume % paraffinic hydrocarbons. The mixture is hydrotreated to hydrogenate a substantial portion of the aromatic hydrocarbons. The hydrotreated product then is catalytically dewaxed. After removal of low boiling components, the finished lubricating oil base stock has a viscosity of at least about 200 SUS at 100/sup 0/ F., a pour point of less than 20/sup 0/ F. and contains at least 50 volume % of naphthenic hydrocarbons, a maximum of about 40 volume % aromatic hydrocarbons, and a maximum of about 10 volume % paraffinic hydrocarbons.

Hettinger Jr., W. P.; Beck, H. W.; Rozman, G. J.; Turrill, F. H.

1985-05-07T23:59:59.000Z

457

China and Peak Oil  

Science Journals Connector (OSTI)

In the mid-1950s there was a severe oil shortage in China. Fighter jets and tanks stood still and the buses on Beijing’s streets were fueled from large bags of gas on their roofs. Several drilling teams travel...

Kjell Aleklett

2012-01-01T23:59:59.000Z

458

North Slope: Oil Rush  

Science Journals Connector (OSTI)

...place of about 46,000, situated on the Chena slough of the Tanana River. It has become...permafrost. The Trans Alaska PipelineW carrying hot oil, may face worse problems. [L. A...Despite all the unanswered questions about hot pipelines and permafrost, the restoring...

Luther J. Carter

1969-10-03T23:59:59.000Z

459

Peak oil supply or oil not for sale?  

Science Journals Connector (OSTI)

Abstract The restrictions imposed by climate change are inevitable and will be exerted either via precautionary mitigation of (mainly energy-related) CO2 emissions or via irreversible impacts on ecosystems and on human habitats. Either way, oil markets are bound to incur drastic shrinking. Concern over peak oil supply will crumble when the irrevocable peak oil demand is created. Replacing oil in the world's energy economies requires redirected market forces, notably in the form of steadily increasing oil end-use prices. Yet, thus far, crude oil prices have obeyed the market fundamentals of expanding-contracting demand and oligopolistic supply. A hockey stick supply curve supports high sales prices, providing large rents to submarginal sources. Cutting oil demand and maintaining high prices implies reducing the supply hockey stick's length by curtailing some oil producers. In such a scenario, the alliances, goals, and tactics of oil geopolitics are set to change. We identify a distribution over friendly and hostile oil suppliers, with others drifting in between the two sides. Conflicts and warfare are less aimed at conquering oil fields for exploitation than at paralyzing production capabilities of opponents or of unreliable transient sources. Covert warfare and instigation of internal conflicts are likely tactics to exhaust hostile opponents.

Aviel Verbruggen; Thijs Van de Graaf

2013-01-01T23:59:59.000Z

460

Structural Oil Pan With Integrated Oil Filtration And Cooling System  

DOE Patents [OSTI]

An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

Freese, V, Charles Edwin (Westland, MI)

2000-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, July 1 - September 30, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. This is the sixth quarterly technical progress report for the project. Through September 1996, the project continues to make good progress but is slightly behind schedule. Estimated costs are on budget for the work performed to date. Technical achievements accomplished during the quarter include placing the first two horizontal wells on production following cyclic steam stimulation, completing several draft technical reports and preparing presentations on the deterministic geologic model, steam channel crossing and horizontal well drilling for technical transfer. Cyclic steam injection into the first two horizontal wells was completed in June 1996 and initial oil production from the project began the same month. Work has commenced on the stochastic geologic and reservoir simulation models. High temperature core work and reservoir tracer work will commence in the First Quarter 1997.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)

