National Library of Energy BETA

Sample records for technically recoverable oil

  1. Figure 8. Technically Recoverable and Commercially Developable Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Technically Recoverable and Commercially Developable Oil at 95 Percent, Mean, and 5 Percent Probabilities for Given Oil Prices as a Percentage of Technically Recoverable Oil for the ANWR 1002 Area of the Alaska North Slope fig8.jpg (38547 bytes) Source: United States Geological Survey, "Economics of Undiscovered Oil in the 1002 Area of the Arctic National Wildlife Refuge," 1998

  2. Technically Recoverable Shale Oil and Shale Gas Resources

    Gasoline and Diesel Fuel Update (EIA)

    EIA/ARI World Shale Gas and Shale Oil Resource Assessment May, 17, 2013 2-1 SHALE GAS AND SHALE OIL RESOURCE ASSESSMENT METHODOLOGY INTRODUCTION This report sets forth Advanced Resources' methodology for assessing the in-place and recoverable shale gas and shale oil resources for the EIA/ARI "World Shale Gas and Shale Oil Resource Assessment." The methodology relies on geological information and reservoir properties assembled from the technical literature and data from publically

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Algeria Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Argentina Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Australia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Canada Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Chad Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    China Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Eastern Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Egypt Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    India and Pakistan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Jordan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Kazakhstan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Libya Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Mongolia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Morocco Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Northern South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Western Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Oman Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Poland Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Russia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    South Africa Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Spain Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Thailand Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Tunisia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Turkey Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Arab Emirates Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Kingdom Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... depends on three factors: the costs of drilling and completing wells, the amount of oil ... with critical expertise and suitable drilling rigs and, preexisting gathering and ...

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... natural gas that could be produced with current technology, regardless of oil and natural ... a northeast- southwest trending trough related to the Atlantic Ocean continental breakup. ...

  13. Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels)<//td> 48 States 3 Onshore 14.2 112.6 126.7 48 States 3 Offshore 4.6 50.3 54.8 Alaska 3.6 35.0 38.6 Total U.S. 22.3 197.9 220.2 Dry Natural Gas 4 (trillion cubic feet)<//td> Conventionally Reservoired Fields 5 105.5 904.0 1,009.5 48 States 3 Onshore Gas 6 81.4 369.7 451.1 48

  14. Figure 8. Technically Recoverable and Commercially Developable...

    U.S. Energy Information Administration (EIA) Indexed Site

    the Alaska North Slope fig8.jpg (38547 bytes) Source: United States Geological Survey, "Economics of Undiscovered Oil in the 1002 Area of the Arctic National Wildlife Refuge," 1998...

  15. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  16. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... the La Luna-1 stratigraphic test in the MMVB later that year (results not disclosed). ... ConocoPhillips expects to drill its first exploration well to test the La Luna Shale in ...

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... Source: Sachsenhofer et al., 2012 The Kovel-1 petroleum well is a key stratigraphic test ... have pursued shale gas leasing in Bulgaria but only one shale test well has been drilled. ...

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... 2013 to clarify these significant changes and clear up the current regulatory uncertainty. ... a result of the Indian Ocean plate subducting at an oblique angle beneath Southeast Asia. ...

  20. Technically Recoverable Shale Oil and Shale Gas Resources

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    logs from 100 horizontal wells showed an enormous discrepancy in production between perforation clusters that is likely due to rock heterogeneity." One reason why...

  1. Figure 6. Projected Production for the Low Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 6. Projected Production for the Low Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig6.jpg (41132

  2. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical ...

  3. Technical Information Exchange on Pyrolysis Oil: Potential for a renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heating oil substitution | Department of Energy renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England. PDF icon pyrolysis_oil_agenda.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil

  4. Figure 7. Projected Production for the High Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig7.jpg (43335 bytes) Source

  5. Oil and Gas Technical Assistance Capabilities Forum | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil and Gas Technical Assistance Capabilities Forum Oil and Gas Technical Assistance Capabilities Forum Aug. 18, 2015 Magnolia Hotel 818 17th St. Denver, CO 80202 The U.S. ...

  6. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This ...

  7. Feedstock Pathways for Bio-oil and Syngas Conversi (Technical...

    Office of Scientific and Technical Information (OSTI)

    Feedstock Pathways for Bio-oil and Syngas Conversi Citation Details In-Document Search Title: Feedstock Pathways for Bio-oil and Syngas Conversi The goal of this technical ...

  8. Research Projects to Address Technical Challenges Facing Small Oil and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Producers Selected by DOE for Further Development | Department of Energy to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development June 20, 2012 - 1:00pm Addthis Washington, DC - Nine new research projects aimed at extending the life of mature oil and natural gas fields, while simultaneously

  9. Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy is hosting a Tribal Leader Forum on oil and gas technical assistance capabilities on Aug. 18, 2015, at the Magnolia Hotel in Denver, Colorado.

  10. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential for a renewable heating oil substitution fuel in New England - Agenda Time ... background information on the heating oil industry and their efforts at pyrolysis oil ...

  11. Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Substation Fuel in New England | Department of Energy Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and

  12. Feedstock Pathways for Bio-oil and Syngas Conversi (Technical...

    Office of Scientific and Technical Information (OSTI)

    Feedstock Pathways for Bio-oil and Syngas Conversi Citation Details In-Document Search Title: Feedstock Pathways for Bio-oil and Syngas Conversi You are accessing a document ...

  13. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  14. Impact of oil in the tropical marine environment. Technical pub

    SciTech Connect (OSTI)

    Cintron, G.; Lugo, A.E.; Martinez, R.; Cintron, B.B.; Encarnacion, L.

    1981-11-01

    Oil spills have a devastating effect on biologically rich coastal environments. This report investigates this problem, covering damage by oil to biological systems, the use of dispersants (toxicity and considerations for dispersant use), impact of oil and dispersants on coral reefs, impact of oil on seagrass beds and sandy beaches, impact of oil on mangroves (seedling survival and tolerance, regeneration, forest type vulnerability, and cleanup and recovery activities in mangroves), conclusions, and recommendations. The study concludes that coral reefs and seagrass beds may escape significant spill damage if pollution is not chronic and if dispersants are not used. Sandy and rocky shores may be severely impacted but recover quickly. Mangroves are the most vulnerable coastal ecosystem. Recommendations are that oil spill contingency plans must be prepared for all areas, and that the necessary equipment for the plans must be in place.

  15. Viscosity stabilization of SRC residual oil. Final technical report

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-05-01

    The use of SRC residual oils for No. 6 Fuel Oil substitutes has been proposed. The oils exhibit viscosity characteristics at elevated temperatures that allow this substitution with only minor modifications to the existing fuel oil infrastructure. However, loss of low-boiling materials causes an increase in the viscosity of the residual oils that is greater than expected from concentration changes. A process has been developed that minimizes the loss of volatiles and thus maintains the viscosity of these materials. The use of an additive (water, phenol, or an SRC light oil cut rich in low-boiling phenols in amounts up to 2.0 wt %) accomplishes this and hence stabilizes the pumping and atomizing characteristics for an extended period. During the course of the work, the components of the volatiles lost were identified and the viscosity change due to this loss was quantified. 3 references, 6 figures, 9 tables.

  16. Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve Base by Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Underground - Minable Coal Surface - Minable Coal Total

  17. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in the United States while creating American jobs and reducing greenhouse gas emissions. ... Heating Oil-A Commercial Perspective, by Steve Lupton, Envergent Technologies LLC ...

  18. Technical Options for Processing Additional Light Tight Oil Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... at a minimal cost Operational inefficiencies, reduced crude oil input and production volumes 0 0 0 0 0 Debottlenecking Allows for additional LTO processing at a minimal cost ...

  19. Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

  20. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  1. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    SciTech Connect (OSTI)

    Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

    2011-12-23

    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic products: condensable vapors, non-condensable gases, and liquid aerosols. Traditionally these are recovered by a spray quencher or a conventional shell and tube condenser. The spray quencher or condenser is typically followed by an electrostatic precipitator to yield 1 or 2 distinct fractions of bio-oil. The pyrolyzer system developed at Iowa State University incorporates a proprietary fractionating condenser train. The system collects the bio-oil into five unique fractions. For conditions typical of fluidized bed pyrolyzers, stage fractions have been collected that are carbohydrate-rich (anhydrosugars), lignin-rich, and an aqueous solution of carboxylic acids and aldehydes. One important feature is that most of the water normally found in bio-oil appears in the last stage fraction along with several water-soluble components that are thought to be responsible for bio-oil aging (low molecular weight carboxylic acids and aldehydes). Research work on laser diagnostics for hot-vapor filtration and bio-oil recovery centered on development of analytical techniques for in situ measurements during fast pyrolysis, hot-vapor filtration, and fractionation relative to bio-oil stabilization. The methods developed in this work include laser-induced breakdown spectroscopy (LIBS), laser-induced incandescence (LII), and laser scattering for elemental analysis (N, O, H, C), detection of particulates, and detection of aerosols, respectively. These techniques were utilized in simulated pyrolysis environments and applied to a small-scale pyrolysis unit. Stability of Bio-oils is adversely affected by the presence of particulates that are formed as a consequence of thermal pyrolysis, improving the CFD simulations of moving bed granular filter (MBGF) is useful for improving the design of MBGF for bio-oil production. The current work uses fully resolved direct numerical simulation (where the flow past each granule is accurately represented) to calculate the filter efficiency that is used in the CFD model at all flow speeds. This study shows that fully-resolved direct numerical simulation (DNS

  2. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Broader source: Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  3. Assessment of oil-shale technology in Brazil. Final technical report, October 27, 1980-July 27, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-07-27

    The development of an oil shale industry in the United States will require the solution of a variety of technical, economic, environmental, and health and safety problems. This assessment investigates whether US oil shale developers might benefit from the experience gained by the Brazilians in the operation of their Usina Prototipo do Irati oil shale demonstration plant at Sao Mateus do Sul, and from the data generated from their oil shale research and development programs. A chapter providing background information on Brazil and the Brazilian oil shale deposits is followed by an examination of the potential recovery processes applicable to Brazilian oil shale. The evolution of the Brazilian retorting system is reviewed and compared with the mining and retorting proposed for US shales. Factors impacting on the economics of shale oil production in Brazil are reviewed and compared to economic analyses of oil shale production in the US. Chapters examining the consequences of shale development in terms of impact on the physical environment and the oil shale worker complete the report. Throughout the report, where data permits, similarities and differences are drawn between the oil shale programs underway in Brazil and the US. In addition, research areas in which technology or information transfer could benefit either or both countries' oil shale programs are identified.

  4. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  5. Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgysztan)

    Reports and Publications (EIA)

    1994-01-01

    Provides the most comprehensive assessment publicly available for oil and gas resources in the Fergana Basin. Includes projections of potential oil supply and U.S. Geological Survey estimates of undiscovered recoverable oil and gas.

  6. Oil, shrimp, mangroves: an evaluation of contingency planning for the Gulf of Guayaquil, Ecuador. Technical report

    SciTech Connect (OSTI)

    Filho, I.P.

    1983-10-01

    The possibility of finding oil in the Gulf of Guayaquil has led several Ecuadorian agencies to prepare contingency plans to deal with the eventuality of an oil spill in the area. This report characterizes the importance of the oil and fisheries industries to the Ecuadorian economy, and describes the region where these activities may conflict. It also elaborates on the biological effects of oil in tropical environments, and on aspects of prevention, control/clean- up and oil spill contingency planning. Compensation for oil pollution damages and methods for damage assessment are also discussed herein.

  7. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  8. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas George Alcorn Jr. Universal GeoPower May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov * DOE-FOA-0000109 * Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas *

  9. Exposure standard for fog oil. Technical report, Dec 89-Nov 90

    SciTech Connect (OSTI)

    Palmer, W.G.

    1990-11-15

    Effects of mineral oils in animals and humans are evaluated and serve as the basis for the development of an exposure standard for fog oil. Considered are health hazards associated with fog oil purchased before and after the Military Specification was amended in April 1986 to exclude carcinogens. While repeated exposure to conventionally-refined mineral oils may cause pulmonary disease as well as severe dermatoses and cancer of the skin and scrotum, lipoid pneumonia is the major health hazard associated with highly refined mineral oils such as fog oils purchased after April 1986. While the course of lipoid pneumonia can be asymptomatic in some individuals, in others its symptoms can range from occasional cough to severe, debilitating dyspnea and pulmonary illness, occasionally ending in death.

  10. Desulfurization of coal with hydroperoxides of vegetable oils. Technical progress report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, Feng; Gholson, K.L.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During the second quarter, working with IBC-108 coal (2.3% organic S, 0.4% pyrite S), the effects of different extraction solvents were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 100[degrees]C. BTU loses can be kept to a minimum of 3% with proper use of solvents. During this third quarter the effects of different ratios of oil:coal, different temperatures, and different reaction times were completely examined. The effects of alkali on sulfur removal were further investigated. Best organic sulfur removal reaches 34% using ammonia pretreatment, then oil and finally aqNA2CO3 extraction.

  11. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  12. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect (OSTI)

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  13. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  14. Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983

    SciTech Connect (OSTI)

    Evans, R.A.

    1998-06-01

    Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).

  15. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  16. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-07-14

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  20. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  1. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Technical report, September 1--November 30, 1995

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1995-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method will be investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. During this first quarter the selection of base for pretreatment and extraction (Task 1) has been completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. About 40% of sulfur is removed from IBC-108 coal using 5% NaOH for pretreatment followed by linseed oil oxidation in air and Na{sub 2}CO{sub 3} extraction.

  2. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  3. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Technical progress report, October--December 1994

    SciTech Connect (OSTI)

    Pitts, M.J.

    1994-01-01

    The study will investigate two major areas concerning co-injecting an interfacial tension reduction agent(s) and a mobility control agent into petroleum reservoirs. The first will consist of defining the mechanisms of interaction of an alkaline agent, a surfactant, and a polymer on a fluid-fluid and a fluid-rock basis. The second is the improvement of the economics of the combined technology. This report examines effect of rock type on oil recovery by an alkaline-surfactant-polymer solutions. This report also begins a series of evaluations to improve the economics of alkaline-surfactant-polymer oil recovery.

