National Library of Energy BETA

Sample records for tds total dissolved

  1. Determination of Total Solids in Biomass and Total Dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  2. Total dissolved gas prediction and optimization in RiverWare

    SciTech Connect (OSTI)

    Stewart, Kevin M.; Witt, Adam M.; Hadjerioua, Boualem

    2015-09-01

    Management and operation of dams within the Columbia River Basin (CRB) provides the region with irrigation, hydropower production, flood control, navigation, and fish passage. These various system-wide demands can require unique dam operations that may result in both voluntary and involuntary spill, thereby increasing tailrace levels of total dissolved gas (TDG) which can be fatal to fish. Appropriately managing TDG levels within the context of the systematic demands requires a predictive framework robust enough to capture the operationally related effects on TDG levels. Development of the TDG predictive methodology herein attempts to capture the different modes of hydro operation, thereby making it a viable tool to be used in conjunction with a real-time scheduling model such as RiverWare. The end result of the effort will allow hydro operators to minimize system-wide TDG while meeting hydropower operational targets and constraints. The physical parameters such as spill and hydropower flow proportions, accompanied by the characteristics of the dam such as plant head levels and tailrace depths, are used to develop the empirically-based prediction model. In the broader study, two different models are developed a simplified and comprehensive model. The latter model incorporates more specific bubble physics parameters for the prediction of tailrace TDG levels. The former model is presented herein and utilizes an empirically based approach to predict downstream TDG levels based on local saturation depth, spillway and powerhouse flow proportions, and entrainment effects. Representative data collected from each of the hydro projects is used to calibrate and validate model performance and the accuracy of predicted TDG uptake. ORNL, in conjunction with IIHR - Hydroscience & Engineering, The University of Iowa, carried out model adjustments to adequately capture TDG levels with respect to each plant while maintaining a generalized model configuration. Validation results indicate excellent model performance with coefficient of determination values exceeding 92% for all sites. This approach enables model extension to an increasingly wider array of hydropower plants, i.e., with the proper data input, TDG uptake can be calculated independent of actual physical component design. The TDG model is used as a module in the systematic optimization framework of RiverWare, a river and reservoir modeling tool used by federal agencies, public utility districts, and other dam owners and operators to forecast, schedule, and manage hydropower assets. The integration and testing of the TDG module within RiverWare, led by University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), will allow users to generate optimum system schedules based on the minimization of TDG. Optimization analysis and added value will be quantified as system wide reductions in TDG achieved while meeting existing hydropower constraints. Future work includes the development of a method to predict downstream reservoir forebay TDG levels as a function of upstream reservoir tailrace TDG values based on river hydrodynamics, hydro operations, and reservoir characteristics. Once implemented, a holistic model that predicts both TDG uptake and transport will give hydropower operators valuable insight into how system-wide environmental effects can be mitigated while simultaneously balancing stakeholder interests.

  3. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Pasha, MD Fayzul K; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  4. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.

  5. Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use

    SciTech Connect (OSTI)

    Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

    2011-03-31

    The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local disposal costs and regulations, a parametric value assessment tool was created to assess the economic attractiveness of a given flowback recovery process relative to conventional disposal for any combination of anticipated flowback TDS and local disposal cost. It is concluded that membrane systems in combination with appropriate pretreatment technologies can provide cost-effective recovery of low-TDS flow-back water for either beneficial reuse or safe surface discharge.

  6. Total Dissolved Gas Effects on Fishes of the Lower Columbia River

    SciTech Connect (OSTI)

    McGrath, Kathy E.; Dawley, Earl; Geist, David R.

    2006-03-31

    Gas supersaturation problems generated by spill from dams on the Columbia River were first identified in the 1960s. Since that time, considerable research has been conducted on effects of gas supersaturation on aquatic life, primarily juvenile salmonids. Also since that time, modifications to dam structures and operations have reduced supersaturated gas levels produced by the dams. The limit for total dissolved gas saturation (TDGS) as mandated by current Environmental Protection Agency water quality standards is 110%. State management agencies issue limited waivers to water quality, allowing production of levels of up to 120% TDGS to facilitate the downstream migration of juvenile salmonids. Recently, gas supersaturation as a water quality issue has resurfaced as concerns have grown regarding chronic effects of spill-related total dissolved gas on salmonids, including incubating embryos and larvae, resident fish species, and other aquatic organisms. Because of current concerns, and because the last comprehensive review of research on supersaturation effects on fishes was conducted in 1997, we reviewed recent supersaturation literature to identify new or ongoing issues that may not be adequately addressed by the current 110% TDGS limit and the 120% TDGS water quality waiver. We found that recent work supports older research indicating that short-term exposure to levels up to 120% TDGS does not produce acute effects on migratory juvenile or adult salmonids when compensating depths are available. Monitoring programs at Snake and Columbia river dams from 1995 to the early 2000s documented a low incidence of significant gas bubble disease or mortality in Columbia River salmonids, resident fishes, or other taxa. We did, however, identify five areas of concern in which total dissolved gas levels lower than water quality limits may produce sublethal effects on fishes of the Columbia River. These areas of concern are 1) sensitive and vulnerable species or life stages, 2) long-term chronic or multiple exposure, 3) vulnerable habitats and reaches, 4) effects on incubating fish in hyporheic habitats, and 5) community and ecosystem effects. Although some of these areas of concern may have been identified previously in earlier works, we suggest that consideration of the issues is warranted to avoid detrimental impacts on aquatic resources of the Columbia River system. We discuss these issues and provide recommendations to regulatory and management agencies based on our review of recent literature. In general, we recommend that additional attention be directed toward resolving the uncertainties within these five areas.

  7. Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Hand, Kristine D.; Geist, David R.; Murray, Katherine J.; Panther, Jenny; Cullinan, Valerie I.; Dawley, Earl M.; Elston, Ralph A.

    2008-01-30

    This report describes research conducted by Pacific Northwest National Laboratory in FY 2007 for the U.S. Army Corps of Engineers, Portland District, to characterize the effects of total dissolved gas (TDG) on the incubating fry of chum salmon (Onchorhynchus keta) in the lower Columbia River. The tasks conducted and results obtained in pursuit of three objectives are summarized: * to conduct a field monitoring program at the Ives Island and Multnomah Falls study sites, collecting empirical data on TDG to obtain a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year) * to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam * to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the study methdology and results are provided in Appendixes A through D.

  8. Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia

    SciTech Connect (OSTI)

    Pasha, MD Fayzul K; Hadjerioua, Boualem; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-01-01

    The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

  9. Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

    2009-01-29

    At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

  10. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    SciTech Connect (OSTI)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.

  11. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO₂ to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use process that pre-concentrates trace metals, including REE, up to 100x while eliminating interfering ions (e.g. Ba, Cl). The process is straightforward, inexpensive, and requires little infrastructure, using only a single chromatography column with inexpensive, reusable, commercially available resins and wash chemicals. The procedure has been tested with synthetic brines (215,000 ppm or less TDS) and field water samples (up to 5,000 ppm TDS). Testing has produced data of high quality with REE capture efficiency exceeding 95%, while reducing interfering elements by > 99%.« less

  12. Feasibility Study for Evaluating Cumulative Exposure of Downstream Migrant Juvenile Salmonids to Total Dissolved Gas. Final Report 1996.

    SciTech Connect (OSTI)

    Abernethy, C.Scott; Dauble, Dennis D.; Johnson, Robert L.

    1997-11-01

    A feasibility study was initiated to determine if downstream migrant salmonids could be monitored to determine potential relationships between total dissolved gas (TDG) exposure and signs of gas bubble trauma (GBT). The primary objectives were to: (1) establish logistical requirements for in-river monitoring of TDG exposure, including net pen design, deployment, and navigation constraints; (2) resolve uncertainties associated with effects of the net pen on fish behavior; (3) test the accuracy and precision of in-river monitoring equipment used to measure fish distribution and water quality; and (4) determine the application of hydrologic/flow models to predictions of TDG exposure. In-river measurements included water velocity, boat position, and selected water quality parameters (temperature, dissolved oxygen, pH, depth, conductivity). Fish distribution within the net pen was monitored using scanning sonar, and a split-beam echo sounder was used to evaluate vertical distribution of fish m in the river adjacent to the net pen. Three test drifts were conducted from late July through late August. The studies demonstrated that it was feasible to assemble and deploy a large net pen for mobile monitoring of TDG exposure. Accurate monitoring of vertical and lateral distribution of smolts was performed, and diel differences in behavior were documented. Further, the fish sounded in response to researcher activity on the perimeter platform. Thus, in-transit monitoring for GBT or mortality would affect fish depth distribution and exposure to TDG. Principal recommendations for future studies are directed at improving maneuverability of the net pen in adverse weather conditions and applying new acoustics technology to simultaneously collect fish distribution data from within and outside of the pen. 6 refs., 17 figs., 2 tabs.

  13. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell shipments Total Inventory, start-of-year 328,658 Manufactured during reporting year ... Table 5. Source and disposition of photovoltaic cell shipments, 2013 (peak kilowatts) ...

