National Library of Energy BETA

Sample records for teasdale future energy

  1. Armstrong Teasdale Future Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaAriseCounty,ArlasInformationTeasdale

  2. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    s values, forecasts of future energy prices and politicalYergin, D. , eds. 1979. Energy Future: Report of the Energy02, Sacramento, Calif. ENERGY FUTURES 103. Ullman, T. L. ,

  3. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE)

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  4. Energy futures-2

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants.

  5. Global Energy Futures: With International Futures (IFs)

    SciTech Connect (OSTI)

    Hughes, Barry

    2013-03-20

    Dr. Hughes presents and discusses the results of simulations on alternative energy futures composed in collaboration with SNL's Sustainability Innovation Foundry.

  6. Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  7. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  8. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  9. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  10. ENERGY WHITE PAPER Our energy future -

    E-Print Network [OSTI]

    ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

  11. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Ito, Garrett

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  12. for Florida's Energy Future

    E-Print Network [OSTI]

    Jawitz, James W.

    Technology A.S. Degree with specializations in Alternative Energy Technology and Industrial Energy Efficiency - CCC in Alternative Energy Systems Specialist and Industrial Energy Efficiency Specialist - College alternative energy strategies, improving energy efficiencies and expanding economic development for the State

  13. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Evidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation EnergyCCST 2011a. California’s Energy Future - The View to 2050,

  14. for Florida's Energy Future

    E-Print Network [OSTI]

    Mazzotti, Frank

    Florida to deliver educational programs and fact sheets related to energy and resource-efficient community Technology A.S. Degree with specializations in Alternative Energy Technology and Industrial Energy Efficiency - CCC in Alternative Energy Systems Specialist and Industrial Energy Efficiency Specialist - College

  15. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    renewable case) alone almost exceed the target emissions. California’s Energy Future -renewable energy, i.e. the “median case. ” California’s Energy Future -

  16. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 to 100 times more energy than the amount of laser energy required to initiate the fusion reaction. The nuclear power plants in use around the world today use fission, or...

  17. California's Energy Future

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    will investigate the tradeoffs represented by reliance on different energy sources, including oil, natural gas gas emissions (including direct land use change associated with fossil energy), alternative Officer, 44 Energy Technologies, Inc. Vera Pardee, Senior Attorney, Center for Biological Diversity Sonia

  18. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...

    Energy Savers [EERE]

    Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

  19. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Summit on America’s Energy Future (2008), http://www.natural gas. California’s Energy Future - The View to 2050supply California’ s Energy Future - The View to 2050 and

  20. Futures for energy cooperatives

    SciTech Connect (OSTI)

    None

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  1. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Ritschard, R.L.

    1977-01-01

    NEVADA: REQUIREMENTS FOR FUTURE ENERGY PRODUCTION STATE'SWATERREQUIREMENTS FOR FUTURE ENERGY PRODUCTIONIN ENERGYREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIA

  2. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    NEVADA: REQUIREMENTS FOR FUTURE ENERGY PRODUCTION STATE'SWATERREQUIREMENTS FOR FUTURE ENERGY PRODUCTIONIN ENERGYREQUIREMENTS FOR FUTURE ENERGY PRODUCTION IN CALIFORNIA

  3. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy StorageTricks Lead toJohnUnit Pre

  4. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    of meeting California’s transportation energy needs andEvidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation Energy

  5. Dark Energy Present and Future

    E-Print Network [OSTI]

    Paul H. Frampton

    2003-07-03

    By studying the present cosmological data, particularly on CMB, SNeIA and LSS, we find that the future fate of the universe, for simple linear models of the dark energy equation-of-state, can vary between the extremes of (I) a divergence of the scale factor in as little as 7 Gyr; (II) an infinite lifetime of the universe with dark energy dominant for all future time; (III) a disappearing dark energy where the universe asymptotes as $t \\to \\infty$ to $a(t) \\sim t^{2/3}$ {\\it i.e.} matter domination. Precision cosmological data hint that a dark energy with equation of state $w = P/\\rho 0$ to $\\Lambda = 0$ in a first-order phase transition. The critical radius is argued to be at least of galactic size and the corresponding nucleation rate glacial, thus underwriting the dark energy's stability and rendering remote any microscopic effect.

  6. THE FUTURE OF ENERGY Carlo Rubbia

    E-Print Network [OSTI]

    THE FUTURE OF ENERGY Carlo Rubbia ENEA Opening remarks at the 18th IAEA Fusion Energy Conference Sorrento, Italy, 4th October 2000 #12;2 TABLE OF CONTENT 1.-- Energy is necessary. ..................................................................................... 3 2.-- Energies for the future

  7. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  8. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  9. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  10. California Energy Futures Study Working Committee

    E-Print Network [OSTI]

    California at Davis, University of

    #12;#12;#12;California Energy Futures Study Working Committee Robert Budnitz, LBNL Linda Cohen, UC Somerville, UC Berkeley H. Youngs ­ EBI, UC Berkeley California's Energy Future, Biofuels #12;Stress tests California's Energy Future, Biofuels #12;#12;#12;Reduced Fuel Demand Scenario H. Youngs ­ EBI, UC Berkeley

  11. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  12. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all electrochemical energy storage devices, these corrosive reactions are not always detrimental to the operation

  13. National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future nation but the world #12;National Renewable Energy Laboratory Innovation for Our Energy Future Campus facilities · Carbon neutral · Net zero energy · Living Laboratory #12;National Renewable Energy Laboratory

  14. Winning the Biofuel Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winning the Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a...

  15. Planning For a New Energy & Climate Future

    E-Print Network [OSTI]

    New South Wales, University of

    Planning For a New Energy & Climate Future 10th International Urban Planning and Environment solar energy resources ­ Can an analysis of urban residential rooftops inform planning policy for carbonNicoleGurran,PeterPhibbsandSusanThompson www.upe10.org Page 1 #12;Planning For a New Energy & Climate Future FIRST PUBLISHED 2013 by ICMS PTY

  16. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  17. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  18. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    CALIFORNIA WATER RESOURCES. Water Demand Energy Suppon future forecasts of of Water energy predicted energy aunder these PHASE II: WATER ENERGY REQUIREMENTS FOR FUTURE

  19. Building Our Energy Future: Teaching Students the Significance...

    Office of Environmental Management (EM)

    Building Our Energy Future: Teaching Students the Significance of Energy Efficiency Building Our Energy Future: Teaching Students the Significance of Energy Efficiency April 2,...

  20. SOLAR ENERGY AND OUR ELECTRICITY FUTURE

    E-Print Network [OSTI]

    SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

  1. The Future of Energy on Ea FFFFUUUUSSSSIIIIOOOONNNN

    E-Print Network [OSTI]

    Administration Assist. Sec., Defense Programs Energy Efficiency & Renewable Energy Office of Science (SC) Science of Basic Energy Sciences Associate Director Patricia M. Dehmer Office of Resource Management AssociateThe Future of Energy on Ea FFFFUUUUSSSSIIIIOOOONNNN is the Energy of the FFFFUUUUSSSSIIIIOOOONNNN

  2. Energy Implications of Alternative Water Futures

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

  3. RENEWABLE ENERGIES Innovations for the future

    E-Print Network [OSTI]

    Peinke, Joachim

    RENEWABLE ENERGIES Innovations for the future #12;Imprint Publisher: Federal Ministry Böhme BMU, Division KI I1 "General and Fundamental Aspects of Renewable Energies" Content: Dr. Martin in a seminal global market: with both renewable energy and energy efficiency. For a sustainable energy economy

  4. Fusion Energy: Visions of the Future

    E-Print Network [OSTI]

    energy conversion Direct energy conversion No $$$ turbines Why Is Aneutronic Fusion Cheap? #12;Dense Star Formation REPRODUCING NATURAL INSTABILITIES Solar Flares #12;Energy (X-rays, Ion Beams) CaptureFusion Energy: Visions of the Future Dec. 10-11, 2013 FOCUS FUSION Cheap, Clean, Safe & Unlimited

  5. Global energy - assessing the future

    SciTech Connect (OSTI)

    Edmonds, J.; Reiley, J.M.

    1985-01-01

    This book applies various forecasts of energy use to the CO/sub 2/ problem. The effect of demographic factors and economic growth on energy consumption are considered and a model is proposed relating energy consumption and carbon dioxide; predictions are made up to the year 2050 and the uncertainties in these long-term energy projections considered. Energy forms taken into account include oil and gas (both conventional and unconventional), coal, nuclear energy, solar and wind power, hydroelectricity and ocean thermal energy conversion systems and biomass.

  6. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

  7. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    trends in China, India, Eastern Europe and other developing areas. China oil demand +104% by 2030, India 2000 2020 2040 2060 Supply demand Energy UWM-CUTS 14 U.S. DOE viewpoint, source:http://tonto.eia.doe.gov/FTPROOT/features/longterm.pdf#search='oilTransportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    24. EROEIs and 2030 Installed Capacity by Alternative Energy75 Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  10. The Future of Atomic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(active tab) 2016TheTheFuture is bright for

  11. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  12. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    total primary energy will be supplied by alternative energy by 2030 with the 2030 electricity supply

  14. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Use in California PEV Technology and Costs The mainEnergy Use in California Component HEV Battery Cost, $/kWhaccount the cost of delivery. California’s Energy Future -

  15. Bright Future NW Energy Coalition

    E-Print Network [OSTI]

    as coal or natural-gas generation. Wind and biomass nearly twice as many. Solar PV job potential is huge on natural gas. Energy Efficiency 3¢/kWh Energy Efficiency 3¢/kWh RPS 2020 10¢/kWh RPS 2020 10¢/kWh New Natural Gas 10¢/kWh Repower Existing Coal Plants 6¢/kWh New Renewables 2020-2050 10¢/kWh Repower

  16. A Renewable Energy Future: Innovation and Beyond

    Broader source: Energy.gov [DOE]

    This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is needed to make it happen. The presentation also includes a discussion of the integration challenges that affect solar energy systems.

  17. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    AND FUTURE COST OF WIND ENERGY Eric Lantz & Maureen Hand National RenewableRenewable Energy Laboratory. Further improving our understanding of possible future

  18. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    presented in a 2007 Geothermal Energy Association report (Solar Water Heater Geothermal energy Biomass Pellets mil m2an increasingly important geothermal energy user in the last

  19. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    3. Revised 2020 Alternative Energy Capacity Targets and 2011installed renewable energy capacity in 2009 (Pew, 2011).of 106% in renewable energy capacity from 2005 to 2010 (Pew,

  20. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    compared to other renewable energy policies illustrate thatExpansion Policy Drivers Renewable Energy Law of China TheRenewable Energy Law, other technology-specific policies

  1. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    ANL), 2011, “Offshore Wind Energy. ” Outer Continental Shelffocus on advancing offshore wind energy development. AfterOffshore Wind Development 27 3.5 Remaining Challenges for Wind Energy

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    ANL), 2011, “Offshore Wind Energy. ” Outer Continental Shelffull_report_2010.pdf British Wind Energy Association (BWEA),on advancing offshore wind energy development. After the

  3. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    average FFDR. If hydro and nuclear energy inputs and outputsAll Alt Energy Technologies Excluding Hydro & Nuclear It iswind, solar, hydro, nuclear and geothermal, renewable energy

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Outer Continental Shelf Alternative Energy and Alternate Usealternative non-fossil and alternative energy technologiesbe effectively addressed and alternative energy development

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    GW Other Renewable Energy Applications Solar Water Heatergrowth of renewable energy industries, particularly solar PVUnlike other renewable energy such as solar and wind, policy

  6. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizonaAugust 16,Security 40EnergyClean Energy andRush

  7. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    will shape China’s future energy system, and consequentlybeen conducted on future energy use and pollutant emissionscould influence China’s future energy consumption and carbon

  8. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    output by each alternative energy type from 2010 to 2030 isof each alternative energy technology type, an energy returntypes of PV power plants with CIS having the lowest water intensity of all alternative energy

  10. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    energy in China. ” Renewable Energy 36 (5): 1374-1378. Chen,GoC/World Bank/GEF China Renewable Energy Scale-up Programwind power systems. ” Renewable Energy 35: 218-225. Lechon

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Fuel Cycle Processes Thermal Energy Intensity Electricityprocess uses less energy than the dry kiln, and an average of reported thermal

  12. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance a given location for the best technology, or a renewable energy technology for the best location, accurate

  13. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future 2008 SUSTAINABILITY REPORT and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. #12;1 NATIONAL RENEWABLE ENERGY LABORATORY The National Renewable Energy Laboratory (NREL) is the only federal laboratory dedicated

  14. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance two-way power flow with communication and control. Renewable Energy Grid Integration As the market

  15. Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information ResourcesHeat & Cool » Home

  16. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect (OSTI)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  17. Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper

    E-Print Network [OSTI]

    Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Thrust Area 1 White Paper Electric Energy Challenges of the Future Project Team Gerald T. Heydt, Kory Hedman Arizona

  18. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  19. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    technology in China. ” Energy 35: 4445-4450. Xinhua News,photovoltaic market in China. ” Energy Policy 39 (4): 2204-and X. Zhang, 2010, “Nuclear energy development in China: A

  20. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    for electricity. Energy and Emissions Impact of Solar WaterElectricity Production by Solarthermal Power Plants in Spain. ” Journal of Solar EnergySolar Water Heaters, 2010-2030 Share of Displaced Energy for Water Heating LPG Natural Gas Electricity

  1. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    wind and large hydro are the only two energy technologiesWind Energy Association (BWEA), 2005, “BWEA Briefing Sheet: Wind Turbine Technology. ”energy technologies through 2030, particularly for solar, wind,

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    GW Solar Thermal GW Tidal Power GW Other Renewable Energys solar thermal power technology development. ” Energy 35:Energy EROEIs in Existing Literature Value in this study EROEI Concentrated Solar Thermal (

  3. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Expansion Policy Drivers Renewable Energy Law of ChinaThe 2005 Renewable Energy Law of China marked the beginningsin the 2005 Renewable Energy Law, a goal of raising the

  4. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    in overall renewable energy finance and investment, Chinarenewable energy fund set up under the Ministry of Financeenergy law by including a provision that allows the Ministry of Finance

  6. for a Sustainable Energy Future Sossina M. Haile

    E-Print Network [OSTI]

    Haile, Sossina M.

    Fuel Cells for a Sustainable Energy Future Sossina M. Haile Materials Science / Chemical Engineering California Institute of Technology #12;Towards a Sustainable Energy Future Contents · The Problem of Energy ­ Growing consumption ­ Consequences ­ Sustainable energy resources · Fuel Cell Technology

  7. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Energy Development 73 Table 34. Installed Capacity by Power Generation Technology and Scenario 83 i List

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    energy through ground source heat pumps and conventionalrapid expansion of ground source heat pump installation from

  9. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear,

  10. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  11. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    with the 2010 annual copper demand for alternative energySteel Copper Uranium Fuel Cycle Energy Demand Because therethe cumulative demand of 4.7 Mt copper exceeds the 2009

  12. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    a 2008 meta-review of nuclear LCA studies (Sovacool, 2008).LCA often underestimates total construction energy because nuclearLCA tends to overestimate total construction energy because components for nuclear

  13. Resources for the Future | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformationfor the Future Jump

  14. Powering the Future | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartment ofofWednesday, April 29,Powering the Future

  15. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  16. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  17. Ris Energy Report 7 Future low carbon energy systems

    E-Print Network [OSTI]

    Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

  18. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory Report NREL/TP-620-38800 October 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden Efficiency and Renewable Energy by Midwest Research Institute · Battelle Contract No. DE-AC36-99-GO10337 #12

  19. Energy Efficiency of Future Networks Energy Efficient Transmission in

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Efficiency of Future Networks Part 1: Energy Efficient Transmission in Classical Wireless #12;Goals Energy Efficiency: What it meant last decade; what it means today From a communication network design perspective what should we care about for energy efficient design of cellular

  20. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Solar Water Heater Geothermal energy Biomass Pellets mil m2 Mtce Mt consumption Biogas and Biomass Gasification Liquid Biofuels Bioethanol Biodiesel mil rural households

  1. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Technology. ” London: Renewable UK. Available at: http://tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi." Renewable and Sustainable Energy

  2. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    stage of the cycle. Uranium Mining and Milling China hasissues surrounding uranium mining, the land intensity for40 Table 17. Uranium Ore Mining and Milling Energy Intensity

  3. Dark Energy and Life's Ultimate Future

    E-Print Network [OSTI]

    Ruediger Vaas

    2007-03-19

    The discovery of the present accelerated expansion of space changed everything regarding cosmology and life's ultimate prospects. Both the optimistic scenarios of an ever (but decelerated) expanding universe and of a collapsing universe seem to be no longer available. The final future looks deadly dark. However, the fate of the universe and intelligence depends crucially on the nature of the still mysterious dark energy which drives the accelerated expansion. Depending on its - perhaps time-dependent - equation of state, there is a confusing number of different models now, popularly called Big Rip, Big Whimper, Big Decay, Big Crunch, Big Brunch, Big Splat, etc. This paper briefly reviews possibilities and problems. It also argues that even if our universe is finally doomed, perhaps that doesn't matter ultimately because there might be some kind of eternal recurrence. - Key words: Cosmology, Universe, Dark Energy, Cosmological Constant, Quintessence, Phantom Energy, Inflation, Quantum Gravity, Far Future, Life, Intelligence

  4. GDF Future Energies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd JumpLatinoEngineering |Future

  5. Probing dark energy with future surveys

    E-Print Network [OSTI]

    Roberto Trotta

    2006-07-21

    I review the observational prospects to constrain the equation of state parameter of dark energy and I discuss the potential of future imaging and redshift surveys. Bayesian model selection is used to address the question of the level of accuracy on the equation of state parameter that is required before explanations alternative to a cosmological constant become very implausible. I discuss results in the prediction space of dark energy models. If no significant departure from w=-1 is detected, a precision on w of order 1% will translate into strong evidence against fluid-like dark energy, while decisive evidence will require a precision of order 10^-3.

  6. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  7. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  8. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    s solar thermal power technology development. ” Energy 35:GW Solar Thermal GW Tidal Power GW Other Renewable Energyenergy development will likely remain solar photovoltaic (PV) and concentrated solar thermal

  9. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  10. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  11. Future Communications Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathyEnergydetailsof EnergyStandardFuture

  12. Growing America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial OpportunitiesDepartment of EnergyGrowing America's

  13. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  14. Future Energy Assets LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia: EnergyGeothermal Field

  15. Future Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia: EnergyGeothermal

  16. The Role Of IC Engines In Future Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of IC Engines In Future Energy Use The Role Of IC Engines In Future Energy Use Reviews future market trends and forecasts, and future engine challenges and research focus...

  17. Coal: the cornerstone of America's energy future

    SciTech Connect (OSTI)

    Beck, R.A. [National Coal Council (United Kingdom)

    2006-06-15

    In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

  18. Japanese Future Space Programs for High Energy Astrophysics KAZUHISA MITSUDA

    E-Print Network [OSTI]

    Mitsuda, Kazuhisa

    Japanese Future Space Programs for High Energy Astrophysics KAZUHISA MITSUDA Institute of space and astronautical science, Sagamihara 229-8510, Japan ABSTRACT. Japanese future space programs for high energy the Japanese future space high energy astrophysics missions in 2000's and early 2010's. The approved

  19. MACHINE DESIGN CONSIDERATIONS FOR THE FUTURE ENERGY CHALLENGE

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    MACHINE DESIGN CONSIDERATIONS FOR THE FUTURE ENERGY CHALLENGE Jonathan W. Kimball and Marco Amrhein. As part of the International Future Energy Challenge, student teams are endeavoring to improve the effi and finite- element results are shown. I. INTRODUCriON The International Future Energy Challenge (FEC

  20. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product

  1. The Solar Economy: Renewable Energy for a Sustainable Global Future

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2003-01-01

    Pakistan Hermann Scheer. The Solar Economy: Renewable EnergyRenewable Energy for a Sustainable Global Future By Hermann Scheer Reviewed by Umar Karim Mirza Pakistan

  2. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington

  3. Take Action Now: Empower a Secure Energy Future

    Broader source: Energy.gov [DOE]

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future campaign handout.

  4. Take Action Now: Empower a Secure Energy Future 2

    Broader source: Energy.gov [DOE]

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future 2 handout.

  5. Complementarity of Future Dark Energy Probes

    E-Print Network [OSTI]

    Jiayu Tang; Filipe B. Abdalla; Jochen Weller

    2008-07-20

    In recent years a plethora of future surveys have been suggested to constrain the nature of dark energy. In this paper we adapt a binning approach to the equation of state factor ``w'' and discuss how future weak lensing, galaxy cluster counts, Supernovae and baryon acoustic oscillation surveys constrain the equation of state at different redshifts. We analyse a few representative future surveys, namely DES, PS1, WFMOS, PS4, EUCLID, SNAP and SKA, and perform a principal component analysis for the ``w'' bins. We also employ a prior from Planck cosmic microwave background measurements on the remaining cosmological parameters. We study at which redshifts a particular survey constrains the equation of state best and how many principal components are significantly determined. We then point out which surveys would be sufficiently complementary. We find that weak lensing surveys, like EUCLID, would constrain the equation of state best and would be able to constrain of the order of three significant modes. Baryon acoustic oscillation surveys on the other hand provide a unique opportunity to probe the equation of state at relatively high redshifts.

  6. Lessons From the Past for Assessing Energy Technologies for the Future

    E-Print Network [OSTI]

    Lin, Albert

    2014-01-01

    a bridge fuel to a renewable energy future, there is littlebridge fuel to a renewable energy future, nations engaged inthe Future of Government Support for Renewable Energy, at

  7. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    term, sustainable energy future, and that these technologiesterm, sustainable energy future and that these technologiesLevel Sustainable Energy Futures Timothy E. Lipman Jennifer

  8. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    technologies to satisfy future energy demands. On anotheraffecting the choice of future energy technologies can noabout the character of future energy alternatives (Schwartz,

  9. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    ASSESSMENTS VI. ALTERNATIVE ENERGY FUTURES FOR CALIFORNIA--prospects for alternative energy futures based on renewablej CHAPTER VI ALTERNATIVE ENERGY FUTURES FOR CALIFORNIA--

  10. Energy Options for the Future* John Sheffield,1

    E-Print Network [OSTI]

    Energy Options for the Future* John Sheffield,1 Stephen Obenschain,2,12 David Conover,3 Rita Bajura at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004, geo- thermal, and biomass energy sources and the effect of measures for energy conservation

  11. BLUEPRINT FOR A SECURE ENERGY FUTURE March 30, 2011

    E-Print Network [OSTI]

    Lotko, William

    , including renewables like wind and solar, as well as clean coal, natural gas, and nuclear power ­ keeping America on the cutting edge of clean energy technology so that we can build a 21st century clean energy. Innovate Our Way to a Clean Energy Future Harness America's Clean Energy Potential Win the future through

  12. Energy, helium, and the future: II

    SciTech Connect (OSTI)

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  13. Energy and Reliability in Future NOC Interconnected CMPS 

    E-Print Network [OSTI]

    Kim, Hyungjun

    2013-08-01

    In this dissertation, I explore energy and reliability in future NoC (Network-on-Chip) interconnected CMPs (chip multiprocessors) as they have become a first-order constraint in future CMP design. In the first part, we ...

  14. Biomass 2008: Fueling Our Future Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy...

  15. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  16. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    A; Simonot, E. (2011). The Cost of Wind Energy. Spanish Wind5. DRIVERS OF FUTURE WIND ENERGY COST REDUCTIONS A largeput upward pressure on wind energy costs, such as continued

  17. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn

    2001-01-01

    challenges for our future energy supply. The study describeswere an alternative to future energy taxation (Van Ginkel &2000. Scenarios for a Clean Energy Future. Lawrence Berkeley

  18. Noncommercial Trading in the Energy Futures Market

    Reports and Publications (EIA)

    1996-01-01

    How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

  19. Getting to Know Nuclear Energy: The Past, Present & Future

    E-Print Network [OSTI]

    Kemner, Ken

    Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

  20. Culham Centre for Fusion Energy Fusion -A clean future

    E-Print Network [OSTI]

    Culham Centre for Fusion Energy Fusion - A clean future FUSION REACTION Research at Culham Centre that drives the sun ­ could play a big part in our sustainable energy future. Around the globe, scientists are divided over whether to include nuclear fission in their energy portfolios; and renewable sources

  1. THE FUTURE OF NUCLEAR ENERGY IN THE UK

    E-Print Network [OSTI]

    Birmingham, University of

    THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

  2. The Future Energy and GHG Emissions Impact of Alternative Personal

    E-Print Network [OSTI]

    The Future Energy and GHG Emissions Impact of Alternative Personal Transportation Pathways in China://globalchange.mit.edu/ Printed on recycled paper #12;The Future Energy and GHG Emissions Impact of Alternative Personal Paul N. Kishimoto, Sergey Paltsev and Valerie J. Karplus Report No. 231 September 2012 China Energy

  3. for a Sustainable Energy Future Sossina M. Haile

    E-Print Network [OSTI]

    Subramanian, Venkat

    technically feasible 0.9 TW economically feasible 0.6 TW installed capacity 12 TW gross over land small Future Energy Solutions Solar 1.2 x 105 TW at Earth surface 600 TW practical Biomass 5-7 TW gross all Sustainable Energy Future Sustainable Energy Cycle Solar plant Biomass H2O H2Capture Storage Delivery

  4. Policy Forum Series "Beyond 33 Percent: California's Renewable Energy Future,

    E-Print Network [OSTI]

    California at Davis, University of

    Policy Forum Series "Beyond 33 Percent: California's Renewable Energy Future, From Near as it transitions to a renewable energy future. Featuring panelists from government, industry and academia the renewables portfolio standard (RPS) beyond 33 percent. "Beyond 33 Percent: California's Renewable Energy

  5. "Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy

    E-Print Network [OSTI]

    Dawson, Jeff W.

    "Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy GRADUATE PROGRAMS IN SUSTAINABLE ENERGY SHAPE YOUR FUTURE BASED ON YOUR RESEARCH INTERESTS Sustaining programs in sustainable energy address these crucial challenges in a unique interdisciplinary fashion

  6. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    for Offshore Wind Farms. ” Journal of Solar Energyoffshore wind in UK waters – Understanding the past and projecting the future. London, UK: UK Energy

  7. Energy futures: Trading opportunities for the 1990s

    SciTech Connect (OSTI)

    Treat, J.E.

    1990-01-01

    This volume contains an edited collection of views from practitioners in the rapidly growing area of energy futures and options trading, a major element of risk management. Four chapters are devoted to Trading Theories and Strategies. This section is aimed at the specialist in energy, rather than finance. The complexities of options trading are described in another chapter. The remaining sections of this book present a variety of topics in this field including Natural Gas Trading and Futures, Energy Futures and Options Trading, and Accounting, Taxation and Internal Control. The book is a good introduction and reference to the mechanics and institutions of energy futures contracts and trading.

  8. FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy Resources in the Smart Grid OBJECTIVE can be used in the studies for the design, operation and control of the future smart grid. Our project National Laboratory (509) 375-2235 shuai.lu@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI

  9. Forming the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future This feature article from the April 2014 edition of the Fabricating and Forming Journal (FFJournal) describes how Ford Motor Co.'s sheet metal freeforming technology...

  10. AgFuture Energy LLC AFE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodynall Countries | OpenEnergy JumpAgFeAgFuture

  11. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  12. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    part of the Integrated Energy Policy Report (IEPR) shouldIEPR Integrated Energy Policy Report ISO Independent Systemand Policy and Director, Sustainable Transportation Energy

  13. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    PV installations. Geothermal energy may require water tobiomass, geothermal, hydro, and marine energy offshore. Asgeothermal and hydropower not included in this table The 2050 Energy

  14. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    combination of energy storage, smart grid, bio-electricity,resources such as energy storage, or smart grid-connectedincluding energy storage and smart grid solutions which

  15. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    efficiency, nuclear power, renewable energy, biofuels etc. )and storage (CCS) and renewable energy. We look at two wayspower, or CCS or renewable energy, without worrying about

  16. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    footprint of using biomass for energy is also important.and expansion of biomass for energy does not result into conceive of biomass derived energy without disastrous

  17. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    the portfolio of energy supply to meet these demands, andcases, the choice of energy supply technology changes theassociated with the energy supply technologies needed to

  18. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    center for work on energy-efficient buildings (includingmore efficient buildings which, by 2040, use 80% less energy

  19. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Energy System Component Analysis Bin Wind Onshore, shallow offshorewind, solar, biomass, geothermal, hydro, and marine energy offshore.

  20. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  1. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    e.g. efficiency, nuclear power, renewable energy, biofuelsnuclear power, or CCS or renewable energy, without worrying about efficiency?

  2. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands...

  3. Creating A Greener Energy Future For the Commonwealth Massachusetts Alternative

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Creating A Greener Energy Future For the Commonwealth Massachusetts Alternative Portfolio Standard For the Commonwealth Overview of MA Portfolio Standard Programs Renewable Energy Portfolio Standard (RPS) Alternative to acquire Renewable Energy Certificates (RECs) and Alternate Energy Credits (AECs) equal to a set

  4. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible thatfuture economic growth may be supported by a relatively lower increase inenergy consumption. Over the past 20 years, energy intensity in China hasbeen reduced partly through technological and structural changes; currentannual emissions may be as much as 600 Mt-C lower than they would havebeen without intensity improvements. China must take into account itsunique circumstances in considering how to achieve a sustainabledevelopment path. This study considers the feasibility of such anachievement, while remaining open to exploring avenues of sustainabledevelopment that may be very different from existing models. Threescenarios were prepared to assist the Chinese Government to explore theissues, options and uncertainties that it confronts in shaping asustainable development path compatible with China's uniquecircumstances. The Promoting Sustainability scenario offers a systematicand complete interpretation of the social and economic goals proposed inthe Tenth Five-Year Plan. The possibility that environmentalsustainability would receive low priority is covered in the OrdinaryEffort scenario. Aggressive pursuit of sustainable development measuresalong with rapid economic expansion is featured in the Green Growthscenario. The scenarios differ in the degree to which a common set ofenergy supply and efficiency policies are implemented. In cons ultationwith technology and policy experts domestically and abroad, ERI developedstrategic scenarios and quantified them using an energy accounting model.The scenarios consider, in unprecedented detail, changes in energy demandstructure and technology, as well as energy supply, from 1998 to 2020.The scenarios in this study are an important step in estimating realistictargets for energy efficiency and energy supply development that are inline with a sustainable development strategy. The scenarios also helpanalyze and explore ways in which China might slow growth in greenhousegas emissions. The key results have important policy implications:Depending on how demand for energy services is met, China could quadrupleits gross domesti

  5. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    that best fit efficient conversion to the needed energy mix.energy processes and technologies to find systems that could bestbest use of available biomass. Reducing the carbon footprint of using biomass for energy

  6. Future United States Energy Security Concerns

    E-Print Network [OSTI]

    Deutch, John M.

    Without energy, the economy can neither function nor grow. However, for at least the next half-century, the U.S. will not have an inexhaustible supply of inexpensive, clean energy. Dependence on energy imports, vulnerability ...

  7. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    The renewables case is 100% renewable energy. The additionalthat all cases have at least 33% renewable energy in the33% renewable energy, i.e. the “median case. ” California’s

  8. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    View to 2050 Laser Fusion Energy a Potential Game Changerworld leader in laser fusion energy—a potential game changera Laser Inertial Fusion Energy (LIFE) power plant would be

  9. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    National Laboratory (LBNL) conduct valuable research on energyResearch Facility, Sandia National Laboratories James McMahon, Department Head, EnergyNational Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory

  10. Sustainable Energy Future in China's Building Sector 

    E-Print Network [OSTI]

    Li, J.

    2007-01-01

    This article investigates the potentials of energy-saving and mitigation of green-house gas (GHG) emission offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy...

  11. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    fuels. Large quantities of bio-energy could reduce emissionsor having zero emission bio-energy would then finish the jobemission load balancing or bio-energy with zero emissions,

  12. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    compete with grid power. Wind energy in areas of good winda large build out of wind energy may include adverse impactsfor 2050. Energy System Component Analysis Bin Wind Onshore,

  13. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    compete with grid power. Wind energy in areas of good winda large build out of wind energy may include adverse impactsgigawatt-days of energy if, for example, the wind does not

  14. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    biomass, geothermal, hydro, and marine energy offshore. Asincluding pumped hydro, compressed air energy storage (Energy System Component Analysis Bin Wind Onshore, shallow offshore tur- bines Concentrated Solar Power (CSP) Solar Photovoltaic (PV) Geothermal Hydro and

  15. Clean Energy for America's Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  16. Securing America's Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  17. Securing America's Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  18. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  19. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    renewable case) alone almost exceed the target emissions. California’s Energy Future -renewable energy, i.e. the “median case. ” California’s Energy Future -

  20. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

  1. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  2. Clean energy investments in an uncertain future

    E-Print Network [OSTI]

    Harrison, Jessica (Jessica Kit)

    2005-01-01

    The energy sector faces a multitude of challenges related to climate change and energy security. These challenges will likely prompt considerable changes in the coming decades, including significant investment and new ...

  3. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    energy to do the same work (efficiency), and we shift the box to the right (rights. ACKNOWLEDGEMENTS We would also like to thank the Stephen Bechtel Fund and the California Energy

  4. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    time-of-use storage (CAES), battery technologies (Na/S,air energy storage (CAES), 25 flywheels and various battery

  5. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    tidal and river tur- bines Enhanced geothermal systems (EGS) Table 4B. Summary of technology readiness for renewable energy

  6. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    electric load balancing, including some combination of energy storage, smart grid, bio-electricity, load-following fossil generation

  7. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Energy Pathways Program, Institute of Transportation Studies, University of California,feasible transportation and heat. California’s EnergyCalifornia Council on Science and Technology Roland Hwang, Transportation Program Director, Natural Resources Defense Council Nalu Kaahaaina, Deputy Project Director, Energy

  8. INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE

    E-Print Network [OSTI]

    INDUSTRIAL ENERGY DATA COLLECTION IN CANADA: EXISTING SYSTEM AND PROPOSED FUTURE DEVELOPMENT. Parminder S. Sandhu Paul Willis October 1994 #12;Industrial Energy Data Collection in Canada: Existing. INTRODUCTION 1 3. NEED FOR INDUSTRIAL ENERGY DATA COLLECTION 2 PART 1 EVALUATION OF EXISTING DATA COLLECTION

  9. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  10. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Analysis Bin Wind Onshore, shallow offshore tur- bineswind, solar, biomass, geothermal, hydro, and marine energy offshore.offshore tur- bines ”Third generation” PV High-altitude wind

  11. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    capacity factor of 37% is assumed, annual installed renewable energynameplate capacity the entire time. Energy System Componentenergy, the state will need to build about 110 GW of capacity (

  12. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    generation or advanced nuclear technology. 17 “Nuclear Powerour energy needs. Bin Nuclear Technology Coal or Natural Gas4A. Summary of technology readiness for nuclear and CCS. The

  13. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    air energy storage (CAES), 25 flywheels and various batterythat value. Pumped hydro and CAES are more competitive, butreliability. 25 Technically, CAES is not a zero-emission

  14. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    an energy commodity, ancillary impacts on food, water anduncertainty about supply and ancillary impacts on food,scaling up? 3. What are the ancillary impacts? For nuclear

  15. Property:FuturePlans | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeType JumpFuturePlans Jump to: navigation,

  16. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    The promise of a clean and sustainable energy future lies infor State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipman

  17. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01

    the Firm . States of the Future and Energy Sources PercentTable XV-l States of the Future and Energy Sources o ,j ;jto assume that a future energy source, not yet available for

  18. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    5 MW) Innovation for Our Energy Future Conclusions 1. It isthink. Innovation for Our Energy Future Questions Eric LantzPotential Sources of Future Wind Energy Cost Reductions R&D/

  19. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Summit on America’s Energy Future (2008), http://www.natural gas. California’s Energy Future - The View to 2050supply California’ s Energy Future - The View to 2050 and

  20. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    well as to understand future energy in the building sector.well as to understand future energy in the building sector.reduction otherwise. 4.3 Future Energy Outlook Growth in

  1. Winning the Biofuel Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.Energy Thefull swing, andWindEnergy Carlton Brown

  2. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    implies a growth rate for wind power of about 7.5% per year,resources from solar and wind power based on the directionto compete with grid power. Wind energy in areas of good

  3. Energy Workforce Training Future Need and Projections 

    E-Print Network [OSTI]

    Midturi, S.; Pidugu, S. B.

    2006-01-01

    , Whirlpool, Jacuzzi), electrical motors (Baldor, Emerson), energy services (Entergy, ARKLA, Arkansas Nuclear), aircraft products (Falcon Jet, Raytheon), defense missiles (Lockheed and Raytheon), machinery (CoorsTek, Timex, Snap On Tools, Hall, Orbit Valves...

  4. Paducah Site Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsomProgressPaducah SiteBackground

  5. Portsmouth Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSite Background »

  6. Could Building Energy Codes Mandate Rooftop Solar in the Future?

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

    2012-08-01

    This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

  7. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Energy Efficiency and Renewable Energy. Office of VehicleEnergy Efficiency and Renewable Energy. U.S. Department ofReport. National Renewable Energy Laboratory (NREL)

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Efficiency and Renewable Energy. Office of Vehicleof Energy Efficiency and Renewable Energy. U.S. DepartmentDemonstration Report. National Renewable Energy Laboratory (

  9. The Role of the Internal Combustion Engine in our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Internal Combustion Engine in our Energy Future The Role of the Internal Combustion Engine in our Energy Future Reviews heavy-duty vehicle market, alternatives to internal...

  10. Present and future evidence for evolving dark energy

    E-Print Network [OSTI]

    Andrew R Liddle; Pia Mukherjee; David Parkinson; Yun Wang

    2006-12-04

    We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, LambdaCDM is currently favoured as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.

  11. Forming the Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report toDepartment of EnergycontractorsThefeature article

  12. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  13. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect (OSTI)

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

  14. Energy, Environment, and the Future of Mankind

    E-Print Network [OSTI]

    Cohen, Ronald C.

    is overdeveloped in terms of the excessive consumption of natural resources and the damage done to our ecosystem or wasteful consumption of natural resources cannot be the ideal models of development. 6 #12;CO2 Emissions, and natural gas in 80-100 years. 2. Before we are halfway through this century, the gap between energy demand

  15. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn

    2001-01-01

    2000. Scenarios for a Clean Energy Future. Lawrence BerkeleyIndustry: Results from the Clean Energy Futures Study ErnstABSTRACT Scenarios for a Clean Energy Future (CEF) studied

  16. Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy

    E-Print Network [OSTI]

    Delaware, University of

    2004-01-01

    Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

  17. Growing Americas Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting Oversight Committee on HomelandBusiness

  18. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

  19. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.March 2009. Annual Energy Outlook (AEO). 2011. Annual Energy

  20. NYMEX Coal Futures - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYearEnergyPresentations &LycominglongMidwestern1BackgroundNYMEX Coal

  1. Enterprise SRS Future Initiatives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing Facility Construction Quality480Enterprise

  2. Growing the Future Bioeconomy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping STD-1128-2013 April< BackGovernmenttheof 2014

  3. GreenFuture Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL SolarGate SolarGijeonWind Energy formerly

  4. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  5. www.kostic.niu.edu Global Energy and Future:Global Energy and Future

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Conservation andImportance of Energy Conservation and Renewable and Alternative Energy ResourcesRenewable and Alternative Energy Resources Prof. M. KosticProf. M. Kostic Mechanical Engineering NORTHERN ILLINOIS of Energy Conservation andImportance of Energy Conservation and Renewable and Alternative Energy Resources

  6. Multi-Building Microgrids for a Distributed Energy Future in Portugal

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    Gas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.Microgrids for a Distributed Energy Future in Portugal

  7. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    policy implications.   Energy Policy.   2009. 37 (12). ppin Southern California”, Energy Policy, 39 (2011) 1923–1938.and Policy and Director, Sustainable Transportation Energy

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    commodity and energy prices, and alternative advancedany alternative fuel system, gravimetric energy density (MJ/and hydrogen as alternative fuels is in energy storage. The

  9. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Appendix A: References Annual Energy Outlook (AEO).2009. Annual Energy Outlook 2009 with Projections to 2030.2009). March 2009. Annual Energy Outlook (AEO). 2011. Annual

  10. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    the use of petroleum, use a decarbonized energy carrier andfrom petroleum or biofuels) because of fuel energy densityfrom petroleum or biofuels) because of fuel energy density

  11. Growth Rates of Global Energy Systems and Future Outlooks

    SciTech Connect (OSTI)

    Hoeoek, Mikael; Li, Junchen; Johansson, Kersti; Snowden, Simon

    2012-03-15

    The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

  12. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  13. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Deputy Project Director, Energy and Environmental Security,Security Principal Directorate, Lawrence Livermore National Lab California’s Energy

  14. Ris Energy Report 8 The intelligent energy system infrastructure for the future

    E-Print Network [OSTI]

    Risø Energy Report 8 The intelligent energy system infrastructure for the future Reprint Petersen #12;Risø Energy Report 5 Renewable energy for power and transport Global energy policy today is dominated by three concerns: security of supply, climate change, and energy for development and poverty

  15. The Hidden Future Shock in Current Energy Economics 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1981-01-01

    for implementation are either being imposed by EPA, used for public relations tokenism or as trial balloon efforts. The result can be a patchwork, house-of-cards, compendium of energy conservation 'fixes' which reduce plant availability or limit future process...

  16. Evaluation of Future Energy Technology Deployment Scenarios for

    E-Print Network [OSTI]

    Electric Light Company (HELCO) Integrated Resource Plan-31 . Three different electricity infrastructureEvaluation of Future Energy Technology Deployment Scenarios for the Big Island Prepared for the U. Following receipt of the draft report, an extensive review was conducted by Hawaii Electric Light Company

  17. Hydro, Solar, Wind The Future of Renewable Energy

    E-Print Network [OSTI]

    Lavaei, Javad

    Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical the turbine speed constant. The available hydro power is calculated using the height difference between source has become popular and has many immediate benefits to communities that opt to build a hydro

  18. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Little, Mark (GE Global Research)

    2012-03-14

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  19. Status and Future of TRANSCOM | Department of Energy

    Office of Environmental Management (EM)

    and Future of TRANSCOM Status and Future of TRANSCOM Current Program Status Upcoming Changes Glimpse at Future Options DOE Commitments Status and Future of TRANSCOM More Documents...

  20. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  1. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    the demand for energy from the supply. Vehicle efficiency isreductions in energy demand, rather than the supply of low-supply of low-carbon biofuels available for use in the transportation sector and other sectors of the energy

  2. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    International Energy Agency (IEA). (2008). Energy Technologyand U.S. fleet average (IEA 2008b) Because fuel is a majorwinglets and longer wingspans) (IEA 2008, Schäfer 2009) and

  3. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    The energy density of electricity storage in batteries orelectricity and hydrogen as alternative fuels is in energy storage.electricity demand. This large pool of battery storage (

  4. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    economy from today’s levels, cutting energy consumption pertoday, though they will likely continue to improve and be refined over time. California’s Energy

  5. A Global Sustainable Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    World energy leaders at the ribbon cutting for the CEM Innovation Showcase Pavilion, from L to R: Dr. Farooq Abdullah, Indian Minister of New & Renewable Energy; South African...

  6. The Future of Energy at the ARPA-E Summit | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    future blogs by email. Subscribe to all future posts Who Todd Wetzel What Energy Aero-Thermal & Mechanical Systems Employee Events Thermal Sciences Why Powering Subscribe...

  7. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Renewable Energy Laboratory IEA Wind Task 26: The Past And Futureand Future Cost of Wind Energy Leading Authors Eric Lantz: National RenewableFuture Questions Eric Lantz Research Analyst Strategic Energy Analysis Center National Renewable

  8. COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future

    E-Print Network [OSTI]

    Pennycook, Steve

    COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future December 1, 2008 #12 Efficiency and Renewable Energy COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future).................... Suzanne Watson American Public Power Association (APPA)........................................... Mike

  9. Dark Matter and Dark Energy: Summary and Future Directions

    E-Print Network [OSTI]

    John Ellis

    2003-04-10

    This paper reviews the progress reported at this Royal Society Discussion Meeting and advertizes some possible future directions in our drive to understand dark matter and dark energy. Additionally, a first attempt is made to place in context the exciting new results from the WMAP satellite, which were published shortly after this Meeting. In the first part of this review, pieces of observational evidence shown here that bear on the amounts of dark matter and dark energy are reviewed. Subsequently, particle candidates for dark matter are mentioned, and detection strategies are discussed. Finally, ideas are presented for calculating the amounts of dark matter and dark energy, and possibly relating them to laboratory data.

  10. Energy technologies at Sandia National Laboratories: Past, Present, Future

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

  12. The Contested Energy Future of Amman, Jordan: Between Promises of Alternative Energies and a Nuclear Venture

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Contested Energy Future of Amman, Jordan: Between Promises of Alternative Energies and nuclear energy. Alternative eco-friendly energy resources represent only a small part of the potential authorities and local business elites are often seen as major players in the energy transition in the city

  13. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  14. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    DOCU[viENTS SECTION DISTRIBUTED ENERGY SYSTEMS STUDY GROUPIMPLICATIONS OF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES .to implement a distributed energy future. RECENT TRENDS IN

  15. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    the Committee on Nuclear and Alternative Energy Strategies (the Committee on Nuclear and Alternative Energy Strategies (analysis of future energy alternatives, and for this we we

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    meeting the DOE’s hydrogen energy density and cost goals is6). Liquid hydrogen storage improves energy density, but itenergy density of electricity storage in batteries or hydrogen

  17. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  18. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    at the DOE Energy Storage Systems Program Review. Washingtonrefueling). Hydrogen storage systems are significantlycompressed hydrogen storage systems (Figure 6). Liquid

  19. Energy for the Future Electrochemical Energy Conversion and Storage

    E-Print Network [OSTI]

    Pfeifer, Holger

    in the fields of renewable and innovative energy technologies. Setting Sights on Materials with a Long Lifespan gas could enable a 100% renewable energy supply "There Is Nothing More Exciting than Developing in energy sciences offer these advantages as well Junior Researchers in Ulm Display Great Motivation 33

  20. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    energy demand along with the potential for technologies in different transportation sectors to reduce fuelpotential for reductions in energy demand, rather than the supply of low-carbon transportation fuel.potential for reductions in fuel use is provided. California’s Energy

  1. The Future of Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The First Five YearsThe Future of

  2. Introduction Basic Structure Symmetries Labelling and Potential Energy Future Work Geometry from Chemistry II

    E-Print Network [OSTI]

    Broughton, S. Allen

    Introduction Basic Structure Symmetries Labelling and Potential Energy Future Work Geometry from and Potential Energy local potential energy terms 5 Future Work #12;Introduction Basic Structure Symmetries Labelling and Potential Energy Future Work nanotubes nanotube - cartoon picture - 1 Here is a cartoon model

  3. The Future is Here - Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here - Smart Home Technology The Future is Here - Smart Home Technology Better Buildings Residential Network Peer Exchange Call Series: The Future is Here - Smart...

  4. Future Supernovae observations as a probe of dark energy

    E-Print Network [OSTI]

    Jochen Weller; Andreas Albrecht

    2002-04-02

    We study the potential impact of improved future supernovae data on our understanding of the dark energy problem. We carefully examine the relative utility of different fitting functions that can be used to parameterize the dark energy models, and provide concrete reasons why a particular choice (based on a parameterization of the equation of state) is better in almost all cases. We discuss the details of a representative sample of dark energy models and show how future supernova observations could distinguish among these. As a specific example, we consider the proposed ``SNAP'' satellite which is planned to observe around 2000 supernovae. We show how a SNAP-class data set taken alone would be a powerful discriminator among a family of models that would be approximated by a constant equation of state for the most recent epoch of cosmic expansion. We show how this family includes most of the dark energy models proposed so far. We then show how an independent measurement of $\\Omega_{\\rm m}$ can allow SNAP to probe the evolution of the equation of state as well, allowing further discrimination among a larger class of proposed dark energy models. We study the impact of the satellite design parameters on this method to distinguish the models and compare SNAP to alternative measurements. We establish that if we exploit the full precision of SNAP it provides a very powerful probe.

  5. Future of the Department of Energy's uranium enrichment enterprise

    SciTech Connect (OSTI)

    Sewell, P.G.

    1991-11-01

    The national energy strategy (NES) developed at President Bush's direction provides a focus for the US Department of Energy (DOE) future policy and funding initiatives including those of the uranium enrichment enterprise. The NES identifies an important and continuing role for nuclear energy as part of a balanced array of energy sources for meeting US energy needs, especially the growing demand for electricity. For many years, growth in US electricity demand has exhibited a strong correlation with growth in gross national product. NEW projections indicate that the US will need between 190 and 275 GW of additional system capacity by 2010. In order to unable nuclear power to help meet this need, the NEW establishes basic objectives for nuclear power. These objectives are to have a first order of a new nuclear power plant by 1995 and to have such a plant operational by 2000. The expansion of nuclear power anticipated in the NEW affirms a continuing need for a strong domestic uranium enrichment services supply capability. In terms of the future outlook for uranium enrichment, the atomic vapor laser isotope separation (AVLIS) technology continues to hold great promise for commercial application. If AVLIS efforts are successful, significant financial benefits from the commercial use of AVLIS will be realized by customers and the AVLIS deployment entity by approximately the year 2000 and thereafter.

  6. Ris Energy Report 8 The intelligent energy system infrastructure for the future

    E-Print Network [OSTI]

    Risø Energy Report 8 The intelligent energy system infrastructure for the future Risø-R-1695(EN) September 2009 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 8 Edited by Hans Larsen and Leif Sønderberg Petersen, Risø National Laboratory for Sustainable Energy Technical University

  7. Ris Energy Report 4 International trends and scenarios for future energy systems Introduction

    E-Print Network [OSTI]

    Risø Energy Report 4 International trends and scenarios for future energy systems 3 Introduction In evaluations of long term energy forecasts made in the past the conclusion often is that a large number on internationally recognised scientific material". One key observation in a recent evaluation of long term energy

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    vehicle is that it depends upon the uncertain status of a number of different policies, external commodity and energy prices, and alternative

  9. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  10. Search for a bridge to the energy future: Proceedings

    SciTech Connect (OSTI)

    Saluja, S.S.

    1986-01-01

    The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

  11. Energy sources for a secure (?) and clean (?) energy future

    E-Print Network [OSTI]

    Hughes, Larry

    -energy: ­ Pesticides ­ Plastics ­ Cosmetics ­ Asphalt Source: IEA, Key World Energy Statistics, 2006 #12;Oil production;Other issues · Changes in the oil market: ­ Heavy-sour crude replacing light-sweet crude ­ Exploration Dalhousie University http://lh.ece.dal.ca/enen #12;Why all the fuss over oil? Oil 34.3% Coal 25.1% Natural

  12. Crystal Ball: On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of ...

  13. Sudden Future Singularity models as an alternative to Dark Energy?

    E-Print Network [OSTI]

    Hoda Ghodsi; Martin A. Hendry; Mariusz P. Dabrowski; Tomasz Denkiewicz

    2011-03-11

    Current observational evidence does not yet exclude the possibility that dark energy could be in the form of phantom energy. A universe consisting of a phantom constituent will be driven toward a drastic end known as the `Big Rip' singularity where all the matter in the universe will be destroyed. Motivated by this possibility, other evolutionary scenarios have been explored by Barrow, including the phenomena which he called Sudden Future Singularities (SFS). In such a model it is possible to have a blow up of the pressure occurring at sometime in the future evolution of the universe while the energy density would remain unaffected. The particular evolution of the scale factor of the universe in this model that results in a singular behaviour of the pressure also admits acceleration in the current era. In this paper we will present the results of our confrontation of one example class of SFS models with the available cosmological data from high redshift supernovae, baryon acoustic oscillations (BAO) and the cosmic microwave background (CMB). We then discuss the viability of the model in question as an alternative to dark energy.

  14. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) This...

  15. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    E-Print Network [OSTI]

    Davis, SJ; Caldeira, K; Matthews, HD

    2010-01-01

    Future CO 2 Emissions and Climate Change from Existing Energynon-energy emissions could diminish in the future. In viewfuture CO 2 emissions is much greater in China, because China’s energy

  16. U.S. and China Announce Cooperation on FutureGen and Sign Energy...

    Energy Savers [EERE]

    Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue U.S. and China Announce Cooperation on FutureGen and Sign Energy...

  17. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact...

    Office of Scientific and Technical Information (OSTI)

    Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very High-Energy...

  18. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01

    logy as an energy alternative for the future. Some offor alternative scenarios for future pattern of energyfuture states of society must be established through the specification of alternative energy

  19. A Cornerstone of Our Energy Future: Women | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Empowerment. C3E works to advance women leaders in clean energy. Now in its third year, the program's Ambassadors network, annual Symposium and C3E Awards program...

  20. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable Energy (EERE) | Department of Energy

  1. Hydrogen & Our Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof EnergyResearch TriangleThrough its HydroNEXTDOE

  2. Creating the Future of Solar Energy, Today | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEvery Thanksgiving, weFact Sheet on clean

  3. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  4. Sudden Future Singularity models as an alternative to Dark Energy?

    E-Print Network [OSTI]

    Ghodsi, Hoda; Dabrowski, Mariusz P; Denkiewicz, Tomasz

    2011-01-01

    Current observational evidence does not yet exclude the possibility that dark energy could be in the form of phantom energy. A universe consisting of a phantom constituent will be driven toward a drastic end known as the `Big Rip' singularity where all the matter in the universe will be destroyed. Motivated by this possibility, other evolutionary scenarios have been explored by Barrow, including the phenomena which he called Sudden Future Singularities (SFS). In such a model it is possible to have a blow up of the pressure occurring at sometime in the future evolution of the universe while the energy density would remain unaffected. The particular evolution of the scale factor of the universe in this model that results in a singular behaviour of the pressure also admits acceleration in the current era. In this paper we will present the results of our confrontation of one example class of SFS models with the available cosmological data from high redshift supernovae, baryon acoustic oscillations (BAO) and the c...

  5. New Science for a Secure and Sustainable Energy Future

    SciTech Connect (OSTI)

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  6. The Future is Here - Smart Home Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGE andOffice -Energy Clean airCompetition The Future

  7. Future Power Systems 21 - The Smart Customer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" | Department ofMotors |FurnacesFuture

  8. Winning the Future with a Responsible Budget | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.Energy Wind Power Today, 2010,Winners Announced in

  9. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    E-Print Network [OSTI]

    Zheng, Nina

    2010-01-01

    and Carbon Emissions Outlook to 2050. Lawrence Berkeley2009. World Energy Outlook 2009. Paris: OECD Publishing.Future Energy and Emissions Outlook Nina Zheng, Nan Zhou and

  10. Investing in our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of(Presentation) |of EnergyInvesting in a

  11. Driving Home to a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 FederalEnergy Green: Spring has

  12. Ris Energy Report 6 Innovation indicators and future options 1 8.1 Introduction

    E-Print Network [OSTI]

    Risø Energy Report 6 Innovation indicators and future options 1 8 8.1 Introduction A number energy technologies. The best-known source for future trends in energy is the annual World Energy Outlook (WEO) from the Interna- tional Energy Agency (IEA), which is part of the OECD [1]. The WEO is based

  13. Innovation: Enabling a Sustainable Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to IndustrialStacks ofofPresident

  14. A Global Sustainable Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofApplianceU.S.Department of5thA Citizen'sThe EnergyWorld

  15. Brainstorming Apps for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethanyOn Friday,FebruaryJune

  16. Building Our Energy Future: Teaching Students the Significance of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | Department of Energy St. Agnus Catholic

  17. Critical Materials for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June2012environment 3D printer laserDavid

  18. Better Buildings for a Brighter Future | Department of Energy

    Office of Environmental Management (EM)

    for a Brighter Future Better Buildings for a Brighter Future This program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the program's...

  19. The great ``retail wheeling`` illusion, and more productive energy futures

    SciTech Connect (OSTI)

    Cavanagh, R.

    1994-12-31

    This paper sets out the reasons why many environmental and public interest organizations oppose retail wheeling. Cavanagh argues that retail wheeling would destroy incentives for energy efficiency improvements and renewable energy generation--benefits that reduce long-term energy service costs to society as a whole. The current debate over the competitive restructuring of the electric power industry is critical from both economic and environmental perspectives. All attempts to introduce broad-scale retail wheeling in the United States have failed; instead, state regulators are choosing a path that emphasizes competition and choice, but acknowledges fundamental differences between wholesale and retail markets. Given the physical laws governing the movement of power over centrally controlled grids, the choice offered to customers through retail wheeling of electricity is a fiction -- a re-allocation of costs is all that is really possible. Everyone wants to be able to claim the cheapest electricity on the system; unfortunately, there is not enough to go around. By endorsing the fiction of retail wheeling for certain types of customers, regulators would be recasting the retail electricity business as a kind of commodity exchange. That would reward suppliers who could minimize near-term unit costs of electricity while simultaneously destroying incentives for many investments, including cost-effective energy efficiency improvements and renewable energy generation, that reduce long-term energy service costs to society as a whole. This result, which has been analogized unpersuasively to trends in telecommunications and natural gas regulation, is neither desirable nor inevitable. States should go on saying no to retail wheeling in order to be able to create something better: regulatory reforms that align utility and societal interests in pursuing a least-cost energy future. An appendix contains notes on some recent Retail Wheeling Campaigns.

  20. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  1. Future waste treatment and energy systems – examples of joint scenarios

    SciTech Connect (OSTI)

    Münster, M., E-mail: maem@dtu.dk [System Analysis Division, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Finnveden, G. [KTH Royal Institute of Technology, School of Architecture and the Built Environment, Department of Planning and Environment, Division of Environmental Strategies Research – fms, 100 44 Stockholm (Sweden); Wenzel, H. [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M (Denmark)

    2013-11-15

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

  2. Analysis of the Past and Future Trends of Energy Use in Key Medium- and Large-Sized Chinese Steel Enterprises, 2000-2030

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    before calculating the future energy intensities. The mostused in calculating the future energy intensities Year Pigas well as their future energy intensities. For example, the

  3. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Fuels of the Future for Cars and Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future for Cars and Trucks Fuels of the Future for Cars and Trucks 2002 DEER Conference Presentation: U.S. Department of Energy 2002deereberhardt.pdf More Documents &...

  6. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

  7. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    that have influenced wind energy costs in the past and areSources of Future Wind Energy Cost Reductions R&D/Learninghistorical declines, wind energy costs were increasing for

  8. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01

    OF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES . . . . . . .DISTRIBUTED ENERGY SYSTEMS I~N CALIF RNIA/S FUTURE: UU-6831Ur'l1E:i\\i-fS SECTION DISTRIBUTED ENERGY SYSTEMS STUDY GROUP

  9. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The vision of the VW group for the future of diesel engines and future fuels is presented. deer10sjohnson.pdf More Documents & Publications The Diesel Engine Powering Light-Duty...

  10. Hydrogen and the materials of a sustainable energy future

    SciTech Connect (OSTI)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  11. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

  12. What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy

    E-Print Network [OSTI]

    Kammen, Daniel M.

    (NREL) for allowing us to include the renewable energy potential maps that NREL has generated = fuel cell electric vehicle FERCO = Future Energy Resources Corporation ft2 = square foot or feet GHGWhat Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy UCD-ITS-RR-04

  13. SEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 SEARCHING FOR SUSTAINABILITY

    E-Print Network [OSTI]

    Jacobson, Arne

    , Kenya was the focus of numerous donor-driven projects in household energy, solar power, and other formsSEARCHING FOR SUSTAINABILITY: KENYA'S ENERGY PAST AND FUTURE, NOVEMBER 2006 1 SEARCHING FOR SUSTAINABILITY KENYA'S ENERGY PAST AND FUTURE BY ROB BAILIS, CHARLES KIRUBI AND ARNE JACOBSON SEARCHING

  14. Optical Label Switching Technology and Energy-Efficient Future Networks S. J. Ben Yoo

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Optical Label Switching Technology and Energy-Efficient Future Networks S. J. Ben Yoo Department traffic with extremely low energy consumption and high goodput. Keywords: Optical packet switching, optical label switching, energy efficient networks. 1. Introduction The future Internet is rapidly

  15. Development of Materials for Future Energy Systems using Combinatorial Synthesis of Thin Film Materials

    E-Print Network [OSTI]

    production/storage/conversion of energy carriers are necessary to improve existing and enable future energyDevelopment of Materials for Future Energy Systems using Combinatorial Synthesis of Thin Film Professor Alfred Ludwig Institute for Materials, Ruhr-Universität Bochum, Bochum, Germany THE RESNICK

  16. Convergence for the Smart Grid -On the technology opportunities for Future Cyber-Physical Energy Systems, invited paper at New Research Directions for Future Cyber-Physical Energy

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Convergence for the Smart Grid - On the technology opportunities for Future Cyber-Physical Energy Angeles, CA. 90095 http://winmec.ucla.edu Email:smartgrid@winmec.ucla.edu Convergence for the Smart Grid into what the Future / Smart Electric Grid should look like. For example the DOE has a vision for the Modern

  17. USVIEnergyRoadMap Charting the Course to a Clean Energy Future

    E-Print Network [OSTI]

    to help island nations and territories increase their energy security by adopting energy efficiencyUSVIEnergyRoadMap Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy

  18. Joint DOE/NRCan Study of North American Transportation Energy Futures: Phase 2 Results

    SciTech Connect (OSTI)

    None

    2009-01-18

    Joint DOE/NRCan Study of North American Transportation Energy Futures: Discussion of the Study, Presentation of Phase 2 Results - April 30, 2003

  19. Abstract Microgrids are a new concept for future energy dis-tribution systems that enable renewable energy integration and

    E-Print Network [OSTI]

    Collins, Emmanuel

    1 Abstract ­ Microgrids are a new concept for future energy dis- tribution systems that enable renewable energy integration and improved energy management capability. Microgrids consist of multiple power quality and power distribution reliability, microgrids need to operate in both grid

  20. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    Sustainable Energy (4) Danish Energy Agency (DEA). (1999).al. [3] and the Danish Energy Agency (DEA) [4], illustrate

  1. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , WashingtonEnergy Outlook .

  2. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    with the National Renewable Energy Laboratory and underLehmann, H. (2008). Renewable Energy Outlook 2030 – EnergyWatch Group Global Renewable Energy Scenarios. Berlin,

  3. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    H. (2008). Renewable Energy Outlook 2030 – Energy WatchA Sustainable World Energy Outlook. Brussels, Belgium:Assumptions to the Annual Energy Outlook 2011. DOE/EIA-0554.

  4. Future Fuels: Issues and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels: Issues and Opportunities Future Fuels: Issues and Opportunities 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerbeard.pdf More...

  5. ITP Glass: Glass Industry of the Future: Energy and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a Bright Future ITP Glass: Glass Industry Technology Roadmap; April 2002...

  6. Past and Future Cost of Wind Energy: Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  7. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  8. Optimal Use of Organic Waste in Future Energy Systems the Danish case

    E-Print Network [OSTI]

    Optimal Use of Organic Waste in Future Energy Systems ­ the Danish case Marie Münster*, Henrik Lund a comparative energy system analysis of different technologies utilizing organic waste for heat, power and fuel to assess energy technologies together with the energy systems they are part of and influence. The energy

  9. Add me to your mailing list for future information about energy management courses.

    E-Print Network [OSTI]

    California at Davis, University of

    management control systems, natural gas purchasing opportunities in the spot market, thermal energy storage, alternative energy supplies, energy security and energy trading. Explore reliability and risk analysis methodsAdd me to your mailing list for future information about energy management courses. Name Job Title

  10. June 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source

    E-Print Network [OSTI]

    , June 28 - An international consortium announced Tuesday that France would be the site of the world scientists see as crucial to solving the world's future energy needs. "It is a great success for FranceJune 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source By CRAIG S. SMITH PARIS

  11. Planning for a New Energy and Climate Future Presented by Scott Shuford

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    of North Carolina at Asheville and NOAA's National Climatic Data Center to work on climate change outreach entitled Planning for a New Energy and Climate Future. He is also a co-author for APA's Climate ChangePlanning for a New Energy and Climate Future Presented by Scott Shuford Free and open to the public

  12. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends in Global Energy Use and Greenhouse Gasto Development of Long-Term Energy Demand Scenarios forto Development of Long-Term Energy Demand Scenarios for

  13. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    12, August, pp. 1499-1507 IEA, 1997. Indicators of Energyand Human Activity , Paris, IEA/OECD. Institute of EnergyInternational Energy Agency (IEA), 2001, Energy Statistics

  14. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    2009). Technology Roadmap – Wind Energy. Paris, France:5) Ceña, A; Simonot, E. (2011). The Cost of Wind Energy.Spanish Wind Energy Association (AEE) contribution to IEA

  15. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    levels, to reach the energy consumption levels envisioned.In this method, energy consumption is calculated bythe overall level of energy consumption Figure 61: Structure

  16. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    energy statistics. F rom apparent consumption figures (productionstatistics provide information on supply side. The energy data reports production of all energy sources in all regions, and consumption

  17. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Total Variable: Urban: Useful Energy Intensity (MegajouleUse Variable: Office: Useful Energy Intensity (Kilowatt-HourCooling Variable: Retail: Useful Energy Intensity (Kilowatt-

  18. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    11 Calibration of the Energy Consumption Data forSectoral energy consumption data are available in publishedof the sectoral energy consumption data in the statistics

  19. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    08-GO28308 with the National Renewable Energy Laboratory andS. ; Lehmann, H. (2008). Renewable Energy Outlook 2030 –Watch Group Global Renewable Energy Scenarios. Berlin,

  20. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    RMB) hydro & nuclear Historical Primary Energy Consumptionhouseholds. Primary Energy Consumption (EJ) hydro nuclearfuels and hydro can be easily compared Energy Use in China

  1. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    2009). Technology Roadmap – Wind Energy. Paris, France:EWEA. (2011). Pure Power – Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

  2. Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system

    E-Print Network [OSTI]

    fuel (REtrol, Chapter 4) or heat, whether from direct electric heating, or heat pumps. Other uses biomass covers wood, agricultural residues, energy crops, household waste and agro-industrial waste and heat Denmark is one of the few countries where the use of both straw and wood in power plants

  3. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    in electric petitive demand energy generation increasinglyelectric will be energy use and water localized for electrical generation

  4. The Solar Economy: Renewable Energy for a Sustainable Global Future

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2003-01-01

    Review: The Solar Economy: Renewable Energy for aHermann Scheer. The Solar Economy: Renewable Energy for a

  5. Future EfficientDynamics with Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EfficientDynamics with Heat Recovery Future EfficientDynamics with Heat Recovery A 15% increase in engine performance could be demonstrated with a Dual-Loop-Rankine and 10%...

  6. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future directions in engines and fuels, powertrains and vehicle system review. deer10tatur.pdf More Documents & Publications A View from the Bridge Boosting Small Engines to High...

  7. Designing the Future Energy System for Cleaner Air: A National Laboratory Perspective 

    E-Print Network [OSTI]

    Cale, J.

    2014-01-01

    of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. James Cale, Ph.D., Group Manager Distributed Energy Systems Integration (DESI) Power Systems Engineering Center... National Renewable Energy Laboratory Designing the Future Energy System for Cleaner Air: A National Laboratory Perspective ESL-KT-14-11-23 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 2DOE and National Laboratories 2...

  8. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry; Carroll, Sean; Ooguri, Hirosi; Gukov, Sergei; Preskill, John; Hitlin, David G.; Porter, Frank C.; Patterson, Ryan B.; Newman, Harvey B.; Spiropulu, Maria; Golwala, Sunil; Zhu, Ren-Yuan

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research

  9. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  10. Preparing the U.S. Foundation for Future Electric Energy Systems

    E-Print Network [OSTI]

    large-scale penetration of Renewable and Alternative Energy technologies Maintain U.S. Electric PowerPreparing the U.S. Foundation for Future Electric Energy Systems: A Strong Power and Energy Engineering Workforce U.S. Power and Energy Engineering Workforce Collaborative Prepared by the Management

  11. Overview of current and future energy storage technologies for electric power applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Overview of current and future energy storage technologies for electric power applications Ioannis September 2008 Keywords: Power generation Distributed generation Energy storage Electricity storage A B energy sources (RES). The extensive use of such energy sources in today's electricity networks can

  12. Imagine energy and environment in alignment. Now that's a powerful future.

    E-Print Network [OSTI]

    Reif, John H.

    Imagine energy and environment in alignment. Now that's a powerful future. America's current energy country needs to transition to a new energy system. A transition of this magnitude typically takes decades, but we cannot afford to wait. To meet our nation's growing energy needs and the needs of our environment

  13. STREAM: A Model for a Common Energy Future Anders Kofoed-Wiuff, EA Energianalyse; Jesper Werling, EA Energianalyse; Peter

    E-Print Network [OSTI]

    STREAM: A Model for a Common Energy Future Anders Kofoed-Wiuff, EA Energianalyse; Jesper Werling, EA Energianalyse; Peter Markussen, DONG Energy; Mette Behrmann, Energinet.dk; Jens Pedersen: The future energy system. Its purpose was to lay down objectives and possible futures of the Danish energy

  14. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Urban and Rural (with biomass) As living standards rise, energy efficiencyUrban: Useful Energy Intensity (Megajoule per Household) Scenario: Ref Region: All Regions Cooking Variable: Cooking: Efficiency (energy efficiency improvement. Table 7 End Use Saturations and Intensities Saturation, % Urban

  15. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    by the end user while primary energy consumption includesin the world (WEC 2001). GDP Primary Energy Consumption (EJ)accounting for 10% of primary energy. In terms of fuel;

  16. Status and future directions of the ENERGY STAR program

    E-Print Network [OSTI]

    Brown, Richard E.; Webber, Carrie A.; Koomey, Jonathan G.

    2000-01-01

    Summer Study on Energy Efficiency in Buildings, 2:243-257.Summer Study on Energy Efficiency in Buildings, 7:77-87.Summer Study on Energy Efficiency in Buildings, 4:205-210.

  17. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    by Fuel (with biomass) Primary Energy Consumption (EJ) RuralEnd-use (without biomass) Commercial Energy Use by Fuel andfor 9% of primary energy excluding biomass fuels. Figure 10

  18. Future Accelerator Challenges in Support of High-Energy Physics

    E-Print Network [OSTI]

    Zisman, M.S.

    2008-01-01

    IN SUPPORT OF HIGH- ENERGY PHYSICS* M. S. Zisman ‡ , LBNL,progress in high-energy physics has largely been determinedprogress in high-energy physics has traditionally depended

  19. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Statistics in Japan , he Energy Data and Modeling Center,Wang, Q, 2005. 2005 Energy Data for Fiscal and EconomicWhat do India’s transport energy data tell us? Residential

  20. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    rate 1985 and 2000 declined energy export indicating of netand its environment. energy for export Under Nevada law (NRSis in a sense Large exports and energy water could have a

  1. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    the Chapter on Wind Power in Energy Technology Perspectives21) IEA. (2009). Technology Roadmap – Wind Energy. Paris,WIND ENERGY R&D/Learning  Area   Potential  Changes     (For  more  detail  on  technology  

  2. Energy Mobility Network : system design, interfaces, and future interactions

    E-Print Network [OSTI]

    Cheung, Natalie Wen Yua

    2011-01-01

    The Energy Mobility Network is a mobile, networked energy production, consumption and sharing system that is designed to motivate users to be more aware of their energy consumption. In particular, the system provides a ...

  3. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01

    Floor-space forecast to 2050 Gross demand for energy Macro-Floor-space forecast to 2050 Gross demand for energy Macro-Floor-space forecast to 2050 Gross demand for energy Macro-

  4. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    with both showing a rebound in energy use per unit of GDPmostly due to the rebound in industry energy intensity (as

  5. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Natural Gas Electricity Total Transportation Fuel Consumption Petroleum as % Total ChinaChina’s energy. Primary Energy Consumption (EJ) nuclear natural gas

  6. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    Low Wind Speed Turbines and Implications for Cost of EnergyWIND ENERGY by as much as 270% when comparing today’s turbines

  7. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    resources, the state's potential for solar energy effortsstorage facilities been potential have identified Solarenergy solar energy and cooling demand has a great potential

  8. FutureCarbon GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia:Future ofFuture

  9. "Developing Nationally Significant Infrastructure: the Future Role of Energy Planning"

    E-Print Network [OSTI]

    Martin, Ralph R.

    to about 1/3 of current overall capacity. The 2003 Energy Review placed growing emphasis on renewable energy. There is currently a national target of 5% renewable generation by 2007, and 10% by 2015 infrastructure in 2005.4 Emphasis was placed upon clean energy: renewable energy and the efficient use of natural

  10. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  11. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S. (ed.)

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  12. Energy Policy 36 (2008) 15771583 Towards a sustainably certifiable futures contract for biofuels

    E-Print Network [OSTI]

    2008-01-01

    Energy Policy 36 (2008) 1577­1583 Viewpoint Towards a sustainably certifiable futures contract are biofuels to be certified as produced in a sustainable and responsible fashion? In the global debate over to the problem of sustainability certification through a biofuels futures contract equipped with `proof of origin

  13. Transportation Energy Futures Study: The Key Results and Conclusions...

    Open Energy Info (EERE)

    activities related to renewable energy and energy efficiency technologies. Austin Brown, Ph.D., is a senior analyst in the Washington, D.C. office of the National Renewable...

  14. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    E. (2011). Development in LCOE for Wind Turbines in Denmark.to drive a historically low LCOE for current installations.the levelized cost of energy (LCOE) for onshore wind energy

  15. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  16. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  17. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    energy efficiency and subsequent rise, etc(Sinton and Fridley,2003) GDP (billion 2000 RMB) hydro & nuclear

  18. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    of synthetic coal and uranium processes. mining, The EnergyWhether mining conditions depends demands for a uranium

  19. Overview of the use of the PCI bus in present and future high energy physics data acquisition systems

    E-Print Network [OSTI]

    Van Praag, A; Matheys, J P; Van de Vyvre, P; Anguelov, T; Georgiev, G; Piperov, S; Vankov, I; Gillot, D; Guglielmi, A M; Orel, O; Sytin, A N

    1995-01-01

    Overview of the use of the PCI bus in present and future high energy physics data acquisition systems

  20. Modeling China's energy future Pat DeLaquil

    E-Print Network [OSTI]

    , renewables, and coal gasification-based energy supply technologies, can enable China to meet economic-use efficiency in all sectors, (2) ex- panded use of renewable energy sources (especially wind and modern biomass), and (3) coal gasification technolo- gies co-producing electricity and clean liquid and gaseous energy

  1. ONLINE LEARNING Managing energy for a sustainable future

    E-Print Network [OSTI]

    California at Davis, University of

    systems; ground source heat pumps; lighting and electrical management; natural gas purchasing; thermal in understanding and managing energy in any industry, from heavy to light energy users. Develop a comprehensive applicable to commercial and industrial energy resource management. Aquire the skills necessary

  2. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    SciTech Connect (OSTI)

    NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

    2012-03-26

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

  3. Energy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems

    E-Print Network [OSTI]

    Conte, Thomas M.

    time of a slow PCM based memory and significant energy reductions against a DDR3 commodity DRAM memoryEnergy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems Abstract the point of view of scaling and energy consumption. PCM-only memories suffer from latency issues, high

  4. Postcard from the Future: The Energy Transition in Hawai'i

    E-Print Network [OSTI]

    standards (40% renewable energy production by 2030), and has the potential to provide a global model of how renewable energy producer in North America, announced a $4.3 billion merger. The announcement sentPostcard from the Future: The Energy Transition in Hawai'i Shalanda H. Baker Associate Professor

  5. o secure a safe, reliable and low-carbon energy future, we must alter

    E-Print Network [OSTI]

    Kammen, Daniel M.

    T o secure a safe, reliable and low- carbon energy future, we must alter both technologies and human behav- iour1 . The US Department of Energy notes2 that supply and demand is "affected as much-makers continue to focus on only one side of the energy dilemma. In the United States

  6. Optimal Energy Consumption Scheduling Using Mechanism Design for the Future Smart Grid

    E-Print Network [OSTI]

    Wong, Vincent

    Optimal Energy Consumption Scheduling Using Mechanism Design for the Future Smart Grid Pedram may need to collect various information about users and their energy consumption behavior, which can this problem, different programs have been proposed to shape the energy consumption pattern of the users

  7. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  8. Energy Efficiency in the Future The Sixth Northwest Power Plan, 2010

    E-Print Network [OSTI]

    Resource Portfolio CumulativeResources (AverageMegawatts) Energy efficiency is at the heart of the SixthEnergy Efficiency in the Future The Sixth Northwest Power Plan, 2010 The plan,the sixth five megawatts). This efficiency,combined with new renewable energy,could delay investments in new fossil

  9. INVESTIGATING THE SURFACE ENERGY BALANCE IN URBAN AREAS RECENT ADVANCES AND FUTURE NEEDS

    E-Print Network [OSTI]

    INVESTIGATING THE SURFACE ENERGY BALANCE IN URBAN AREAS ­ RECENT ADVANCES AND FUTURE NEEDS M of the surface energy balance of urban areas, based on both experimental investigations and numerical models effects in meso-scale mod- els are reviewed. Given that neither the surface energy balance, nor its

  10. Informing the DebateInforming the DebateInforming the Debate Michigan's Energy Future

    E-Print Network [OSTI]

    Riley, Shawn J.

    An Examination of Costs and Technologies Impacting Policy which will influence Michigan's Energy Future AuthorsInforming the Debate An Examination of Costs and Technologies Impacting Policy which will influence Michigan's Energy in the public sector. Renewable energy companies invest in countries and states that are committed

  11. A Primer on the Fifth Power Plan: A Guide for Our Energy Future

    E-Print Network [OSTI]

    s, increased demand led energy planners to believe that hydro-generating resources would soonA Primer on the Fifth Power Plan: A Guide for Our Energy Future Spring 2004 Striking a Balance Between Energy and the Environment in the Columbia River Basin he Northwest is unique in how it plans its

  12. Using modeling to generate alternatives (MGA) to expand our thinking on energy futures

    E-Print Network [OSTI]

    Barlaz, Morton A.

    Using modeling to generate alternatives (MGA) to expand our thinking on energy futures Joseph F. De modeling to generate alternatives (MGA) as a way to flex energy models and systematically explore: Mathematical methods (JEL: C02) Optimization Uncertainty Modeling Energy-economy optimization models ­ encoded

  13. Present and future perspectives for high energy density physics with intense heavy ion and laser beams

    E-Print Network [OSTI]

    , Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laserPresent and future perspectives for high energy density physics with intense heavy ion and laser!, Plasmaphysik, Darmstadt, Germany 2 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt

  14. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  15. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  16. Internships Help Future Energy Leaders Gain Hands-On Experience |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public Comment InterestedEnergyDepartment of Energy

  17. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Energy Intensity by End-use Assumptions Urban enduse intensity Spaceenergy efficiency improvement. Table 7 End Use Saturations and Intensities Saturation, % Urban Rural Space

  18. Technology: How to build a low-energy future

    Broader source: Energy.gov [DOE]

    Advanced construction technologies promise huge energy savings, says Philip Farese. Investment is needed to bring them to market and to encourage their use.

  19. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    2009). Technology Roadmap – Wind Energy. Paris, France:Bolinger, M. (2011). 2010 Wind Technologies Market Report.Økonomi (The Economy of Wind Power). EUDP 33033-0196.

  20. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01

    PHASE I: SURVEY OF WATER IN CALIFORNIA AND NEVADA:PRODUCTION STATE'S PERSPECTIVE. CALIFORNIA WATER RESOURCES.Water Demand Energy Supp

  1. Critical Materials for a Clean Energy Future | Department of...

    Office of Environmental Management (EM)

    Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at...

  2. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    Økonomi (The Economy of Wind Power). EUDP 33033-0196.to the Chapter on Wind Power in Energy TechnologyAgency (DEA). (1999). Wind Power in Denmark: Technologies,

  3. Future of Wind Energy Technology in the United States

    SciTech Connect (OSTI)

    Thresher, R.; Robinson, M.; Veers, P.

    2008-10-01

    This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

  4. FutureCamp GmBH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtc JumpInformationFurnasFuture

  5. FutureGen Industrial Alliance Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd Jump to:FusermannZoneFuture

  6. Sandia Energy - 2013 Domenici Public Policy Conference: The Future of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandiaCOMMUNITYand FutureAmerican

  7. The Future of Renewable Energy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(active tab) 2016TheTheFuture

  8. The Future of Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The First Five YearsThe Future ofThe

  9. Leveraging Renewable Energy in Data Centers: Present and Future

    E-Print Network [OSTI]

    Epema, Dick H.J.

    Gas Coal Can we use renewables to reduce this footprint? #12;Outline · DC energy usage and carbon footprint · Reducing carbon with renewables: 2 approaches · Our target and research challenges · SoftwareMW solar array in NC (2) #12;Outline · DC energy usage and carbon footprint · Reducing carbon

  10. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    Low Wind Speed Turbines and Implications for Cost of EnergyCOST OF WIND ENERGY by as much as 270% when comparing today’s turbinescosts observed in most markets from 2004 and 2009 has been largely tied to increases in the price of wind turbines [

  11. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  12. Future singularity avoidance in phantom dark energy models

    E-Print Network [OSTI]

    Jaume de Haro

    2012-06-11

    Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation $P=\\omega\\rho$ with $\\omega<-1$, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to $\\rho^2$, in Friedmann's equation that replace the big rip by a non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.

  13. Revolution Now: The Future Arrives for Four Clean Energy Technologies --

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7|Energyand Performance AssuranceEnergy-

  14. Using Maps to Predict Solar Futures | Department of Energy

    Office of Environmental Management (EM)

    data, and real-time bids from installers to assist customers in how to best incorporate solar energy into their lives. If you want to get a basic idea of whether your rooftop is...

  15. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    Energy Watch Group (21) IEA. (2009). Technology Roadmap –AEE) contribution to IEA Task 26 (6) Wiser, R. ; Yang, Z. ;in Denmark. Presentation to IEA Wind Task 26 (12) European

  16. The Drive for Energy Independence and Fuels of the Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. Star Power on Earth: Path to Clean Energy Future

    ScienceCinema (OSTI)

    Ed Moses

    2010-09-01

    Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.

  18. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    Generation Technologies. NREL/SR-6A20- 48595. Work performedDesign Study Report. (2005) NREL/SR-500-35524. Golden, CO:for Cost of Energy Reduction. NREL/TP-500-41036. Golden, CO:

  19. Capturing the Sun, Creating a Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-07-20

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  20. Capturing the Sun, Creating a Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  1. Moving Towards a More Sustainable and Secure Energy Future 

    E-Print Network [OSTI]

    Stoker, K.

    2012-01-01

    Solar 400 MW Total 600 MW CPS Energy is likely to achieve its Vision 2020 goals well ahead of schedule 30 MW Solar Project - Single-axis Tracking Polysilicon Solar Panels - 20 MW at SAWS Dos Rios... with innovative solutions that add value and reduce monthly bills ? Make a difference in our community?s local economic development to take San Antonio to the next level: The New Energy Economy ? Keep rates affordable through operational excellence...

  2. Energy for a sustainable future. Summary report and recommendations

    SciTech Connect (OSTI)

    Not Available

    2010-04-15

    This year, in September, world leaders will meet at the United Nations to assess progress on the Millennium Development Goals and to chart a course of action for the period leading up to the agreed MDG deadline of 2015. Later in the year, government delegations will gather in Mexico to continue the process of working towards a comprehensive, robust and ambitious climate change agreement. Energy lies at the heart of both of these efforts. The decisions we take today on how we produce, consume and distribute energy will profoundly influence our ability to eradicate poverty and respond effectively to climate change. Addressing these challenges is beyond the reach of governments alone. It will take the active engagement of all sectors of society: the private sector; local communities and civil society; international organizations and the world of academia and research. To that end, in 2009 a high-level Advisory Group on Energy and Climate Change was established, chaired by Kandeh Yumkella, Director-General of the United Nations Industrial Development Organization (UNIDO). Comprising representatives from business, the United Nations system and research institutions, its mandate was to provide recommendations on energy issues in the context of climate change and sustainable development. The Group also examined the role the United Nations system could play in achieving internationally-agreed climate goals. The Advisory Group has identified two priorities - improving energy access and strengthening energy efficiency - as key areas for enhanced effort and international cooperation. Expanding access to affordable, clean energy is critical for realizing the MDGs and enabling sustainable development across much of the globe. Improving energy efficiency is paramount if we are to reduce greenhouse gas emissions. It can also support market competitiveness and green innovation. (LN)

  3. Ultra High Energy Cosmic Rays: present status and future prospects

    E-Print Network [OSTI]

    A. A. Watson

    2001-12-20

    Reasons for the current interest in cosmic rays above 10^19 eV are described. The latest results on the energy spectrum, arrival direction distribution and mass composition of cosmic rays are reviewed, including data that were reported after the meeting in Blois in June 2001. The enigma set by the existence of ultra high-energy cosmic rays remains. Ideas proposed to explain it are discussed and progress with the construction of the Pierre Auger Observatory is outlined.

  4. J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ?

    E-Print Network [OSTI]

    Gerwert, Klaus

    ­ 5kWh One liter of petrol ­ 10kWh One aluminum can for coke, water,... (15g) ­ 0.6kWh Energy : Some: There are only 3 different methods to produce energy 1. Burning Fossil Fuels : Coal, Oil, Gas ? Enormous in the world (2007) Energy source Power [TW] Contribution [%] Oil 4.6 36.6 Coal 3.12 24.9 Gas 3.02 24.1 Hydro

  5. Dark energy properties from large future galaxy surveys

    SciTech Connect (OSTI)

    Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen; Hamann, Jan; Wong, Yvonne Y.Y. E-mail: oeb@phys.au.dk E-mail: sth@phys.au.dk

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (?(w{sub p})?(w{sub a})){sup ?1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ?CDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup ?6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2? significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1? precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1? sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling and finite temperature effects can be probed with 1? precision for the first time.

  6. Energy Department Selects Global Laser Enrichment for Future Operations at

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power PlantEnergyLawrence Berkeley, OakPaducah Site

  7. Energy Department Selects Global Laser Enrichment for Future Operations at

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power PlantEnergyLawrence Berkeley, OakPaducah

  8. Harnessing the Power of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of EnergyEnergyHarnessing the

  9. Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM-FR)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analyzing water supply in future energy systems using the TIMES Integrated Assessment Model (TIAM Mathematics, MINES ParisTech Sophia Antipolis, France ABSTRACT Even though policies related to water is required to maintain water supplies while water is essential to produce energy. However, the models

  10. Laying the Foundation for a More Energy Efficient Future: Reducing Climate Change through Green Building

    E-Print Network [OSTI]

    Mauzerall, Denise

    Laying the Foundation for a More Energy Efficient Future: Reducing Climate Change through Green approach focuses on the supply side and attempts to minimize the production of greenhouse gases through cleaner energy production. The other method looks at the demand side and tries to reduce the amount

  11. Future directions for probing two and three nucleon short-range correlations at high energies

    E-Print Network [OSTI]

    Leonid Frankfurt; Misak Sargsian; Mark Strikman

    2009-01-15

    We summarize recent progress in the studies of the short-rang correlations (SRC) in nuclei in high energy electron and hadron nucleus scattering and suggest directions for the future high energy studies aimed at establishing detailed structure of two-nucleon SRCs, revealing structure of three nucleon SRC correlations and discovering non-nucleonic degrees of freedom in nuclei.

  12. Flexible Loads in Future Energy Networks Jay Taneja, Ken Lutz, and David Culler

    E-Print Network [OSTI]

    California at Berkeley, University of

    data overlay of control and management. Numerous trends across the energy sector ­ among them monitoring and management of energy systems, and the explosion in avail- ability of competitive renewable as well as consumers. These policy and techno- logical trends point to a future grid where large supplies

  13. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema (OSTI)

    Gerry Stokes; Jim Misewich

    2013-07-19

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  14. Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    E-Print Network [OSTI]

    Kazuhiro Yamamoto; David Parkinson; Takashi Hamana; Robert C. Nichol; Yasushi Suto

    2007-07-22

    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parameterize the cosmic expansion by the two parameters, $w_0$ and $w_a$, and the linear growth rate of density fluctuations by Linder's $\\gamma$, independently. Dark energy models generically predict $\\gamma \\approx 0.55$, while the DGP model $\\gamma \\approx 0.68$. To determine if future imaging surveys can constrain $\\gamma$ within 20 percent (or $\\Delta\\gammafuture CMB observations.

  15. Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries

    SciTech Connect (OSTI)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  16. Future of the Beam Energy Scan program at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the ?sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of themore »QCD Critical Point lies bellow ?sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at ?sNN from 20 to 7 GeV in collider mode, and from ?sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.« less

  17. www.inl.gov A Future of Nuclear Energy

    E-Print Network [OSTI]

    . ·Production costs are lower than any other primary energy including coal and natural gas (less than 2 cents of outstanding performance by any measure ­ safety, reliability, availability, and the lowest production costs shorter construction and licensing schedules · Cost savings from modularization · Passive or redundant

  18. Affordable comfort 95 - investing in our energy future

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This report describes the topics from the conference on Affordable Comfort, held March 26-31, 1995. Topics are concerned with energy efficiency in homes, retrofitting, weatherization, and monitoring of appliances, heating, and air conditioning systems for performance, as well as topics on electric utilities.

  19. Renewable Energy in India: Status and future Potential

    E-Print Network [OSTI]

    Banerjee, Rangan

    Thermal Solar Photovoltaic Tidal Wave Ocean Thermal #12;Power Generation Options Power Generation environmental impacts Unsustainable Need for transition to renewable energy systems, nuclear, efficiency #12 Side Management (Solar Water Heater, Passive Solar) #12;Renewables in Power Power generation 6500 PJ

  20. Evaluation of Future Energy Technology Deployment Scenarios for

    E-Print Network [OSTI]

    to assess unit commitment, unit dispatch, operating economics and the environmental supported by the United States Department of Energy under Award Number DE-FC- 06NT42847. #12;This report. Following receipt of the draft report, an extensive review was conducted by Hawaii Electric Light Company

  1. Hydropower: Setting a Course for Our Energy Future

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  2. Leveraging Renewable Energy in Data Centers: Present and Future

    E-Print Network [OSTI]

    Bianchini, Ricardo

    or wind. However, it is challenging to use these sources because, unlike the "brown" (carbon are building to explore these challenges and questions. Specifically, I will overview systems that match a data, the majority of the energy con- sumed by data centers is actually due to small and medium-sized data centers

  3. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    SciTech Connect (OSTI)

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

  4. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  5. The Future of High Energy Nuclear Physics in Europe

    E-Print Network [OSTI]

    J. Schukraft

    2006-02-14

    In less than two years from now, the LHC at CERN will start operating with protons and later with heavy ions in the multi TeV energy range. With its unique physics potential and a strong, state-of-the complement of detectors, the LHC will provide the European, and in fact worldwide Nuclear Physics community, with a forefront facility to study nuclear matter under extreme conditions well into the next decade.

  6. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon Pollution |of Energy New Methane Hydrate

  7. Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution2 DOEHigh Energy1

  8. Future Lighting Systems: The Path to Optimized Energy Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathyEnergydetailsof

  9. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Anna; Hampson, Anne; Hedman, Bruce; Garland, Patti; Bautista, Paul

    2008-12-01

    This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future—as an: environmental solution, significantly reducing CO2 emissions through greater energy efficiency; competitive business solution, increasing efficiency, reducing business costs, and creating green-collar jobs; local energy solution, deployable throughout the United States; and infrastructure modernization solution, relieving grid congestion and improving energy security.

  10. Attaining the Photometric Precision Required by Future Dark Energy Projects

    SciTech Connect (OSTI)

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  11. The Future of Housing-Today | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGE andOffice -Energy Clean airCompetition

  12. FutureGen 2.0 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" | Department ofMotors

  13. FutureGen Project Launched | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" | Department ofMotorsProcess

  14. ONLY HERE...Will You Define the Future of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartmentHighlights forThis is a archiveT

  15. Rising to the Challenge: Innovating toward our Clean Energy Future |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarchLLCClimate Change in

  16. Biomass 2009: Fueling Our Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make FuelsBioindustryWBS 1.2.3.3 Biomass

  17. The Future of Housing-Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs,Department of Energy The Final 40%: SunShotDepartment

  18. Bangladesh-Feed the Future | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen Energy Informationclock timeFeed the

  19. Biomass 2014: Growing the Future Bioeconomy Agenda | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy||slideshow explainsSpeaker Biographies 1 |

  20. CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86) (AllProvision for0 350.1Tariff

  1. Vehicle Education Efforts Fuel Our Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities. The EconomicsVulnerabilitiesServicePREPARED FOR:UsingIn

  2. Growing America's Energy Future: Bioenergy Technologies Office Successes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGetDepartment1Sustained Pumping at2009of 2014

  3. Smart Federal Partnerships Build Our Biofuels Future | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergy Small Column Ion|

  4. Supercomputers, Semi Trucks and America's Clean Energy Future |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority forPerk |Department of Energy

  5. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|in the subsurface is better6, 2015Energy,

  6. Investing in Our Energy Future: The Story of General Compression |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the Richard P.SchmidtDepartment of Energy

  7. Better Buildings Case Competition Helps Develop Future Clean Energy Leaders

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC |Energy Advisor the fish ladder on2:00PM to|

  8. The Future is Now for Advanced Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers at theAugust 1, 2013 Gregory H.

  9. Energy Department Releases New Wind Report, Examines Future of Industry |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |Energy

  10. Better Buildings for a Brighter Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc |BartlesvilleRestoring- 2013Energy BetterBTOBetter

  11. Sandia Energy - New Jersey Transit FutureGrid MOU Signing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREW Database Receives First Set ofJersey

  12. Brighter Future for Kentucky Manufacturing Plants | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC |Energycurrently providesDepartment

  13. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  14. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  15. REMEMBERING TOM PHELAN ~ THE FUTURE OF ENERGY ~ RECREATING A CROSS-COUNTRY JOURNEY Alumni Magazine~Spring 2006

    E-Print Network [OSTI]

    Linhardt, Robert J.

    REMEMBERING TOM PHELAN ~ THE FUTURE OF ENERGY ~ RECREATING A CROSS-COUNTRY JOURNEY Alumni Magazine was renovated extensively in the 1990s, earning the 1996 Historical Education Building Award from and organizations. 22 The Future of Energy As calls for energy independence increase, Rensselaer alumni explore

  16. ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future

  17. Future U.S. water consumption : The role of energy production.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  18. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  19. 35 Years of Innovation - Leading the Way to a Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, our researchers have built unparalleled expertise in renewable energy technologies while supporting the nation's vision that wind and water can provide clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and universities around the world seeking to create a better, more sustainable future.

  20. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption 

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01

    integration of distributed generation and renewables ? Future ? Automatic Outage Notification, Support for Plug in Hybrid Vehicles, Consumer Control of Thermostats/Appliances, etc. AMS Successes 6 ? Service orders completed electronically... pipelines ? Natural gas gathering and processing ? 150 separate systems in major producing fields in Arkansas, Louisiana, Oklahoma and Texas 2 Who is CenterPoint Energy? A domestic energy delivery company Three Components of a Smart Grid Smart...

  1. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    2014-06-12

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  2. TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Nuclear Power Companies are Counting on Consumers and Taxpayers to Bear the Risks of ReactorTheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, CalPIRG Education Fund March 2009 The High Cost of Nuclear Power Why America Should Choose a Clean

  3. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  4. China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)

    E-Print Network [OSTI]

    2004-01-01

    2: Promoting Sustainability Energy Conservation Policiesupon. As in Promoting Sustainability, energy efficiencies of8. In Promoting Sustainability, energy demand elasticity

  5. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo » Search resultsEnergy CERAWeekSecuring

  6. High-Energy Physics Strategies and Future Large-Scale Projects

    E-Print Network [OSTI]

    Zimmermann, F

    2014-01-01

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  7. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Renewable Electricity Generation and Storage Technologies for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable;Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  8. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  9. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  10. Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy

    E-Print Network [OSTI]

    Energy for the future ­ with Risø from nuclear power to sustainable energy Risø NatioNal laboRatoRy foR sustaiNable eNeRgy edited by MoRteN JastRup #12;Energy for the future #12;Energy for the future ­ with Risø from nuclear power to sustainable energy Translated from 'Energi til fremtiden ­ med Risø fra

  11. Department of Energy and FutureGen Alliance Discuss Next Steps for

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof Energy Eleven sites toFutureGen 2.0 in Illinois |

  12. Probing dark energy with baryonic oscillations and future radio surveys of neutral Hydrogen

    E-Print Network [OSTI]

    F. B. Abdalla; S. Rawlings

    2004-11-12

    Current surveys may be on the verge of measuring the baryonic oscillations in the galaxy power spectrum which are clearly seen imprinted on the Cosmic Microwave Background. It has recently been proposed that these oscillations allow a `standard ruler' method of probing the equation of state of dark energy. In this paper we present a new calculation of the number of galaxies future adio telescopes will detect in surveys of the sky in neutral Hydrogen (HI). We estimate the likely statistical errors if the standard ruler method were to be applied to such surveys. We emphasise uncertainties in our calculations, and pinpoint the most important features of future HI surveys if they are to provide new constraints on dark energy via baryonic oscillations. Designs of future radio telescopes are required to have a large bandwidth (characterised by \\beta$, the ratio of the instantaneous bandwidth to the bandwidth required by survey) and to have the widest instantaneous (1.4 GHz) field of view ($FOV$) possible. Given the expected sensitivity of a future Square Kilometre Array (SKA), given that half of its collecting area will be concentrated in a core of diameter $\\sim 5 ~ \\rm km$, and given a reasonable survey duration ($T_0$ $\\sim$ 1 yr), we show that there will be negligible shot noise on a power spectrum derived from HI galaxies out to redshift $z \\simeq 1.5$. To access the largest cosmic volume possible by surveying all the sky available, we argue that $\\beta$, $T_0$ and $FOV$ must obey the relation $\\beta FOV T_0 \\gtsimeq 10 \\rm deg^2$ yr. An $\\sim$1-yr SKA survey would then contain $\\gtsimeq 10^{9} (f_{\\rm sky}/0.5)$ HI galaxies and provide constraints on the dark-energy parameter $w$ of order $\\Delta w \\simeq 0.01 (f_{\\rm sky}/0.5)^{-0.5}$.

  13. Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

  14. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  15. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. The Future of Nuclear Energy: Facts and Fiction Chapter IV: Energy from Breeder Reactors and from Fusion?

    E-Print Network [OSTI]

    Dittmar, Michael

    2009-01-01

    The accumulated knowledge and the prospects for commercial energy production from fission breeder and fusion reactors are analyzed in this report. The publicly available data from past experimental breeder reactors indicate that a large number of unsolved technological problems exist and that the amount of "created" fissile material, either from the U238 --> Pu239 or from the Th232 --> U233 cycle, is still far below the breeder requirements and optimistic theoretical expectations. Thus huge efforts, including many basic research questions with an uncertain outcome, are needed before a large commercial breeder prototype can be designed. Even if such efforts are undertaken by the technologically most advanced countries, it will take several decades before such a prototype can be constructed. We conclude therefore, that ideas about near-future commercial fission breeder reactors are nothing but wishful thinking. We further conclude that, no matter how far into the future we may look, nuclear fusion as an energy ...

  17. Constraints on perfect fluid and scalar field dark energy models from future redshift surveys

    E-Print Network [OSTI]

    Luca Amendola; Claudia Quercellini; Emanuele Giallongo

    2004-05-02

    We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on $w_0,w_1$ roughly by 30% making more appealing multicolor surveys based on photometric redshifts. We find that a 200 square degrees spectroscopic survey reaching $z = 3$ can constrain $w_0,w_1$ to within $\\Delta w_0=0.21,\\Delta w_1=0.26$ and to $\\Delta w_0=0.39,\\Delta w_1=0.54$ using photometric redshifts with absolute uncertainty of 0.02. In the scalar field case we show that the slope $n$ of the inverse power-law potential for dark energy can be constrained to $\\Delta n=0.26$ (spectroscopic redshifts) or $\\Delta n=0.40$ (photometric redshifts), i.e. better than with future ground-based supernovae surveys or CMB data.

  18. The prospects for constraining dark energy with future X-ray cluster gas mass fraction measurements

    E-Print Network [OSTI]

    David Rapetti; Steven W. Allen; Adam Mantz

    2008-06-25

    We examine the ability of a future X-ray observatory to constrain dark energy via measurements of the cluster X-ray gas mass fraction, fgas. We find that fgas measurements for a sample of ~500 hot, X-ray bright, dynamically relaxed clusters, to a precision of ~5 per cent, can be used to constrain dark energy with a Dark Energy Task Force (DETF) figure of merit of 15-40, with the possibility of boosting these values by 40 per cent or more by optimizing the redshift distribution of target clusters. Such constraints are comparable to those predicted by the DETF for other leading, planned dark energy experiments. A future fgas experiment will be preceded by a large X-ray or SZ survey that will find hot, X-ray luminous clusters out to high redshifts. Short `snapshot' observations with the new X-ray observatory should then be able to identify a sample of ~500 suitably relaxed systems. The redshift, temperature and X-ray luminosity range of interest has already been partially probed by existing X-ray cluster surveys which allow reasonable estimates of the fraction of clusters that will be suitably relaxed for fgas work. Our analysis uses a Markov Chain Monte Carlo method which fully captures the relevant degeneracies between parameters and facilitates the incorporation of priors and systematic uncertainties in the analysis. We explore the effects of such uncertainties for scenarios ranging from optimistic to pessimistic. We conclude that the fgas experiment will provide tight constraints on the mean matter and dark energy densities, with a peak sensitivity for dark energy work at redshifts midway between those of supernovae and baryon acoustic oscillation/weak lensing/cluster number counts experiments. In combination, these experiments should enable a precise measurement of the evolution of dark energy. (Abridged)

  19. State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy

    SciTech Connect (OSTI)

    Kubert, C.; Sinclair, M.

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  20. State Support for Clean Energy Deployment. Lessons Learned for Potential Future Policy

    SciTech Connect (OSTI)

    Kubert, Charles; Sinclair, Mark

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.