  4. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  5. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi

    1997-05-01

    The goal of this project is to develop an inexpensive method to remove organic sulfur from pyrite-free and mineral-free coal using base, air, and readily available farm products. This is accomplished by treating coals with impregnating coals with polyunsaturated offs, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they produce no noxious products and improve burning qualities of the solid products. IBC-108 coal, (contains only 0.4% pyrite and 2.7% organic sulfur) was first treated with Na{sub 4}OH at two different concentrations and four different times, and with NH{sub 4}OH at two different concentrations and two different temperatures. Pretreating IBC-108 coal with bases removes 13% to 23% of the sulfur, and NaOH is a better treatment than NH{sub 4}OH in most of the experiments. Higher temperatures, higher base concentrations, and longer treatment times remove more sulfur. Na{sub 2}CO{sub 3} is more effective than NaOH for oil extraction after the oil treatment. To test for effectiveness of sulfur removal, eight coal samples were treated with NaOH (two concentrations at four different times) were further treated with linseed oil at three temperatures, four different times, and two oil to coal ratios. The combination of NaOH pretreatment, then oil treatment, followed by Na{sub 2}CO{sub 3} extraction, removes 23% to 50% of the sulfur. The best result is achieved by pretreating with 5% NaOH for 20 hr (23% sulfur removal) followed by oil treatment at 100{degrees}C for 5 hr with a 1:1 oil to coal ratio (50% sulfur removal in total). More sulfur is removed with a 1:1 oil to coal ratio than a 1:10 ratio under most conditions.

  6. Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Continuous 1 Conventional and Other 2 Longwall 3 Total

  7. Technical Demonstration and Economic Validation of Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing OilGas Wells in Texas Technical Demonstration and Economic ...

  8. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  9. SRC burn test in 700-hp oil-designed boiler. Volume 1. Integrated report. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    This burn test program was conducted during the period of August 1982 to February 1983 to demonstrate that Solvent Refined Coal (SRC) products can displace petroleum as a boiler fuel in oil- and gas-designed boilers. The test program was performed at the U.S. Department of Energy's Pittsburgh Energy Technology Center (PETC). Three forms of SRC (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) and No. 6 Fuel Oil were evaluated in the 700-hp (30 x 10/sup 6/ Btu/hour) watertube, oil-designed boiler facility at PETC. The test program was managed by the International Coal Refining Company (ICRC) and sponsored by the Department of Energy. Other organizations were involved as necessary to provide the expertise required to execute the test program. This final report represents an integrated overview of the test program conducted at PETC. More detailed information with preliminary data can be obtained from separate reports prepared by PETC, Southern Research Institute, Wheelabrator-Frye, Babcock and Wilcox, and Combustion Engineering. These are presented as Annex Volumes A-F. 25 references, 41 figures, 15 tables.

  10. Process for removing copper in a recoverable form from solid scrap metal

    DOE Patents [OSTI]

    Hartman, Alan D. (Albany, OR); Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR)

    1995-01-01

    A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.

  11. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  12. Rheology and stability of SRC residual fuel oils - storage evaluation. SRC-1 quarterly technical report, October-December 1982. Supplement

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    In Air Products ongoing study to characterize the rheology and stability of various SRC residual oils, single-phase blends of 50 wt % HSRC and TSL SRC in 1:1 mixtures of 1st- and 2nd-stage process solvents were subjected to storage stability tests at 150/sup 0/F in nitrogen and air atmospheres. Using viscosity as an indicator, it was observed that the blends studied increased in viscosity with storage time in an air atmosphere; the viscosity increase began after a 4-week storage period. The increase in HSRC blend viscosity was significantly greater than that of the TSL SRC blend. A 60-day air-stored blend will require a pumping temperature about 10/sup 0/F higher than that specified for an unaged blend in order to have the same viscosity. The viscosity increase under nitrogen storage was relatively insignificant. Nitrogen blanketing appears to be important in maintaining the specified viscosity characteristics of the blends during storage in the 150/sup 0/F storage condition tested. A loss of volatiles undoubtedly occurs during high-temperature storage under laboratory conditions. Such losses contribute to an increase in the viscosity of the blend. In commercial practice, volatile losses are expected to be significantly lower. Solvent extraction data and analysis of separated fractions suggest that during storage under the above conditions, some oxidative polymerization of pentane-soluble oil components forms higher molecular weight pentane insolubles (asphaltenes and benzene insolubles). Asphaltenes are also involved in the increase in viscosity and do chemically change. 1 reference, 8 figures, 27 tables.

  13. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  14. Long-term assessment of the oil spill at Bahia Las Minas, Panama. Interim report. Volume 2: Technical report

    SciTech Connect (OSTI)

    Keller, B.D.; Jackson, J.B.C.

    1991-10-01

    On April 27, 1986, at least 8 million liters of medium-weight crude oil spilled from a ruptured storage tank into the Bahia Las Minas on the Caribbean Coast of Panama. Coral reefs, seagrass communities, and mangroves were affected. The area of the spill was also the location of the Smithsonian Tropical Research Institute's Galeta Laboratory where resident and visiting scientists have been studying the ecology of the Bahia Las Minas and the adjacent areas for over 15 years. Because this was a unique opportunity to assess the immediate biological effects following a major spill in the Caribbean region and to monitor the subsequent recovery, the U.S. Department of the Interior Minerals Management Service supported a 5-year environmental study. The objectives of the study are to identify any long-term changes in the marine environment that may have resulted from the spill and to understand the ecological processes causing such changes. This is the first report from the study and addresses the effects observed during the first two years of the effort.

  15. Contracts for field projects and supporting research on enhanced oil recovery. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    1996-10-01

    This document presents brief descriptions of research programs concerned with enhanced oil recovery.

  16. SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II

    SciTech Connect (OSTI)

    Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

    2011-10-31

    Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

  17. Figure 7. Projected Production for the High Development Rate...

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  18. Figure 6. Projected Production for the Low Development Rate of...

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Projected Production for the Low Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  19. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-08-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide (CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  20. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2011-10-01

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  1. The twentieth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1987-01-01

    This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

  2. Heading off the permanent oil crisis

    SciTech Connect (OSTI)

    MacKenzie, J.J.

    1996-11-01

    The 1996 spike in gasoline prices was not a signal of any fundamental worldwide shortage of crude oil. But based on a review of many studies of recoverable crude oil that have been published since the 1950s, it looks as though such a shortfall is now within sight. With world demand for oil growing at 2 percent per year, global production is likely to peak between the years 2007 and 2014. As this time approaches, we can expect prices to rise markedly and, most likely, permanently. Policy changes are needed now to ease the transition to high-priced oil. Oil production will continue, though at a declining rate, for many decades after its peak, and there are enormous amounts of coal, oil sands, heavy oil, and oil shales worldwide that could be used to produce liquid or gaseous substitutes for crude oil, albeit at higher prices. But the facilities for making such synthetic fuels are costly to build and environmentally damaging to operate, and their use would substantially increase carbon dioxide emissions (compared to emissions from products made from conventional crude oil). This paper examines ways of heading of the impending oil crisis. 8 refs., 3 figs.

  3. Table 17. Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type,

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 17. Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Underground Surface Total Mine Production Range (thousand short

  4. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  5. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  6. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  7. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    89 Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels) 48 States 3 Onshore ........................................................................... 14.2 112.6 126.7 48 States 3 Offshore ........................................................................... 4.6 50.3 54.8 Alaska

  8. New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil March 3, 2006 - 11:40am Addthis WASHINGTON , D.C. - The Department of Energy (DOE) released today reports indicating that state-of-the-art enhanced oil recovery techniques could significantly increase recoverable oil resources of the United States in the future. According to the findings, 89 billion barrels or more could eventually be added to

  9. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NREL/PR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore fluids under high confining pressures and high temperatures with correspondingly large quantities of dissolved methane o Soft geopressure: Hydrostatic to 15.83 kPa/m o Hard geopressure: 15.83- 22.61 kPa/m (lithostatic

  10. Technical Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Review for Technical Standards of Interest Legend: Red Technical Standards Program Activities and Responsibilities Blue Directives Program Activities and Responsibilities...

  11. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  12. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    SciTech Connect (OSTI)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K.

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  13. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    SciTech Connect (OSTI)

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  14. Philippines: World Oil Report 1991

    SciTech Connect (OSTI)

    Khin, J.A. )

    1991-08-01

    This paper reports on the discovery of a major oil field in the West Linapacan area, plus encouraging signs from the Calauit 1B, both offshore Palawan, that have prompted foreign and local firms to increase exploration activity, which should result in the drilling of 22 wells this year, compared to only seven during 1990. The West Linapacan well is reported to have potential recoverable reserves of 109 million bbl, and a consortium led by Alcorn (Production) Philippines plans a two-phase development of the discovery, beginning with two or three follow-up wells. These will be part of the seven additional wells the Office of Energy Affairs has approved for 1991 or early 1992. The OEA expects production from West Linapacan to start by 1992 at an initial rate of 15,000 to 20,000 bopd.

  15. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect (OSTI)

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  16. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1991--February 15, 1992

    SciTech Connect (OSTI)

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  17. Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective

    SciTech Connect (OSTI)

    Greene, David L; Hopson, Dr Janet L; Li, Jia

    2005-01-01

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

  18. Urban Mining: Quality and quantity of recyclable and recoverable material mechanically and physically extractable from residual waste

    SciTech Connect (OSTI)

    Di Maria, Francesco Micale, Caterina; Sordi, Alessio; Cirulli, Giuseppe; Marionni, Moreno

    2013-12-15

    Highlights: • Material recycling and recovery from residual waste by physical and mechanical process has been investigated. • About 6% of recyclable can be extracted by NIR and 2-3Dimension selector. • Another 2% of construction materials can be extracted by adopting modified soil washing process. • Extracted material quality is quite high even some residual heavy metal have been detected by leaching test. - Abstract: The mechanically sorted dry fraction (MSDF) and Fines (<20 mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2 mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5 mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20 mm particle size fractions.

  19. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near - term. Technical progress report, June 17, 1994--June 17, 1995

    SciTech Connect (OSTI)

    1996-07-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of water injection wells with solids as a result of poor water quality. In many instances the lack of reservoir management is due to lack of (1) data collection and organization, (2) integrated analysis of existing data by geological and engineering personnel, and (3) identification of optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in the project. The Stewart Field (on the latter stage of primary production) is located in Finney County, Kansas, and was operated by Sharon Resources, Inc. and is now operated by North American Resources Company. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  20. Recovery of bypassed oil in the Dundee Formation using horizontal drains, Quarterly technical report, 1/1/97--3/31/97

    SciTech Connect (OSTI)

    1997-03-30

    This Class 11 field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a rate of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two subsequent wells, the Frost 5-3 and the Happy Holidays 6-3, have not been as successful. Both are currently producing 10 BOPD with 90% water cut. Efforts are underway to determine why these wells are performing so poorly and to see if the situation can be remedied. The reasons for these poor performances of the new wells are not clear at this time. It is possible that the wells entered the Dundee too low and missed pay higher in the section. When the TOW 1-3 was drilled, a vertical probe well was also drilled and cored. That probe well penetrated the pay zone and helped guide the horizontal well. The important lesson may be that vertical probe wells are a crucial step in producing these old fields and should not be eliminated simply to save what amounts to a small incremental cost. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Additional project work involved the characterization of 28 other Dundee fields in Michigan to aid in determining appropriate additional candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling. The project was a cooperative venture involving the US Department of Energy, Michigan Technological University (MTU), Western Michigan University (WMU), and Terra Energy (now Cronus Development Co.) in Traverse City, MI.

  1. Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT Prepared By Terry Brown, Jeffrey Morris, Patrick Richards and Joel...

  2. Technical Guidance

    Broader source: Energy.gov [DOE]

    The Office of Technical Guidance, within the Office of Health, Safety and Security develops and issues Government-wide and Department-wide technical guidance to ensure that classified nuclear...

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  4. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Crude Oil and Lease Condensate, Total Technically Dry Natural Gas, Total Technically Recoverable Resources Recoverable Resources Crude Oil and Lease Condensate by Type Dry Natural Gas by Type 88 U.S. Energy Information Administration / Annual Energy Review 2011 58% 25% 18% 48 StatesÂą Onshore 48 StatesÂą Offshore Alaska 20% 13% 13% 54% 48 StatesÂą Onshore 48 StatesÂą Offshore Gas Alaska Tight Gas, Shale Gas, and Coalbed

  5. IOGCC/DOE oil and gas environmental workshop

    SciTech Connect (OSTI)

    Not Available

    1991-05-16

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose in providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The following topics were discussed, groundwater protection; temporarily abandoned and idle wells; effluent discharges; storm water runoff; monitoring and compliance; wetlands; naturally occurring radioactive materials; RCRA reauthorization and oil pollution prevention regulation. At the conclusion, all of the participants were asked to complete a questionnaire which critiqued the day activities. A discussion of each of the issues is made a part of this report as is a summary of the critique questionnaire which were received.

  6. Technical information

    Gasoline and Diesel Fuel Update (EIA)

    Home> Commercial Buildings Home> Technical Information > Estimation of Standard Errors Estimation of Standard Errors Sampling error is the difference between the survey estimate...

  7. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  8. igure 4. Production Schedules at Two Development Rates for the...

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Production Schedules at Two Development Rates for the Statistical Mean of Recovering 10.3 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska...

  9. Figure 5. Production Schedules at Two Development Rates for the...

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Production Schedules at Two Development Rates for the 5 Percent Probability of Recovering 16.0 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of...

  10. Figure 3. Production Schedules at Two Development Rates

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Production Schedules at Two Development Rates for the 95 Percent Probability of Recovering 5.7 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of...

  11. Figure 3. Production Schedules at Two Development Rates

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Production Schedules at Two Development Rates for the 95 Percent Probability of Recovering 5.7 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig3.jpg (32189 bytes)

  12. Oil-shale utilization at Morgantown, WV

    SciTech Connect (OSTI)

    Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

    1982-01-01

    Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

  13. Oil recovery by nitrogen flooding. Final report

    SciTech Connect (OSTI)

    Ronde, H.; Hagoort, J.

    1992-03-01

    The general objective of the project is the Establishment of technical and economic design criteria and evaluation tools for oil and condensate recovery by Nitrogen Injection. The main objective has been divided into the following specific objectives: Determination of the effect of oil composition on the oil recovery; Investigation of the pros and cons of slim-tube experiments as a tool for the design and evaluation of nitrogen flooding; Measurement and calculation of the minimum miscibility pressures (MMP) for nitrogen flooding.

  14. EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESERVOIR CONDITIONS (Technical Report) | SciTech Connect Technical Report: EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Citation Details In-Document Search Title: EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as

  15. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  16. Selectively reducing offshore royalty rates in the Gulf of Mexico could increase oil production and federal government revenue

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1985-05-10

    The US government leases large areas in the Outer Continental Shelf in the Gulf of Mexico for the development of oil resources and receives royalties on the oil produced. Conventional methods of oil recovery have recovered or are expected to recover about half of the 16 billion barrels of oil discovered in this area. Other oil recovery methods, collectively known as enhanced oil recovery (EOR), could potentially increase production by about 1 billion barrels of oil. EOR in the Gulf is expensive and does not appear to be economically justified in most cases. Under existing economic conditions and federal policies, GAO's review indicates that utilizing EOR methods will probably produce only about 10 percent of the additional recoverable oil. However, financial incentives in the form of royalty reductions could increase both oil production and federal government revenue if applied on a project-by-project basis. Universal applications of royalty reduction for EOR, however, while achieving increased oil production, would not increase federal government revenue. GAO recommends that the Department of the Interior's Minerals Management Service initiate action that would allow for selective royalty reductions for EOR projects in the Gulf in instances where both total oil production and federal government revenue will increase. 6 figs., 1 tab.

  17. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  18. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History U.S. 0 0 0 0 0 0 1986-2014 East Coast (PADD 1) 0 0 0 0

  19. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  20. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  1. Fuel Cell Technical Publications

    Broader source: Energy.gov [DOE]

    Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and websites is provided here.

  2. TECHNICAL REPORT

    Office of Scientific and Technical Information (OSTI)

    TECHNICAL REPORT September 1 through November 30, 1994 Project Title: MANUFACTURE OF AMMONIUM SULFATE FERTILIZER FROM FGD-GYPSUM ICCI Project Number: Principal Investigator: Other Investigators: Project Manager; DOE Cooperative Agreement Number: DE-FC22-92PC9252 1 (Year 3) 94-1/3.1B-3M M.4.M. Chou, Illinois State Geological Survey (ISGS) M. Rostam-Abadi and J.M. Lytle, ISGS R. Hoeft, University of Illinois; EZ. Blevins, Allied Signal-Chemicals; F. Achron, Southeast Marketing Chemical Process

  3. Oil shale combustion/retorting

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

  4. Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository

    SciTech Connect (OSTI)

    Smith, M.W.; Shadle, L.J.; Hill, D.

    2007-01-01

    The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

  5. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  6. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996, 11th Quarter of the project

    SciTech Connect (OSTI)

    Allison, E.; Morgan, C.D.

    1996-07-30

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  7. Final Technical Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Technical Report Citation Details In-Document Search Title: Final Technical Report This final technical report describes results and findings from a...

  8. Advances in heavy oil hydroprocessing

    SciTech Connect (OSTI)

    Mendizabal, O.B. )

    1988-06-01

    The world increase in heavy crudes has forced refiners to develop different processes that upgrade the yields and product properties recovered from these crudes. However, some of the optimized and new processes are not able to handle whole heavy crude oils, due to the high viscosity and corrosion of their long and short residues. The different processes for heavy crudes can be classified in two areas: physical (vg. Liquid Extraction) and chemical processes. The catalytic hydrotreating process, which belongs to this last classification, has demonstrated to be an economical upgrading process for heavy crude oil. This paper describes the development by the Mexican Petroleum Institute of the process to hydrotreat maya heavy crude. The effect of the operating conditions, the catalyst ---- development and the technical - economical analysis are presented. The product properties and yields are compared with the results obtained with light crude oil like isthmus.

  9. Oil shale technology. Final report

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  13. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  14. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  15. Sandia Energy - Technical Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Staff Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Battery Testing Technical Staff Technical StaffAshley Otero2015-10-20T01:52:21+00:00...

  16. Oil and gas field code master list, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  17. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  18. OIl Speculation

    Gasoline and Diesel Fuel Update (EIA)

    Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil

  19. Post waterflood CO{sub 2} miscible flood in light oil, fluvial: Dominated deltaic reservoir. First quarterly technical progress report, Fiscal year 1994, October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-15

    Production from the Port Neches CO{sub 2} project was initiated on December 6, 1993 after having been shut-in since the start of CO{sub 2} injection on September 22, 1993 to allow reservoir pressure to build. Rates were established at 236 barrels of oil per day (BOPD) from two wells in the 235 acre waterflood project area, which before project initiation had produced only 80 BOPD from the entire area. These wells are flowing large amounts of fluid due to the high reservoir pressure and their oil percentages are increasing as a result of the CO{sub 2} contacting the residual oil. One well, the H. J. Kuhn No. 15-R is flowing 217 BOPD, 1139 BWPD, and 2500 MCFPD of CO{sub 2} at a flowing tubing pressure (FTP) of 890 psi. The other producing well, the H. J. Kuhn No. 33, is currently flowing 19 BOPD, 614 BWPD, and 15 MCFPD at a FTP of 400 psi. Unexpectedly high rates of CO{sub 2} production are being made from Well No. 15-R and from the W. R. Stark ``B`` No. 8. This No. 8 well produced 7 BOPD, 697 BWPD, and 15 MCFPD prior to being shut-in during September to allow for the reservoir pressure to build by injecting CO{sub 2}, but when opened on December 6, the well flowed dry CO{sub 2} at a rate of 400 MCFPD for a two day test period. More sustained production tests will be obtained after all wells are tied into the new production facility. Many difficulties occurred in the drilling of the horizontal CO{sub 2} injection well but a successful completion across 2501 of sand has finally been accomplished. A formation dip of 11--14 degrees in the area where the well was being drilled made the proposed 1500{prime} horizontal sand section too difficult to accomplish. The shale section directly above the sand caused sticking problems on two separate occasions resulting in two sidetracks of the well around stuck pipe. The well will be tied into the facility and CO{sub 2} injection into the well will begin before February 1, 1994.

  20. Water-related Issues Affecting Conventional Oil and Gas Recovery and

    Office of Scientific and Technical Information (OSTI)

    Potential Oil-Shale Development in the Uinta Basin, Utah (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Saline water disposal is one of the most pressing issues

  1. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  2. Technical Consultant Report Template

    Office of Energy Efficiency and Renewable Energy (EERE)

    Technical Consultant Report Template, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  3. Technical Consultant Contract

    Broader source: Energy.gov [DOE]

    Technical Consultant Contract, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  4. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  5. Alaska Native Tribes Receive Technical Assistance for Local Clean Energy

    Energy Savers [EERE]

    Projects | Department of Energy Tribes Receive Technical Assistance for Local Clean Energy Projects Alaska Native Tribes Receive Technical Assistance for Local Clean Energy Projects May 24, 2012 - 5:47pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - As part of the Obama Administration's commitments to reducing America's reliance on imported oil and protecting our nation's air and water, the U.S. Energy Department and the Denali Commission announced today that five Alaska

  6. 2013 Geothermal Technologies Office Peer Review Technical Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2013 Geothermal Technologies Office Peer Review Technical Report 2013 Geothermal Technologies Office Peer Review Technical Report March 5, 2014 - 12:00am Addthis Foro Energy, Inc. partners with the United States Department of Energy to commercialize high power lasers for the oil, natural gas, geothermal, and mining industries. photo courtesy of Foro Energy Foro Energy, Inc. partners with the United States Department of Energy to commercialize high power lasers for the

  7. Strategic Center for Natural Gas and Oil R&D Program

    Energy Savers [EERE]

    Albert Yost SMTA Strategic Center for Natural Gas & Oil The National Energy Technology Laboratory & The Strategic Center for Natural Gas and Oil R&D Program August 18, 2015 Tribal leader forum: U.S. Department of Energy oil and gas technical assistance capabilities Denver, Colorado 2 National Energy Technology Laboratory Outline * Review of Case History Technology Successes * Review of Current Oil and Natural Gas Program * Getting More of the Abundant Shale Gas Resource *

  8. LLNL oil shale project review: METC third annual oil shale contractors meeting

    SciTech Connect (OSTI)

    Cena, R.J.; Coburn, T.T.; Taylor, R.W.

    1988-01-01

    The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

  9. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  10. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  11. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-05-18

    Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

  12. Technical Assessment Team Report

    Broader source: Energy.gov [DOE]

    The Technical Assessment Team (TAT) is an independent team of technical experts that evaluated the mechanisms and chemical reactions contributing to the failure of a waste drum at the Waste...

  13. TECHNICAL STANDARDS PROGRAM RESPONSIBILITIES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes the responsibilities of persons who are charged with implementing the DOE Technical Standards Program. 

  14. SPEAR3 | Technical Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Documentation Hardware Component Database: Mechanical Electrical Drawing shor tcuts BPM Development SSRL | SLAC | Stanford University | SSRL Computing | SLAC Computing...

  15. TECHNICAL STANDARDS COMMENT RESOLUTION

    Broader source: Energy.gov [DOE]

    PurposeThis procedure provides guidance for resolving comments on DOE Technical Standards that are received during the coordination process. 

  16. ARM - Technical Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsTechnical Reports Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Technical Reports For proper viewing, technical reports should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website.

  17. Apply for Technical Assistance

    Broader source: Energy.gov [DOE]

    Application form for U.S. Department of Energy (DOE) Office of Indian Energy technical assistance for tribes.

  18. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23

    The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

  19. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-19

    The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

  20. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

  1. PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PDF icon PIA - Northeast Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified Business Operations General Support

  2. Technical Standards Managers

    Energy Savers [EERE]

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONE/FAX/EMAIL NAME DOE FACILITY/ADDRESS LOC CODE DOE TECHNICAL STANDARD MANAGERS AU-30 DOE Technical Standards Program, Manager Jeī D. Feit AU-30 DOE Technical Standards Program, Program Specialist Kathy A. Knight AU-30 Support DOE Technical Standards Program, Contractor, supporƟng the DOE Oĸce of Environmental, Health, Safety and Security William A. Studniarz U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 U.S. Department of

  3. Oil Security Metrics Model

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  4. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net ...

  5. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  6. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  7. Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Technical Information Exchange on Pyrolysis Oil May 9-10, 2012 Manchester, NH Dr. Jani Lehto VTT Technical Research Centre of Finland 2 07/05/2012 Outline  Introduction  Main challenges today in general  More details on challenges associated with  Feedstock processing  Pyrolysis oil production  Transportation and storage  Use of pyrolysis

  8. Beginning of an oil shale industry in Australia

    SciTech Connect (OSTI)

    Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

    1989-01-01

    This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

  9. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  10. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Hagerman, G.; Scott, G.

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources.

  11. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  12. World Crude Oil Prices

    Gasoline and Diesel Fuel Update (EIA)

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  13. Voltage Control Technical Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-08-Voltage-Control-Technical-Conference Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  14. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23

    The order establishes the DOE Technical Standards Program. Admin Chg 1, dated 3-12-13 supersedes DOE O 252.1A.

  15. Sandia Energy - Technical Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Highlights Home Analysis A view upwind of SWIS' aerosol-generating system. Permalink Gallery Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm...

  16. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis

    SciTech Connect (OSTI)

    Ringer, M.; Putsche, V.; Scahill, J.

    2006-11-01

    A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

  17. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Broader source: Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300Âş F) geothermal resources in oil and gas settings.

  18. Register for DOE Tribal Leader Forum on Oil and Gas by Aug. 7

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting a forum for tribal leaders on Oil and Gas Technical Assistance Capabilities on Aug. 18 in Denver, Colorado.

  19. Bio-Oil Deployment in the Home Heating Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Oil Deployment in the Home Heating Market March 23, 2015 Dr. Thomas A. Butcher Brookhaven National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * Goal- Evaluate the feasibility of using near-commercial, upgraded bio-oils in the heating market. Focus is on state of current fuel availability, technical aspects of end use, supply and distribution constraints, and barriers to manufacturer and end user

  20. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  1. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  2. Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3

    SciTech Connect (OSTI)

    1997-05-01

    The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

  3. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  4. About Technical Assistance

    Broader source: Energy.gov [DOE]

    As technologies proceed along the development pipeline, most face major hurdles as they attempt to enter commercial markets. Our Technical Assistance program helps lower a range of institutional barriers to prepare innovative, energy-efficient technologies and energy management systems for full commercial deployment. These projects and activities address barriers that are not technical, Technology Readiness Level 9.

  5. Technical Review Panel Report

    Energy Savers [EERE]

    TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 Advanced Reactor Concepts Technical Review Panel Report Evaluation and Identification of future R&D on eight Advanced Reactor Concepts, conducted April - September 2012 December 2012 Public release version 2 Public release version 3 Table of Contents Summary ................................................................................................................................... 4 1. Overview of the Technical Review Panel

  6. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg 1 dated 9-20-11 supersedes DOE O 426.1 and cancels DOE P 426.1.

  7. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect (OSTI)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  8. Oil and gas development in East Siberia

    SciTech Connect (OSTI)

    Sagers, M.J.

    1994-03-01

    The East Siberian region, which comprises nearly 43% of Russia`s territory (including the Sakha (Yakut) republic), has substantial hydrocarbon potential that is impeded by significant logistical problems, the daunting physical environment, and technical challenges posed by the geological complexity of the region. The area`s three major oil and gas provinces are the Lena-Tunguska (with the greatest potential), Lena-Vilyuy, and Yenisey-Anabar. The paper focuses on assessment of reserves, production potential, and history, as well as joint-venture activity involving foreign capital. Foreign investment is targeting gas deposits in the Vilyuy basin and elsewhere in the Sakha republic and small oil deposits serving local markets in the Yakutsk and Noril`sk areas. Forecasts do not envisage substantial production of oil from the region before the year 2010. Future gas production levels are less predictable despite the ambitious plans to export gas from Sakha to South Korea. 14 refs., 1 fig., 1 tab.

  9. Going Global: Tight Oil Production

    U.S. Energy Information Administration (EIA) Indexed Site

    oil and unconventional techniques Global tight oil production has significant energy security implications 2 GOING GLOBAL: TIGHT OIL PRODUCTION Top Ten Countries with Largest ...

  10. Technical Report Confirms Reliability of Yucca Mountain Technical Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis

  11. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  12. Stabilization of Fast Pyrolysis Oil: Post Processing Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Lee, Suh-Jane; Hart, Todd R.

    2012-03-01

    UOP LLC, a Honeywell Company, assembled a comprehensive team for a two-year project to demonstrate innovative methods for the stabilization of pyrolysis oil in accordance with DOE Funding Opportunity Announcement (FOA) DE-PS36-08GO98018, Biomass Fast Pyrolysis Oil (Bio-oil) Stabilization. In collaboration with NREL, PNNL, the USDA Agricultural Research Service (ARS), Pall Fuels and Chemicals, and Ensyn Corporation, UOP developed solutions to the key technical challenges outlined in the FOA. The UOP team proposed a multi-track technical approach for pyrolysis oil stabilization. Conceptually, methods for pyrolysis oil stabilization can be employed during one or both of two stages: (1) during the pyrolysis process (In Process); or (2) after condensation of the resulting vapor (Post-Process). Stabilization methods fall into two distinct classes: those that modify the chemical composition of the pyrolysis oil, making it less reactive; and those that remove destabilizing components from the pyrolysis oil. During the project, the team investigated methods from both classes that were suitable for application in each stage of the pyrolysis process. The post processing stabilization effort performed at PNNL is described in this report. The effort reported here was performed under a CRADA between PNNL and UOP, which was effective on March 13, 2009, for 2 years and was subsequently modified March 8, 2011, to extend the term to December 31, 2011.

  13. COORDINATION OF DOE TECHNICAL STANDARDS

    Broader source: Energy.gov [DOE]

    PurposeThis procedure provides guidance on the formal coordination of DOE Technical Standards in the DOE Technical Standards Program (TSP). The purpose of coordination of draft technical standards...

  14. Technical Standards Managers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONE/FAX/EMAIL NAME DOE FACILITY/ADDRESS LOC CODE AU-30 Je D. Feit DOE Technical Standards Program, Manager U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 Phone: (301) 903-0471 Fax: (301) 903-6172 Je rey.Feit@hq.doe.gov AU-30 Kathy A. Knight DOE Technical Standards Program, Program Specialist U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 Phone: (301) 903-4439 Fax: (301) 903-6172 kathy.knight@hq.doe.gov AU-30

  15. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  16. The Strategic Center for Natural Gas and Oil R&D Program

    Energy Savers [EERE]

    Jared Ciferno Director, Strategic Center for Natural Gas & Oil The National Energy Technology Laboratory & The Strategic Center for Natural Gas and Oil R&D Program August 18, 2015 Tribal leader forum: U.S. Department of Energy oil and gas technical assistance capabilities Denver, Colorado 2 National Energy Technology Laboratory National Energy Technology Laboratory * Partner in DOE's national laboratory system * Five locations with 1,200 staff * 'Full-service' DOE National Laboratory

  17. Technical Standards Newsletters | Department of Energy

    Energy Savers [EERE]

    Technical Standards Newsletters Technical Standards Newsletters February 24, 2016 Technical Standards Newsletter - February 2016 Standards Actions Technical Standards Newsletter, February 2016 October 19, 2015 Technical Standards Newsletter - October 2015 Standards Actions Technical Standards Newsletter, October 2015 April 21, 2015 Technical Standards Newsletter - April 2015 Standards Actions Technical Standards Program Newsletter, April 2015 December 23, 2014 Technical Standards Newsletter -

  18. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

  19. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

  20. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

  1. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

  2. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  3. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  4. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  5. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  6. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  7. Technical Planning Basis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide assists DOE/NNSA field elements and operating contractors in identifying and analyzing hazards at facilities and sites to provide the technical planning basis for emergency management programs. Supersedes DOE G 151.1-1, Volume 2.

  8. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  9. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  10. Apply for Technical Assistance

    Office of Environmental Management (EM)

    Apply for Technical Assistance Use this online form to request technical assistance from the DOE Offce of Indian Energy for planning and implementing energy projects on tribal lands. To help us determine whether your request fts within the program's scope and can be addressed with available resources, please provide the information below and then click on "Submit Request." Only requests from federally recognized Indian Tribes, bands, nations, tribal energy resource develop- ment

  11. TEP Technical Asssistance 2010

    Energy Savers [EERE]

    gov The Parker Ranch installation in Hawaii Tribal Energy Program TEP Technical Assistance 2010 Sandra Begay-Campbell Principal Member of the Technical Staff Sandia National Laboratories October 25, 2010 2 | Tribal Energy Program eere.energy.gov Navajo: NTUA Solar Customer Providing rural Navajo families ACCESS to electricity 3 | Tribal Energy Program eere.energy.gov Hopi: Off-Grid Resident Living off-grid does not mean sacrificing comfort but understanding your limits 4 | Tribal Energy Program

  12. Climate Action Champion: Technical

    Office of Environmental Management (EM)

    Learn more at energy.gov/betterbuildings Climate Action Champion: Technical Assistance to the City of Seattle Planning for Seattle's new Building Energy Code Overview The City of Seattle, identified as a Climate Action Champion (CAC) by the Department of Energy (DOE), is revising its 2012 Energy Code, already one of the most progressive in the country. Seattle has made a pledge to be carbon neutral by 2050. Seattle received technical assistance from the Pacific Northwest National Laboratory in

  13. Boiler MACT Technical Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

  14. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  18. US Crude oil exports

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  19. Oil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Oil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our <a href="node/770751">interactive chart</a>. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence

  20. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  1. International Linear Collider-A Technical Progress Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: International Linear Collider-A Technical Progress Report Citation Details In-Document Search Title: International Linear Collider-A Technical Progress Report The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of

  2. Technical Assessment Team (TAT) Supporting Technical Documents | Department

    Energy Savers [EERE]

    of Energy Technical Assessment Team (TAT) Supporting Technical Documents Technical Assessment Team (TAT) Supporting Technical Documents The documents (listed below) are the documents used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a deliberative investigation process to understand and determine the cause

  3. Technical Assistance to Developers

    SciTech Connect (OSTI)

    Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.; Mukundan, Rangachary; Spernjak, Dusan

    2012-07-17

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols, and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.

  4. American Samoa Initial Technical Assessment Report

    SciTech Connect (OSTI)

    Busche, S.; Conrad, M.; Funk, K.; Kandt, A.; McNutt, P.

    2011-09-01

    This document is an initial energy assessment for American Samoa, the first of many steps in developing a comprehensive energy strategy. On March 1, 2010, Assistant Secretary of the Interior Tony Babauta invited governors and their staff from the Interior Insular Areas to meet with senior principals at the National Renewable Energy Laboratory (NREL). Meeting discussions focused on ways to improve energy efficiency and increase the deployment of renewable energy technologies in the U.S. Pacific Territories. In attendance were Governors Felix Camacho (Guam), Benigno Fitial (Commonwealth of the Northern Mariana Islands), and Togiola Tulafono, (American Samoa). This meeting brought together major stakeholders to learn and understand the importance of developing a comprehensive strategic plan for implementing energy efficiency measures and renewable energy technologies. For several decades, dependence on fossil fuels and the burden of high oil prices have been a major concern but never more at the forefront as today. With unstable oil prices, the volatility of fuel supply and the economic instability in American Samoa, energy issues are a high priority. In short, energy security is critical to American Samoa's future economic development and sustainability. Under an interagency agreement, funded by the Department of Interior's Office of Insular Affairs, NREL was tasked to deliver technical assistance to the islands of American Samoa. Technical assistance included conducting an initial technical assessment to define energy consumption and production data, establish an energy consumption baseline, and assist with the development of a strategic plan. The assessment and strategic plan will be used to assist with the transition to a cleaner energy economy. NREL provided an interdisciplinary team to cover each relevant technical area for the initial energy assessments. Experts in the following disciplines traveled to American Samoa for on-island site assessments: (1) Energy Efficiency and Building Technologies; (2) Integrated Wind-Diesel Generation; (3) Transmission and Distribution; (4) Solar Technologies; and (5) Biomass and Waste-to-Energy. In addition to these core disciplines, team capabilities also included expertise in program analysis, project financing, energy policy and energy planning. The intent of the technical assessment was to provide American Samoa with a baseline energy assessment. From the baseline, various scenarios and approaches for deploying cost effective energy efficiency and renewable energy technologies could be created to meet American Samoa's objectives. The information provided in this energy assessment will be used as input in the development of a draft strategic plan and the development of scenarios and strategies for deploying cost-effective energy efficiency and renewable products.

  5. Status of LLNL Hot-Recycled-Solid oil shale retort

    SciTech Connect (OSTI)

    Baldwin, D.E.; Cena, R.J.

    1993-12-31

    We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

  6. Technical Assistance | Department of Energy

    Energy Savers [EERE]

    Technical Assistance Technical Assistance The U.S. Department of Energy (DOE) Office of Indian Energy provides federally recognized Indian Tribes, including Alaska Native villages, tribal energy resource development organizations, and other organized tribal groups and communities, with technical assistance to advance tribal energy projects. On-Request TECHNICAL ASSSISTANCE Technical experts from DOE and its national laboratories, along with other partnering organizations, provide up to 40 hours

  7. Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Technical Assistance Photo courtesy of Dennis Schroeder, NREL 18022 Photo courtesy of Dennis Schroeder, NREL 18022 The U.S. Department of Energy offers technical assistance supporting energy efficiency and renewable energy. This technical assistance can include direct advice on issues or goals, tools and maps, and training. Some select technical assistance offerings are listed below. For States and Communities The State and Local Solution Center provides states and

  8. Largest US oil and gas fields, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  9. External Technical Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    External Technical Review Report March 2010 U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t External Technical Review (ETR) Process Guide September 2008 U.S. DOE Office of Environmental Management September 2008 External Technical Review Process Guide Page 2 of 37 TABLE OF CONTENTS 1.0 INTRODUCTION

  10. State Energy Data System 2013 Production Technical Notes

    Gasoline and Diesel Fuel Update (EIA)

    Production Technical Notes Contents Section 1. Introduction 1 Section 2. Coal 3 Section 3. Crude Oil 5 Section 4. Natural Gas (Marketed Production) 7 Section 5. Renewable Energy and Nuclear Energy 11 U.S. Energy Information Administration | State Energy Data 2013: Production 1 Section 1. Introduction The U.S. Energy Information Administration's (EIA) State Energy Data System (SEDS) provides Members of Congress, federal and state agencies, and the general public with comparable state-level data

  11. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  12. Figure 5. Production Schedules at Two Development Rates for the 5 Percent

    U.S. Energy Information Administration (EIA) Indexed Site

    Probability of Recovering 16.0 Billion Barrels 5. Production Schedules at Two Development Rates for the 5 Percent Probability of Recovering 16.0 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig5.jpg (3770

  13. igure 4. Production Schedules at Two Development Rates for the Statistical

    U.S. Energy Information Administration (EIA) Indexed Site

    Mean of Recovering 10.3 Billion Barrels 4. Production Schedules at Two Development Rates for the Statistical Mean of Recovering 10.3 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig4.jpg (4109

  14. Technical Services Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TSA-AGMT.DOC (9/06/01) 04/14/13 Technical Services Agreement No. TSA- The National Renewable Energy Laboratory (hereinafter "NREL") Operating under Prime Contract No. DE-AC36-08GO28308 for the Department of Energy And <Sponsor>` (hereinafter "Sponsor") I. Parties to the Technical Services Agreement. The Alliance for Sustainable Energy, LLC as Management and Operating (M&O) Contractor for the National Renewable Energy Laboratory ("Contractor"), under U.S.

  15. Technical Security Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-09-02

    This order implements the Department of Energy (DOE) Technical Security Program (TSP). This program represents the convergence of two distinct disciplines: Counterintelligence (CI) and Security Countermeasures. The elements of the TSP are driven by national level, interagency programs that are codified in various laws, Executive Orders, national polices and directives. Supersedes DOE M 470.4-4A Chg 1, dated 10-12-2010, Section D – Technical Surveillance Countermeasures (Official Use Only) and classified annex (Secret); and DOE M 205.1-3 (Official Use Only) and Part II (Secret), dated 4-17-2006.

  16. Federal Technical Capability Panel

    Office of Environmental Management (EM)

    Updated: April 2015 1 U. S. Department of Energy and National Nuclear Security Administration Federal Technical Capability Panel Organization Name Telephone Fax E-Mail FTCP CHAIR Chair (DOE/NTC) Karen L. Boardman (505) 845-6444 (505) 845-6079 kboardman@ntc.doe.gov FTCP Deputy Dave Chaney (505) 845-4300 (505) 845-4879 david.chaney@nnsa.doe.gov FTCP Technical Standards Mgr. Jeanette Yarrington (301) 903-7030 (301) 903-3445 Jeanette.Yarrington@hq.doe.gov FTCP Program Coordinator Jeannie Lozoya

  17. Crude Oil | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCrude Oil content top National Transportation Fuels Model Posted by tmanzan on Oct 3, 2012 in | Comments 0 comments National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries,

  18. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  19. Office of Technical Guidance

    Broader source: Energy.gov [DOE]

    The Office of Technical Guidance develops, promulgates, and interprets national level policies, procedures, and guidance to identify (1) information that must be classified or controlled under statute or Executive order to protect the national security, to ensure the effective operation of the Government, or to protect the privacy interests of individuals and (2) classified or controlled information that may be declassified or decontrolled.

  20. Materials Technical Team Roadmap

    SciTech Connect (OSTI)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  1. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  2. ?-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    SciTech Connect (OSTI)

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh

    2014-01-01

    Graphical abstract: - Highlights: • ?-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UV–vis spectra. • The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. • The possible pathway of the photocatalytic decomposition process has been discussed. • The active species, OH·, was detected by TA photoluminescence probing techniques. - Abstract: ?-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UV–vis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared ?-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH·) by terephthalic acid photo-luminescence probing technique.

  3. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  4. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  5. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  6. Crude Oil Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    revised monthly production estimates by state published in Petroleum Navigator. Crude oil production quantities are estimated by state and summed to the PADD and the U.S....

  7. Improved oil refinery operations and cheaper crude oil to help...

    U.S. Energy Information Administration (EIA) Indexed Site

    Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude ...

  8. Lower oil prices also cutting winter heating oil and propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    see even lower natural gas and heating oil bills this winter than previously expected ... said the average household heating with oil will experience a 41% drop in heating oil ...

  9. Lower oil prices also cutting winter heating oil and propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in ...

  10. Final Technical Report (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Final Technical Report Citation Details In-Document Search Title: Final Technical Report You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This ...

  11. Technical feasibility of storage on large dish stirling systems. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Technical feasibility of storage on large dish stirling systems. Citation Details In-Document Search Title: Technical feasibility of storage on large dish stirling systems. Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  12. Final Technical Report

    SciTech Connect (OSTI)

    Thiel, Jerry; Giese, Scott R; Beckermann, Christoph; Combi, Joan; Yavorsky, James; Cannon, Fred

    2009-09-30

    The Center for Advanced Biobased was created with funding supplied by the Department of Energy to study biobased alternatives to petroleum based materials used in the manufacture of foundry sand binders. The project was successful in developing two new biobased polymers that are based on renewable agricultural materials or abundant naturally occurring organic materials. The technology has the potential of replacing large amounts of chemicals produced from oil with environmentally friendly alternatives.

  13. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  14. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  15. CEEM Final Technical Report

    SciTech Connect (OSTI)

    Bowers, John

    2014-11-26

    The mission of the Center for Energy Efficient Materials (CEEM) was to serve the Department of Energy and the nation as a center of excellence dedicated to advancing basic research in nano-structured materials and devices for applications to solar electricity, thermoelectric conversion of waste heat to electricity, and solidstate lighting. The foundation of CEEM was based on the unique capabilities of UCSB and its partner institutions to control, synthesize, characterize, model, and apply materials at the nanoscale for more efficient sustainable energy resources. This unique expertise was a key source of the synergy that unified the research of the Center. Although the Center’s focus was basic research, It’s longer-term objective has been to transfer new materials and devices into the commercial sector where they will have a substantial impact on the nation’s need for efficient sustainable energy resources. As one measure of the impact of the Center, two start-up companies were formed based on its research. In addition, Center participants published a total of 210 archival journal articles, of which 51 were exclusively sponsored by the DOE grant. The work of the Center was structured around four specific tasks: Organic Solar Cells, Solid-State Lighting, Thermoelectrics, and High Efficiency Multi-junction Photovoltaic devices. A brief summary of each follows – detailed descriptions are in Sections 4 & 5 of this report. Research supported through CEEM led to an important shift with respect to the choice of materials used for the fabrication of solution deposited organic solar cells. Solution deposition opens the opportunity to manufacture solar cells via economically-viable high throughput tools, such as roll to roll printing. Prior to CEEM, most organic semiconductors utilized for this purpose involved polymeric materials, which, although they can form thin films reliably, suffer from batch to batch variations due to the statistical nature of the chemical reactions that produce them. In response, the CEEM team developed well-defined molecular semiconductors that produce active layers with very high power conversion efficiencies, in other words they can convert a very high fraction of sunlight into useful electrical power. The fact that the semiconductor is formed from molecular species provides the basis for circumventing the unreliability of polymer counterparts and, as an additional bonus, allows one to attain much grater insight into the structure of the active layer. The latter is particularly important because efficient conversion is the result of a complex arrangement of two semiconductors that need to phase separate in a way akin to oil and water, but with domains that are described by nanoscale dimensions. CEEM was therefore able to provide deep insight into the influence of nanostructure, through the application of structural characterization tools and theoretical methods that describe how electrical charges migrate through the organic layer. Our research in light emitting diode (LED)-based solid state lighting (SSL) was directed at improving efficiency and reducing costs to enable the widespread deployment of economically-viable replacements for inefficient incandescent, halogen, and fluorescent-based lighting. Our specific focus was to advance the fundamental science and technology of light emitting diodes to both understand factors that limit efficiencies and to provide innovative and viable solutions to the current impediments. One of the main challenges we faced is the decrease in efficiency when LEDs are driven harder to increase light output---the so called “droop” effect. It requires large emitting surfaces to reach a desired optical output, and necessitates the use of costly heat sinks, both of which increase the cost. We successfully reduced droop by growing LED crystals having non-conventional orientations. As recognized by the award of the 2014 Nobel prize to the inventors of the nitride LEDs (one of whom was a member of CEEM), LEDs already have a large societal impact in both developed (leading to large energy savings) and developing countries (bringing light where there is no electrical grid). The improvements in efficiency sought after in the CEEM project are key to a further impact of solid state lighting by LEDs with a projected doubling in efficiency by year 2020. Direct generation of electricity from heat has enormous promise for beneficial use of waste heat. But practical power generation directly from heat requires understanding and development of new and improved materials that will be more efficient and rugged than today’s thermoelectric materials. To accomplish this goal CEEM has synthesized five distinct and promising new classes of thermoelectric materials: (a) nanoparticle arrays that are effective in maximizing electric power generation and reducing detrimental loss of heat; (b) nitride and (c) oxide thermal electric materials that are effective at high temperatures where much beneficial heat is available; (d) arrays of silicon nano-wires that integrate thermal electricity generation into silicon-based electronics and materials; and (e) chemically synthesized nanostructured compounds that are cost effective, earth abundant, and environmentally friendly. The further development of these thermoelectric sources of electricity could have revolutionary impact for society in the recovery of waste heat from sources such as power plants and automobile exhaust, where there could be significant associated energy saving. It could even, in the future, provide disruptive alternatives and replacements for today’s internal combustion engines and could enable improved all-electric propulsion by the heat from shipboard nuclear reactors. The High Efficiency Multi-junction Photovoltaics task was a UCSB/NREL collaboration which bonded sub-cells from two different compound semiconductors material systems to make high efficiency multijunction solar cells for concentrating photovoltaic applications thathave substantially higher efficiency than single substrate cells made of elemental semiconductors such as silicon. This task required the development of new cell bonding methods with excellent coupling of both photons and electrons between the sub-cells. To accomplish this, we developed (1) GaInN solar cells with enhanced performance by using quantum-well absorbers and front-surface optical texturing, (2) a hybrid "pillar-array" bond which uses an array of metal pillars for electrical coupling, and (3) a "hybrid moth-eye" optical coating which combines the benefits of nano-imprinted moth-eye coatings and traditional multilayer coatings. The technical effectiveness was assessed by measurement of the photovoltaic efficiency of solar cells made using these techniques; the ultrahigh efficiencies targeted by this work are of compelling economic value for concentrating photovoltaics.

  16. Technology experience and economics of oil shale mining in Estonia

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1995-11-01

    The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

  17. Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Technical Assistance The Technical Assistance program is managed through the Center for Sustainable Soil and Groundwater Solutions at SRNL. The Technical Assistance program provides teams of nationally recognized experts from across the complex to support both DOE's smaller sites, such as Paducah, Portsmouth, Pinellas, Ashtabula, Fernald, Mound and Kansas City Plant, and larger sites such as Oak Ridge, Los Alamos, Lawrence Livermore and Savannah River. Solutions that reduce

  18. General Technical Base Qualification Standard

    Office of Environmental Management (EM)

    SENSITIVE DOE-STD-1146-2007 REAFFIRMED: March 2015 DOE STANDARD GENERAL TECHNICAL BASE QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited ii This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/ehss/services/nuclear-safety/ department-energy-technical-standards-program

  19. TECHNICAL STANDARDS PROGRAM TOPICAL COMMITTEES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes how topical committees are organized and recognized under the Technical Standards Program. 

  20. Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Technical Assistance Technical Assistance The DOE Office of Indian Energy and the Office of Energy Efficiency and Renewable Energy Tribal Energy Program provide federally recognized Indian Tribes, bands, nations, tribal energy resource development organizations, and other organized groups and communities-including Alaska Native villages or regional and village corporations-with technical assistance designed to advance renewable energy and energy efficiency projects. Technical

  1. Renewable Energy Technical Potential | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Technical Potential Jump to: navigation, search Dictionary.png Renewable Energy Technical Potential: Renewable energy technical potential represents the achievable...

  2. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  3. Final Technical Report

    SciTech Connect (OSTI)

    Maxwell, Mike, J., P.E.

    2012-08-30

    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  4. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Interior Lighting Efficiency for Municipalities eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Interior Lighting Efficiency for Municipalities Michael Myer Presenter - Pacific Northwest National Laboratory June 29, 2011 PNNL-SA-80993 Steve Kismohr Host - Midwest Energy Efficiency Alliance 2 | Interior Lighting Efficiency for Municipalities eere.energy.gov With this webinar, you will gain: 1. A Basic Understanding of Lighting Terminology 2. Ability to

  5. NASA technical baseline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical baseline - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  6. Technical Surveillance Countermeasures Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-18

    To prescribe policies, responsibilities and authorities to establish Department of Energy (DOE) Technical Surveillance Countermeasures (TSCM) Program. This order implements the DOE TSCM Procedural Guide, DOE TSCM Operations Manual, DOE TSCM Report Writing Guide and Threat Assessment Scheduling System (TASS) which contain classified policies and procedures concerning the DOE TSCM Program. Cancels DOE 5636.3A. Canceled by DOE O 471.2 dated 9-28-95.

  7. DOE Technical Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring and Implementing Solar Projects on Public Buildings Sarah Truitt, NREL Kim Owens & Craig Schultz, ICF International December 8, 2010 Photo courtesy of Bella Energy 2 | TAP Webinar eere.energy.gov What is TAP? DOE's Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement successful and sustainable clean

  8. Volttron Technical meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VOLTTRON Technical Meeting Virginia Tech Advanced Research Institute July 2015 Our mission * Accelerate clean energy technologies, companies and projects * Create high-quality jobs and long-term economic growth * Support municipal clean energy projects * Invest in residential and commercial renewable energy installations * Cultivate a robust marketplace for innovation Wind Turbine Testing Facility Boston, Massachusetts Mass Energy Landscape/Challenges * M! #1 in energy efficiency but ... *

  9. Boiler MACT Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boiler MACT Technical Assistance ADVANCED MANUFACTURING OFFICE Overview On December 20, 2012, the U.S. Environ- mental Protection Agency (EPA) finalized the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)). This rule applies to boilers in a wide range of industrial

  10. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. )

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  11. Corrosivity Of Pyrolysis Oils

    SciTech Connect (OSTI)

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  12. GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Beverly Seyler; John Grube

    2004-12-10

    Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated. Data from over 1,700 Illinois waterflood units and waterflood areas have been entered into an Access{reg_sign} database. The waterflood area data has also been assimilated into the ISGS Oracle database for mapping and dissemination on the ArcIMS website. Formation depths for the Beech Creek Limestone, Ste. Genevieve Limestone and New Albany Shale in all of the oil producing region of Illinois have been calculated and entered into a digital database. Digital contoured structure maps have been constructed, edited and added to the ILoil website as map layers. This technology/methodology addresses the long-standing constraints related to information access and data management in Illinois by significantly simplifying the laborious process that industry presently must use to identify underdeveloped pay zones in Illinois.

  13. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sound Oil Company file:///C|/Documents%20and%20Settings/blackard/Desktop/EIA/LEE0152.HTM[11/29/2012 2:30:44 PM] DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Application for Exception Name of Petitioner: Sound Oil Company Date of Filing: August 16, 1994 Case Number: LEE-0152 On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Sound requests that it be

  14. Business Case for Technical Qualification Program Accreditation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Case for Technical Qualification Program Accreditation Incentives Business Case for Technical Qualification Program Accreditation Incentives TQP Accreditation standardize ...

  15. Technical Standards Newsletter - October 2007 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Revision ... 1 *DOE Technical Standards Posted in RevCom for TSP ... 1 *DOE Technical Standards in Reaffirmation...

  16. Technical Standards Newsletter - February 2008 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Revision ... 1 *DOE Technical Standards Posted in RevCom for TSP ... 1 *DOE Technical Standards in Reaffirmation...

  17. Technical Standards Newsletter - February 2007 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Revision ... 1 *DOE Technical Standards Posted in RevCom for TSP ... 1 *DOE Technical Standards in Reaffirmation...

  18. Technical Qualification Program Administrative Forms | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Program Reaccreditation Report - Sandia Site Office Technical Qualification Program Self-Assessment Report - Oak Ridge Office - 2014 Technical Qualification Program...

  19. Technical Qualification Program Accreditation Objectives and...

    Office of Environmental Management (EM)

    Objectives and Criteria More Documents & Publications Technical Qualification Program Self-Assessment Report - Sandia Site Office - 2012 Technical Qualification Program...

  20. Technical skills training program

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    The departmentally administered Technical Skills Training Program encompasses three functional areas: Program Management Skills, Project Management Skills and Procurement and Assistance Skills Training. Primary emphasis is directed at providing DOE employees the specific work related skills necessary to perform effectively and efficiently. This directory contains descriptions of the courses available in the three program areas and general information for participation in the training programs. Separate sections have been reserved for the Current Year Schedule and listings of the Headquarters and Field Training Office Coordinators.

  1. RADTRAN 6 technical manual.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Neuhauser, Karen Sieglinde; Heames, Terence John; O'Donnell, Brandon M.; Dennis, Matthew L.

    2014-01-01

    This Technical Manual contains descriptions of the calculation models and mathematical and numerical methods used in the RADTRAN 6 computer code for transportation risk and consequence assessment. The RADTRAN 6 code combines user-supplied input data with values from an internal library of physical and radiological data to calculate the expected radiological consequences and risks associated with the transportation of radioactive material. Radiological consequences and risks are estimated with numerical models of exposure pathways, receptor populations, package behavior in accidents, and accident severity and probability.

  2. AIKEN TECHNICAL COLLEGE CAMPUS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AIKEN TECHNICAL COLLEGE CAMPUS 2276 Jefferson Davis Highway, Graniteville SC 29829 Visitor parking is provided mainly on Parking Lot 3. In addition to that, all parking lots have some visitor parking available. SRSCRO office is in the Administration Building (building #100/200), 2nd floor, Room 230. After entering the building from parking lot #3, take the stairs immediately on your left up to the 2nd floor. On the 2nd floor, walk through the doors and to the first "Exit" sign, take a

  3. DOE Technical Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Demand: Door-to-Door Outreach & Tracking Impacts October 19, 2010 2 | TAP Webinar eere.energy.gov What is TAP? DOE"s Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG) and the State Energy Program (SEP) by providing state, local, and tribal officials the tools and resources needed to implement successful and sustainable clean energy programs. 3 | TAP Webinar eere.energy.gov How Can TAP Help You? TAP offers: * One-on-one

  4. Technical Publications by System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Publications by System Technical Publications by System Technical Publications are available for Steam, Process Heating, Compressed Air, Motor, Pump, Fan, and Plant Wide. These publications include Sourcebooks, Handbooks, Market Assessments, and other technical documents. Technical publications are also available for Combined Heat & Power. Sourcebooks give the detailed technical information necessary for comprehensive understanding of energy system components, including how to

  5. NASPI Synchrophasor Technical Report Phasor Tools Visualization Workshop Technical Summary

    Office of Environmental Management (EM)

    1 NASPI Synchrophasor Technical Report Phasor Tools Visualization Workshop Technical Summary February 28, 2012 Workshop June 13, 2012 Final Report Context This technical material was developed in June, 2012 by the North American SynchroPhasor Initiative, a collaboration between the North American electric industry (utilities, grid operators, vendors and consultants), the North American Electric Reliability Corporation, academics, and the U.S. Department of Energy, to advance and accelerate the

  6. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  7. oil1987.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Average Fuel OilKerosene Consumption Expenditures Below Poverty Line 100 Percent 2.0 1.4 ... for 1987. (3) Below 150 percent of poverty line or 60 percent of median State ...

  8. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  9. Final Technical Report

    SciTech Connect (OSTI)

    Sara Bergan, Executive Director; Brendan Jordan, Program Manager; Subcontractors as listed on the report.

    2007-06-06

    The following report contributes to our knowledge of how to economically produce wildlife-friendly grass mixtures for future fuel feedstocks in the northern plains. It investigates northern-adapted cultivars; management and harvest regimes that are good for yields, soils and wildlife; comparative analysis of monocultures and simple mixtures of native grasses; economic implications of growing grasses for fuel feedstocks in specific locations in the northern plains; and conversion options for turning the grasses into useful chemicals and fuels. The core results of this study suggest the following: ? Native grasses, even simple grass mixtures, can be produced profitably in the northern plains as far west as the 100th meridian with yields ranging from 2 to 6 tons per acre. ? Northern adapted cultivars may yield less in good years, but have much greater long-term sustainable yield potential than higher-yielding southern varieties. ? Grasses require very little inputs and stop economically responding to N applications above 56kg/hectare. ? Harvesting after a killing frost may reduce the yield available in that given year but will increase overall yields averaged throughout multiple years. ? Harvesting after a killing frost or even in early spring reduces the level of ash and undesirable molecules like K which cause adverse reactions in pyrolysis processing. Grasses can be managed for biomass harvest and maintain or improve overall soil-health and carbon sequestration benefits of idled grassland ? The carbon sequestration activity of the grasses seems to follow the above ground health of the biomass. In other words plots where the above ground biomass is regularly removed can continue to sequester carbon at the rate of 2 tons/acre/year if the stand health is strong and yielding significant amounts of biomass. ? Managing grasses for feedstock quality in a biomass system requires some of the same management strategies as managing for wildlife benefit. We believe that biomass development can be done in such a way that also maximizes or improves upon conservation and other environmental goals (in some cases even when compared to idled land). ? Switchgrass and big bluestem work well together in simple mixture plots where big bluestem fills in around the switchgrass which alone grows in bunches and leaves patches of bare soil open and susceptible to erosion. ? Longer-term studies in the northern plains may also find that every other year harvest schemes produce as much biomass averaged over the years as annual harvests ? Grasses can be grown for between $23 and $54/ton in the northern plains at production rates between 3 and 5 tons/acre. ? Land costs, yields, and harvest frequency are the largest determining factors in the farm scale economics. Without any land rent offset or incentive for production, and with annual harvesting, grass production is likely to be around $35/ton in the northern plains (farm gate). ? Average transportation costs range from $3 to $10/ton delivered to the plant gate. Average distance from the plant is the biggest factor - $3/ton at 10 miles, $10/ton at 50 miles. ? There is a substantial penalty paid on a per unit of energy produced basis when one converts grasses to bio-oil, but the bio-oil can then compete in higher priced fuel markets whereas grasses alone compete directly with relatively cheap coal. ? Bio oil or modified bio-oil (without the HA or other chemical fraction) is a suitable fuel for boiler and combustion turbines that would otherwise use residual fuel oil or number 2 diesel. ? Ensyn has already commercialized the use of HA in smokey flavorants for the food industry but that market is rather small. HA, however, is also found to be a suitable replacement for the much larger US market for ethanolamines and ethalyne oxides that are used as dispersants. ? Unless crude oil prices rise, the highest and best use of grass based bio-oil is primarily as a direct fuel. As prices rise, HA, phenol and other chemical fractions may become more attractive ? Although we were

  10. Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report

    SciTech Connect (OSTI)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  11. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  12. Final Scientific/Technical Report (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Final ScientificTechnical Report This project addressed the following research need in the Atmospheric System Research (ASR) Science and ...

  13. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business Development Executive John Russell Business Development Executive Richard P. Feynman Center for Innovation (505) 665-3941 Email thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Los Alamos' efforts in fossil energy R&D

  14. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL) research projects are designed to help catalyze the development of these new technologies, provide objective data to help quantify the environmental and safety risks

  15. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Office of Scientific and Technical Information (OSTI)

    Surfactant Based Enhanced Oil Recovery and Foam Mobility Control 1 st Annual Technical Report Reporting Period Start Date: July 2003 Reporting Period End Date: June 2004 Principal Authors: George J. Hirasaki, Rice University Clarence A. Miller, Rice University Gary A. Pope, The University of Texas Richard E. Jackson, INTERA Date Report was Issued: July 2004 DE-FC26-03NT15406 Rice University Department of Chemical Engineering, MS-362 6100 Main Street Houston, TX 77005-1892 The University of Texas

  16. Expansion of the commercial output of Estonian oil shale mining and processing

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1996-09-01

    Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

  17. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reserve. (Technical Report) | SciTech Connect Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve. Citation Details In-Document Search Title: Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve. Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  18. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D. (Livermore, CA)

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  19. Process for preparing lubricating oil from used waste lubricating oil

    DOE Patents [OSTI]

    Whisman, Marvin L. (Bartlesville, OK); Reynolds, James W. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  20. Mechanical Engineering Department Technical Review

    SciTech Connect (OSTI)

    Carr, R.B.; Denney, R.M.

    1981-07-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  1. Mechanical Engineering Department technical abstracts

    SciTech Connect (OSTI)

    Denney, R.M.

    1982-07-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  2. Mechanical engineering department technical review

    SciTech Connect (OSTI)

    Carr, R.B. Denney, R.M.

    1981-01-01

    The Mechanical Engineering Department Technical Review is published to: (1) inform the readers of various technical activities within the department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical acievements and publication abstracts. The first is divided into eight sections, one for each division in the department providing the reader with the names of the personnel and the division accomplishing the work.

  3. Buildings to Grid Technical Meeting

    SciTech Connect (OSTI)

    none,

    2012-12-01

    A meeting book created for the Buildings to Grid Technical Meeting that includes speaker and attendee bios, as well as white papers and discussion questions.

  4. Technical Services | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that cannot be duplicated elsewhere are also made available to universities and the private sector. Three Argonne organizations are noteworthy for their unique technical...

  5. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-14

    The Order establishes requirements and responsibilities for managing DOE's scientific and technical information. Cancels DOE O 241.1. Canceled by DOE O 241.1B.

  6. Implementation Standing Technical Committee Presentation

    Broader source: Energy.gov [DOE]

    This presentation outlines the goals of the Implementation Standing Technical Committee, as presented at the Building America Spring 2012 Stakeholder meeting on February 29, 2012, in Austin, Texas.

  7. Recoverable Resource Estimate of Identified Onshore Geopressured...

    Office of Scientific and Technical Information (OSTI)

    AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NRELPR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore...

  8. Finding Hidden Oil and Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas...

  9. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  10. United Oil Company | Open Energy Information

    Open Energy Info (EERE)

    Oil Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

  11. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  12. LLNL 1981: technical horizons

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    Research programs at LLNL for 1981 are described in broad terms. In his annual State of the Laboratory address, Director Roger Batzel projected a $481 million operating budget for fiscal year 1982, up nearly 13% from last year. In projects for the Department of Energy and the Department of Defense, the Laboratory applies its technical facilities and capabilities to nuclear weapons design and development and other areas of defense research that include inertial confinement fusion, nonnuclear ordnances, and particle-beam technology. LLNL is also applying its unique experience and capabilities to a variety of projects that will help the nation meet its energy needs in an environmentally acceptable manner. A sampling of recent achievements by LLNL support organizations indicates their diversity. (GHT)

  13. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect (OSTI)

    McDonald, Henry; Singh, Suminderpal

    2006-08-28

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  14. Technical Report - FINAL

    SciTech Connect (OSTI)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  15. Technical applications of aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.

    1997-08-18

    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels.

  16. Oil program implementation plan FY 1996--2000

    SciTech Connect (OSTI)

    1995-04-01

    This document reaffirms the US Department of Energy (DOE) Office of Fossil Energy commitment to implement the National Oil Research Program in a way to maximize assurance of energy security, economic growth, environmental protection, jobs, improved economic competitiveness, and improved US balance of trade. There are two sections and an appendix in this document. Section 1 is background information that guided its formulation and a summary of the Oil Program Implementation Plan. This summary includes mission statements, major program drivers, oil issues and trends, budget issues, customers/stakeholders, technology transfer, measures of program effectiveness, and benefits. Section 2 contains more detailed program descriptions for the eight technical areas and the NIPER infrastructure. The eight technical areas are reservoir characterization; extraction research; exploration, drilling, and risk-based decision management; analysis and planning; technology transfer; field demonstration projects; oil downstream operations; and environmental research. Each description contains an overview of the program, descriptions on main areas, a discussion of stakeholders, impacts, planned budget projections, projected schedules with Gantt charts, and measures of effectiveness. The appendix is a summary of comments from industry on an earlier draft of the plan. Although changes were made in response to the comments, many of the suggestions will be used as guidance for the FY 1997--2001 plan.

  17. Technical Standards Style Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Style Guide Technical Standards Style Guide May 13, 2015 Style Guide for the Preparation of DOE Technical Standards (Standards, Handbooks, and Technical Standards Lists), May 13, 2015 The need for a technical standard is established in accordance with the Department of Energy Technical Standards Program Procedures (DOE TSPPs). If a DOE Technical Standard is needed, the guidance contained in this Style Guide may be helpful for development or maintenance of DOE standards, handbooks, or technical

  18. STEO December 2012 - oil production

    Gasoline and Diesel Fuel Update (EIA)

    Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase

  19. Documentation of INL's In Situ Oil Shale Retorting Water Usage System

    Office of Scientific and Technical Information (OSTI)

    Dynamics Model (Technical Report) | SciTech Connect Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an in

  20. Documentation of INL's In Situ Oil Shale Retorting Water Usage System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics Model (Technical Report) | SciTech Connect Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an in

  1. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an insitu retort were consider; a construction

  2. Grid Interaction Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  3. Technical Publications | Department of Energy

    Energy Savers [EERE]

    Technical Publications Technical Publications Listed below are publications either authored or co-authored by CNS staff. The web links for these publications lead to non-DOE websites. Comparison of the MACCS2 Atmospheric Transport Model with Lagrangian Puff Models as Applied to Deterministic and Probabilistic Safety Analysis The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations

  4. Hanford Site technical baseline database

    SciTech Connect (OSTI)

    Porter, P.E., Westinghouse Hanford

    1996-05-10

    This document includes a cassette tape that contains the Hanford specific files that make up the Hanford Site Technical Baseline Database as of May 10, 1996. The cassette tape also includes the delta files that delineate the differences between this revision and revision 3 (April 10, 1996) of the Hanford Site Technical Baseline Database.

  5. International Oil and Gas Board International Oil and Gas Board...

    Open Energy Info (EERE)

    Petroleum Company Syrian Petroleum Company Damascus Syria Syria http www spc sy com en production activities1 en php Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and...

  6. Technical efforts focus on cutting LNG plant costs

    SciTech Connect (OSTI)

    Aoki, Ichizo; Kikkawa, Yoshitsugi

    1995-07-03

    LNG demand is growing due to the nuclear setback and environmental issues spurred by concern about the greenhouse effect and acid rain, especially in the Far East. However, LNG is expensive compared with other energy sources. Efforts continue to minimize capital and operating costs and to increase LNG plant availability and safety. Technical trends in the LNG industry aim at reducing plant costs in pursuit of a competitive LNG price on an energy value basis against the oil price. This article reviews key areas of technical development. Discussed are train size, liquefaction processes, acid gas removal, heavy end removal, nitrogen rejection, refrigeration compressor and drivers, expander application, cooling media selection, LNG storage and loading system, and plant availability.

  7. Technical planning activity: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  8. Hydrogen Technical Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Technical Publications » Hydrogen Technical Publications Hydrogen Technical Publications Technical information about hydrogen published in technical reports, conference proceedings, journal articles, and websites is provided here. General Production Delivery Storage General 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office (Fuel Cell Technologies Office, February 2015) Hydrogen Fueling Station in Honolulu,

  9. Technical Qualification Program Accreditation Objectives and Criteria |

    Energy Savers [EERE]

    Department of Energy Objectives and Criteria Technical Qualification Program Accreditation Objectives and Criteria The program clearly identifies and documents the process used to demonstrate employee technical competence. PDF icon TQP Accreditation Objectives and Criteria More Documents & Publications Technical Qualification Program Self-Assessment Report - Sandia Site Office - 2012 Technical Qualification Program Self-Assessment Report - Richland Operations Office - 2014 Technical

  10. This Week In Petroleum Crude Oil Section

    Gasoline and Diesel Fuel Update (EIA)

    as: U.S. crude oil stocks Four-week average U.S. crude oil refinery inputs Crude oil production and imports (million barrels per day) Production Imports U.S. crude oil...

  11. Northeast Feedstock Supply Technical and Economica (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Northeast Feedstock Supply Technical and Economica Citation Details In-Document Search Title: Northeast Feedstock Supply Technical and Economica This in-depth analysis considers the current and f Authors: Corrie Nichol ; Kara Cafferty ; Richard Boardman Publication Date: 2013-03-01 OSTI Identifier: 1093395 Report Number(s): INL/EXT-13-28876 DOE Contract Number: DE-AC07-05ID14517 Resource Type: Technical Report Research Org: Idaho National Laboratory (INL) Sponsoring Org: DOE

  12. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 11.2 cents from a week ago to 2.91 per gallon. That's down 1.33 from a year ago, based on the...

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1.8 cents from a week ago to 2.08 per gallon. That's down 72 cents from a year ago, based on the...

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 2.93 per gallon, based on the residential heating fuel survey by the...

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3 cents from a week ago to 2.33 per gallon. That's down 89 cents from a year ago, based on the...

  16. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to 2.82 per gallon. That's down 1.36 from a year ago, based on the...

  17. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.5 cents from a week ago to 2.36 per gallon. That's down 97 cents from a year ago, based on the...

  18. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to 4.18 per gallon. That's up 13 cents from a year ago, based on the...

  19. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to 3.19 per gallon. That's down 1.06 from a year...

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 17.7 cents from a week ago to 3.03 per gallon. That's down 1.09 from a year ago, based on the...

  1. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.5 cents from a week ago to 2.21 per gallon. That's down 87 cents from a year ago, based on the...

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2.3 cents from a week ago to 2.38 per gallon. That's down 99 cents from a year ago, based on the...

  4. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to 3.36 per gallon. That's down 52.5 cents from a year ago, based on the...

  5. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based...

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 2.16 per gallon. That's down 75 cents from a year ago, based on the...

  7. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to 3.03 per gallon. That's down 1.20 from a year...

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to 2.18 per gallon. That's down 79 cents from a year ago, based...

  9. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5.1 cents from a week ago to 2.11 per gallon. That's down 72 cents from a year ago, based on the...

  10. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is 3.52 per gallon. That's down 32.7 cents from a year ago, based on the U.S. Energy Information...

  11. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is 2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information...

  12. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year...

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5 cents from a week ago to 2.06 per gallon. That's down 75 cents from a year ago, based on the...

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

  15. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to 4.04 per gallon. That's up 4.9 cents from a year ago, based on the...

  16. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

  17. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to 4.02 per gallon. That's up 1.7 cents from a year ago, based on the...

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.26 per gallon. That's down 89 cents from a year ago, based on the...

  19. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 3.22 per gallon. That's down 73.6 cents from a year ago, based on the...

  20. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year...

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 8 cents from a week ago to 3.21 per gallon. That's down 98.7 cents from a year ago, based on the...

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to 3.33 per gallon. That's down 59.1 cents from a year ago, based on the...

  4. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year...

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.5 cents from a week ago to 2.18 per gallon. That's down 87 cents from a year ago, based on the...

  6. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

  7. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 3.08 per gallon. That's down 90.3 cents from a year ago, based on the...

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

  9. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 2.80 per gallon. That's down 1.44 from a year ago, based on the...

  10. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 10.3 cents from a week ago to 3.29 per gallon. That's down 93.7 cents from a year ago, based on the...

  11. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential...

  12. GEM Technical Design Report

    SciTech Connect (OSTI)

    Not Available

    1993-07-31

    The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence the name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.

  13. Final Technical Report

    SciTech Connect (OSTI)

    Stoessel, Chris

    2013-11-13

    This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency of a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.

  14. FINAL TECHNICAL REPORT

    SciTech Connect (OSTI)

    STEFAN VASILE; ZHENG LI

    2010-06-17

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  15. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  16. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  17. District Technical Sergeant | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    District Technical Sergeant District Technical Sergeant A Manhattan Engineering District technical sergeant looks over nearly completed construction at Y-12.

  18. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  19. African oil plays

    SciTech Connect (OSTI)

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  20. Dying for oil

    SciTech Connect (OSTI)

    Sachs, A.

    1996-05-01

    This article discusses the fight and execution of Ken Saro-Wiwa, the Ogoni leader who defended his people`s land on the Niger delta against oil development encouraged by the government and persued by the Royal/Dutch Shell Co. Political reprocussions and heightened vigilance of environmental activists are discussed at length.

  1. World Oil Transit Chokepoints

    Reports and Publications (EIA)

    2012-01-01

    Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

  2. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

  3. Active DOE Technical Standards Managers

    Office of Environmental Management (EM)

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONE/FAX/EMAIL NAME DOE FACILITY/ADDRESS LOC CODE AU-30 Je D. Feit DOE Technical Standards Program, Manager U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 Phone: (301) 903-0471 Fax: (301) 903-6172 Je rey.Feit@hq.doe.gov AU-30 Kathy A. Knight DOE Technical Standards Program, Program Specialist U.S. Department of Energy 19901 Germantown Road Germantown, MD 20876 Phone: (301) 903-4439 Fax: (301) 903-6172 kathy.knight@hq.doe.gov AU-30

  4. The Independent Technical Analysis Process

    SciTech Connect (OSTI)

    Duberstein, Corey A.; Ham, Kenneth D.; Dauble, Dennis D.; Johnson, Gary E.

    2007-04-13

    The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. In the past, regional parties have interacted with a single entity, the Fish Passage Center to access the data, analyses, and coordination related to fish passage. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities.

  5. Final Technical Report (Technical Report) | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Technical Report Citation Details In-Document Search Title: Final Technical Report The biochemistry of bacterial proteins involved in redox transformations of metals and minerals is, without dispute, an important area of research. Nevertheless, most studies on bacterial metal transformation have focused not on biochemistry but on genetics and genomics. The objective of this research is to better understand the role of conformation change in electron transfer from cytochromes to minerals, a

  6. Final Technical Report

    SciTech Connect (OSTI)

    Juan Camilo Serrano

    2011-12-16

    New and novel material and process technologies applied in wind blade designs and production are critical to increasing the competitiveness of wind power generation against traditional sources of energy. In this project, through collaboration between PPG Industries and MAG Industrial Automation Systems, the potential of using automated manufacturing for the production of fiber glass composite wind blades was evaluated from both technical and economic points of view. Further, it was demonstrated that by modifying the standard blade raw material forms through the use of cost effective pre-impregnated rovings coupled with using an automated fiber placement machine to lay up the parts, it is possible to produce state of the art composite laminates with significantly improved mechanical performance and with higher processing rates than standard blade production technology allows for today, thereby lowering the cost of energy over turbine blades made using traditional processes and materials. In conformity with the scope of work of the submitted proposal, the project team completed each task and documented and reported its findings on the appropriate quarterly report submitted to the DOE project team. The activities and this report are divided into 5 subtasks: (1) Material Investigation - Reviews traditional materials and key specifications and testing methods; (2) Manufacturing and Automation - Identifies new candidate material forms and automated layup processes; (3) Process Development - Performs trials of candidate materials and processes; (4) Predictive Analysis - Assesses impact of new material forms and automated processes on a model blade design; and (5) Feasibility Assessment - Compares traditional manufacturing processes and materials to new candidate material forms and automated processes.

  7. CTBT technical issues handbook

    SciTech Connect (OSTI)

    Zucca, J.J.

    1994-05-01

    The purpose of this handbook is to give the nonspecialist in nuclear explosion physics and nuclear test monitoring an introduction to the topic as it pertains to a Comprehensive Test Ban Treaty (CTBT). The authors have tried to make the handbook visually oriented, with figures paired to short discussions. As such, the handbook may be read straight through or in sections. The handbook covers four main areas and ends with a glossary, which includes both scientific terms and acronyms likely to be encountered during CTBT negotiations. The following topics are covered: (1) Physics of nuclear explosion experiments. This is a description of basic nuclear physics and elementary nuclear weapon design. Also discussed are testing practices. (2) Other nuclear experiments. This section discusses experiments that produce small amounts of nuclear energy but differ from explosion experiments discussed in the first chapter. This includes the type of activities, such as laser fusion, that would continue after a CTBT is in force. (3) Monitoring tests in various environments. This section describes the different physical environments in which a test could be conducted (underground, in the atmosphere, in space, underwater, and in the laboratory); the sources of non-nuclear events (such as earthquakes and mining operations); and the opportunities for evasion. (4) On-site inspections. A CTBT is likely to include these inspections as an element of the verification provisions, in order to resolve the nature of ambiguous events. This chapter describes some technical considerations and technologies that are likely to be useful. (5) Selecting verification measures. This chapter discusses the uncertain nature of the evidence from monitoring systems and how compliance judgments could be made, taking the uncertainties into account. It also discusses how to allocate monitoring resources, given the likelihood of testing by various countries in various environments.

  8. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOE Patents [OSTI]

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  9. Technical Fact Sheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Fact Sheets Technical Fact Sheets Technical Fact Sheets (TFS) provide summary-level information on the impact of new, deployed, applied, and/or planned technical approaches supporting EM cleanup projects. The TFS is presented as a two-page document which summarizes the technical challenges, solutions, accomplishments, and impacts of the technical efforts. Additionally, they present the features, vendors, sites, states, national labs and universities that might be involved in developing

  10. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect (OSTI)

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  11. DOE to Unveil New Online Database of Oil and Natural Gas Research Results

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy plans to introduce a new, user-friendly online repository of oil and natural gas research results at the Society of Petroleum Engineers' Annual Technical Conference and Exhibition, to be held in New Orleans, La., October 4-7, 2009.

  12. Technical Standards, Program Project Justification Statement...

    Energy Savers [EERE]

    Technical Standards, Program Project Justification Statement - August 29, 2012 Technical Standards, Program Project Justification Statement - August 29, 2012 August 29, 2012 DOE...

  13. Applications for Alaska Strategic Technical Assistance Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications for Alaska Strategic Technical Assistance Response Team Program Are Due Feb. 6 Applications for Alaska Strategic Technical Assistance Response Team Program Are Due ...

  14. Assistant Manager for Safety and Technical Services

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will provide overall executive leadership to the Office of the Assistant Manager for Safety and Technical Services, which provides technical services and...

  15. Space Conditioning Standing Technical Commitee Presentation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commitee Presentation Space Conditioning Standing Technical Commitee Presentation This presentation outlines the goals of the Space Conditioning Standing Technical ommittee, as...

  16. Technical Reports - Disclaimer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Technical...

  17. Ricardo Detroit Technical Center | Open Energy Information

    Open Energy Info (EERE)

    Ricardo Detroit Technical Center Jump to: navigation, search Name: Ricardo Detroit Technical Center Place: Van Buren Township, Michigan Zip: 48111-1641 Sector: Services Product:...

  18. Technical Security Program - DOE Directives, Delegations, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    470.6, Technical Security Program by Sam Soley Functional areas: Security, Counterintelligence This order implements the Department of Energy (DOE) Technical Security Program...

  19. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Technical Assistance for States Building Energy Codes Collaborative Technical ... 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes ...

  20. Building America Residential Energy Efficiency Technical Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary report and ...

  1. Report: Technical Uncertainty and Risk Reduction

    Office of Environmental Management (EM)

    TECHNICAL UNCERTAINTY AND RISK REDUCTION Background In FY 2007 EMAB was tasked to assess EM's ability to reduce risk and technical uncertainty. Board members explored this topic...

  2. Water Heating Standing Technical Committee Presentation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing...

  3. DOE Publishes Technical Brief Clarifying Misconceptions about...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Brief Clarifying Misconceptions about Safety of LED Lighting DOE Publishes Technical Brief Clarifying Misconceptions about Safety of LED Lighting October 22, 2014 - ...

  4. Mianyang Taidu Enviroment Energy Technical Development Company...

    Open Energy Info (EERE)

    Mianyang Taidu Enviroment Energy Technical Development Company Ltd Jump to: navigation, search Name: Mianyang Taidu Enviroment Energy Technical Development Company Ltd. Place:...

  5. Department of Energy Technical Standards Procedures | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charged with implementing the Department of Energy (DOE) Technical Standards Program (TSP). September 16, 2013 DOE-TSPP-2-2013, Initiating DOE Technical Standards This procedure...

  6. Safety, Codes and Standards Technical Publications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical information about safety, codes and standards published in technical reports, conference proceedings, journal articles, and websites is provided here. General Safety ...

  7. External Technical Reviews | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Waste Management Tank Waste and Waste Processing External Technical Reviews External Technical Reviews Documents Available for Download March 31, 2006 Hanford ETR...

  8. FINAL TECHNICAL REPORT

    SciTech Connect (OSTI)

    Fargione, Joseph

    2012-02-24

    The United States has abundant wind resources, such that only about 3% of the resource would need to be developed to achieve the goal of producing 20% of electricity in the United States by 2030. Inappropriately sited wind development may result in conflicts with wildlife that can delay or derail development projects, increase projects costs, and may degrade important conservation values. The most cost-effective approach to reducing such conflicts is through landscape-scale siting early in project development. To support landscape scale siting that avoids sensitive areas for wildlife, we compiled a database on species distributions, wind resource, disturbed areas, and land ownership. This database can be viewed and obtained via http://wind.tnc.org/awwi. Wind project developers can use this web tool to identify potentially sensitive areas and areas that are already disturbed and are therefore likely to be less sensitive to additional impacts from wind development. The United States goal of producing 20% of its electricity from wind energy by the year 2030 would require 241 GW of terrestrial nameplate capacity. We analyzed whether this goal could be met by using lands that are already disturbed, which would minimize impacts to wildlife. Our research shows that over 14 times the DOE goal could be produced on lands that are already disturbed (primarily cropland and oil and gas fields), after taking into account wind resource availability and areas that would be precluded from wind development because of existing urban development or because of development restrictions. This work was published in the peer reviewed science journal PLoS ONE (a free online journal) and can be viewed here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017566. Even projects that are sited appropriately may have some impacts on wildlife habitat that can be offset with offsite compensatory mitigation. We demonstrate one approach to mapping and quantifying mitigation costs, using the state of Kansas as a case study. Our approach considers a range of conservation targets (species and habitat) and calculates mitigation costs based on actual costs of the conservation actions (protection and restoration) that would be needed to fully offset impacts. This work was published in the peer reviewed science journal PLoS ONE (a free online journal) and can be viewed here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0026698.

  9. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  10. Technical Education | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Education at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click...

  11. Technical Assessment Team Fact Sheet

    Broader source: Energy.gov [DOE]

    This fact sheet focuses on the U.S. Department of Energy’s report by an independent team of technical experts that evaluated the mechanisms and chemical reactions contributing to the failure of a...

  12. Technical Contact: James C. Liljegren

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    within approximately 50 feet. Precision timing is very important to the Technical Contact: James C. Liljegren Phone: 630-252-9540 Email: jcliljegren@anl.gov Editor: Donna J....

  13. Fuel Cell Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  14. UVIG 2015 Spring Technical Workshop

    Broader source: Energy.gov [DOE]

    The 2015 UVIG Spring Technical Workshop will provide attendees with an expanded perspective on the status of wind and solar generation in utility systems in the United States and other countries....

  15. 1999 EV America Technical Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 EV AMERICA TECHNICAL SPECIFICATIONS Effective October 1, 1999 Prepared by Electric Transportation Applications 1999 EV AMERICA TECHNICAL SPECIFICATIONS 2 MINIMUM VEHICLE REQUIREMENTS For a vehicle to be considered qualified as an EV America-USDOE "Production" level vehicle, it must meet the minimum criteria defined by "shall" terminology utilized in the Specification. [For clarity, the use of the word "Shall" defines minimum requirements, whereas the use of the

  16. Technical Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Technical Reports A wide range of resources addressing the many benefits of combined heat and power (CHP) is available, including the technical reports below. For example, Assessing the Benefits of On-Site Combined Heat and Power (CHP) During the August 14, 2003, Blackout highlights facilities that were able to remain operational during the 2003 blackout due to backup generators or distributed generation (DG) resources, including CHP. Assessing the Benefits of On-Site CHP During the

  17. Guam Initial Technical Assessment Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Conrad, M.; Haase, S.; Hotchkiss, E.; McNutt, P.

    2011-04-01

    Under an interagency agreement, funded by the Department of Interior's (DOI) Office of Insular Affairs (OIA), the National Renewable Energy Laboratory (NREL) was tasked to deliver technical assistance to the island of Guam by conducting an island initial technical assessment that would lay out energy consumption and production data and establish a baseline. This assessment will be used to conduct future analysis and studies by NREL that will estimate energy efficiency and renewable energy potential for the island of Guam.

  18. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  19. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    SciTech Connect (OSTI)

    Randall Seright

    2011-09-30

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be found in our first and second annual reports. Our latest research results, along with detailed documentation of our past work, can be found on our web site at http://baervan.nmt.edu/randy/. As an overall summary of important findings for the project, polymer flooding has tremendous potential for enhanced recovery of viscous oil. Fear of substantial injectivity reduction was a primary hurdle that limited application of polymer flooding. However, that concern is largely mitigated by (1) use of horizontal wells and (2) judicious injection above the formation parting pressure. Field cases now exist where 200-300-cp polymer solutions are injected without significant reductions in injectivity. Concern about costs associated with injection of viscous polymer solutions was a second major hurdle. However, that concern is reduced substantially by realization that polymer viscosity increases approximately with the square of polymer concentration. Viscosity can be doubled with only a 40% increase in polymer concentration. Up to a readily definable point, increases in viscosity of the injected polymer solution are directly related to increases in sweep efficiency and oil recovery. Previously published simulation results - suggesting that shear-thinning polymer solutions were detrimental to sweep efficiency - were shown to be unfounded (both theoretically and experimentally).

  20. Clean and Secure Energy from Domestic Oil Shale and Oil Sands...

    Office of Scientific and Technical Information (OSTI)

    of oil shale and oil sands resources; Economic and environmental assessment of domestic ... Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience ...

  1. Strategic plan for oil shale siting reresearch. Proceedings of a planning exercise, November 4-5, 1985, Denver, Colorado

    SciTech Connect (OSTI)

    Hinman, G.; Barr, S.; Peterson, E.J.; Williams, M.D. (eds.)

    1986-07-01

    A strategic planning exercise on environmental research and policy to guide oil shale development was held in November 1985. Seventeen participants representing a cross section of interests and technical disciplines identified, from almost 200 suggested issues, 13 strategic issues in four general categories: policy, source characterization and pollutant generation, transport and impact, and risk assessment. The group reached a consensus on the technical objective for each issue and recommendations to address the objective. Each participant has at least several years' experience in some phase of oil shale endeavor. Therefore, a consensus from this group can be a valuable guide for agencies seeking to develop the oil shale resource while also protecting the environment and public health. This document is an attempt to concisely state the issues discussed by the group and thereby serve as a planning guide for oil shale environmental research.

  2. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  3. Shale oil recovery process

    DOE Patents [OSTI]

    Zerga, Daniel P. (Concord, CA)

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  4. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  5. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  6. Technical Support and Transfer of Geothrmal Technical Knowledge and Information

    SciTech Connect (OSTI)

    John W. Lund Tonya "Toni" Boyd

    2007-11-14

    The Geo-Heat Center (GHC) staff provided responses to 1442 technical support requests during the contract period (April 1, 2006 to September 30, 2007), which were six quarters under this contract. Our website, consisting of 1900 files, also contributes to our technical assistance activity. Downloaded files were 1,889,323 (3,448 per day) from our website, the total number of users was 1,365,258 (2,491 per day), and the total number of hits were 6,008,500 (10,064 per day). The GHC staff attended 60 workshops, short course and professional meeting and made 29 technical presentations. The staff also prepared and mailed out 2,000 copies of each of five issues of the GHC Quaterly Bulletin which contained 26 articles. We also mailed out approximately 5,000 papers and publications to interested individuals and organizations.

  7. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Stocks by Type Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases EthaneEthylene PropanePropylene Normal ...

  8. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil ...

  9. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  10. Technical Standards Newsletter - February 2016 | Department of Energy

    Office of Environmental Management (EM)

    16 Technical Standards Newsletter - February 2016 The Technical Standards Newsletter, February 2016 Inside this issue: New Technical Standard for Proficiency Testing DOE Technical Standards Updates Upcoming Meetings and Conferences PDF icon Technical Standards Newsletter - February 2016 More Documents & Publications Technical Standards Newsletter - October 2015 Technical Standards Newsletter - December 2014 Technical Standards Newsletter - April 2015

  11. Table 5.2 Crude Oil Production and Crude Oil Well Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Production and Crude Oil Well Productivity, 1954-2011 Year Crude Oil Production Crude Oil Well 1 Productivity 48 States 2 Alaska 3 Total Onshore Offshore Total Producing ...

  12. High oil production continues to cut U.S. oil imports

    U.S. Energy Information Administration (EIA) Indexed Site

    High oil production continues to cut U.S. oil imports High U.S. crude oil production will help further reduce America's reliance on oil imports during the next two years. In its ...

  13. Low oil prices cut less into U.S. oil production

    U.S. Energy Information Administration (EIA) Indexed Site

    Low oil prices cut less into U.S. oil production U.S. crude oil production has been more resilient to lower oil prices since mid-2014 than many had expected. In its new forecast, ...

  14. DOE to Purchase Heating Oil for the Northeast Home Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC ...

  15. U.S. oil imports to decline with rising oil production through...

    U.S. Energy Information Administration (EIA) Indexed Site

    oil imports to decline with rising oil production through 2014 The United States will need fewer oil imports over the next two years because of rising U.S. oil production. The new ...

  16. Technical Assessment Team Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assessment Team Report Technical Assessment Team Report The Technical Assessment Team (TAT) is an independent team of technical experts that evaluated the mechanisms and chemical reactions contributing to the failure of a waste drum at the Waste Isolation Pilot Plant (WIPP). In its report, the TAT concluded that one drum, Drum 68660, was the source of radioactive contamination released during the February 14, 2014, radiological event at WIPP. PDF icon Technical Assessment Team Report

  17. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  18. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  19. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  20. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  1. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  2. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  3. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  4. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  5. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  6. Coal conversion. 1979 technical report

    SciTech Connect (OSTI)

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  7. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W. (Morago, CA)

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  8. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  9. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  10. STEO September 2012 - oil production

    Gasoline and Diesel Fuel Update (EIA)

    oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted

  11. Brushing up on oil recovery

    SciTech Connect (OSTI)

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  12. fuel_oil.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company.

  13. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  14. Iran Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Name: Iran Oil and Gas Address: Unit 16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. Place:...

  15. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  16. Oman Oil Company | Open Energy Information

    Open Energy Info (EERE)

    Oil Company (S.A.O.C.) Name: Oman Oil Company (S.A.O.C.) Place: Muscat, Oman Product: Oil exploration and production Year Founded: 1966 Phone Number: + 968 - 2457 3100 Website:...

  17. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports from Denmark of Crude Oil (Thousand Barrels)","U.S. Imports from Egypt of Crude Oil (Thousand Barrels)","U.S. Imports from Equatorial Guinea of Crude Oil...

  18. Defense Technical Information Center thesaurus

    SciTech Connect (OSTI)

    Dickert, J.H.

    1996-10-01

    This DTIC Thesaurus provides a basic multidisciplinary subject term vocabulary used by DTIC to index and retrieve scientific and technical information from its various data bases and to aid DTIC`s users in their information storage and retrieval operations. It includes an alphabetical posting term display, a hierarchy display, and a Keywork Out of Context (KWOC) display.

  19. DOE FINAL TECHNICAL REPORT RP

    SciTech Connect (OSTI)

    RUSS PETERMAN

    2012-01-01

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  20. Mechanical Engineering Department technical review

    SciTech Connect (OSTI)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  1. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  2. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  3. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  4. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  5. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  6. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  7. Status of LLNL Hot-Recycled-Solid oil shale retort, January 1991--September 30, 1993

    SciTech Connect (OSTI)

    Cena, R.J.

    1993-11-01

    Our objective, together with our CRADA partners, is to demonstrate advanced technology that could lead to an economic and environmentally acceptable commercialization of oil shale. We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

  8. Low-Severity Hydroprocessing to Stabilize Bio-oil: TechnoEconomic Assessment

    SciTech Connect (OSTI)

    Tews, Iva J.; Elliott, Douglas C.

    2014-08-31

    The impetus for this study was the suggestion that recent developments in fast pyrolysis (FP) bio-oil production had indicated instability of the bio-oil in storage which might lead to unacceptable viscosity increases. Commercial operation of FP in Finland began in 2014 and the distribution of the bio-oil to isolated users has been proposed as the long-term plan. Stability of the shipped bio-oil therefore became a concern. Experimental results at PNNL with low-severity hydroprocessing of bio-oil for stabilization has validated a process in which the stability of the bio-oil could be improved, as measured by viscosity increase following storage of the product at 80 °C for 24h. In the work reported here the assessed process configuration consists of fast pyrolysis followed by low temperature and pressure hydroprocessing to produce a stable fuel oil product. The product could then be stored for an extended period of time without significant viscosity increase. This work was carried out as part of a collaborative project between Technical Research Centre of Finland (VTT) and Pacific Northwest National Laboratory (PNNL). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an evaluation of the process developed in earlier collaboration and jointly invented by VTT and PNNL researchers.

  9. Measuring Dependence on Imported Oil

    Reports and Publications (EIA)

    1995-01-01

    U.S. dependence on imported oil can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA introduces a revised table that expresses dependence on imports in terms of both measures.

  10. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect (OSTI)

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  11. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  12. heavy_oil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Oil Heavy oil is a vast U.S. oil resource that is underexploited because its highly viscous nature renders it difficult to produce and to refine. As higher-gravity crudes (lighter oil) become increasingly scarce in the U.S., American operators are looking more and more to low-gravity crudes (heavy oil) to prop up the Nation's declining oil output. Heavy oil generally is defined as having an API (American Petroleum Institute) gravity of 10-20 degrees. Oil sources with even lower gravities,

  13. Oil and Gas Gateway | Open Energy Information

    Open Energy Info (EERE)

    States, oil and gas boards and commissions are the place for finding data related to oil and gas activities. These activities include well records, permitting, and production...

  14. Storage Oil Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Water Heaters Storage Oil Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with ...

  15. SciTech Connect: "oil shale"

    Office of Scientific and Technical Information (OSTI)

    oil shale" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "oil shale" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  16. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  17. New information on disposal of oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  18. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  19. Oil Stop Valve : Oil Spill Containment Research and Development Project.

    SciTech Connect (OSTI)

    Bourn, Robert D.

    1982-07-01

    This report summarizes the research and development project conducted by the Civil Engineering Section, Division of Substation and Control Engineering, to determine the effectiveness of the oil stop valve for use in the Bonneville Power Administration's Oil Spill Containment and Countermeasure Program. The most attractive alternative to lagoons and separator tanks was found in the oil stop valve manufactured by AFL/Clark Industries of Riviera Beach, Florida. This small, direct-acting and relatively inexpensive valve requires little maintenance and can either be employed independently, using existing drain lines for effluent storage, or in conjunction with oil separator tanks and lagoon systems. The AFL/Clark valve requires no power and has only one moving part, a ballasted float having a specific gravity between that of oil and water. In water, the float rides above the throat of the discharge pipe allowing water to flow out. When oil enters the water the float begins losing its relative bouyancy and sinks until it seats itself over the throat of the outlet, closing the valve. Usually installed in a manhole within a typical storm drainage system, the valve backs spilled oil into drainways and contains it for temporary storage within the switchyard.

  20. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.