  14. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500...... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to ...

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  17. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  18. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  19. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  20. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  1. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  2. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  4. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  5. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  6. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  7. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  8. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  9. Electrolytic dissolver

    DOE Patents [OSTI]

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  10. Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study

    SciTech Connect (OSTI)

    Goering, J.; Kadossov, E.; Burghaus, Uwe; Yu, Zhongqing; Thevuthasan, Suntharampillai; Saraf, Laxmikant V.

    2007-07-01

    Binding energies and adsorption probabilities have been determined for n/iso-butane adsorption on an anatase thin film grown on SrTiO3(001) by means of thermal desorption spectroscopy (TDS) and molecular beam scattering. The sample has been characterized by x-ray diffraction (XRD) and Auger electrons spectroscopy (AES).

  11. Dissolver vessel bottom assembly

    DOE Patents [OSTI]

    Kilian, Douglas C.

    1976-01-01

    An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.

  12. Method for dissolving plutonium dioxide

    DOE Patents [OSTI]

    Tallent, Othar K.

    1976-01-01

    A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

  13. METHOD OF DISSOLVING URANIUM METAL

    DOE Patents [OSTI]

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  14. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  15. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  16. Reducing Emissions from Uranium Dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.

    1992-01-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. The trays are steam coil heated. The process has operated satisfactorily, with few difficulties, for decades. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. Because NO{sub x} is hazardous, fumes should be suppressed whenever the electric blower system is inoperable. Because the tray dissolving process has worked well for decades, as much of the current capital equipment and operating procedures as possible were preserved. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2}, which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  17. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total China 1,461,074 34 Republic of Korea 172,379 4 Taiwan 688,311 16 All others 1,966,263 46 Total 4,288,027 100 Note: All Others includes Canada, Czech Republic, Federal Republic of Germany, Malaysia, Mexico, Philippines and Singapore Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Table 7 . Photovoltaic module import shipments by country, 2013 (peak kilowatts)

  18. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  19. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOE Patents [OSTI]

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  20. Review of dissolved gas supersaturation literature

    SciTech Connect (OSTI)

    Weitkamp, D.E.; Katz, M.

    1980-11-01

    Dissolved gas supersaturation is a condition that results from natural and human-caused processes. Supersaturation can result in gas bubble disease which has been described in a wide variety of fishes and invertebrates. In recent years dissolved gas supersaturation resulting from dams and thermal discharges has produced mortalities of fish in several cases. This review discusses most of the available literature dealing with dissolved gas supersaturation and the recorded cases of gas bubble disease.

  1. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  2. ,"West Virginia Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Associated-Dissolved Natural Gas, Wet ... PM" "Back to Contents","Data 1: West Virginia Associated-Dissolved Natural Gas, Wet ...

  3. Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 Texas Associated-Dissolved Natural Gas Proved ...

  4. Process for coal liquefaction in staged dissolvers

    DOE Patents [OSTI]

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  5. A review of dissolved gas supersaturation literature

    SciTech Connect (OSTI)

    Weitkamp, D.E.; Katz, M.

    1980-11-01

    Gas bubble disease in a condition that affects aquatic animals residing in fresh or marine waters that are supersaturated with atmospheric gases. The majority of research concerning dissolved gas supersaturation has been stimulated by a serious supersaturation problem that was first observed in the Columbia and Snake river systems in 1970. Available literature dealing with dissolved gas supersaturation and recorded cases of gas bubble disease are reviewed. The causes of supersaturation, the organisms affected by supersaturation, factors influencing susceptibility of aquatic organisms to gas bubble disease, and various other related topics are explored.

  6. ,"Virginia Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Associated-Dissolved Natural Gas, Wet ... 12:24:05 PM" "Back to Contents","Data 1: Virginia Associated-Dissolved Natural Gas, Wet ...

  7. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  8. Method for dissolving delta-phase plutonium

    DOE Patents [OSTI]

    Karraker, David G.

    1992-01-01

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  9. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Nebraska Associated-Dissolved Natural

  10. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOE Patents [OSTI]

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  11. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM

    Office of Scientific and Technical Information (OSTI)

    REACTOR EXPERIMENT USED NUCLEAR FUEL (Technical Report) | SciTech Connect FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL Citation Details In-Document Search Title: FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium

  12. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  13. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF...

    Office of Scientific and Technical Information (OSTI)

    USED NUCLEAR FUEL This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the ...

  14. Texas State Offshore Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  15. New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade...

  16. ,"New Mexico Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  17. ,"Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  18. Removal of actinides from dissolved ORNL MVST sludge using the TRUEX process

    SciTech Connect (OSTI)

    Spencer, B.B.; Egan, B.Z.; Chase, C.W.

    1997-07-01

    Experiments were conducted to evaluate the transuranium extraction process for partitioning actinides from actual dissolved high-level radioactive waste sludge. All tests were performed at ambient temperature. Time and budget constraints permitted only two experimental campaigns. Samples of sludge from Melton Valley Storage Tank W-25 were rinsed with mild caustic (0.2 M NaOH) to reduce the concentrations of nitrates and fission products associated with the interstitial liquid. In one campaign, the rinsed sludge was dissolved in nitric acid to produce a solution containing total metal concentrations of ca. 1.8 M with a nitric acid concentration of ca. 2.9 M. About 50% of the dry mass of the sludge was dissolved. In the other campaign, the sludge was neutralized with nitric acid to destroy the carbonates, then leached with ca. 2.6 M NaOH for ca. 6 h before rinsing with the mild caustic. The sludge was then dissolved in nitric acid to produce a solution containing total metal concentrations of ca. 0.6 M with a nitric acid concentration of ca. 1.7 M. About 80% of the sludge dissolved. The dissolved sludge solution form the first campaign began gelling immediately, and a visible gel layer was observed after 8 days. In the second campaign, the solution became hazy after ca. 8 days, indicating gel formation, but did not display separated gel layers after aging for 20 days. Batch liquid-liquid equilibrium tests of both the extraction and stripping operations were conducted. Chemical analyses of both phases were used to evaluate the process. Evaluation was based on two metrics: the fraction of TRU elements removed from the dissolved sludge and comparison of the results with predictions made with the Generic TRUEX Model (GTM). The fractions of Eu, Pu, Cm, Th, and U species removed from aqueous solution in only one extraction stage were > 95% and were close to the values predicted by the GTM. Mercury was also found to be strongly extracted, with a one-stage removal of > 92%.

  19. Methanex, Hoechst Celanese dissolve methanol partnership

    SciTech Connect (OSTI)

    Morris, G.D.L.

    1993-03-31

    One of the many joint venture alliances recently announced in the petrochemical sector is ending in divorce. Hoechst Celanese Chemical (Dallas) and Methanex Corp. (Vancouver) are in the process of dissolving the partnership they had formed to restart Hoechst Celanese's methanol plant at Clear Lake, TX. Hoechst Celanese says it is actively seeking replacement partners and has several likely prospects, while Methanex is concentrating on its other ventures. Those include its just-completed acquisition of Fletcher Challenge's (Auckland, NZ) methanol business and a joint venture with American Cyanamid to convert an ammonia plant at Fortier, LA to methanol. Methanex will still be the world's largest producer of methanol. Officially, the negotiations between Methanex and Hoechst Celanese just broke down over the last month or so,' says Steve Yurich, operations manager for the Clear Lake plant. Market sources, however, say that Methanex found itself with too many irons in the fire' and pulled out before it ran into financial or perhaps even antitrust difficulties.

  20. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  5. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  8. Neptunium estimation in dissolver and high-level-waste solutions

    SciTech Connect (OSTI)

    Pathak, P.N.; Prabhu, D.R.; Kanekar, A.S.; Manchanda, V.K.

    2008-07-01

    This papers deals with the optimization of the experimental conditions for the estimation of {sup 237}Np in spent-fuel dissolver/high-level waste solutions using thenoyltrifluoroacetone as the extractant. (authors)

  9. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  10. Crude oil and natural gas dissolved in deep, hot geothermal waters...

    Office of Scientific and Technical Information (OSTI)

    Conference: Crude oil and natural gas dissolved in deep, hot geothermal waters of ... Title: Crude oil and natural gas dissolved in deep, hot geothermal waters of petroleum ...

  11. Use of iron salts to control dissolved sulfide in trunk sewers

    SciTech Connect (OSTI)

    Padival, N.A.; Kimbell, W.A. [County Sanitation District of Los Angeles County, Whittier, CA (United States); Redner, J.A. [County Sanitation District of Los Angeles County, Compton, CA (United States)

    1995-11-01

    Sewer headspace H{sub 2}S reduction by precipitating dissolved sulfide in wastewater was investigated using iron salt (FeCl{sub 3} and FeCl{sub 2}). Full-scale experiments were conducted in a 40-km (25 mi) sewer with an average flow of 8.7 m{sup 3}/s (200 mgd). Results were sensitive to total Fe dosages and Fe(III)/Fe(II) blend ratios injected. A concentration of 16 mg/L total Fe and a blend ratio of 1.9:1 [Fe(III):Fe(II)] reduced dissolved sulfide levels by 97%. Total sulfide and headspace H{sub 2}S were reduced by 63% and 79%, respectively. Liquid and gas-phase sulfide reductions were largely due to the effective precipitation of sulfide with Fe(III) and Fe(II) and the limited volatilization of H{sub 2}S, respectively. Oxidation of sulfide in the presence of Fe(II) and minute amounts of O{sub 2} may have occurred. A combination of Fe(III) and Fe(II) proved more effective than either salt alone. By using excess Fe(III), dissolved sulfide can be reduced to undetectable levels. No specific relation between the concentration of Fe or Fe(III)/Fe(II) blend ratio and sewer crown pH was inferred. Iron salts may retard crown corrosion rates by precipitating free sulfide and reducing its release to the sewer headspace as H{sub 2}S. A mechanism to inhibit certain responsible bacteria was not established in the 40-km (25 mi) sewer.

  12. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  13. Country/Continent Total

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts) Country/Continent Total Percent of U.S. total Africa 14,279 3.7 Asia/Australia 330,200 86.2 Europe 19,771 5.1 South/Central America 7,748 2.0 Canada 5,507 1.4 Mexico 5,747 1.5 Total 383,252 100.0 Table 8. Destination of photovoltaic module export shipments, 2013 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  14. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  15. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  16. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  17. Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 11 14 14 21 78 67 22 21 8 19 1990's 23 20 10 8 9 36 47 92 79 96 2000's 157 168 137 164 125 134 151 130 127 133 2010's 144 134 125 269 299 - = No Data

  18. Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53

  19. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 94 125 108

  20. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 7 19 18 - = No

  1. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 67 1980's 73 66 74 80 114 105 66 61 71 105 1990's 126 108 85 53 43 27 47 51 47 31 2000's 35 26 33 27 20 20 21 30 45 38 2010's 36 62 62 43 58 - = No Data Reported; --

  2. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 289 304 325 - = No Data

  3. Simulation Analysis for HB-Line Dissolver Mixing

    SciTech Connect (OSTI)

    Lee, S

    2006-03-22

    In support of the HB-Line Engineering agitator mixing project, flow pattern calculations have been made for a 90{sup o} apart and helical pitch agitator submerged in a flat tank containing dissolver baskets. The work is intended to determine maximum agitator speed to keep the dissolver baskets from contacting the agitator for the nominal tank liquid level. The analysis model was based on one dissolver basket located on the bottom surface of the flat tank for a conservative estimate. The modeling results will help determine acceptable agitator speeds and tank liquid levels to ensure that the dissolver basket is kept from contacting the agitator blade during HB-Line dissolver tank operations. The numerical modeling and calculations have been performed using a computational fluid dynamics approach. Three-dimensional steady-state momentum and continuity equations were used as the basic equations to estimate fluid motion driven by an agitator with four 90{sup o} pitched blades or three flat blades. Hydraulic conditions were fully turbulent (Reynolds number about 1 x 10{sup 5}). A standard two-equation turbulence model ({kappa},{var_epsilon}), was used to capture turbulent eddy motion. The commercial finite volume code, Fluent [5], was used to create a prototypic geometry file with a non-orthogonal mesh. Hybrid meshing was used to fill the computational region between the round-edged tank bottom and agitator regions. The nominal calculations and a series of sensitivity runs were made to investigate the impact of flow patterns on the lifting behavior of the dissolver basket. At high rotational speeds and low tank levels, local turbulent flow reaches the critical condition for the dissolver basket to be picked up from the tank floor and to touch the agitator blades during the tank mixing operations. This is not desirable in terms of mixing performance. The modeling results demonstrate that the flow patterns driven by the agitators considered here are not strong enough to lift up the dissolver basket for the agitator speeds up to 2500 rpm. The results also show that local velocity magnitudes for the three-blade flat plate agitator are at maximum three times smaller than the helical fourblade one. Table 5 and Table 6 summarize the results.

  4. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 82 135 189 - = No Data

  6. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197

  7. California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203

  8. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756

  9. Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 0 1 0 - = No Data Reported; -- =

  10. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 93 44 49 - = No Data Reported; -- = Not

  11. Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318

  12. 21 briefing pages total

    Energy Savers [EERE]

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  13. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    DOE Patents [OSTI]

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  14. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  15. Removal of dissolved humic acid from water by photocatalytic oxidation using a silver orthophosphate semiconductor

    SciTech Connect (OSTI)

    Hatakeyama, Keisuke; Okuda, Masukazu; Kuki, Takahiro; Esaka, Takao

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? The photocatalytic property of a silver orthophosphate (Ag{sub 3}PO{sub 4}) was investigated for humic acid degradation. ? The Ag{sub 3}PO{sub 4} shows high photocatalytic activity under visible light. ? The photocatalytic activity was greatly improved by employing the precipitation method. -- Abstract: In order to remove dissolved organic matter such as humic acid from water, a silver orthophosphate (Ag{sub 3}PO{sub 4}) was newly employed as a heterogeneous photocatalyst. Here, Ag{sub 3}PO{sub 4} was prepared by simple ion-exchange and precipitation methods, and the physico-chemical properties were characterized by X-ray diffraction, ultravioletvisible diffuse reflectance spectroscopy, scanning electron microscopy, particle distribution measurements and BrunauerEmmettTeller (BET) analysis. The degradation of humic acid was faster over Ag{sub 3}PO{sub 4} catalyst than over conventional TiO{sub 2} (P-25). The total photocatalytic properties were improved by employing not an ion-exchange method but a precipitation method; humic acid degradation was performed with a removal ratio of dissolved organic carbon of 75% under visible light (? = 451 nm) for 2-h irradiation.

  16. Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,246 1980's 2,252 2,441 2,426 2,269 2,244 2,149 2,191 2,017 1,894 1,785 1990's 1,820 1,406 1,483 1,550 1,342 1,228 1,023 1,015 1,196 1,238 2000's 1,113 1,109 1,177

  17. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 773 870 908

  18. California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386

  19. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193

  20. Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010

  1. Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1997 Annual Report.

    SciTech Connect (OSTI)

    Ryan, Brad A.

    1998-04-01

    Large amounts of spill at dams has commonly generated levels of dissolved gas supersaturation that are higher than levels established by state and federal agencies setting criteria for acceptable water quality in the Columbia and Snake Rivers. Large spill volumes are sometimes provided voluntarily to increase the proportion of migrating juvenile salmon that pass dams through nonturbine routes. However, total dissolved gas supersaturation (TDGS) resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1997, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Ice Harbor reservoir and downstream from Ice Harbor and Bonneville Dams.

  2. In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen

    SciTech Connect (OSTI)

    Wu, Weimin; Carley, Jack M; Luo, Jian; Ginder-Vogel, Matthew A.; Cardenas, Erick; Leigh, Mary Beth; Hwang, Chaichi; Kelly, Shelly D; Ruan, Chuanmin; Wu, Liyou; Van Nostrand, Joy; Gentry, Terry J; Lowe, Kenneth Alan; Mehlhorn, Tonia L; Carroll, Sue L; Luo, Wensui; Fields, Matthew Wayne; Gu, Baohua; Watson, David B; Kemner, Kenneth M; Marsh, Terence; Tiedje, James; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K.; Jardine, Philip M; Criddle, Craig

    2007-01-01

    Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 {micro}M uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agency maximum contaminant limit (MCL) for drinking water (<30 {micro}g L{sup -1} or 0.126 {micro}M). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L{sup -1}) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from <0.13 to 2.0 {micro}M at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. At the completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 {micro}M. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp.

  3. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  4. Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOE Patents [OSTI]

    Givens, Edwin N.; Ying, David H. S.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  6. Estimating Adult Chinook Salmon Exposure to Dissolved Gas Supersaturation Downstream of Hydroelectric Dams Using Telemetry and Hydrodynamic Models

    SciTech Connect (OSTI)

    Johnson, Eric L.; Clabough, Tami S.; Peery, Christopher A.; Bennett, David H.; bjornn, Theodore C.; Caudill, Christopher C.; Richmond, Marshall C.

    2007-11-01

    Gas bubble disease (GBD) has been recognized for years as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill typically creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid-channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for 228 adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two-dimensional hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioral avoidance of the high TDGS plume in unrestrained fish migrating under field conditions. Consistent with our previous estimates using single-location estimates of TDGS, we observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of time spent in the Bonneville tailrace and 88.1% of the time in the Ice Harbor tailrace. The majority of depth uncompensated exposure occurred at TDGS levels > 115%. Adult spring and summer Chinook salmon tended to migrate near the shoreline. Adults moved into the high dissolved gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. The strong influence of dam operations on the position of the high-TDGS plume and shoreline-orientation behaviors of adults suggest that exposure of adult salmonids to high-TDGS conditions may be minimized using operational conditions that direct the plume mid-channel, particularly during periods of high discharge and spill. More generally, our approach illustrates the potential for combined field and modeling efforts to estimate the fine-scale environmental conditions encountered by fishes in natural and regulated rivers.

  7. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  8. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  9. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur Distillate Fuel Oil, Greater than 500 ppm ...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units ...

  11. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  12. Total........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  13. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  14. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  15. Total.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  16. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  17. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  18. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  19. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  20. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  1. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  2. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  3. Total................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  4. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  5. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  6. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  7. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  8. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  9. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  10. Total....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  11. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  12. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  13. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  14. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  15. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  16. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  17. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  18. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  19. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  20. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  1. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  2. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  3. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  4. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  5. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  6. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  7. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  8. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  9. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  10. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  11. Total.................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  12. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  13. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  14. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  15. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  16. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  17. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  18. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  19. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  20. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ... Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.' CellModule ...

  1. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  2. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass...... 27.4 ... Q Q N Q N N Proportion of Windows Replaced All......

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass......Q Q Q Q Proportion of Windows Replaced All......

  4. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump......

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump......

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump...... 53.5 ...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump......

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment...... 17.8 2.1 1.8 0.3 Have Cooling Equipment...... 93.3 23.5 16.0 7.5 Use ...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment...... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment...... 93.3 26.5 6.5 2.5 ...

  11. Rapid Field Measurement of Dissolved Inorganic Carbon Based on CO{sub 2}

    Office of Scientific and Technical Information (OSTI)

    Analysis (Conference) | SciTech Connect SciTech Connect Search Results Conference: Rapid Field Measurement of Dissolved Inorganic Carbon Based on CO{sub 2} Analysis Citation Details In-Document Search Title: Rapid Field Measurement of Dissolved Inorganic Carbon Based on CO{sub 2} Analysis Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. While accurate measurements

  12. Effect of dissolved CO2 on a shallow groundwater system: A controlled...

    Office of Scientific and Technical Information (OSTI)

    controlled release experiment Citation Details In-Document Search Title: Effect of dissolved CO2 on a shallow groundwater system: A controlled release experiment You are ...

  13. U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After...

    Gasoline and Diesel Fuel Update (EIA)

    Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

  14. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  15. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The...

  16. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio Grande, TX Roma, TX Total ...

  17. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  18. 2014 Total Electric Industry- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 ...

  19. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,8...

  20. Dissolved oxygen and pH relationships in northern Australian mangrove waterways

    SciTech Connect (OSTI)

    Boto, K.G.; Bunt, J.S.

    1981-01-01

    Consistent, highly significant linear correlations (R2 greater than or equal to 0.8) between pH and dissolved oxygen levels have been found in northern Australian mangrove waterways. These properties seem to be influenced by dissolved organic matter, mainly polyphenolic compounds, present in the creeks and tidal channel waters.

  1. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    SciTech Connect (OSTI)

    Spencer, B.B.: Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs.

  2. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    SciTech Connect (OSTI)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.; Eddlemon, Gerald K.

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nations waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other

  3. Molecular simulation of a model of dissolved organic matter

    SciTech Connect (OSTI)

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S.; Schulten,Hans-Rolf

    2004-11-08

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na{sup +} or Ca{sup 2+} were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal- humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na{sup +}, Ca{sup 2+} was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca{sup 2+}. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  4. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  5. Effect of dissolved CO2 on a shallow groundwater system: A controlled

    Office of Scientific and Technical Information (OSTI)

    release experiment (Journal Article) | SciTech Connect Effect of dissolved CO2 on a shallow groundwater system: A controlled release experiment Citation Details In-Document Search Title: Effect of dissolved CO2 on a shallow groundwater system: A controlled release experiment Authors: Trautz, R. C. ; Pugh, J. D. ; Varadharajan, C. ; Zheng, L. ; Bianchi, M. ; Nico, P. S. ; Spycher, N. F. ; Newell, D. L. ; Esposito, R. A. ; Wu, Y. ; Dafflon, B. ; Hubbard, S. S. ; Birkholzer, J. T. Publication

  6. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  7. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. Total 7,281 4,217 5,941 6,842 9,010 5,030 1936-2016 PAD District 1 4,571 2,206 2,952 3,174 3,127 2,664 1981-2016 Connecticut 1995-2015 Delaware 678 85 1995-2015 Florida 351 299 932 836 858 649 1995-2016 Georgia 120 295 210 262 1995-2016 Maine 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,575 400 1,131 1,712 1,283 843 1995-2016 New York 1,475 998 350 322 234 824 1995-2016 North Carolina

  8. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  9. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  10. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  11. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths ...

  12. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  17. On-line fast response device and method for measuring dissolved gas in a fluid

    DOE Patents [OSTI]

    Tutu, Narinder Kumar

    2011-01-11

    A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

  18. North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717

  19. Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 223 314 208 - =

  20. Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599

  1. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 128 88 68 - = No

  2. New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's

  3. New York Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 2 3 0 2 2 0 0 0 4 1990's 0 0 0 0 2 2 3 1 1 9 2000's 2 7 0 0 0 3 2 10 29 0 2010's 10 8 6 6 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  4. California State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 65 75 76 - = No Data

  5. Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 474 320 541 522 532 494 1990's 446 407 691 574 679 891 794 1,228 1,224 1,383 2000's 1,395 1,406 1,267

  6. Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 326 433 657 - = No Data Reported;

  7. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  8. Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267

  9. Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 0 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 484 1980's 546 456 489 537 617 560 537 482 424 364 1990's 311 298 396 264 264 254 253 227 234 241 2000's 289 255 271 252 249 253 316 436

  10. Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81

  11. Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140

  12. Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 1980's 75 44 47 52 44 40 69 118 101 136 1990's 116 89 126 141 148 47 53 68 89 49 2000's 128 83 65 62 58 51 57 50 40 21 2010's 8 40 53 177

  13. Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 868 1980's 954 869 881 943 938 874 822 811 728 695 1990's 668 638 606 607 547 611 562 578 580 545 2000's 464 412 400 387 402 344 276 247 412

  14. Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 332 292 214 338 292 276 244 282 264 196 1990's 214 157 170 187 181 276 232 260 204 190 2000's 114 88 57 69 76 73 74 62 68 102

  15. Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 249 274 299 255 274 290 263 267 241 212 1990's 214 200 184 178 148 138 121 147 199 180 2000's 209 124 140 125 110 126 105 139 158

  16. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - =

  17. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  18. West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 21 70 32 - = No Data

  19. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOE Patents [OSTI]

    Horwitz, Earl P.; Chiarizia, Renato

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  20. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  6. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  7. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    SciTech Connect (OSTI)

    Liu, ZhiPing; Wu, WenHui; Shi, Ping; Guo, JinSong; Cheng, Jin

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  8. Simulated Passage Through A Modified Kaplan Turbine Pressure Regime: A Supplement to "Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"

    SciTech Connect (OSTI)

    Abernethy, Cary S.; Amidan, Brett G.; Cada, G. F.

    2002-03-15

    Migratory and resident fish in the Columbia River basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage and dissolved gas supersaturation (resulting from the release of water from the spillway). The responses of fall Chinook salmon and bluegill sunfish to these two stresses, both singly and in combination, were investigated in the laboratory. A previous test series (Abernethy et al. 2001) evaluated the effects of passage through a Kaplan turbine under the ?worst case? pressure conditions. For this series of tests, pressure changes were modified to simulate passage through a Kaplan turbine under a more ?fish-friendly? mode of operation. The results were compared to results from Abernethy et al. (2001). Fish were exposed to total dissolved gas (TDG) levels of 100%, 120%, or 135% of saturation for 16-22 hours at either surface (101 kPa) or 30 ft (191 kPa) of pressure, then held at surface pressure at 100% saturation for a 48-hour observation period. Sensitivity of fall Chinook salmon to gas supersaturation was slightly higher than in the previous test series, with 15% mortality for surface-acclimated fish at 120% TDG, compared to 0% in the previous tests.

  9. Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,208 1980's 33,443 32,870 31,268 31,286 30,282 29,515 28,684 27,457 26,609 26,611 1990's 26,242 25,088 24,701 23,551 23,913 24,532 24,715 24,666

  10. New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,672 1980's 1,533 1,499 1,374 1,323 1,375 1,309 1,232 1,232 1,194 1,200 1990's 1,251 1,398 1,470 1,478 1,544 1,559 1,585 1,314 1,345 1,486 2000's

  11. New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,823 1980's 1,689 1,649 1,520 1,503 1,569 1,490 1,446 1,445 1,453 1,378 1990's 1,435 1,554 1,597 1,585 1,641 1,678 1,693 1,420 1,443 1,578 2000's 1,588 1,447 1,482

  12. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27,217 1980's 28,567 28,676 30,814 30,408 30,356 31,092 30,893 30,732 6,269 6,198 1990's 6,927 6,729 6,723 6,494 6,487 6,265 6,080 7,716 7,275 7,209 2000's 6,768 6,592 6,376

  13. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    SciTech Connect (OSTI)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  14. Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Separation, Proved Reserves (Billion Cubic Feet) 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,513 1980's 2,429 2,080 1,881 1,784 1,756 1,537 1,405 1,296 1,226 1,148 1990's 1,056 1,123 1,206 1,159 1,063 960

  15. Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,645 1980's 2,569 2,630 2,908 3,014 2,932 3,004 3,076 2,898 3,072 3,128 1990's 3,068 2,770 2,742 2,562 2,751 2,834 2,981 3,144 2,820 3,175

  16. Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,485 1980's 1,396 1,486 1,420 1,301 1,272 1,314 1,275 1,271 1,267 1,534 1990's 1,526 1,521 1,585 1,451 1,572 1,318 1,276 1,206 1,097 1,513

  17. Table 12. Associated-dissolved natural gas proved reserves, reserves changes, an

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved"

  18. Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supramolecular Redox Mediators - Joint Center for Energy Storage Research September 15, 2015, Research Highlights Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with Supramolecular Redox Mediators Schematic of nanostructured PBI 1 redox mediators in a Li-S battery, SEM image of the nanofiber morphology, reduced overpotential and 31 percent increase in S utilization at C/8, and cycling at C/4. Scientific Achievement A highly collaborative team of theorists and experimentalists

  19. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Hawaii - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Net Movements: - Industrial: Dry Production: Vehicle ... due to independent rounding. Prices are in nominal dollars. ... Annual Consumption per Consumer (thousand cubic feet) ...

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    from Electric Power to Industrial for years 2002 through ... Totals may not add due to independent rounding. Prices are ... Annual Consumption per Consumer (thousand cubic feet) ...

  11. Total Natural Gas Underground Storage Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Capacity Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working...

  12. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  13. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  14. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 mum, is being emitted ...

  15. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,351479...

  16. Total Supplemental Supply of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & ...

  17. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  18. The influence of dissolved hydrogen on primary water stress corrosion cracking of Alloy 600 at PWR steam generator operating temperatures

    SciTech Connect (OSTI)

    Jacko, R.J.; Economy, G.; Pement, F.W.

    1992-12-31

    PWR primary coolant chemistry uses an intentional dissolved hydrogen concentration of 20 to 50 ml (STP)/kg of water to effect a net suppression of oxygen-producing radiolysis, to minimize corrosion in primary loop materials and to maintain a low redox potential. Speculation has attended a possible influence of dissolved hydrogen on the kinetics of initiation of Primary Water Stress Corrosion Cracking (PWSCC) behavior of Alloy 600 steam generator tubing. Three series of experiments are presented for conditions in which the level of dissolved hydrogen was intentionally varied over the hydrogen and temperature ranges of interest for steam generator operation. No significant effect of dissolved hydrogen was found on PWSCC of Alloy 600.

  19. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet ... Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 ...

  20. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Totals may not add due to independent rounding. Prices are ... 250,994 253,127 Industrial 9,332 9,088 8,833 8,497 8,156 Average Annual Consumption per Consumer (thousand cubic ...

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Notes: Totals may not add due to independent rounding. Prices ... 34,078 34,283 34,339 Industrial 102 94 97 95 92 Average Annual Consumption per Consumer (thousand cubic feet) ...

  3. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  4. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  5. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 mum, is being emitted upwards into a ...

  6. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004629.1...

  7. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue (Thousands Dollars) (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 ...

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. ... 2,314 764 719 180 4,046 Supplemental Gas Supplies 732 701 660 642 635 Balancing Item ...

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. ... 3,762 7,315 10,303 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 65,897 -19,970 ...

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. ... 473 526 484 626 1,359 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -6,645 3,976 ...

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. ... 35 108 71 124 185 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,393 -3,726 ...

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. ... 92 87 100 89 138 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -2,885 -12,890 ...

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. ... 76 96 66 131 128 Supplemental Gas Supplies 1 0 * * 6 Balancing Item 3,249 7,362 ...

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. ... 1,844 980 2,403 2,701 Supplemental Gas Supplies 2 1 0 0 1 Balancing Item -1,989 -7,914 ...

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. ... 4,404 3,278 5,208 6,218 Supplemental Gas Supplies 457 392 139 255 530 Balancing Item ...

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. ... 698 436 457 645 879 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item -1,269 1,045 ...

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. ... 0 LNG Storage 0 0 0 0 0 Supplemental Gas Supplies 1 2 3 3 5 Balancing Item -453 -1,711 ...

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. ... 195 154 146 210 211 Supplemental Gas Supplies 0 0 0 0 0 Balancing Item 17,590 4,622 ...

  19. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  20. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 193 1980's 365 335 161 220 156 143 88 110 67 208 1990's 141 69 13 245 530 248 222 1,360 107 394 2000's 387 1,287 229 447 34 119 40 46 107 263 2010's 102 611 151 63 327 - = No Data Reported; -- = Not Applicable; NA = Not

  1. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 264 1980's 369 271 365 326 296 341 189 155 339 174 1990's 250 334 292 163 202 634 338 187 218 424 2000's 249 477 331 124 97 79 65 73 820 169 2010's 186 160 229 581 584 -

  2. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6,586 845 908 1,062 987 2,071 1,960 1,350 938 678 2010's 2,469 1,884 2,150 2,843 4,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,925 1980's 1,053 -1,079 843 1,564 -486 695 425 177 437 415 1990's 57 257 567 -302 163 345 164 262 -706 143 2000's -605 499 499 202 -21 126 -54 276 455 877 2010's -482 390 385 -649 1,396 - = No Data Reported; -- = Not Applicable; NA =

  4. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  5. Development of a SREX flowsheet for the separation of strontium from dissolved INEEL zirconium calcine

    SciTech Connect (OSTI)

    Law, J.D.; Wood, D.J.; Todd, T.A.

    1999-01-01

    Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run No.64 pilot plant calcine spiked with {sup 85}Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4{prime},4{prime}(5{prime})-di-(tert-butylcyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L.), a 1.0 M NaNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO{sub 3} wash section to remove degradation products from the solvent, and a 0.1 M HNO{sub 3} rinse section. The behavior of {sup 85}Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted {sup 85}Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for {sup 85}Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO{sub 3} resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO{sub 3} scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.

  6. Development of a SREX Flowsheet for the Separation of Strontium from Dissolved INEEL Zirconium Calcine

    SciTech Connect (OSTI)

    Law, Jack Douglas; Wood, David James; Todd, Terry Allen

    1999-02-01

    Laboratory experimentation has indicated that the SREX process is effective for partitioning 90 Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run #64 pilot plant calcine spiked with 85 Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4',4'(5')-di-(tert-butylcyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L.), a 1.0 M NaNO3 scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO3 strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO3 wash section to remove degradation products from the solvent, and a 0.1 M HNO3 rinse section. The behavior of 85 Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted 85 Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for 85 Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO3 resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO3 scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.

  7. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOE Patents [OSTI]

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  8. Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish

    SciTech Connect (OSTI)

    Neitzel, Duane A.

    2009-09-14

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including changes in pressure as they pass through turbines and dissolved gas supersaturation (resulting from the release of water from the spillway). To examine pressure changes as a source of turbine-passage injury and mortality, Pacific Northwest National Laboratory scientists conducted specific tests using a hyperbaric chamber. Tests were designed to simulate Kaplan turbine passage conditions and to quantify the response of fish to rapid pressure changes, with and without the complication of fish being acclimated to gas-supersaturated water.

  9. The effect of the use of plastic sampling containers on laboratory measurements of dissolved oxygen

    SciTech Connect (OSTI)

    Fehring, J.P.

    1990-10-01

    Dissolved oxygen (DO) concentrations are often used to define the water quality of a stream or reservoir. In the Tennessee Valley, there is a commonly held belief that water quality in general, and DO in particular, is declining in TVA reservoirs. In 1980, TVA conducted a study of DO trends in the tailraces of Tennessee River Dams and found a downward trend in most reservoirs, with the greatest decrease in the downstream reservoirs. This report examines a change in sampling procedures which may have contributed to the perception of declining DO. 6 refs., 3 figs., 10 tabs.

  10. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    SciTech Connect (OSTI)

    He, Feng; Zhao, Wenrong; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, HCO3-, NO3-] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h-1) in the presence of both HCO3- and NO3-, whereas HCO3-, NO3-, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO3 -) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3 - radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.

  11. Photochemical oxidation of dissolved elemental mercury by carbonate radicals in water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Feng; Gu, Baohua; Zhao, Weirong; Liang, Liyuan

    2014-11-11

    In this study, photochemical oxidation of dissolved elemental mercury, Hg(0), affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially concerning the role of dissolved organic matter (DOM) and carbonate (CO32-) in natural freshwaters. Here, we evaluate Hg(0) photooxidation rates affected by reactive ionic species (e.g., DOM, CO32-, and NO3–) and free radicals in creek water and a phosphate buffer solution (pH 8) under simulated solar irradiation. The Hg(0) photooxidation rate (k = 1.44 h-1) is much higher in the presencemore » of both CO32- and NO3- than in the presence of CO32-, NO3-, or DOM alone (k = 0.1–0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO•) radicals, as well as electron paramagnetic resonance spectroscopy, we found that carbonate radicals (CO3•-) primarily drive Hg(0) photooxidation. The addition of DOM to the solution of CO32- and NO3- decreased the oxidation rate by half. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3•- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and the fate of Hg in water containing carbonate such as hard water and seawater.« less

  12. Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Feng; Zhao, Wenrong; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, HCO3-, NO3-] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h-1) in the presence of both HCO3- and NO3-, whereas HCO3-,more » NO3-, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h-1). Using scavengers and enhancers for singlet oxygen (1O2) and hydroxyl (HO ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO3 -) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO3 - radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.« less

  13. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    SciTech Connect (OSTI)

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  14. Total internal reflection laser tools and methods

    DOE Patents [OSTI]

    Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.

    2016-02-02

    There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.

  15. Total pressing Indonesian gas development, exports

    SciTech Connect (OSTI)

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  16. Impacts of individual fish movement patterns on estimates of mortality due to dissolved gas supersaturation in the Columbia River Basin.

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Richmond, Marshall C.; Fidler, Larry E.

    2002-12-31

    Spatial and temporal distributions of dissolved gases in the Columbia and Snake rivers vary due to many factors including river channel and dam geometries, operational decisions, and natural variations in flow rates. As a result, the dissolved gas exposure histories experienced by migrating juvenile salmonids can vary significantly among individual fish. A discrete, particle-based model of individual fish movements and dissolved gas exposure history has been developed and applied to examine the effects of such variability on estimates of fish mortality. The model, called the Fish Individual-based Numerical Simulator or FINS, is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories are then input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. This model framework provides a critical linkage between hydrodynamic models of the river system and models of biological effects. FINS model parameters were estimated and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998. The model was then used to simulate exposure histories under selected operational scenarios. We compare mortality rates estimated using the FINS model approach (incorporating individual behavior and spatial and temporal variability) to those estimated using average exposure times and levels as is done in traditional lumped-parameter model approaches.

  17. U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs,

    U.S. Energy Information Administration (EIA) Indexed Site

    Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,289 5,631 5,477 5,639 2000's 5,195 6,628 6,573 5,903 5,416 6,271 6,045 6,890 6,680 7,615 2010's 9,099 13,260 19,550 22,218 27,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,405 1980's 3,405 3,316 3,248 3,355 3,518 3,454 3,443 3,351 3,192 3,099 1990's 2,936 2,968 3,031 2,868 2,907 2,886 2,938 3,022 3,136 3,313 2000's 3,299 3,193 2,988 2,855 2,742

  19. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,139 1980's 1,861 1,537 1,351 977 1,182 1,099 758 542 498 760 1990's 615 737 760 867 850 857 991 1,116 727 586 2000's 2,683 1,194 852 817 907 1,032 810 1,098 1,488 2,669 2010's 2,660 5,957 10,030 9,630 9,962 - = No Data Reported; -- = Not

  20. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,209 1980's 2,941 2,561 4,516 3,815 2,999 3,163 2,903 2,755 27,612 3,130 1990's 2,571 3,479 1,844 2,723 3,002 2,328 2,013 3,241 3,937 8,705 2000's 4,546 3,232 2,637 2,790 3,170 2,034 2,782 1,804 7,385 2,698 2010's 3,964

  1. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,517 1980's 5,283 4,349 5,580 3,695 4,313 4,308 3,856 3,734 4,152 4,603 1990's 4,804 3,698 2,850 3,239 4,519 3,527 3,234 4,925 5,005 11,226 2000's 3,884 3,259 3,587 3,044 4,009 3,281 5,372 5,400 2,943 5,522 2010's 4,983

  2. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6,921 1,145 1,064 1,040 1,004 1,655 1,726 1,115 662 564 2010's 1,146 1,338 1,131 1,733 4,058 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  3. Laboratory studies of the effects of pressure and dissolved gas supersaturation on turbine-passed fish

    SciTech Connect (OSTI)

    Abernethy, C. S.; Amidan, B. G.; Cada, G. F.

    2001-03-01

    Designing advanced turbine systems requires knowledge of environmental conditions that injure or kill fish such as the stresses associated with hydroelectric power production, including pressure changes fish experience during turbine passage and dissolved gas supersaturation (resulting from the release of water from the spillway). The objective of this study was to examine the relative importance of pressure changes as a source of turbine-passage injury and mortality. Specific tests were designed to quantify the response of fish to rapid pressure changes typical of turbine passage, with and without the complication of the fish being acclimated to gas supersaturated water. The study investigated the responses of rainbow trout (Oncorhynchus mykiss), chinook salmon (O. tshawytscha), and bluegill sunfish (Lepomis macrochirus) to these two stresses, both singly and in combination.

  4. Real-time determination of lubricant concentrations dissolved in alternative refrigerants

    SciTech Connect (OSTI)

    Cavestri, R.C.; Schafer, W.R.

    1999-07-01

    A methodology was developed and used to measure both polyolester lubricant concentrations in solution with R-134a and R-407C and mineral oils in solution with R-123. This method is unaffected by changes in pressure, temperature, refrigerant type, and lubricant type. The concentration of dissolved lubricant was measured in three alternative refrigerants with two different synthetic polyolesters and two different mineral oils over a temperature range of 68 F (20 C) to 140 F (60 C) and a concentration range of 0 to 6% w/w. The evaluation methods included density, viscosity, and high-pressure liquid chromatography (HPLC). Measurements of viscosity and density were performed on an oscillating body viscometer. Lubricant concentrations determined by HPLC compared favorably with the ASHRAE Standard 41.1 method (ASHRAE 1984). Circulating lubricant, miscible and immiscible, concentration in identical R-407C operating systems was also measured to demonstrate the practical application of the test method.

  5. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59,425 1980's 62,010 61,546 62,082 61,694 60,638 60,607 59,577 58,189 32,878 32,809 1990's 33,169 31,817 31,424 30,045 30,400 30,797 30,795 32,382 30,660 31,415 2000's 29,833 29,824 29,541 28,552 27,649 28,236 29,640 32,668 29,023 33,383

  6. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; Viswanathan, Hari; Stauffer, Philip; Jordan, Amy B.; Pawar, Rajesh

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS). Themore » volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.« less

  7. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    SciTech Connect (OSTI)

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; Viswanathan, Hari; Stauffer, Philip; Jordan, Amy B.; Pawar, Rajesh

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS). The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.

  8. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  9. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  10. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2014-06-16

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  11. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  12. ,"Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ,"Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  15. ,"Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  16. ,"Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release

  17. ,"New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  18. ,"New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  19. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  1. ,"Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  2. ,"Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  3. ,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  4. ,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  5. ,"Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  6. Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1996 Annual Report.

    SciTech Connect (OSTI)

    Schrank, Boyd P.

    1998-03-01

    Increased spill at dams has commonly brought dissolved gas supersaturation higher than levels established by state and federal water quality criteria in the Columbia and Snake Rivers. These increased spill volumes are intended to provide safe passage for migrating juvenile salmon. However, dissolved gas supersaturation resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1996, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Priest Rapids Reservoir and downstream from Bonneville, Priest Rapids, and Ice Harbor Dams.

  7. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  8. ,"Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  10. ,"California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  11. ,"Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. ,"Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ,"Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  15. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  16. ,"Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  17. "Table A28. Total Expenditures for Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic ... "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity...

  18. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  19. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  20. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  1. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  2. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  3. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  4. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  5. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  6. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  7. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect (OSTI)

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  8. Preliminary assessment of the Velocity Pump Reaction Turbine as a geothermal total-flow expander

    SciTech Connect (OSTI)

    Demuth, O.J.

    1985-01-01

    A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/F geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperature, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectivenss values ranging as high as 9.5 Watt hr/lbm geofluid. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam systems and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant. 13 refs., 5 figs.

  9. Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander

    SciTech Connect (OSTI)

    Demuth, O.J.

    1984-06-01

    A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/ geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectiveness values ranging as high as 9.5 Watt hr/lbm geofluid for the 360/sup 0/F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

  10. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  11. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect (OSTI)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  12. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOE Patents [OSTI]

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  13. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    SciTech Connect (OSTI)

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir.

  14. Total least squares for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  15. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  16. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  17. California Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries California Share of Total U.S. ...

  18. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  19. California Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption California Natural Gas Consumption by End Use ...

  20. Total Crude Oil and Petroleum Products Imports by Processing...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum ...

  1. NREL: Building America Total Quality Management - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the ...

  2. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  3. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  5. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  6. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  7. Webtrends Archives by Fiscal Year — EERE Totals

    Broader source: Energy.gov [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  8. Estimation of Anisotoropy from Total Cross Section and Optical...

    Office of Scientific and Technical Information (OSTI)

    Conference: Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and ...

  9. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect (OSTI)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  10. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  11. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    SciTech Connect (OSTI)

    Borysow, Jacek Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo; Moraldi, Massimo

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  12. Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity

    SciTech Connect (OSTI)

    Slater, L.; Ntarlagiannis, D.; Yee, N.; O'Brien, M.; Zhang, C.; Williams, K. H.

    2008-10-01

    There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupled with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.

  13. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    SciTech Connect (OSTI)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  14. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic

  15. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    SciTech Connect (OSTI)

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H., E-mail: RMichelsen@rmc.edu [Department of Chemistry, Randolph-Macon College, P.O. Box 5005, Ashland, Virginia 23005 (United States)] [Department of Chemistry, Randolph-Macon College, P.O. Box 5005, Ashland, Virginia 23005 (United States)

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  16. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  17. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  19. Maine Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  20. Maine Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  1. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  2. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  3. Virginia Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  4. Washington Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  5. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  6. Kansas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  7. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  8. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  9. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products Net Receipts by ... PM" "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Net Receipts by ...

  10. NREL: Building America Total Quality Management - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation PDF icon NREL: Building America Total Quality Management - 2015 Peer Review More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review NREL: Building America Total Quality Management - 2015 Peer Review R25 Polyisocyanurate Composite Insulation Material

  11. Migration depths of adult steelhead Oncorhynchus mykiss in relation to dissolved gas supersaturation in a regulated river system

    SciTech Connect (OSTI)

    Johnson, Eric L.; Clabough, Tami S.; Caudill, Christopher C.; keefer, matthew L.; Peery, Christopher A.; Richmond, Marshall C.

    2010-04-01

    Adult steelhead tagged with archival transmitters primarily migrated through a large river corridor at depths > 2 m, interspersed with frequent but short (< 5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the encountered supersaturated dissolved gas conditions and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon study, except steelhead experienced greater seasonal variability and were more likely to have depth-uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species.

  12. ,"U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. Scaling properties of proton-nucleus total reaction cross sections

    SciTech Connect (OSTI)

    Abu-Ibrahim, Badawy; Kohama, Akihisa

    2010-05-15

    We study the scaling properties of proton-nucleus total reaction cross sections for stable nuclei and propose an approximate expression in proportion to Z{sup 2/3}sigma{sub pp}{sup total}+N{sup 2/3}sigma{sub pn}{sup total}. Based on this expression, we can derive a relation that enables us to predict a total reaction cross section for any stable nucleus within 10% uncertainty at most, using the empirical value of the total reaction cross section of a given nucleus.

  15. Seasonal changes in dissolved-gas supersaturation in the Sacramento River and possible effects on striped bass

    SciTech Connect (OSTI)

    Colt, J.

    1984-09-01

    Dissolved-gad supersaturation levels were monitored in the Sacramento River system in central California during 1981-1982. Gas supersaturation was highest in the spring when temperature and flow were increasing rapidly, and was caused primarily by inflows of highly supersaturated water from the American and Feather rivers. During high runoff, air entrained by falls and rapids can produce supersaturation. Rapid heating can produce gas supersaturation because the solubility of gases is reduced at higher temperatures. Entrainment of air at dams does not appear to be responsible for gas supersaturation in these two rivers, although the dams may have an influence on dissolved gas levels in the Sacramento River. Gas supersaturation in the Sacramento-San Joaquin River system may adversely affect the eggs and larvae of wild striped bass Morone saxatilis and salmonids in hatcheries. The siting of salmonid hatcheries below large dams insures that hatchery fish will be exposed to high levels of gas supersaturation. Because larval striped bass are positively phototactic, they are at greater risk than fish that are found lower in the water column. 48 references, 4 figures, 3 tables.

  16. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, Edward J.; Jody, Bassam J.; Bonsignore, Patrick V.

    1994-01-01

    A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.

  17. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

    1994-07-19

    A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

  18. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε{sub Sr}{sup SW} = +13.8 to +41.6, where ε{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  19. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  20. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  1. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  2. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  3. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  4. Table 3a. Total Natural Gas Consumption per Effective Occupied...

    Gasoline and Diesel Fuel Update (EIA)

    3a. Natural Gas Consumption per Sq Ft Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas...

  5. Real-space formulation of the electrostatic potential and total...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Real-space formulation of the electrostatic potential and total energy of solids Citation Details In-Document Search Title: Real-space formulation of the ...

  6. Table A19. Components of Total Electricity Demand by Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Components of Total Electricity Demand by Census Region and" " Economic Characteristics of ...ansfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)",...

  7. Trends in Commercial Buildings--Total Primary Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  8. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  9. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  10. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  11. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  12. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals ... Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals Texas Offshore ...

  13. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. PDF icon National Fuel Cell and Hydrogen Energy Overview More ...

  14. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  15. ,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","22016","1151983" ,"Release Date:","522016" ,"Next Release Date:","612016" ,"Excel File Name:","petconsrefmg...

  16. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  17. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  18. ,"U.S. Total Refiner Petroleum Product Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  19. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  20. ,"Conventional Gasoline Sales to End Users, Total Refiner Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","22016","1151994" ,"Release Date:","522016" ,"Next Release Date:","612016" ,"Excel File Name:","petconsrefmg...

  1. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore » the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  2. The radiation chemistry of CCD-PEG, a solvent-extraction process for Cs and Sr from dissolved nuclear fuel

    SciTech Connect (OSTI)

    Mincher, B.J.; Herbst, R.S.; Tillotson, R.D.; Mezyk, S.P.

    2008-07-01

    Cobalt dicarbollide and polyethylene glycol in phenyl-trifluoromethyl sulfone (HCCD/PEG in FS- 13) is currently under consideration for use in the process-scale selective extraction of fission- product cesium and strontium from dissolved nuclear fuel. This solvent will be exposed to high radiation doses during use and has not been adequately investigated for radiation stability. Here, HCCD/PEG was y-irradiated to various absorbed doses, to a maximum of 432 kGy, using {sup 60}Co. Irradiations were performed for the neat organic phase and also for the organic phase in contact with 1 M-nitric acid mixed by air sparging. Post-irradiation solvent-extraction measurements showed that Cs distribution ratios were unaffected; however, Sr extraction efficiency decreased with absorbed dose under both conditions and was greater when in contact with the aqueous phase. Stripping performance was not affected. A mechanism, initiated by direct radiolysis of the sulfone diluent, is proposed. (authors)

  3. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  4. ,"Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  5. ,"New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  6. ,"New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  7. ,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  8. ,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. ,"Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  10. ,"Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  11. ,"Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. ,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  13. ,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  15. ,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  16. ,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  17. ,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  18. ,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  19. ,"Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  1. ,"California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  2. ,"California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  3. ,"California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  4. ,"California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  5. ,"California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  6. ,"Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  7. ,"Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  8. ,"Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  9. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  10. Prisms with total internal reflection as solar reflectors

    DOE Patents [OSTI]

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  11. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  12. CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs

    Broader source: Energy.gov [DOE]

    The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

  13. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5290us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  14. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5290us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Total Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290US2" ...

  15. AGA Producing Region Natural Gas Total Underground Storage Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  16. U.S. Total Shell Storage Capacity at Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Product Area 2010 2011 2012 2013 2014 2015 View History Total 710,413 -- -- -- -- -- 1982-2015 Crude Oil 180,846 -- -- -- -- -- 1985-2015 Liquefied Petroleum Gases 33,842 -- -- -- ...

  17. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect (OSTI)

    1995-08-01

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  18. Ultrasound image guided acetabular implant orientation during total hip replacement

    DOE Patents [OSTI]

    Chang, John; Haddad, Waleed; Kluiwstra, Jan-Ulco; Matthews, Dennis; Trauner, Kenneth

    2003-08-19

    A system for assisting in precise location of the acetabular implant during total hip replacement. The system uses ultrasound imaging for guiding the placement and orientation of the implant.

  19. Property:Building/SPElectrtyUsePercTotal | Open Energy Information

    Open Energy Info (EERE)

    PElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 +...

  20. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  1. Gathering total items count for pagination | OpenEI Community

    Open Energy Info (EERE)

    Gathering total items count for pagination Home > Groups > Utility Rate Hi I'm using the following base link plus some restrictions to sector, utility, and locations to poll for...

  2. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    10:54:24 PM" "Back to Contents","Data 1: U.S. Total Crude Oil and Products Imports" ...-NVM1","MTTIMUSVQ1","MTTIMUSYE1" "Date","U.S. Imports of Crude Oil and Petroleum Products ...

  3. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  4. Estimation of Anisotoropy from Total Cross Section and Optical Model

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and Optical Model Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-06-03 OSTI Identifier: 1082234 Report Number(s): LA-UR-13-24025 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Working Party

  5. Determination of ferrous and total iron in refractory spinels (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Determination of ferrous and total iron in refractory spinels Citation Details In-Document Search Title: Determination of ferrous and total iron in refractory spinels Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of

  6. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  7. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 109,277 98,372 90,025 78,139 102,242 115,528 102,389 103,976 2010's 108,490 101,217 93,985 95,207 93,855 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  8. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries (Percent) U.S. Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Share of Total U.S. Natural Gas

  9. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect (OSTI)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  10. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOE Patents [OSTI]

    Dolbeare, Frank A.; Gray, Joe W.

    1986-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.

  11. "Table A10. Total Consumption of LPG, Distillate Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Total",11681,21576,70668,"W",21384,80123,"W",315,0,9.3 "Employment Size" " Under 50",1824,6108,928,"W",5936,928,"Q","Q",0,37.1 " 50-99","W",2450,6052,573,"W",6052,"W","W",0,20.7 ...

  12. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOE Patents [OSTI]

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  13. Device for measuring the total concentration of oxygen in gases

    DOE Patents [OSTI]

    Isaacs, Hugh S.; Romano, Anthony J.

    1977-01-01

    This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.

  14. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples. [Patent application

    DOE Patents [OSTI]

    Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.

    1982-07-07

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  15. Upper ocean model of dissolved atmospheric gases. Final report for the period 1 August 1991--31 May 1995

    SciTech Connect (OSTI)

    Schudlich, R.; Emerson, S.

    1996-05-01

    This report summarizes results from three years of funding for a modelling study of processes controlling the distribution of metabolic chemical tracers in surface waters. We determined concentrations of the gases O{sub 2}, Ar, N{sub 2}, and the stable isotope ratio ({sup 18}O/{sup 16}O) of molecular oxygen in surface waters at Station ALOHA in conjunction with the Global Ocean Flux Study (GOFS) Hawaiian Ocean Time-series project during the years 1989- 90 and 1992-93. Under this contract we have incorporated chemical tracers into an existing ocean mixed-layer model to simulate the physical processes controlling the distribution and seasonal cycle of dissolved gases in the upper ocean. The broad background of concurrent chemical, physical, and biological measurements at Station ALOHA provides enough redundancy of ``ground truth`` to assess the model`s accuracy. Biological oxygen production estimated from modelled chemical tracers agrees with estimates based on measurement of carbon fluxes into the deep ocean and nitrate fluxes into the upper ocean during 1989-90 and 1992-93, verifying for the first time the utility of chemical tracers for determining biological fluxes in the ocean. Our results suggest that in the euphotic zone (the upper 100 m of the ocean), the net biological O{sub 2} production is 1.0-2. 0 moles m{sup -2}yr{sup - 1}. Inert gas (Ar, N{sub 2}) supersaturation levels show that air and bubble injection are important modes of air-sea gas transfer in the Station ALOHA region.

  16. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOE Patents [OSTI]

    Dolbeare, F.A.; Gray, J.W.

    1983-10-18

    A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)

  17. Rhode Island Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Rhode Island Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 117,707 130,751 118,001 2000's 88,419 95,607 87,805 78,456 72,609 80,764 77,204 87,972 89,256 92,743 2010's 94,110 100,455 95,476 85,537 88,673 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  18. South Carolina Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) South Carolina Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 153,917 159,458 162,926 2000's 160,436 141,785 184,803 146,641 163,787 172,032 174,806 175,701 170,077 190,928 2010's 220,235 229,497 244,850 232,297 231,863 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  19. South Central Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) South Central Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,578,946 2,577,866 2,578,498 2,578,547 2,590,575 2,599,184 2,611,335 2,616,178 2,612,570 2,613,746 2,635,148 2,634,993 2015 2,631,717 2,630,903 2,631,616 2,631,673 2,631,673 2,631,444 2,631,444 2,631,444 2,636,984 2,637,895 2,637,895 2,640,224 2016 2,634,512 2,644,516 -

  20. South Dakota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) South Dakota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 36,115 33,042 35,794 2000's 37,939 37,077 41,577 43,881 41,679 42,555 40,739 53,938 65,258 66,185 2010's 72,563 73,605 70,238 81,986 79,964 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  1. Tennessee Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Tennessee Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 282,395 279,070 278,841 2000's 270,658 255,990 255,515 257,315 231,133 230,338 221,626 221,118 229,935 216,945 2010's 257,443 264,231 277,127 279,441 303,996 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  2. Texas Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Texas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,116,722 4,205,459 4,009,689 2000's 4,421,777 4,252,152 4,303,831 4,050,632 3,908,243 3,503,636 3,432,236 3,516,706 3,546,804 3,387,341 2010's 3,574,398 3,693,905 3,850,331 4,021,851 4,088,445 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  3. U.S. Natural Gas Total Liquids Extracted (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Liquids Extracted (Thousand Barrels) U.S. Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 569,968 599,518 584,160 571,256 587,502 594,306 569,913 1990's 573,054 602,734 626,320 634,481 635,983 649,149 689,314 690,999 668,011 686,862 2000's 721,895 682,873 681,646 622,291 657,032 619,884 637,635 658,291 673,677 720,612 2010's 749,095 792,481 873,563 937,591 1,124,416 - = No Data Reported; -- = Not

  4. Utah Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Utah Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 165,253 169,776 159,889 2000's 164,557 159,299 163,379 154,125 155,891 160,275 187,399 219,700 224,188 214,220 2010's 219,213 222,227 223,039 247,285 242,457 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  5. Vermont Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Vermont Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,061 7,735 8,033 2000's 10,426 7,919 8,367 8,400 8,685 8,372 8,056 8,867 8,624 8,638 2010's 8,443 8,611 8,191 9,602 10,678 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  6. Virginia Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Virginia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 248,960 260,332 276,793 2000's 268,770 237,853 258,202 262,970 277,434 299,746 274,175 319,913 299,364 319,134 2010's 375,421 373,444 410,106 418,506 419,615 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  7. Washington Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Washington Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 256,366 290,229 287,302 2000's 286,653 312,114 233,716 249,599 262,485 264,754 263,395 272,613 298,140 310,428 2010's 285,726 264,589 264,540 318,292 307,021 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  8. West Virginia Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) West Virginia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 159,504 142,860 139,961 2000's 147,854 141,090 146,455 126,986 122,267 117,136 113,084 115,974 111,480 109,652 2010's 113,179 115,361 129,753 142,082 150,766 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  9. Wisconsin Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Wisconsin Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 400,651 368,022 380,560 2000's 393,601 359,784 385,310 394,711 383,316 410,250 372,462 398,370 409,377 387,066 2010's 372,898 393,734 402,656 442,544 462,627 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  10. Total System Performance Assessment - License Application Methods and Approach

    SciTech Connect (OSTI)

    J. McNeish

    2003-12-08

    ''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issues (KTIs) identified in agreements with the U.S. Nuclear Regulatory Commission, the ''Yucca Mountain Review Plan'' (YMRP), ''Final Report'' (NRC 2003 [163274]), and the NRC final rule 10 CFR Part 63 (NRC 2002 [156605]). This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are used in this document.

  11. Total System Performance Assessment-License Application Methods and Approach

    SciTech Connect (OSTI)

    J. McNeish

    2002-09-13

    ''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issue (KTI) agreements, the ''Yucca Mountain Review Plan'' (CNWRA 2002 [158449]), and 10 CFR Part 63. This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are utilized in this document.

  12. Arkansas Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Arkansas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 260,113 266,485 252,853 2000's 251,329 227,943 242,325 246,916 215,124 213,609 233,868 226,439 234,901 244,193 2010's 271,515 284,076 296,132 282,120 268,453 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  13. Colorado Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Colorado Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 314,486 330,259 333,085 2000's 367,920 463,738 459,397 436,253 440,378 470,321 450,832 504,775 504,783 523,726 2010's 501,350 466,680 443,750 467,798 480,747 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  14. Delaware Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Delaware Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,511 40,809 56,013 2000's 48,387 50,113 52,216 46,177 48,057 46,904 43,190 48,155 48,162 50,148 2010's 54,825 79,715 101,676 95,978 100,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  15. District of Columbia Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) District of Columbia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 34,105 30,409 32,281 2000's 33,468 29,802 32,898 32,814 32,227 32,085 29,049 32,966 31,880 33,177 2010's 33,251 32,862 28,561 32,743 34,057 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  16. East Region Natural Gas Total Underground Storage Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Total Underground Storage Capacity (Million Cubic Feet) East Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2,200,169 2015 2,197,282 2,197,282 2,197,282 2,197,282 2,195,132 2,195,132 2,195,132 2,195,132 2,195,132 2,195,132 2,195,132 2,195,132 2016 2,195,132 2,195,132 - = No Data Reported; -- =

  17. Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Imports (Million Cubic Feet) Everett, MA Liquefied Natural Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,583 2,728 2014 5,470 3,783 2,334 2,806 2,175 3,311 1,567 2,871 2,505 2,003 2015 7,729 7,623 5,521 1,673 2,557 7,133 8,237 2,563 2,653 1,541 2,452 2016 10,633 8,593 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  18. Florida Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Florida Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 522,116 503,844 559,366 2000's 541,847 543,143 689,337 689,986 734,178 778,209 891,611 917,244 942,699 1,055,340 2010's 1,158,452 1,217,689 1,328,463 1,225,676 1,231,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  19. Georgia Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Georgia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 371,376 368,579 337,576 2000's 413,845 351,109 383,546 379,761 394,986 412,560 420,469 441,107 425,043 462,799 2010's 530,030 522,897 615,771 625,283 652,230 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  20. Hawaii Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Hawaii Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,894 2,654 3,115 2000's 2,841 2,818 2,734 2,732 2,774 2,795 2,783 2,850 2,702 2,607 2010's 2,627 2,619 2,689 2,855 2,928 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: