National Library of Energy BETA

Sample records for taylor county rural

  1. Taylor County Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    Taylor County Rural E C C Jump to: navigation, search Name: Taylor County Rural E C C Place: Kentucky Phone Number: 1-800-931-4551 Website: www.tcrecc.com Outage Hotline: (800)...

  2. Taylor County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in Iowa. Its FIPS County Code is 173. It is classified as ASHRAE...

  3. Taylor County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in Kentucky. Its FIPS County Code is 217. It is classified as...

  4. Taylor County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in Georgia. Its FIPS County Code is 269. It is classified as ASHRAE...

  5. Taylor County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in Wisconsin. Its FIPS County Code is 119. It is classified as...

  6. Taylor County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in Florida. Its FIPS County Code is 123. It is classified as ASHRAE...

  7. Taylor County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in West Virginia. Its FIPS County Code is 091. It is classified as...

  8. Taylor County RECC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Taylor County RECC offers rebates to residential customers for upgrading to energy efficient insulation and heat pumps. Under the Button-Up insulation upgrade program, a utility representative will...

  9. Linn County Rural Electric Cooperative - Agricultural Energy...

    Broader source: Energy.gov (indexed) [DOE]

    water heater installed, additional 25 bonus if electric dryer installed Energy Star Television: 50 Summary Linn County Rural Electric Cooperative Association (Linn County RECA)...

  10. Morgan County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: Morgan County Rural Elec Assn Place: Colorado Website: www.mcrea.org Twitter: @MorganCountyREA Facebook: https:www.facebook.compagesMorgan-County-Rural-Ele...

  11. Harrison County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Harrison County Rural E M C Jump to: navigation, search Name: Harrison County Rural E M C Place: Indiana Phone Number: 712-647-2727 or 800-822-5591 Website: www.hcrec.coop Outage...

  12. Polk County Rural Pub Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    Polk County Rural Pub Pwr Dist Jump to: navigation, search Name: Polk County Rural Pub Pwr Dist Place: Nebraska Phone Number: (888) 242-5265 Website: www.pcrppd.com Outage...

  13. Marshall County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Marshall County Rural E M C Jump to: navigation, search Name: Marshall County Rural E M C Place: Indiana Phone Number: (866) 936-3161 Website: www.marshallremc.com Twitter:...

  14. Lagrange County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Lagrange County Rural E M C Jump to: navigation, search Name: Lagrange County Rural E M C Place: Indiana Phone Number: (877)463-7165 Website: www.lagrangeremc.com Twitter:...

  15. Newton County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Newton County Rural E M C Jump to: navigation, search Name: Newton County Rural E M C Place: Indiana Phone Number: 219.474.6224 or (219) 297-3118 Website: www.newtoncountyremc.com...

  16. Hendricks County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Hendricks County Rural E M C Jump to: navigation, search Name: Hendricks County Rural E M C Place: Indiana Phone Number: (317) 745-5473 or (800) 876-5473 Website:...

  17. Jasper County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Jasper County Rural E M C Jump to: navigation, search Name: Jasper County Rural E M C Place: Indiana Phone Number: 1-888-866-7362 or 219-866-4601 Website: www.jasperremc.com...

  18. Fulton County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Fulton County Rural E M C Jump to: navigation, search Name: Fulton County Rural E M C Place: Indiana Phone Number: 574-223-3156 or 1-800-286-2265 Website: www.fultoncountyremc.com...

  19. Decatur County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Decatur County Rural E M C Jump to: navigation, search Name: Decatur County Rural E M C Place: Indiana Phone Number: (812) 663-3391 or 800-844-7362 Website: www.dcremc.com Outage...

  20. Johnson County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Johnson County Rural E M C Jump to: navigation, search Name: Johnson County Rural E M C Place: Indiana Phone Number: 317.736.6174 Website: jcremc.com Facebook: https:...

  1. Jay County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Jay County Rural E M C Jump to: navigation, search Name: Jay County Rural E M C Place: Indiana Phone Number: 260-726-7121 or 1-800-TEL-REMC Website: www.jayremc.com Outage...

  2. Bartholomew County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Bartholomew County Rural E M C Jump to: navigation, search Name: Bartholomew County Rural E M C Address: 1697 W. Deaver Road Place: Columbus, Indiana Zip: 47201 Phone Number: (812)...

  3. Kosciusko County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Kosciusko County Rural E M C Jump to: navigation, search Name: Kosciusko County Rural E M C Place: Indiana Phone Number: 574.267.6331 or 1.800.790.7362 Website: kremc.com Twitter:...

  4. Clark County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E M C Jump to: navigation, search Name: Clark County Rural E M C Place: Indiana Phone Number: (812) 246-3316 Website: www.theremc.com Facebook: https:...

  5. Henry County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E M C Jump to: navigation, search Name: Henry County Rural E M C Place: Indiana Phone Number: 1-800-248-8413 Website: www.henrycountyremc.com Twitter:...

  6. Warren County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E M C Jump to: navigation, search Name: Warren County Rural E M C Address: 15 Midway St Place: Williamsport, Indiana Zip: 47993 Service Territory: Indiana Phone...

  7. Parke County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Parke County Rural E M C Jump to: navigation, search Name: Parke County Rural E M C Place: Indiana Phone Number: 765-569-3133 or 800-537-3913 Website: www.pcremc.com Outage...

  8. Jackson County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Jackson County Rural E M C Jump to: navigation, search Name: Jackson County Rural E M C Place: Indiana Phone Number: 1.800.288.4458 Website: www.jacksonremc.com Twitter:...

  9. Lewis County Rural E C A | Open Energy Information

    Open Energy Info (EERE)

    County Rural E C A Jump to: navigation, search Name: Lewis County Rural E C A Place: Missouri Phone Number: 573-215-4000 Website: lewiscountyrec.org Outage Hotline: 888-454-4485...

  10. Guthrie County Rural E C A | Open Energy Information

    Open Energy Info (EERE)

    Guthrie County Rural E C A Jump to: navigation, search Name: Guthrie County Rural E C A Place: Iowa Phone Number: 641.747.2206 Website: www.guthrie-rec.coop Outage Hotline:...

  11. Meade County Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    County Rural E C C Jump to: navigation, search Name: Meade County Rural E C C Place: Kentucky Phone Number: 1.877.276.5353 or Brandenburg: 270.422.2162, Hardinsburg: 270.756.5172...

  12. Linn County Rural E C A | Open Energy Information

    Open Energy Info (EERE)

    Linn County Rural E C A Jump to: navigation, search Name: Linn County Rural E C A Place: Iowa Phone Number: 319-377-1587 or 1-800-332-5420 Website: linncountyrec.com Outage...

  13. Woodbury County Rural E C A | Open Energy Information

    Open Energy Info (EERE)

    County Rural E C A Jump to: navigation, search Name: Woodbury County Rural E C A Place: Iowa Phone Number: 712.873.3125 Website: www.woodburyrec.com Outage Hotline: 1.800.469.3125...

  14. Linn County Rural Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    County Rural Electric Cooperative Association Website http:www.linncountyrec.comenergy-efficiencyincentivescurrent-incent... State Iowa Program Type Rebate Program Rebate...

  15. Wabash County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Wabash County Rural E M C Jump to: navigation, search Name: Heartland Rural E M C Address: 350 Wedcor Avenue Place: Wabash, Indiana Phone Number: (260) 563-2146 Website:...

  16. Hancock County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Rural E M C Jump to: navigation, search Name: Hancock County Rural E M C Place: Indiana Phone Number: (800) 248-8413 Website: www.henrycountyremc.com Twitter: @henrycountyremc...

  17. Brown County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    Rural Elec Assn Jump to: navigation, search Name: Brown County Rural Elec Assn Place: Minnesota Phone Number: 1-800-658-2368 Website: www.browncountyrea.coop Outage Hotline:...

  18. White County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    White County Rural E M C Address: 302 North Sixth Street Place: Monticello, IN Zip: 47960 Service Territory: Indiana Phone Number: (574) 583-7161 Website: www.cwremc.com Facebook:...

  19. Steuben County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Steuben County Rural E M C Address: 1212 S. Wayne Street Place: Angola, Indiana Zip: 46703 Phone Number: 260.665.3563 Website: www.remcsteuben.com Twitter: @steubencoremc...

  20. Orange County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    search Name: Orange County Rural E M C Place: Indiana Phone Number: 1-812-865-2229 Toll Free: 1-888-337-5900 Website: www.orangecountyremc.org Facebook: https:www.facebook.com...

  1. EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass Montgomery Project in the Town of Montgomery, Orange County, New York

    Broader source: Energy.gov [DOE]

    Taylor Biomass, LLC (Taylor) submitted an application to DOE for a Federal loan guarantee to support the construction and startup of a biomass gasification-to energy facility at a 95-acre recycling facility in the Town of Montgomery, Orange County, NY. The Project would involve the construction of a Post-Collection Separation Facility, a Gasification System and a Combined Cycle Gas Turbine Power Island.

  2. Taylor Barnes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taylor Barnes Taylor Barnes Taylor Barnes Rear Admiral Grace Murray Hopper Postdoctoral Fellow tbarnes@lbl.gov 1 Cyclotron Road Mail Stop 943-256 Berkeley, CA 94720 Last edited:...

  3. Miami-Cass County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Name: Miami-Cass County Rural E M C Place: Indiana Phone Number: 765-473-6668 or toll free 800-844-6668 Website: www.mcremc.coop Twitter: @MiamiCassREMC Outage Hotline:...

  4. EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guarantee for the Taylor Biomass Montgomery Project in the Town of Montgomery, Orange County, New York EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass ...

  5. Linn County Rural Electric Cooperative - Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    water heater installed, additional 25 bonus if electric dryer installed Energy Star Television: 50 Appliance Recycling: 25 - 50 Custom Measures: Varies, contact Linn County...

  6. Butler County Rural Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Iowa Phone Number: 888-267-2726 Website: www.butlerrec.coop Twitter: @ButlerCountyREC Facebook: https:www.facebook.combcrec Outage Hotline: 888-267-2726 Outage Map:...

  7. Taylor, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor is a city in Williamson County, Texas. It falls under Texas's 31st congressional...

  8. Larry Taylor | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Larry Taylor Research Scientist Larry.Taylor@nrel.gov | 303-384-7784 Research Interests Larry Taylor received his Ph.D. in Environmental Molecular Biology and Biotechnology from ...

  9. Lackawanna County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Keystone Landfill Biomass Facility Taylor Energy Partners LP Biomass Facility Places in Lackawanna County, Pennsylvania...

  10. Susan L. Taylor

    Office of Energy Efficiency and Renewable Energy (EERE)

    Susan L. Taylor is the founder and CEO of the National CARES Mentoring Movement.  After 27 years at the helm of Essence magazine, Taylor left publishing to devote her life to building the...

  11. Sonia Taylor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sonia Taylor About Us Sonia Taylor - Loan Programs Office Most Recent More Than 350 Now at Work Building CA Valley Solar Plant February 27

  12. Lafayette County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Lafayette County, Mississippi Abbeville, Mississippi Oxford, Mississippi Taylor, Mississippi Retrieved from "http:en.openei.orgw...

  13. Rural migration in Nevada: Lincoln County. Phase 1, 1992--1993

    SciTech Connect (OSTI)

    Soden, D.L.; Carns, D.E.; Mosser, D.; Conary, J.S.; Ansell, J.P.

    1993-12-31

    The principal objective of this project was to develop insight into the scope of migration of working age Nevadans out of their county of birth; including the collection of data on their skill levels, desire to out or in-migrate, interactions between families of migratory persons, and the impact that the proposed high-level nuclear waste repository at Yucca mountain might have on their individual, and collective, decisions to migrate and return. The initial phase of this project reported here was conducted in 1992 and 1993 in Lincoln County, Nevada, one of the counties designated as ``affected`` by the proposed repository program. The findings suggest that a serious out-migration problem exists in Lincoln County, and that the Yucca mountain project will likely affect decisions relating to migration patterns in the future.

  14. Geoffrey Taylor Klise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taylor Klise - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  15. Steuben County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Steuben County, Indiana Steuben County Rural E M C Places in Steuben County, Indiana Angola, Indiana Ashley, Indiana Clear Lake, Indiana Fremont, Indiana Hamilton, Indiana...

  16. Microsoft Word - taylor.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Tropical Western Pacific P. Taylor and R.G. Ellingson Florida State University Tallahassee, Florida Introduction The effective cloud fraction, N e , has been suggested to ...

  17. Okeechobee County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Okeechobee County, Florida Cypress Quarters, Florida Okeechobee, Florida Taylor Creek, Florida Retrieved from "http:en.openei.orgwindex.php?titleOkeechobeeCount...

  18. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Geneva, Alabama Hartford, Alabama Malvern, Alabama Samson, Alabama Slocomb, Alabama Taylor, Alabama Retrieved from "http:en.openei.orgwindex.php?titleGenevaCounty,Alabama...

  19. Stark County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dakota Gladstone, North Dakota Richardton, North Dakota South Heart, North Dakota Taylor, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleStarkCounty,Nor...

  20. Tania Smith Taylor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tania Smith Taylor About Us Tania Smith Taylor Director, Office of Site Operations Tania Smith Taylor became the new Director of the LM Office of Site Operations in January 2016. ...

  1. Taylor Elected to Royal Society of London

    Office of Scientific and Technical Information (OSTI)

    SLAC, 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at the Stanford Linear Accelerator Center and 1990 Nobel Prize winner, was recently ...

  2. Taylor Munro Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    V4G 1E2 Sector: Solar Product: Taylor Munro focuses on design and installation of solar water heating systems for residential and commercial applications. References: Taylor...

  3. Loup County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 5 Climate Zone Subtype A. Places in Loup County, Nebraska Taylor, Nebraska Retrieved from "http:en.openei.orgwindex.php?titleLoupCounty,Nebraska...

  4. Exact axisymmetric Taylor states for shaped plasmas

    SciTech Connect (OSTI)

    Cerfon, Antoine J. O'Neil, Michael

    2014-06-15

    We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.

  5. Taylor, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Alabama&oldid25085...

  6. Taylor, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Mississippi&oldid250859...

  7. Taylor, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Michigan&oldid250858...

  8. Taylor Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin Phone Number: 715-678-2411 or 800-862-2407 Website: taylorelectric.org Facebook: https:www.facebook.compagesTaylor-Electric-Cooperative151538904913522 Outage...

  9. FAYETTE COUNTY TRAINS TOMORROW’S WORKFORCE

    Broader source: Energy.gov [DOE]

    Most of the homes in Fayette County, a rural community in southwestern Pennsylvania, were built to support workers in the coal mining industry and aged alongside it. As a result, Fayette County now...

  10. Nonideal Rayleigh-Taylor mixing

    SciTech Connect (OSTI)

    Sharp, David Howland; Lin, Hyun K; Iwerks, Justin G; Gliman, James G

    2009-01-01

    Rayleigh-Taylor mixing is a classical hydrodynamic Instability, which occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical) which produce deviations from a pure Euler equation, scale Invariant formulation, and non Ideal (i.e. experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We Interpret mathematical theories of existence and non-uniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations, in other words indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as non unique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, In the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and PrandtJ numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength Initial conditions and long wavelength perturbations are observed to playa role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing In different proportions In these two different contexts.

  11. Taylor County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":32.2455088,"lon":-99.8124935,"alt":0,"address":"","i...

  12. Johnson County REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Johnson County Rural Electric Membership Cooperative offers rebates to residential customers who install or replace new water heating and HVAC equipment. Rebates are available on the purchase and...

  13. Bartholomew County REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Bartholomew County Rural Electric Membership (BCREM) Cooperative provides its residential customers with rebates for geothermal and air source heat pumps, central air conditioners, and new high...

  14. A hybrid Rayleigh-Taylor-current-driven coupled instability in...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: A hybrid Rayleigh-Taylor-current-driven ... March 22, 2017 Title: A hybrid Rayleigh-Taylor-current-driven coupled instability in a ...

  15. VEE-0066- In the Matter of Taylor Oil Company

    Broader source: Energy.gov [DOE]

    On July 30, 1999, Taylor Oil Company (Taylor) of Somerville, New Jersey filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  16. Numerical simulation of Rayleigh-Taylor instabilities involving solids

    SciTech Connect (OSTI)

    Chang, Chong H.

    2015-11-20

    This report is a description of research performed by LANL regarding numeric simulations of Rayleigh-Taylor instability.

  17. Illinois Rural Electric Cooperative Wind Farm | Open Energy Informatio...

    Open Energy Info (EERE)

    Electric Cooperative Energy Purchaser Illinois Rural Electric Cooperative Location Pike County IL Coordinates 39.6189, -90.9627 Show Map Loading map......

  18. CTH simulation of PBX-9501 Taylor tests /

    SciTech Connect (OSTI)

    Koby, Joseph R.

    2011-09-01

    During March-May 2011, multiple Taylor impact tests were conducted at LANL, examining the behavior of PBXN-9 and PBX-9501 under rapid loading. Subsequently, a computational hydrodynamics code (CTH) model was developed to mimic the deformation behavior observed in these impact tests with PBX-9501 would likely initiate upon impact. Also examined was whether an inert slud behind the explosive would lead to initiation at lower, more easily attainable velocities. The simplified model used here showed a minimum velocity for ignition of 530 m/s which was unchanged by the addition of a plastic slud behind the sample. The use of a lead slug did lower the minimum velocity to 460 m/s. These values are likely more qualitative at this point because multiple simplifications are currently used in the materials properties and test geometry. The results do show that this approach is capable of determining ignition due to Taylor impact.

  19. J. Taylor Childers III | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Taylor Childers III Assistant Physicist Education 2002 - 2007 University of Minnesota, PhD. in Physics 1998 - 2002 University of Kentucky, BS. in Physics Experience 2013 - present Assistant Physicist at Argonne National Lab, Chicago, IL, USA 2011 - 2013 Fellow at CERN, Geneva, Switzerland 2007 - 2011 Postdoctoral Researcher at Heidelberg University, Heidelberg, Germany Summary of Research I am an Assistant Physicist at Argonne National Laboratory in Chicago, USA. As a member of ATLAS, I am

  20. Taylor Lake Village, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylorLakeVillage,Texas&oldid...

  1. Taylor Biomass Energy LLC TBE | Open Energy Information

    Open Energy Info (EERE)

    Biomass Energy LLC TBE Jump to: navigation, search Name: Taylor Biomass Energy, LLC (TBE) Place: Montgomery, New York Zip: 12549-9900 Sector: Biomass Product: Montgomery-based...

  2. A cosmological Slavnov-Taylor identity

    SciTech Connect (OSTI)

    Collins, Hael; Holman, R.; Vardanyan, Tereza E-mail: rh4a@andrew.cmu.edu

    2014-12-01

    We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Green's functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states. We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state. We explain how the Slavnov-Taylor identity is modified for these more general states.

  3. Rural Cooperative Geothermal Development Electric & Agriculture |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rural Cooperative Geothermal Development Electric & Agriculture Rural Cooperative Geothermal Development Electric & Agriculture DOE 2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects low_silveria_rural_electric_coop.pdf (557.69 KB) More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion Equipment for Low

  4. Suppression of Rayleigh Taylor instability in strongly coupled plasmas

    SciTech Connect (OSTI)

    Das, Amita; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-06-15

    The Rayleigh Taylor instability in a strongly coupled plasma medium has been investigated using the equations of generalized hydrodynamics. It is demonstrated that the visco-elasticity of the strongly coupled medium due to strong inter particle correlations leads to a suppression of the Rayleigh Taylor instability unless certain threshold conditions are met. The relevance of these results to experiments on laser compression of matter to high densities including those related to inertial confinement fusion using lasers has also been shown.

  5. Smart Meter Investments Support Rural Economy in Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  6. Loan Guarantees Can Play a Role in Rural Opportunity Investment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Guarantees Can Play a Role in Rural Opportunity Investment Loan Guarantees Can Play a Role in Rural Opportunity Investment July 24, 2014 - 3:52pm Addthis In September 2011, the Department of Energy issued a $1.2 billion loan guarantee to support the construction of California Valley Solar Ranch (CVSR), a 250 MWac photovoltaic (PV) solar generating facility in rural San Luis Obispo County, California. The project reached commercial operation in October 2013. In September

  7. Multi-Moment ADER-Taylor Methods for Systems of Conservation...

    Office of Scientific and Technical Information (OSTI)

    ADER-Taylor Methods for Systems of Conservation Laws With Source Terms in One Dimension Citation Details In-Document Search Title: Multi-Moment ADER-Taylor Methods for ...

  8. Former Student Turns Thesis Into Energy Savings for Taylor University

    Broader source: Energy.gov [DOE]

    Not long ago Kevin Crosby was an engineering major and the president of Taylor University’s student environmental club, Stewards of Creation. Now with recommendations from his thesis in hand, the Environmental Science Master’s degree candidate is the Upland, Indiana, university’s first Coordinator of Stewardship and Sustainability.

  9. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mikaelian, Karnig O.

    2016-02-08

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  10. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  11. Finite Cloud Effects at the ACRF TWP Site Patrick Taylor and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Taylor and Robert G. Ellingson Dept. of Meteorology, Florida State University, Tallahassee, FL 32306 Data: Observations are taken at the ACRF TWP Site from June 1999 ...

  12. Los Angeles County- LEED for County Buildings

    Broader source: Energy.gov [DOE]

    In January 2007, the Los Angeles County Board of Supervisors adopted rules to require that all new county buildings greater than 10,000 square feet be LEED Silver certified. All buildings...

  13. Monmouth/Ocean/Middlesex counties transit study

    SciTech Connect (OSTI)

    Della Rocca, M. )

    1990-03-01

    Just south of the Newark-New York City metropolitan area, urban meets rural in the fastest growing region of New Jersey. The two-year Monmouth/Ocean/Middlesex counties transit study brought to a focus an extensive 12-year history of efforts to improve transportation in this region of growing towns and long-distance commuters. The project, presented in this article, screened and evaluated some 40 potential rail and bus alternatives along eight corridors. As a result, two projects were recommended to progress further toward implementation: bus priority treatments as part of a potential $175 million widening of US 9, and passenger rail service (budgeted at $120 million) along a reconstructed former freight line through the center of Monmouth County and into Ocean County.

  14. WINDExchange: Rural Communities

    Wind Powering America (EERE)

    Rural Communities Printable Version Bookmark and Share Wind for Homeowners, Farmers, & Businesses Resources & Tools Rural Communities Agricultural lands in the United States are...

  15. Collisional effects on Rayleigh-Taylor-induced magnetic fields

    SciTech Connect (OSTI)

    Manuel, M. J.-E.; Flaig, M.; Plewa, T.; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hu, S. X.; Betti, R.; Hager, J.; Meyerhofer, D. D.; Smalyuk, V.

    2015-05-15

    Magnetic-field generation from the Rayleigh-Taylor (RT) instability was predicted more than 30 years ago, though experimental measurements of this phenomenon have only occurred in the past few years. These pioneering observations demonstrated that collisional effects are important to B-field evolution. To produce fields of a measurable strength, high-intensity lasers irradiate solid targets to generate the nonaligned temperature and density gradients required for B-field generation. The ablation process naturally generates an unstable system where RT-induced magnetic fields form. Field strengths inferred from monoenergetic-proton radiographs indicate that in the ablation region diffusive effects caused by finite plasma resistivity are not negligible. Results from the first proof-of-existence experiments are reviewed and the role of collisional effects on B-field evolution is discussed in detail.

  16. The cylindrical magnetic Rayleigh-Taylor instability for viscous fluids

    SciTech Connect (OSTI)

    Chambers, K.; Forbes, L. K.

    2012-10-15

    This paper considers a cylindrical Rayleigh-Taylor instability, in which a heavy fluid surrounds a light fluid, and gravity is directed radially inwards. A massive object is located at the centre of the light fluid, and it behaves like a line dipole both for fluid flow and magnetic field strength. The initially circular interface between the two conducting fluids evolves into plumes, dependent on the magnetic and fluid dipole strengths and the nature of the initial disturbance to the interface. A spectral method is presented to solve the time-dependent interface shapes, and results are presented and discussed. Bipolar solutions are possible, and these are of particular relevance to astrophysics. The solutions obtained resemble structures of some HII regions and nebulae.

  17. Power County | Open Energy Information

    Open Energy Info (EERE)

    County Jump to: navigation, search Name Power County Facility Power County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CG Power...

  18. Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor and the Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Quark Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor and the Development of the Quark Resources with Additional Information Jerome I. Friedman Jerome I. Friedman Courtesy AIP Emilio Segrè Visual Archives, W. F. Meggers Gallery of Nobel Laureates Richard E. Taylor Richard E. Taylor Courtesy of Stanford Linear Accelerator Center Henry W. Kendall Henry W. Kendall Courtesy AIP Emilio Segrè Visual Archive, W. F. Meggers Gallery of Nobel Laureates The 1990 Nobel Prize in Physics

  19. Broward County- Green Building Policy

    Broader source: Energy.gov [DOE]

    In October 2008, Board of County Commissioners of Broward County passed a resolution creating the County Green Building Policy. All new County-owned and operated buildings must achieve a minimum...

  20. County Wind Ordinance Standards

    Broader source: Energy.gov [DOE]

    Assembly Bill 45 of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's...

  1. Kiowa County Commons Building

    Broader source: Energy.gov [DOE]

    This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

  2. Modeling of Nova indirect drive Rayleigh--Taylor experiments

    SciTech Connect (OSTI)

    Weber, S.V.; Remington, B.A.; Haan, S.W.; Wilson, B.G.; Nash, J.K. )

    1994-11-01

    The growth due to the Rayleigh--Taylor (RT) instability of single-wavelength surface perturbations on planar foils of brominated CH [CH(Br)] and fluorosilicone (FS) was measured. The foils were accelerated by x-ray ablation with temporally shaped drive pulses. A range of initial amplitudes ([ital a][sub 0]) and wavelengths ([lambda]) have been used. This paper focuses upon foils with small [ital a][sub 0]/[lambda], which exhibit substantial growth in the linear regime, and are most sensitive to the calculated growth rate. The CH(Br) foils exhibit slower RT perturbation growth because opacity differences result in a larger ablation velocity and a longer density scale length than for FS. Tabulated opacities from detailed atomic models, OPAL [Astrophys. J. [bold 397], 717 (1992)] and super transition array (STA) [Phys. Rev. A [bold 40], 3183 (1989)] were employed. Unlike previous simulations which employed the average atom (XSN) opacity treatment, parameter adjustments to fit experimental data no longer appear necessary. Nonlocal thermodynamic equilibrium (NLTE) effects do not appear to be important. Other variables which may affect the modeling, such as changes of the equation of state and radiation drive spectrum, were also examined. The current calculational model, which incorporates physically justified choices for these calculational ingredients, agrees with the Nova single wavelength RT perturbation growth data.

  3. Rayleigh-Taylor instabilities with sheared magnetic fields

    SciTech Connect (OSTI)

    Ruderman, M. S. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Terradas, J.; Ballester, J. L. [Departament de Fsica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2014-04-20

    Magnetic Rayleigh-Taylor (MRT) instabilities may play a relevant role in many astrophysical problems. In this work the effect of magnetic shear on the growth rate of the MRT instability is investigated. The eigenmodes of an interface and a slab model under the presence of gravity are analytically calculated assuming that the orientation of the magnetic field changes in the equilibrium, i.e., there is magnetic shear. We solve the linearized magnetohydrodynamic equations in the incompressible regime. We find that the growth rate is bounded under the presence of magnetic shear. We have derived simple analytical expressions for the maximum growth rate, corresponding to the most unstable mode of the system. These expressions provide the explicit dependence of the growth rate on the various equilibrium parameters. For small angles the growth time is linearly proportional to the shear angle, and in this regime the single interface problem and the slab problem tend to the same result. On the contrary, in the limit of large angles and for the interface problem the growth time is essentially independent of the shear angle. In this regime we have also been able to calculate an approximate expression for the growth time for the slab configuration. Magnetic shear can have a strong effect on the growth rates of the instability. As an application of the results found in this paper we have indirectly determined the shear angle in solar prominence threads using their lifetimes and the estimation of the Alfvn speed of the structure.

  4. On the modeling of the Taylor cylinder impact test for orthotropic textured materials: Calculations and experiments

    SciTech Connect (OSTI)

    Maudlin, P.J.; Bingert, J.F.; House, J.W.

    1997-04-01

    Taylor impact tests using specimens cut from a rolled plate of Ta were conducted. The Ta was well-characterized in terms of flow stress and crystallographic texture. A piece-wise yield surface was interrogated from this orthotropic texture, and used in EPIC-95 3D simulations of the Taylor test. Good agreement was realized between the calculations and the post-test geometries in terms of major and minor side profiles and impact-interface footprints.

  5. Property:FIPS County Code | Open Energy Information

    Open Energy Info (EERE)

    County, Kentucky + 001 + Adair County, Missouri + 001 + Adair County, Oklahoma + 001 + Adams County, Colorado + 001 + Adams County, Idaho + 003 + Adams County, Illinois + 001 +...

  6. San Diego County- Design Standards for County Facilities

    Broader source: Energy.gov [DOE]

    The San Diego County Board of Supervisors established design standards for county facilities and property. Among other requirements,  the policy requires that all new county buildings or major...

  7. THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Klein, K. G.; Howes, G. G.; TenBarge, J. M.

    2014-08-01

    Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvénic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies. It is found that Alfvénic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.

  8. Douglas County | Open Energy Information

    Open Energy Info (EERE)

    County Jump to: navigation, search Name: Douglas County Address: 430 S E Main Street PO Box 2456 Place: Roseburg Zip: 97470 Region: United States Sector: Marine and Hydrokinetic...

  9. Grundy County Rural Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Elec Coop Place: Iowa Phone Number: 319-824-5251 Website: www.grundycountyrecia.com Outage Hotline: 1-800-390-7605 Outage Map: www.iowarec.orgoutages References: EIA Form...

  10. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    SciTech Connect (OSTI)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    2014-07-10

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.

  11. Eagle County, Colorado Data Dashboard

    Broader source: Energy.gov [DOE]

    The data dashboard for Eagle County, Colorado, a partner in the Better Buildings Neighborhood Program.

  12. Vegetation N A County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N A County road 39 Community D Bottomland Hardwood _ Mixed Swamp Forest _ Bottomland Hardwood/Pine .** TES Plants (1) ~ Site Boundary ~ Roads m. Streams N County Line em Hydric Soils 410 o 410 820 Meters Soils Soil Series _ Pk D VeD Figure 18-2. Plant communities and soils of the Boiling Springs Natural Area. 18-7 Set-Aside 18: Boiling Springs Natural Area

  13. Property:County | Open Energy Information

    Open Energy Info (EERE)

    Fort Geothermal Project + Millard County, Utah + Coyote Canyon Geothermal Project + Churchill County, NV + Crump Geyser Geothermal Project + Lake County, UT + D Darrough Hot...

  14. Workplace Charging Challenge Partner: Boulder County | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder County partners with the U.S. Department of Energy to promote electric vehicle charging stations at workplaces Boulder County, CO - Boulder County has joined the Workplace ...

  15. Phelps County Ethanol | Open Energy Information

    Open Energy Info (EERE)

    County Ethanol Jump to: navigation, search Name: Phelps County Ethanol Place: Nebraska Product: Focused on ethanol production. References: Phelps County Ethanol1 This article is...

  16. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  17. Rutland County Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard Rutland County Data Dashboard The data dashboard for Rutland County, Vermont, a partner in the Better Buildings Neighborhood Program. Rutland County Data Dashboard ...

  18. Climate Zone 3B | Open Energy Information

    Open Energy Info (EERE)

    County, Texas Stonewall County, Texas Sutter County, California Sutton County, Texas Taylor County, Texas Tehama County, California Terrell County, Texas Terry County, Texas...

  19. USDA Rural Development Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Energy Programs Tedd Buelow Native American Coordinator DOE Tribal Energy Program Review November 16, 2009 USDA Rural Development 4 Types of Program Delivery - Guaranteed Loans - Direct Loans - Grants - Payments 3 Program Areas - Rural Business and Cooperative - Rural Housing and Community Facilities - Rural Utilities DOE Tribal Energy Program Review November 16, 2009 USDA Rural Development Organizational Structure National Office State Directors Area Directors Program Directors

  20. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  1. Rural Energy Savings Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This program helps rural families and small businesses achieve cost savings by providing loans to qualified consumers to implement durable, cost-effective energy efficiency measures, including on- or off-grid renewable energy.

  2. Santa Clara County- Green Building Policy for County Government Buildings

    Broader source: Energy.gov [DOE]

    In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009.

  3. Harris County- Green Building Policy for County Buildings

    Broader source: Energy.gov [DOE]

    The Harris County Facilities and Property Management (FPM) Division also requires all county buildings to meet minimum energy efficiency and sustainability measures, as described in the Best Gree...

  4. The role of the Rayleigh--Taylor instability in laser-driven burnthrough experiments

    SciTech Connect (OSTI)

    Delettrez, J.; Bradley, D.K.; Verdon, C.P. )

    1994-07-01

    Experiments were conducted to confirm that the Rayleigh--Taylor instability is the main process controlling the burnthrough time in imploding spherical experiments. In these experiments the laser irradiates targets overcoated with a parylene layer, in which one or more thin signature layers of moderate- to high-[ital Z] material are embedded to signal the penetration of the heat front. Target parameters were varied to study the effect on the burnthrough time of changes to target acceleration, Atwood number, and ablation velocity. The effects of improved laser uniformity through the introduction of smoothing by spectral dispersion are also presented. The results agree well with those obtained from a multimode mix model. This suggests that burnthrough experiments can be used to measure improvements in laser-irradiation or target-fabrication uniformity and to test methods to mitigate the growth of the Rayleigh--Taylor instability.

  5. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect (OSTI)

    Bonazza, Riccardo; Anderson, Mark; Smith, Leslie

    2005-02-09

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively, adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. The laboratory experiments summarized in this report include shock tube experiments to study a shock-accelerated bubble and a shock-accelerated 2-D sinusoidal interface; and experiments based on the use of magnetorheological fluids for the study of the Rayleigh-Taylor instability. Computational experiments based on the shock tube experimental conditions are also reported.

  6. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    SciTech Connect (OSTI)

    Riccardo Bonazza, Mark Anderson, Jason Oakley

    2006-11-03

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively, adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. The laboratory experiments summarized in this report include shock tube experiments to study a shock-accelerated bubble and a shock-accelerated 2-D sinusoidal interface; and experiments based on the use of magnetorheological fluids for the study of the Rayleigh-Taylor instability. Computational experiments based on the shock tube experimental conditions are also reported.

  7. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    SciTech Connect (OSTI)

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2009-09-14

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is marginally damped but will become destabilized by the magnetorotational instability with a modest increase in rotation rate.

  8. George Taylor, Ph.D. Founder, Palmetto Energy Institute Senior Fellow, ATI Center for Energy Studies

    Gasoline and Diesel Fuel Update (EIA)

    Copyright © 2013 PERF George Taylor, Ph.D. Founder, Palmetto Energy Institute Senior Fellow, ATI Center for Energy Studies EIA Workshop on LCOE / LACE July 25, 2013 Improving the Completeness and Accuracy of Levelized Cost of Electricity Calculations Copyright © 2013 PERF EIA 2012 Annual Energy Outlook Estimated Levelized Cost of New Generation Sources, 2017 U.S. Average Levelized Costs ($2010 per MWh) for plants entering service in 2017 Levelized Fixed Variable Trans- Total Capacity Capital

  9. Rayleigh-Taylor-Instability Evolution in Colliding-Plasma-Jet Experiments with Magnetic and Viscous Stabilization

    SciTech Connect (OSTI)

    Adams, Colin Stuart

    2015-01-15

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.

  10. Hamilton County- Home Improvement Program

    Broader source: Energy.gov [DOE]

    The Home Improvement Program (HIP) in Hamilton County, Ohio, originally opened in 2002, and was reinstated in May 2008. The HIP loan allows homeowners in Hamilton County communities to borrow money...

  11. Los Angeles County- Commercial PACE

    Broader source: Energy.gov [DOE]

    Businesses in Los Angeles County may be eligible for the county's Property Assessed Clean Energy (PACE) program. PACE programs allow businesses to finance energy and water efficiency projects which...

  12. Montgomery County- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    NOTE: County Bill 9-14 enacted in 2014 requires at least 50% of the County Government's electric power usage be supplied by renewable energy by fiscal year 2015, and 100% of the by 2016.

  13. San Diego County- Wind Regulations

    Broader source: Energy.gov [DOE]

    The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small...

  14. Boulder County- Elevations Energy Loans

    Broader source: Energy.gov [DOE]

    Elevations Credit Union has partnered with Boulder County and the City/County of Denver to offer this full-suite of services. Both EnergySmart and the Denver Energy Challenge help residents and b...

  15. Riverside County- Sustainable Building Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    In February 2009, the County of Riverside Board of Supervisors adopted Policy Number H-29, creating the Sustainable Building Policy. The Policy requires that all new county building projects...

  16. San Diego County- Solar Regulations

    Broader source: Energy.gov [DOE]

    The County of San Diego has established zoning guidelines for solar electric systems of varying sizes in the unincorporated areas of San Diego County. Photovoltaic (PV) systems which have their...

  17. Lycoming County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Lycoming County, Pennsylvania Koopers Susquehanna Plant Biomass Facility Montgomery Biomass Facility Places in Lycoming County, Pennsylvania Duboistown, Pennsylvania...

  18. Santa Clara County- Zoning Ordinance

    Broader source: Energy.gov [DOE]

    Santa Clara County's Zoning Ordinance includes standards for wind and solar structures for residential, agricultural, and commercial uses.

  19. Alaska Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiatives, the Alaska Rural Small Business Conference is a three-day conference to bring together rural businesses and leaders and provide them with networking opportunities, training, and technical information.

  20. Rural energy and development

    SciTech Connect (OSTI)

    Stern, R.

    1997-12-01

    The author discusses the worldwide problem and need for rural electrification to support development. He points out that rural areas will pay high rates to receive such services, but cannot afford the capital cost for conventional services. The author looks at this problem from the point of energy choices, subsides, initial costs, financing, investors, local involvement, and governmental actions. In particular he is concerned with ways to make better use of biofuels, to promote sustainable harvesting, and to encourage development of more modern fuels.

  1. San Diego County, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diego County, California San Diego County, California Energy Upgrade California in San Diego County Location: San Diego County, California Seed Funding: $3.9 million-a portion of Los Angeles County's $30 million funding Target Building Types: Residential (single-family and multifamily) Website: https://sdgehomeupgrade.com Energy Upgrade California Motivates Home Improvements in San Diego County As the third largest metropolitan area in California, San Diego County plays a significant role in the

  2. Mono County update

    SciTech Connect (OSTI)

    Lyster, D. )

    1988-12-01

    The Mono County Board of Supervisors approved the issuance of a use-permit for the Mammoth-Pacific II geothermal power plant. The power plant will be a binary, air-cooled, 10-megawatt, net, project. An appeal was filed by the California Department of Fish and Game, and the permit will not take effect until this appeal is resolved. Mono County also issued a project use-permit to proposers of Bonneville Pacific Corporations Mammoth Chance Geothermal Project, also a 10-megawatt, net, binary and air-cooled project. The permit was appealed by the Sierra Club, Cal-Trout, and the California Department of Fish and Game. Now, a subsequent EIR must be prepared for public review and comment. The subsequent EIR will address the issue of cumulative impacts and will include a discussion of new information.

  3. 350 City County Building

    Office of Legacy Management (LM)

    (. - ,- Department of Eilqgy Washington, DC20585 ,. i x \ .The Honorable Wellington E. Webb .' '. ' 350 City County Building / Denver, Colorado 80202 ., ; Dear Mayor Webb: ., ~, Secretary of Energy' Hazel O'Leary has announced's new approach to openness in the Department of Energy,(OOE) and its communications with the public. In support of this initiative, we,are pleased to forward the'enclosed'information related to the former Uhiversity of Denver Research Institute site in your, jurisdiction

  4. Property:Incentive/AddlPlaceCounty | Open Energy Information

    Open Energy Info (EERE)

    + Anne Arundel County, Maryland + B Baltimore County - Solar and Geothermal Equipment Property Tax Credit (Maryland) + Baltimore County, Maryland + Baltimore County - Wind...

  5. EIS-0471: Department of Energy Loan Guarantee to Support Proposed Eagle Rock Enrichment Facility in Bonneville County, Idaho

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction, operation, and decommissioning of the proposed Eagle Rock Enrichment Facility (EREF), a gas centrifuge uranium enrichment facility to be located in a rural area in western Bonneville County, Idaho. (DOE adopted this EIS issued by NRC on 04/13/2007.)

  6. Mono County update

    SciTech Connect (OSTI)

    Lyster, D.L.

    1987-06-01

    On February 9, 1988, the Mono County Board of Supervisors voted to approve Bonneville Pacific Corporation's Mammoth Chance Geothermal Project. The project is an air-cooled, binary, geothermal power plant, 10 megawatts, net. The Mono County Board of Supervisors issued a project use-permit with vigorous and stringent conditions. Specific emphasis was placed on the establishment of a monitoring program designed to detect the effects of geothermal development on the springs at the Hot Creek Fish Hatchery and Hot Creek Gorge. On October 5, 1987, the Mono County Planning Commission granted a use-permit to Mammoth Pacific for its Mammoth Pacific II Project, a binary, air-cooled, geothermal power plant, 10 megawatts, net. The issuance of the use-permit instigated an appeal by the Sierra Club. That appeal was heard on February 22, 1988, At the end of the testimony, the Board of Supervisors voted to uphold the appeal of the Sierra Club, thereby denying the project by a vote of 3 to 2. The main areas of concern voiced by the majority of the Board included potential hydrologic impacts to Hot Creek Gorge and Hot Creek Fish Hatchery, visual impacts, and impacts to mule deer migration and survival. One of the options now available to Mammoth Pacific is to request that the project be denied without prejudice. This would allow Mammoth Pacific to return to the Board immediately with additional material regarding its concerns.

  7. Snohomish County Biodiesel Project

    SciTech Connect (OSTI)

    Terrill Chang; Deanna Carveth

    2010-02-01

    Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to “grow” this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

  8. Linear study of Rayleigh-Taylor instability in a diffusive quantum plasma

    SciTech Connect (OSTI)

    Momeni, Mahdi

    2013-08-15

    The linear Rayleigh-Taylor (RT) instability in an incompressible quantum plasma is investigated on the basis of quantum magnetohydrodynamic model. It is shown that the occurrence of RT instability depends on density-temperature inhomogeneity (characteristic lengths) on one hand, and the system layer size on the other. It is also observed that the combined effects of external magnetic field, diffusivity, and quantum pressure significantly modify the dispersion properties of system in both the parallel and perpendicular directions. For any case, the imaginary and real parts of dispersion relation are presented and the possibility and conditions for the instability growth rate are discussed.

  9. Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, Colin S.; Moser, Auna L.; Hsu, Scott C.

    2015-11-06

    We present time-resolved observations of Rayleigh-Taylor-instability (RTI) evolution at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time (~10μs) is consistent with the estimated linear RTI growth rate calculated using experimentally inferred values of density (~1014cm–3) and deceleration (~109 m/s2). The observed mode wavelength (≳1 cm) nearly doubles within a linear growth time. Furthermore, theoretical estimates of magnetic and viscous stabilization and idealized magnetohydrodynamic simulations including a physical viscosity model both suggest that the observed instability evolution is subject to magnetic and/or viscous effects.

  10. M. D. Nornberg, N. Z. Taylor, C. B. Forest, K. Rahbarnia, and E. Kaplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization of magnetic amplification by flow constraints in turbulent liquid sodiuma) M. D. Nornberg, N. Z. Taylor, C. B. Forest, K. Rahbarnia, and E. Kaplan Citation: Physics of Plasmas (1994-present) 21, 055903 (2014); doi: 10.1063/1.4875335 View online: http://dx.doi.org/10.1063/1.4875335 View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/21/5?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Vortex shedding in flow past an inclined flat

  11. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona...

    Office of Environmental Management (EM)

    as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project...

  12. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  13. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  14. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  15. Broward County Online Solar Permitting

    Broader source: Energy.gov [DOE]

    Broward County now offers Go SOLAR Online Permitting*, for rooftop solar photovoltaic system permitting. This online permitting system may be used for residential or low commercial properties that...

  16. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer

    SciTech Connect (OSTI)

    Wang, L. F. Ye, W. H. Liu, Jie; He, X. T.; Guo, H. Y.; Wu, J. F. Zhang, W. Y.

    2014-12-15

    A weakly nonlinear (WN) model has been developed for the Rayleigh-Taylor instability of a finite-thickness incompressible fluid layer (slab). We derive the coupling evolution equations for perturbations on the (upper) “linearly stable” and (lower) “linearly unstable” interfaces of the slab. Expressions of temporal evolutions of the amplitudes of the perturbation first three harmonics on the upper and lower interfaces are obtained. The classical feedthrough (interface coupling) solution obtained by Taylor [Proc. R. Soc. London A 201, 192 (1950)] is readily recovered by the first-order results. Our third-order model can depict the WN perturbation growth and the saturation of linear (exponential) growth of the perturbation fundamental mode on both interfaces. The dependence of the WN perturbation growth and the slab distortion on the normalized layer thickness (kd) is analytically investigated via the third-order solutions. Comparison is made with Jacobs-Catton's formula [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988)] of the position of the “linearly unstable” interface. Using a reduced formula, the saturation amplitude of linear growth of the perturbation fundamental mode is studied. It is found that the finite-thickness effects play a dominant role in the WN evolution of the slab, especially when kd < 1. Thus, it should be included in applications where the interface coupling effects are important, such as inertial confinement fusion implosions and supernova explosions.

  17. Large-eddy simulation of the Rayleigh-Taylor instability on a massively parallel computer

    SciTech Connect (OSTI)

    Amala, P.A.K.

    1995-03-01

    A computational model for the solution of the three-dimensional Navier-Stokes equations is developed. This model includes a turbulence model: a modified Smagorinsky eddy-viscosity with a stochastic backscatter extension. The resultant equations are solved using finite difference techniques: the second-order explicit Lax-Wendroff schemes. This computational model is implemented on a massively parallel computer. Programming models on massively parallel computers are next studied. It is desired to determine the best programming model for the developed computational model. To this end, three different codes are tested on a current massively parallel computer: the CM-5 at Los Alamos. Each code uses a different programming model: one is a data parallel code; the other two are message passing codes. Timing studies are done to determine which method is the fastest. The data parallel approach turns out to be the fastest method on the CM-5 by at least an order of magnitude. The resultant code is then used to study a current problem of interest to the computational fluid dynamics community. This is the Rayleigh-Taylor instability. The Lax-Wendroff methods handle shocks and sharp interfaces poorly. To this end, the Rayleigh-Taylor linear analysis is modified to include a smoothed interface. The linear growth rate problem is then investigated. Finally, the problem of the randomly perturbed interface is examined. Stochastic backscatter breaks the symmetry of the stationary unstable interface and generates a mixing layer growing at the experimentally observed rate. 115 refs., 51 figs., 19 tabs.

  18. SHOCK CORRUGATION BY RAYLEIGH-TAYLOR INSTABILITY IN GAMMA-RAY BURST AFTERGLOW JETS

    SciTech Connect (OSTI)

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2014-08-10

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  19. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    SciTech Connect (OSTI)

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.; Brannon, Rebecca

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayentas various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimen are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.

  20. Rural health clinics infrastructure

    SciTech Connect (OSTI)

    Olson, K.

    1997-12-01

    The author discusses programs which were directed at the installation of photovoltaic power systems in rural health clinics. The objectives included: vaccine refrigeration; ice pack freezing; lighting; communications; medical appliances; sterilization; water purification; and income generation. The paper discusses two case histories, one in the Dominican Republic and one in Colombia. The author summarizes the results of the programs, both successes and failures, and offers an array of conclusions with regard to the implementation of future programs of this general nature.

  1. Rural Energy Conference Project

    SciTech Connect (OSTI)

    Dennis Witmer; Shannon Watson

    2008-12-31

    Alaska remains, even at the beginning of the 21st century, a place with many widely scattered, small, remote communities, well beyond the end of both the road system and the power grid. These communities have the highest energy costs of any place in the United States, despite the best efforts of the utilities that service them. This is due to the widespread dependence on diesel electric generators, which require small capital investments, but recent increases in crude oil prices have resulted in dramatic increases in the cost of power. In the enabling legislation for the Arctic Energy Office in 2001, specific inclusion was made for the study of ways of reducing the cost of electrical power in these remote communities. As part of this mandate, the University of Alaska has, in conjunction with the US Department of Energy, the Denali Commission and the Alaska Energy Authority, organized a series of rural energy conferences, held approximately every 18 months. The goal of these meeting was to bring together rural utility operators, rural community leaders, government agency representatives, equipment suppliers, and researchers from universities and national laboratories to discuss the current state of the art in rural power generation, to discuss current projects, including successes as well as near successes. Many of the conference presenters were from industry and not accustomed to writing technical papers, so the typical method of organizing a conference by requesting abstracts and publishing proceedings was not considered viable. Instead, the organizing committee solicited presentations from appropriate individuals, and requested that (if they were comfortable with computers) prepare Power point presentations that were collected and posted on the web. This has become a repository of many presentations, and may be the best single source of information about current projects in the state of Alaska.

  2. Harrison County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Harrison County is a county in Mississippi. Its FIPS County Code is 047. It is classified as...

  3. Adams County- Energy from Community Solar Gardens

    Broader source: Energy.gov [DOE]

    When SunShares solar garden comes online, Adams County will be the first county in the nation to power its buildings with community solar energy. The county projects energy cost savings of $300,...

  4. Montgomery County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Mississippi. Its FIPS County Code is 097. It is classified as...

  5. Montgomery County, Tennessee: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Tennessee. Its FIPS County Code is 125. It is classified as...

  6. Sullivan County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Sullivan County is a county in Pennsylvania. Its FIPS County Code is 113. It is classified as...

  7. Los Angeles County, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, California Los Angeles County, California Los Angeles County, California In order to make opportunities for home energy upgrades clear and consistent for the 10 million people living in Los Angeles County, the Los Angeles County Office of Sustainability decided to promote a single, regional residential efficiency program. The State of California had previously developed the statewide Energy Upgrade California program, which Los Angeles and other counties agreed to support through grant

  8. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rural Driving Hazards SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on

  9. Rural Development's Rural Utilities Service (RUS) Electric Programs

    Broader source: Energy.gov (indexed) [DOE]

    ... principal * Financing electric service to more than 90% of the Nation's persistent poverty counties that include out-migration or having other economic hardships for over 80 years ...

  10. Workplace Charging Challenge Partner: Ulster County | Department...

    Energy Savers [EERE]

    Ulster County installed plug-in electric vehicle (PEV) charging stations at nine County government facility parking lots (a total of 18 electric vehicle supply equipment EVSE), ...

  11. Madison County- Wind Energy Systems Ordinance

    Office of Energy Efficiency and Renewable Energy (EERE)

    Madison County adopted a new land use ordinance in May 2010, which includes provisions for permitting wind turbines within the county.

  12. Santa Barbara County, California Data Dashboard | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The data dashboard for Santa Barbara County, California, a partner in the Better Buildings Neighborhood Program. Santa Barbara County Data Dashboard (299.97 KB) More Documents & ...

  13. Klickitat County, Washington: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype B. Energy Generation Facilities in Klickitat County, Washington Roosevelt Biogas 1 Biomass Facility Places in Klickitat County, Washington Bickleton, Washington...

  14. Lushui County Quande Hydroelectrical Power Development Ltd |...

    Open Energy Info (EERE)

    County Quande Hydroelectrical Power Development Ltd Jump to: navigation, search Name: Lushui County Quande Hydroelectrical Power Development Ltd. Place: Yunnan Province, China...

  15. Lebanon County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Energy Generation Facilities in Lebanon County, Pennsylvania Lebanon Methane Recovery Biomass Facility Places in Lebanon County, Pennsylvania Annville,...

  16. Los Angeles County Metropolitan Transportation Authority Metro...

    Open Energy Info (EERE)

    County Metropolitan Transportation Authority Metro Jump to: navigation, search Name: Los Angeles County Metropolitan Transportation Authority (Metro) Place: Los Angeles, California...

  17. Huitong County Gaoyongdong Hydropower Development | Open Energy...

    Open Energy Info (EERE)

    Huitong County Gaoyongdong Hydropower Development Jump to: navigation, search Name: Huitong County Gaoyongdong Hydropower Development Place: Huaihua city, Hunan Province, China...

  18. Plymouth County, Massachusetts: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in Plymouth County, Massachusetts Aeronautica Windpower LLC Energy Generation Facilities in Plymouth County, Massachusetts East...

  19. Community Renewable Energy Deployment: Forest County Potawatomi...

    Open Energy Info (EERE)

    Forest County Potawatomi Tribe Jump to: navigation, search Name Community Renewable Energy Deployment: Forest County Potawatomi Tribe AgencyCompany Organization US Department of...

  20. Yongshan County Yonggu Construction and Construction Material...

    Open Energy Info (EERE)

    Yongshan County Yonggu Construction and Construction Material Co Ltd Jump to: navigation, search Name: Yongshan County Yonggu Construction and Construction Material Co., Ltd....

  1. Litchfield County, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Capital Energy Generation Facilities in Litchfield County, Connecticut New Milford Gas Recovery Biomass Facility Places in Litchfield County, Connecticut Bantam,...

  2. Delaware County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Capital Partners Energy Generation Facilities in Delaware County, Pennsylvania American Ref-Fuel of Delaware Valley Biomass Facility Places in Delaware County, Pennsylvania Aldan,...

  3. Williamson County, Tennessee: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    4 Climate Zone Subtype A. Registered Energy Companies in Williamson County, Tennessee Eco Energy Inc Places in Williamson County, Tennessee Brentwood, Tennessee Fairview,...

  4. stergtland County, Sweden: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    stergtland County, Sweden: Energy Resources Jump to: navigation, search Name stergtland County, Sweden Equivalent URI DBpedia GeoNames ID 2685867 Coordinates 58.41667,...

  5. Vsternorrland County, Sweden: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Vsternorrland County, Sweden: Energy Resources Jump to: navigation, search Name Vsternorrland County, Sweden Equivalent URI DBpedia GeoNames ID 2664292 Coordinates 63, 17.5...

  6. Property:Building/County | Open Energy Information

    Open Energy Info (EERE)

    "BuildingCounty" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Stockholm County, Sweden + Sweden Building 05K0002 + Stockholm...

  7. Sdermanland County, Sweden: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    dermanland County, Sweden: Energy Resources Jump to: navigation, search Name Sdermanland County, Sweden Equivalent URI DBpedia GeoNames ID 2676207 Coordinates 59.25,...

  8. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  9. Brown County Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Brown County Wind Facility Brown County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric...

  10. Winona County Wind | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind...

  11. Franklin County Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name Franklin County Wind LLC Facility Franklin County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Franklin...

  12. Rural Utilities Service Electric Program

    Broader source: Energy.gov [DOE]

    The Rural Utilities Service Electric Program’s loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

  13. WINDExchange: Agricultural and Rural Resources and Tools

    Wind Powering America (EERE)

    Rural Communities Printable Version Bookmark and Share Wind for Homeowners, Farmers, & Businesses Resources & Tools Agricultural and Rural Resources and Tools This page lists...

  14. Alliance for Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    Alliance for Rural Electrification1 The Alliance for Rural Electrification is the only international business association in the world focusing on the promotion and the...

  15. Alaska Village Initiatives Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    The Alaska Rural Business Conference brings together rural businesses and leaders to provide them with networking opportunities, trainings, and technical information.

  16. Whitewater Valley Rural EMC | Open Energy Information

    Open Energy Info (EERE)

    Valley Rural EMC Jump to: navigation, search Name: Whitewater Valley Rural EMC Address: P.O. Box 349 Place: Liberty, Indiana Zip: 47353 Sector: Transmission Phone Number: (765)...

  17. A solution to Rayleigh-Taylor instabilities. Bubbles, spikes, and their scalings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mikaelian, Karnig O.

    2014-05-12

    A fluid that pushes on and accelerates a heavier fluid, small perturbations at their interface grows with time and lead. to turbulent mixing. The same instability, known as the Rayleigh-Taylor instability, operates when a heavy fluid is supported by a lighter fluid in a gravitational field. Moreover, it has a particularly deleterious effect on inertial-confinement-fusion implosions and is known to operate over 18 orders of magnitude in dimension. We propose analytic expressions for the bubble and spike amplitudes and mixing widths in the linear, nonlinear, and turbulent regimes. They cover arbitrary density ratios and accelerations that are constant or changingmore » relatively slowly with time. Here, we discuss their scalings and compare them with simulations and experiments.« less

  18. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    SciTech Connect (OSTI)

    W. Liu

    2009-02-20

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  19. Noise-sustained convective instability in a magnetized Taylor-Couette flow

    SciTech Connect (OSTI)

    Liu, Wei

    2008-01-01

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  20. Rayleigh-Taylor Instability within Sediment Layers Due to Gas Retention: Preliminary Theory and Experiments

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Wells, Beric E.; Buchmiller, William C.; Rassat, Scot D.

    2013-03-21

    In Hanford underground waste storage tanks, a typical waste configuration is settled beds of waste particles beneath liquid layers. The settled beds are typically composed of layers, and these layers can have different physical and chemical properties. One postulated configuration within the settled bed is a less-dense layer beneath a more-dense layer. The different densities can be a result of different gas retention in the layers or different degrees of settling and compaction in the layers. This configuration can experience a Rayleigh-Taylor (RT) instability where the less dense lower layer rises into the upper layer. Previous studies of gas retention and release have not considered potential buoyant motion within a settle bed of solids. The purpose of this report is to provide a review of RT instabilities, discuss predictions of RT behavior for sediment layers, and summarize preliminary experimental observations of RT instabilities in simulant experiments.

  1. Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects

    SciTech Connect (OSTI)

    Adams, Colin S.; Moser, Auna L.; Hsu, Scott C.

    2015-11-06

    We present time-resolved observations of Rayleigh-Taylor-instability (RTI) evolution at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time (~10μs) is consistent with the estimated linear RTI growth rate calculated using experimentally inferred values of density (~1014cm–3) and deceleration (~109 m/s2). The observed mode wavelength (≳1 cm) nearly doubles within a linear growth time. Furthermore, theoretical estimates of magnetic and viscous stabilization and idealized magnetohydrodynamic simulations including a physical viscosity model both suggest that the observed instability evolution is subject to magnetic and/or viscous effects.

  2. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability

    SciTech Connect (OSTI)

    Henry de Frahan, M. T.; Belof, J. L.; Cavallo, R. M.; Raevsky, V. A.; Ignatova, O. N.; Lebedev, A.; Ancheta, D. S.; El-dasher, B. S.; Florando, J. N.; Gallegos, G. F.; Johnsen, E.; LeBlanc, M. M.

    2015-06-14

    A recent collaboration between LLNL and VNIIEF has produced a set of high explosive driven Rayleigh-Taylor strength data for beryllium. Design simulations using legacy strength models from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, shows close to classical growth. We characterize the material properties of the beryllium tested in the experiments. We also discuss recent efforts to simulate the data using the legacy strength models as well as the more recent RING relaxation model developed at VNIIEF. Finally, we present shock and ramp-loading recovery experiments conducted as part of the collaboration.

  3. The magnetic Rayleigh-Taylor instability for inviscid and viscous fluids

    SciTech Connect (OSTI)

    Chambers, K.; Forbes, L. K.

    2011-05-15

    The Rayleigh-Taylor instability arises whenever two fluids with different densities are arranged such that the heavier fluid sits above the lighter fluid, with a sharp interface in between. The magnetic Rayleigh-Taylor instability has the further complication due to the presence of a magnetic field throughout both media. The two fluids in question may also have differing magnetic properties, such as the magnetic permeability. When the fluids in consideration are in fact plasmas comprised of charged particles, induced currents, magnetic fields, and Lorentz forces can all act in ways that will affect the stability of the system. Stable base flows exist for the 2D case, and small sinusoidal disturbances to the base flow will grow in the unstable scenario. The numerical method described in this paper calculates the growth of the interface in the nonlinear regime, since closed form solutions are obtained only in the linear approximation. Through the analysis of both the fluid and magnetic vorticities and streamfunctions, the simulated results can be explained from the principles of magnetohydrodynamics. A range of simulations is presented, looking at cases with different initial conditions, cases with strong and weak magnetic fields, and cases with magnetic fields oriented at different angles relative to the interface of the two fluids. It is shown in particular how different initial conditions give rise to outcomes that are very different in terms of the geometry of the interface between the two fluids, primarily the differences between a single mode disturbance and a multimode disturbance to the interface at time t = 0.

  4. Chile rural electrification cooperation

    SciTech Connect (OSTI)

    Flowers, L.

    1997-12-01

    The author describes a joint program to use renewables for rural electrification projects in Chile. The initial focus was in a limited part of the country, involving wind mapping, pilot project planning, training, and development of methodologies for comparative evaluations of resources. To this point three wind hybrid systems have been installed in one region, as a part of the regional private utility, and three additional projects are being designed. Additional resource assessment and training is ongoing. The author points out the difficulties in working with utilities, the importance of signed documentation, and the need to look at these programs as long term because of the time involved in introducing such new technologies.

  5. Santa Barbara County, California Data Dashboard

    Broader source: Energy.gov [DOE]

    The data dashboard for Santa Barbara County, California, a partner in the Better Buildings Neighborhood Program.

  6. Boulder County Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Boulder County Data Dashboard The data dashboard of Boulder County, a partner in the U.S. Department of Energy's Better Buildings Neighborhood Program. Boulder County Data Dashboard (301.52 KB) More Documents & Publications Kansas City Data Dashboard Bainbridge Island Data Dashboard Eagle County, Colorado Data Dashboard

  7. St. Lucie County Summary of Reported Data

    Broader source: Energy.gov [DOE]

    Summary of data reported by Better Buildings Neighborhood Program partner St. Lucie County, Florida.

  8. Sonoma County- Energy Independence Program

    Broader source: Energy.gov [DOE]

    The Federal Housing Financing Agency issued a statement in July 2010 that was critical of PACE programs. Many PACE programs, including Sonoma County's, were temporarily suspended in response to...

  9. Sonoma County, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sonoma County, California Sonoma County, California Windsor Efficiency PAYS® Location: Town of Windsor in Sonoma County, California Seed Funding: $665,000-a portion of Los Angeles County's $30 million funding Target Building Types: Residential (single-family, multifamily) Website: energyupgradeca.org/county/sonoma/windsor_efficiency Learn more: Read program design details Read program news Promoting Energy Efficiency in Windsor, California, With Water Efficiency Efforts California is known for

  10. County, LANL consider colocation space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    County, LANL consider colocation space County, LANL consider colocation space The space will be geared toward a wide range of users: entrepreneurs, freelances, young professionals, small business, visiting corporate employees, LANL staff, LANL strategic partners and youth. April 24, 2016 Y project logo The 2,400-square-foot facility at 150 Central Park Square will include a large open collaborative space, a private meeting room available for rent, a kitchen and "phone booths" for

  11. Lincoln County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Barge, Wyoming Oakley, Wyoming Opal, Wyoming Smoot, Wyoming Star Valley Ranch, Wyoming Taylor, Wyoming Thayne, Wyoming Turnerville, Wyoming Retrieved from "http:en.openei.orgw...

  12. Kenton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakeside Park, Kentucky Ludlow, Kentucky Park Hills, Kentucky Ryland Heights, Kentucky Taylor Mill, Kentucky Villa Hills, Kentucky Walton, Kentucky Retrieved from "http:...

  13. Navajo County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mesa, Arizona Shongopovi, Arizona Shonto, Arizona Show Low, Arizona Snowflake, Arizona Taylor, Arizona Whiteriver, Arizona Winslow West, Arizona Winslow, Arizona Retrieved from...

  14. Jefferson County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Central Gardens, Texas China, Texas Groves, Texas Nederland, Texas Nome, Texas Port Arthur, Texas Port Neches, Texas Taylor Landing, Texas Retrieved from "http:...

  15. Workplace Charging Challenge Partner: Broward County, FL | Department...

    Energy Savers [EERE]

    The county-wide implementation strategy aims at providing PEV charging stations for county employees and expanding the public charging infrastructure in Broward County through ...

  16. Anderson County, Tennessee ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate...

  17. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  18. Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

  19. Alameda County, California ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County, California ASHRAE Standard ASHRAE 169-2006 Climate...

  20. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Atkinson County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atkinson County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  1. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  2. Zhushan County Yuyuan Hydro Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhushan County Yuyuan Hydro Power Development Co Ltd Jump to: navigation, search Name: Zhushan County Yuyuan Hydro Power Development Co. Ltd Place: Zhushan county, Hubei Province,...

  3. Mower County Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Mower County Wind Energy Center Jump to: navigation, search Name Mower County Wind Energy Center Facility Mower County Wind Energy Center Sector Wind energy Facility Type...

  4. Forrest County Geothermal Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forrest County Geothermal Energy Project Forrest County Geothermal Energy Project Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The ...

  5. Technology Solutions for New Homes Case Study: Columbia County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia County Habitat for Humanity Passive Townhomes Technology Solutions for New Homes Case Study: Columbia County Habitat for Humanity Passive Townhomes The Columbia County ...

  6. Levelland Hockley County Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Levelland Hockley County Ethanol LLC Jump to: navigation, search Name: LevellandHockley County Ethanol LLC Place: Levelland, Texas Zip: 79336 Product: LevellandHockley County...

  7. Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  8. Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  9. Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  10. Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  11. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  12. Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  13. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  14. Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

  15. Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone ...

    Open Energy Info (EERE)

    Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, West Virginia ASHRAE Standard ASHRAE 169-2006...

  16. Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

  17. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Mississippi ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Mississippi ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  18. Mercer County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, New Jersey Battelle Ventures Utility Companies in Mercer County, New Jersey NRG Power Marketing LLC Places in Mercer County, New Jersey Ewing, New Jersey Hightstown,...

  19. Eagle County, Colorado Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard Eagle County, Colorado Data Dashboard The data dashboard for Eagle County, Colorado, a partner in the Better Buildings Neighborhood Program. Eagle County Data ...

  20. Xiaojin County Jitai Electric Power Investment Co Ltd | Open...

    Open Energy Info (EERE)

    Xiaojin County Jitai Electric Power Investment Co Ltd Jump to: navigation, search Name: Xiaojin County Jitai Electric Power Investment Co., Ltd. Place: Xiaojin County, Sichuan...

  1. Montgomery County Resource Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource...

  2. Pitkin County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    7 Climate Zone Subtype B. Registered Energy Companies in Pitkin County, Colorado Aspen Solar Energy Incentives for Pitkin County, Colorado Aspen & Pitkin County - Renewable...

  3. Clinton County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in Clinton County, Iowa Clinton County Bio Energy LLC Places in Clinton County, Iowa Andover, Iowa Calamus, Iowa Camanche, Iowa...

  4. Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone |...

    Open Energy Info (EERE)

    Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bernalillo County, New Mexico ASHRAE Standard ASHRAE 169-2006...

  5. China-NREL Rural Electrification Projects | Open Energy Information

    Open Energy Info (EERE)

    Rural Electrification Projects Jump to: navigation, search Logo: China Rural Electrification Name China Rural Electrification AgencyCompany Organization National Renewable Energy...

  6. Korea Rural Community Corp KRC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Korea Rural Community Corp (KRC) Place: Korea (Republic) Product: South Korea-based rural development company. References: Korea Rural Community Corp...

  7. USDA- Rural Energy for America Program (REAP) Loan Guarantees

    Broader source: Energy.gov [DOE]

    The Rural Energy for America Program (REAP) provides financial assistance to agricultural producers and rural small businesses in rural America to purchase, install, and construct renewable energ...

  8. USDA Rural Development Energy Programs

    Office of Environmental Management (EM)

    rural small businesses in purchasing renewable energy systems and making energy efficiency ... New Farm Bill was passed and signed into law on 2- 7- 14. Changes to funding levels ...

  9. 2016 Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The 2016 Alaska Rural Energy Conference is a three-day event that offers a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for Alaska's remote communities.

  10. Archuleta County CO Lineaments

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-01-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Archuleta Lineaments Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable “plumbing system” that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature. Spatial Domain: Extent: Top: 4132831.990103 m Left: 311979.997741 m Right: 331678.289280 m Bottom: 4116067