1996-12-01T23:59:59.000Z

462

EV Technical Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 2000 December 2000 AQMD CONTRACT #00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR02 Electric Vehicle Technical Center Prepared by: Ricardo Solares Juan C. Argueta Southern California Edison December 20, 2000 Page i DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This report was prepared by the Electric Transportation Division of Southern California Edison, a subsidiary of Edison International. Neither the Electric Transportation Division of Southern California Edison, Southern California Edison, Edison International, nor any person working for or on behalf of any of them makes any warranty or representation, express or implied, (i) with respect to the use of any information, product, process or procedure discussed in this report, including

463

Technical Safety Requirements  

Broader source: Energy.gov (indexed) [DOE]

Safety Requirements Safety Requirements FUNCTIONAL AREA GOAL: Contractor has developed, maintained, and received DOE Field Office Approval for the necessary operating conditions of a facility. The facility has also maintained an inventory of safety class and safety significant systems and components. REQUIREMENTS: ï‚· 10 CFR 830.205, Nuclear Safety Rule. ï‚· DOE-STD-3009-2002, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses. ï‚· DOE-STD-1186-2004, Specific Administrative Controls. Guidance: ï‚· DOE G 423.1-1, Implementation Guide for Use in Developing Technical Safety Requirements. ï‚· NSTP 2003-1, Use of Administrative Controls for Specific Safety Functions. Performance Objective 1: Contractor Program Documentation

464

Technical Reference OVERVIEW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parking and the ENERGY STAR Score in the United States and Canada Page 1 Parking and the ENERGY STAR Score in the United States and Canada Page 1 Parking and the ENERGY STAR Score in the United States and Canada Technical Reference OVERVIEW The ENERGY STAR score provides a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. Parking areas are not eligible to earn the ENERGY STAR score. However, because parking is a common amenity at other commercial building types (i.e., office and hotels), the ENERGY STAR score does make adjustments to accommodate for the presence of parking.

465

EV Technical Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carrier Route Vehicles Carrier Route Vehicles Quarterly Report, June 2001 AQMD CONTRACT #00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR04 Electric Vehicle Technical Center An ISO 9001 Certified Facility Prepared by: Michel Wehrey Juan C. Argueta Julie M. Phung Southern California Edison June 15, 2001 Page i DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This report was prepared by the Electric Transportation Division of Southern California Edison, a subsidiary of Edison International. Neither the Electric Transportation Division of Southern California Edison, Southern California Edison, Edison International, nor any person working for or on behalf of any of them makes any warranty or representation, express or implied, (i) with respect to the

466

LLNL 1981: technical horizons  

SciTech Connect (OSTI)

Research programs at LLNL for 1981 are described in broad terms. In his annual State of the Laboratory address, Director Roger Batzel projected a $481 million operating budget for fiscal year 1982, up nearly 13% from last year. In projects for the Department of Energy and the Department of Defense, the Laboratory applies its technical facilities and capabilities to nuclear weapons design and development and other areas of defense research that include inertial confinement fusion, nonnuclear ordnances, and particle-beam technology. LLNL is also applying its unique experience and capabilities to a variety of projects that will help the nation meet its energy needs in an environmentally acceptable manner. A sampling of recent achievements by LLNL support organizations indicates their diversity. (GHT)

Not Available

1981-07-01T23:59:59.000Z

467

FINAL/ SCIENTIFIC TECHNICAL REPORT  

SciTech Connect (OSTI)

The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

McDonald, Henry; Singh, Suminderpal

2006-08-28T23:59:59.000Z

468

DOE Technical Standards Program Procedures  

Broader source: Energy.gov (indexed) [DOE]

Revision: 4 Date: August 1, 2000 TECHNICAL STANDARDS PROGRAM RESPONSIBILITIES U.S. Department of Energy Office of Nuclear Safety Policy and Standards Washington, D.C. 20585 DOE-TSPP-1 Responsibilities Revision: 4 Date: August 1, 2000 DOE Technical Standards Program i CONTENTS Paragraph Page 1. SCOPE........................................................................................................................................... 1 1.1 Purpose ................................................................................................................... 1 1.2 Applicability.............................................................................................................. 1 2. PROGRAM RESPONSIBILITIES ................................................................................................... 1

469

Technical planning activity: Final report  

SciTech Connect (OSTI)

In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

Not Available

1987-01-01T23:59:59.000Z

470

TECHNICAL EVALUATION REPORT EMERGENCY DIESEL GENERATOR TECHNICAL SPECIFICATIONS STUDY RESULTS  

SciTech Connect (OSTI)

The purpose of this report is to review technical specifications for emergency diesel generators in the context of new information developed in the Nuclear Plant Aging Research Program and the application of current NRC regulatory concepts and knowledge. Aging and reliability relationships related to the standard technical specifications are reviewed and supported by data and published information to ensure that conservative and beneficial specifications are identified. Where technical specifications could adversely influence aging and reliability, the technical issues and reasonable alternatives are identified for consideration. This report documents and spans the technical progress from the published and approved regulatory documents to the current knowledge basis. This ensures that the technical bases for the technical specifications discussed are documented and relatively complete subject information is contained in one document. The Pacific Northwest Laboratory (PNL) has participated in the Nuclear Plant Aging Research (NPAR) Program directed by the Nuclear Regulatory Commission's (NRC) Office of Nuclear Regulatory Research, Division of Engineering. The NPAR study of emergency diesel generator aging was performed in two phases. In Phase I, plant operating experience, ~ata, expert opinion and statistical methods were used to produce a new data base related to aging, reliability, and operational readiness of nuclear service diesel generators. Phase II was chiefly concerned with aging mitigation measures.

Hoopingarner, K. R.

1991-03-01T23:59:59.000Z

471

Measuring Dependence on Imported Oil  

Gasoline and Diesel Fuel Update (EIA)

Dependence on Imported Oil Dependence on Imported Oil by C. William Skinner* U.S. dependence on imported oil** can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA believes that the net-imports definition gives a clearer indication of the fraction of oil consumed that could not have been supplied from domestic sources and is thus the most appropriate measure. With this issue of the Monthly Energy Review, the Energy Information Administration (EIA) introduces a revised table that expresses depend- ence on imports in terms of both measures. How dependent is the United States on foreign oil? How dependent are we on oil from the Persian Gulf or other sensitive areas? Do we import more than we produce domes-

472

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Slide 2 of 11 Notes: One of the first places where consumers are feeling the impact of this winterÂ’s market pressures is in home heating oil prices. This chart shows prices through February 7, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents per gallon through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of

473

An evaluation of known remaining oil resources in the state of California: Project on advanced oil recovery and the states. Volume 2  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of California and the nation as a whole.

NONE

1993-11-01T23:59:59.000Z

474

Oil consumption, pollutant emission, oil proce volatility and economic activities in selected Asian Developing Economies.  

E-Print Network [OSTI]

??It is now well established in the literature that oil consumption, oil price shocks, and oil price volatility may impact the economic activities negatively. Studies… (more)

Rafiq, Shuddhasattwa

2009-01-01T23:59:59.000Z

475

Fuel Cell Technologies Office: Hydrogen Technical Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Google Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Delicious Rank Fuel Cell Technologies Office: Hydrogen Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards

476

Boiler Maximum Achievable Control Technology (MACT) Technical...  

Broader source: Energy.gov (indexed) [DOE]

Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, May 2014 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

477

Residential Energy Efficiency Technical Update Meeting: August...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Technical Update Meeting: August 2011 Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary...

478

Applications for Alaska Strategic Technical Assistance Response...  

Office of Environmental Management (EM)

Applications for Alaska Strategic Technical Assistance Response Team Program Are Due Feb. 6 Applications for Alaska Strategic Technical Assistance Response Team Program Are Due...

479

Department of Energy Technical Standards Procedures | Department...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Technical Standards Procedures Department of Energy Technical Standards Procedures The following procedures should be used to write, revise, or maintain a DOE...

480

Water Heating Standing Technical Committee Presentation | Department...  

Energy Savers [EERE]

Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing...

Note: This page contains sample records for the topic "technically recoverable oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Building America Residential Energy Efficiency Technical Update...  

Energy Savers [EERE]

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

482

DOE Publishes Technical Brief Clarifying Misconceptions about...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technical Brief Clarifying Misconceptions about Safety of LED Lighting DOE Publishes Technical Brief Clarifying Misconceptions about Safety of LED Lighting October 22, 2014 -...

483

Technical Standards Newsletter - August 2012 | Department of...  

Broader source: Energy.gov (indexed) [DOE]

2012 Inside this issue: Featured DOE Technical Standards Activities DOE Technical Handbook, Accident Investigation and Prevention, Volumes I and II is Released Workshops and...

484

A Technical Databook for Geothermal Energy Utilization  

E-Print Network [OSTI]

A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

Phillips, S.L.

1981-01-01T23:59:59.000Z

485

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

486

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

487

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

488

Shale oil recovery process  

DOE Patents [OSTI]

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

489

Oil shale retort apparatus  

DOE Patents [OSTI]

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

490

Heating oils, 1982  

SciTech Connect (OSTI)

Properties of 235 heating oils marketed in the United States were submitted for study and compilation under agreement between BETC and API. The fuels were manufactured by 25 petroleum refining companies in 88 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1982 compared with data for 1981 are tabulated. Analyses of grade 6 foreign import oils are presented.

Shelton, E.M.

1982-08-01T23:59:59.000Z

491

Heating oils, 1980  

SciTech Connect (OSTI)

Properties of 247 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The fuels were manufactured by 26 petroleum refining companies in 87 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuel are defined by the American Society for Testing and Materials Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1980 compared with data for 1979 are shown in tables. Analyses of grades 2, 5(light), and 6 foreign import oils are presented.

Shelton, E.M.

1980-10-01T23:59:59.000Z

492

Heating oils, 1981  

SciTech Connect (OSTI)

Properties of 249 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 28 petroleum refining companies in 92 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1981 compared with data for 1980 are shown in Tables 1 through 6. Analyses of grade 6 foreign import oils are presented in Table 13.

Shelton, E.M.

1981-08-01T23:59:59.000Z

493

Emulsified industrial oils recycling  

SciTech Connect (OSTI)

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

494

STEO December 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase in oil output tops the previous record set in 1951 and marks the largest yearly production increase ever. Most of the increase in crude oil production is driven by drilling activity in shale formations located in Texas, North Dakota and Montana. U.S. crude oil production next year is expected to top 7 million barrels per day for the first time

495

Using simple models to describe oil production from unconventional reservoirs.  

E-Print Network [OSTI]

??Shale oil (tight oil) is oil trapped in low permeability shale or sandstone. Shale oil is a resource with great potential as it is heavily… (more)

Song, Dong Hee

2014-01-01T23:59:59.000Z

496

Effective marketing of technical innovation  

Science Journals Connector (OSTI)

Recent trends in the global business market point to the increasing importance of technology and technical innovations to gain and maintain competitive business strategic advantage. However, the marketing of technical innovations throughout the supply chain is still governed by traditional strategies and practices. Such strategies and practices are ineffective in a highly technologically advanced marketplace. As a result, the marketers of technologically innovative products and concepts are left with many questions and very few practical answers. This research offers a practical, integrated approach to marketing technical innovations. The approach offered is presented within an organisational, people and technology strategic context. A field study is utilised to illustrate the utility of the proposed approach.

Andrew J. Czuchry; Mahmoud M. Yasin

2007-01-01T23:59:59.000Z

497

Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

research effort is resource development. As market prices for natural resources (gold, oil, lumber, other

498

Citrus essential oils and their influence on the anaerobic digestion process: An overview  

Science Journals Connector (OSTI)

Abstract Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24–192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential