Powered by Deep Web Technologies
Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Taylor County RECC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Taylor County RECC - Residential Energy Efficiency Rebate Program Taylor County RECC - Residential Energy Efficiency Rebate Program Taylor County RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation Upgrade: $400 per home Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Insulation Upgrade: $20 for every 1,000 Btu saved by adding insulation Air-source Heat Pumps: $200 Electrical Thermal Storage: Reduced electrical rate Provider Taylor County RECC Taylor County RECC offers rebates to residential customers for upgrading to energy efficient insulation and heat pumps. Under the Button-Up insulation upgrade program, a utility representative will conduct an energy audit of

2

Hickman-Fulton Counties RECC | Open Energy Information  

Open Energy Info (EERE)

Hickman-Fulton Counties RECC Hickman-Fulton Counties RECC Jump to: navigation, search Name Hickman-Fulton Counties RECC Place Kentucky Utility Id 40305 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Lighting 100 Watt Metal Halide Light Lighting 175 Watt Mercury Vapor Light Lighting 175 Watt Metal Halide Light Lighting 200 Watt High Pressure Sodium Lighting 400 Watt High Pressure Sodium Lighting 400 Watt Mercury Vapor Light Lighting GSA Part 1 Commercial GSA Part 2 Industrial

3

Warren RECC- Electric Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE))

Warren Rural Electric Cooperative Corporation (RECC) provides service to customers in the south-central Kentucky counties of Ohio, Butler, Grayson, Edmonson, Warren, Simpson, Logan and Barren. Upon...

4

Taylor County Rural E C C | Open Energy Information  

Open Energy Info (EERE)

County Rural E C C County Rural E C C Jump to: navigation, search Name Taylor County Rural E C C Place Kentucky Utility Id 18498 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Button-Up Weatherization Program Commercial Cogeneration and small power production power purchase rate schedule less than 100 kW Cogeneration and small power production power purchase rate schedule less than 100 kW - Non-Time Differentiated Rates Commercial Cogeneration and small power production power purchase rate schedule over

5

Farmers RECC - Residential Insulation Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers RECC - Residential Insulation Rebate Program Farmers RECC - Residential Insulation Rebate Program Farmers RECC - Residential Insulation Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Maximum Rebate $200 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Free energy audit at Farmers RECC members residence and up to $200 depending on amount of energy which can be saved. Provider Farmers RECC The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will visit the customer's home, conduct an energy audit, and calculate the heat gain/heat loss for the home. If needed, customers can then receive up to $200 to increase the

6

Pennyrile RECC - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennyrile RECC - Residential Energy Efficiency Rebate Program Pennyrile RECC - Residential Energy Efficiency Rebate Program Pennyrile RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pumps (Existing Homes): $50 - $200 Heat Pumps (New Construction): $200 - $400 Electric Water Heater (Existing Homes): $50 Electric Water Heater (New Construction): $50 - $100 Provider Pennyrile Rural Electric Cooperative Corporation Pennyrile RECC offers residential customers in new and existing homes cash incentives to encourage energy efficiency. For customers in existing homes, Pennyrile RECC will pay a $100 incentive if a new electric heat pump that

7

Nolin RECC - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nolin RECC - Residential Energy Efficiency Rebate Program Nolin RECC - Residential Energy Efficiency Rebate Program Nolin RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $600 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump (New Homes): $900 Geothermal Heat Pump (Existing Homes) $300 Heat Pumps at Site-Built Homes (New Homes): $500 Heat Pumps at Site-Built Homes (Existing Homes): $250 Heat Pumps (Manufactured Homes): $250 Insulation, Windows, Doors and Insulation: $40 per 1,000 BTUs saved Provider

8

South Kentucky RECC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Heat Pumps Maximum Rebate Button Up (weatherization): $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Caulking: Free Button Up (weatherization): $20 for every 1,000 BTU reduced in heating load Geothermal Heat Pump with Touchstone Energy Home: $500 Air-Source Heat Pump with Touchstone Energy Home: $300 Touchstone Energy Manufactured Home: $250 Geothermal Heat Pump: $200 Heat Pump/Furnace Tune-Up: $75

9

EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass Montgomery Project in the Town of Montgomery, Orange County, New York  

Energy.gov (U.S. Department of Energy (DOE))

Taylor Biomass, LLC (Taylor) submitted an application to DOE for a Federal loan guarantee to support the construction and startup of a biomass gasification-to energy facility at a 95-acre recycling facility in the Town of Montgomery, Orange County, NY. The Project would involve the construction of a Post-Collection Separation Facility, a Gasification System and a Combined Cycle Gas Turbine Power Island.

10

Meade County RECC - Residential Rebate Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Heat Pumps Program Information Kentucky Program Type Utility Rebate Program Rebate Amount Energy Star air-source heat pump: 200 for replacement; 1,000 for...

11

County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pine County Pine County White Pine County Board of County Commissioners Board of County Commissioners February 10, 1998 W. Eric J. Fygi U.S. Department of Energy Office of General Counsel GC-52 1000 Independence Avenue SW Washington, DC 20585 Subject: Department of Energy (DOE) Price-Anderson Act Comments from White Pine County, Nevada Dear Mr. Fygi: Thank you for providing White Pine County with the opportunity to comment concerning the continuation or modifications of the provisions of the Price-Anderson Act. We understand that these comments will be used to assist the Department of Energy in preparing a required report to Congress. You will note in reviewing our comments that the views of many "Affected Units of Government" in Nevada are similar to each other and that we have worked together in developing

12

COUNTY\  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BOARD OF COUNTY COMMISSIONERS BOARD OF COUNTY COMMISSIONERS ESMERALDA COUNTY, NEVADA MEMBERS STAFF SUSAN W. DUDLEY, CHAIRMAN BEVERLY J. RELYEA GARY O'CONNOR, VICE CHAIRMAN ADMINISTRATIVE ASSISTANT BEN VILJOEN, LIQUOR BOARD (702)485-3406 January 20, 1998 U.S. Department of Energy Office of General Counsel GCS-52 1000 Independence Ave. SW Washington, DC 20585 RE: COMMENT BY ESMERALDA COUNTY, NEVADA CONCERNING THE CONTINUATION OR MODIFICATION OF DOE PRICE-ANDERSON ACT Dear Sirs: The DOE Price-Anderson indemnification is intended to provide coverage for contractors for the benefit of any victims of a nuclear accident or incident or a precautionary evacuation arising from activity under a DOE contracts. The public perception is that if there is a nuclear accident resulting in a dispersal of

13

EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Department of Energy Loan Guarantee for the Taylor Biomass 41: Department of Energy Loan Guarantee for the Taylor Biomass Montgomery Project in the Town of Montgomery, Orange County, New York EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass Montgomery Project in the Town of Montgomery, Orange County, New York Summary Taylor Biomass, LLC (Taylor) submitted an application to DOE for a Federal loan guarantee to support the construction and startup of a biomass gasification-to energy facility at a 95-acre recycling facility in the Town of Montgomery, Orange County, NY. The Project would involve the construction of a Post-Collection Separation Facility, a Gasification System and a Combined Cycle Gas Turbine Power Island. The Post-Collection Separation Facility would accept 950 tons of municipal solid waste (MSW), construction and demolition debris, and 100 tons of

14

A test of Taylor- and modified Taylor-expansion  

E-Print Network (OSTI)

We compare Taylor expansion and a modified variant of Taylor expansion, which incorporates features of the fugacity series, for expansions in the chemical potential around a zero-density lattice field theory. As a first test we apply both series to the cases of free fermions and free bosons. Convergence and other properties are analyzed.

Max Wilfling; Christof Gattringer

2013-11-28T23:59:59.000Z

15

NREL: Energy Sciences - Larry Taylor  

NLE Websites -- All DOE Office Websites (Extended Search)

Larry Taylor Larry Taylor Research Scientist Phone: (303) 384-7784 Email: larry.taylor@nrel.gov At NREL Since: 2007 Larry Taylor received his Ph.D. in Environmental Molecular Biology and Biotechnology from the Marine and Estuarine Environmental Sciences department at the University of Maryland, College Park. His dissertation work focused on the functional genomics of the plant cell wall degrading enzyme systems of the marine bacterium Saccharophagus degradans 2-40, which was isolated from decaying salt marsh grass the Chesapeake Bay watershed in 1988. Preliminary genomic analyses revealed that the S. degradans encodes more than 180 predicted carbohydrases. Under the direction of Prof. Ronald M. Weiner, and in collaboration with Dr. Bernard Henrisaat, Dr. Taylor identified the predicted cellulase system of S. degradans through sequence

16

Taylor Munro Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Zip V4G 1E2 Sector Solar Product Taylor Munro focuses on design and installation of solar water heating systems for residential and commercial applications. References Taylor...

17

Microsoft Word - CX-TaylorFlatsSubstationMeterFY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2013 25, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Cleareance Memorandum Bob Trisman Electrical Engineer - TEP-CSB-1 Proposed Action: Revenue meter replacement at Franklin County Public Utility District's (PUD) Taylor Flats Substation PP&A Project No: 2608 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Electronic Equipment Location: Franklin County, Washington. Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to remove the existing equipment and replace it with a new JEMSTAR revenue meter within BPA's existing meter rack inside Franklin County PUD's Taylor Flats Substation. No ground disturbance or alteration to the control house would occur.

18

A Taylor polynomial approach for solving differential-difference equations  

Science Conference Proceedings (OSTI)

The purpose of this study is to give a Taylor polynomial approximation for the solution of mth-order linear differential-difference equations with variable coefficients under the mixed conditions about any point. For this purpose, Taylor matrix method ... Keywords: 39A10, 41A10, 65Q05, Differential-difference equations, Taylor matrix method, Taylor polynomial solutions, Taylor polynomials and series

Mustafa Glsu; Mehmet Sezer

2006-02-01T23:59:59.000Z

19

Phil Taylor, E&E reporter  

NLE Websites -- All DOE Office Websites (Extended Search)

RENEWABLE ENERGY: Oil industry waste could be geothermal treasure (05202010) Phil Taylor, E&E reporter For more than a century, oilfield operators have viewed wastewater as a...

20

Taylor County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4.2278796° 4.2278796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.5407455,"lon":-84.2278796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Taylor County, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

5°, -90.529916° 5°, -90.529916° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2231325,"lon":-90.529916,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Taylor County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

088°, -99.8124935° 088°, -99.8124935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.2455088,"lon":-99.8124935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Taylor County, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3.6773928° 3.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0993767,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Taylor County, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -94.645035° °, -94.645035° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7846069,"lon":-94.645035,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Taylor County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

5.3136218° 5.3136218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.332884,"lon":-85.3136218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Taylor County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

79.9640339° 79.9640339° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3417635,"lon":-79.9640339,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

counties - Counties Data | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

- Counties Data Counties Data Apps Challenges Policies Counties You are here Data.gov Communities Counties Counties Data This page features datasets from participating...

28

Taylor Instability of Incompressible Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

\ UNCLASSIFIED ' ;c ,. ' UNCLASSIFIED AECU-29'79 Subject Category: PHYSICS UNITED STATES ATOMIC ENERGY COMMISSION TAYLOR INSTABILITY OF INCOMPRESSIBLE LIQUIDS BY Enrico Fermi John von Neumann , _ November 1955 [ TIS Issuance D.a&?] Los Alamos Scientific Labqratqry Los Alamos, New Mexico Technical Information Service, Ooic Ridge, Tennessee DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available document. original I , The date for Part 1 is September 4, 1951. The date for Part 2 is August 19, 1953. Work performed under Contract PTo. W-7405-Eng-36. The Atomic Energy Commission makes no representation or warranty as to the accuracy or usefulness of the lnformatlon or statements contained

29

Kitsap County  

E-Print Network (OSTI)

Kitsap County Goals and Policies on Critical Areas........... 6 The BAS Process............................ 7

unknown authors

2004-01-01T23:59:59.000Z

30

Woltjer-Taylor State Without Taylor's Conjecture - Plasma Relaxation at all Wavelengths  

SciTech Connect

In astrophysical and laboratory plasmas, it has been discovered that plasmas relax towards the well-known Woltjer-Taylor state specified by ? x B = ?B for a constant ? . To explain how such a relaxed state is reached, Taylor developed his famous relaxation theory based on the conjecture that the relaxation is dominated by short wavelength fluctuations. However, there is no conclusive experimental and numerical evidence to support Taylor's conjecture. A new theory is developed, which predicts that the system will evolve towards the Woltjer-Taylor state for an arbitrary fluctuation spectrum.

Hong Qin,Wandong Liu, Hong Li, and Jonathan Squire

2012-10-10T23:59:59.000Z

31

Bubble Behavior in a Taylor Vortex  

E-Print Network (OSTI)

We present an experimental study on the behavior of bubbles captured in a Taylor vortex. The gap between a rotating inner cylinder and a stationary outer cylinder is filled with a Newtonian mineral oil. Beyond a critical ...

Deng, Rensheng

32

Taylor, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Taylor, Michigan: Energy Resources Taylor, Michigan: Energy Resources (Redirected from Taylor, MI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.240872°, -83.2696509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.240872,"lon":-83.2696509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Statistical Tests of Taylors Hypothesis: An Application to Precipitation Fields  

Science Conference Proceedings (OSTI)

The Taylor hypothesis (TH) as applied to rainfall is a proposition about the spacetime covariance structure of the rainfall field. Specifically, it supposes that if a spatiotemporal precipitation field with a stationary covariance Cov(r, ?) in ...

Bo Li; Aditya Murthi; Kenneth P. Bowman; Gerald R. North; Marc G. Genton; Michael Sherman

2009-02-01T23:59:59.000Z

34

Taylor Elected to Royal Society of London  

NLE Websites -- All DOE Office Websites (Extended Search)

28 May 1997 28 May 1997 Taylor Elected to Royal Society of London Richard Taylor, physics professor at the Stanford Linear Accelerator Center and 1990 Nobel Prize winner, was recently elected a Fellow of the Royal Society of London, an independent scientific academy founded in 1660 by Christopher Wren, Robert Boyle and Robert Moray. Each year forty new Fellows are elected by merit, not field, and membership is limited to those who are citizens of the Great Britain or the British Commonwealth. Up to six foreign members may also be elected each year. The Society began with the aim of promoting public understanding of science and that aim continues with a broad range of services such as meetings, exhibits and scientific exchanges. The Society motto "Nullius in Verba"

35

CTH simulation of PBX-9501 Taylor tests /  

SciTech Connect

During March-May 2011, multiple Taylor impact tests were conducted at LANL, examining the behavior of PBXN-9 and PBX-9501 under rapid loading. Subsequently, a computational hydrodynamics code (CTH) model was developed to mimic the deformation behavior observed in these impact tests with PBX-9501 would likely initiate upon impact. Also examined was whether an inert slud behind the explosive would lead to initiation at lower, more easily attainable velocities. The simplified model used here showed a minimum velocity for ignition of 530 m/s which was unchanged by the addition of a plastic slud behind the sample. The use of a lead slug did lower the minimum velocity to 460 m/s. These values are likely more qualitative at this point because multiple simplifications are currently used in the materials properties and test geometry. The results do show that this approach is capable of determining ignition due to Taylor impact.

Koby, Joseph R.

2011-09-01T23:59:59.000Z

36

Former Student Turns Thesis Into Energy Savings for Taylor University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Student Turns Thesis Into Energy Savings for Taylor Former Student Turns Thesis Into Energy Savings for Taylor University Former Student Turns Thesis Into Energy Savings for Taylor University October 18, 2010 - 10:00am Addthis Kevin Crosby, Taylor University’s first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Kevin Crosby, Taylor University's first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Maya Payne Smart Former Writer for Energy Empowers, EERE Not long ago Kevin Crosby was an engineering major and the president of Taylor University's student environmental club, Stewards of Creation.

37

Women @ Energy: J'Tia Taylor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

J'Tia Taylor J'Tia Taylor Women @ Energy: J'Tia Taylor April 3, 2013 - 12:26pm Addthis J’Tia Taylor currently works as a Technical Nonproliferation Specialist in the National Security Department at Argonne National Laboratory assessing proliferation concerns associated with nuclear technology to support the interpretation and creation of United States policy. J'Tia Taylor currently works as a Technical Nonproliferation Specialist in the National Security Department at Argonne National Laboratory assessing proliferation concerns associated with nuclear technology to support the interpretation and creation of United States policy. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. J'Tia Taylor currently works as a Technical Nonproliferation Specialist

38

Former Student Turns Thesis Into Energy Savings for Taylor University |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Student Turns Thesis Into Energy Savings for Taylor Former Student Turns Thesis Into Energy Savings for Taylor University Former Student Turns Thesis Into Energy Savings for Taylor University October 18, 2010 - 10:00am Addthis Kevin Crosby, Taylor University’s first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Kevin Crosby, Taylor University's first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Maya Payne Smart Former Writer for Energy Empowers, EERE Not long ago Kevin Crosby was an engineering major and the president of Taylor University's student environmental club, Stewards of Creation.

39

Women @ Energy: J'Tia Taylor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

J'Tia Taylor J'Tia Taylor Women @ Energy: J'Tia Taylor April 3, 2013 - 12:26pm Addthis J’Tia Taylor currently works as a Technical Nonproliferation Specialist in the National Security Department at Argonne National Laboratory assessing proliferation concerns associated with nuclear technology to support the interpretation and creation of United States policy. J'Tia Taylor currently works as a Technical Nonproliferation Specialist in the National Security Department at Argonne National Laboratory assessing proliferation concerns associated with nuclear technology to support the interpretation and creation of United States policy. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. J'Tia Taylor currently works as a Technical Nonproliferation Specialist

40

Cook County- LEED Requirements for County Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Counties | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Counties Counties Data Apps Challenges Policies Counties Welcome to Counties.Data.gov Bridging information from across the United States. Look at the data, use the apps, join the...

42

Taylor Biomass Energy LLC TBE | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy LLC TBE Biomass Energy LLC TBE Jump to: navigation, search Name Taylor Biomass Energy, LLC (TBE) Place Montgomery, New York Zip 12549-9900 Sector Biomass Product Montgomery-based municipal-solid-waste (MSW) recovery and recycling firm providing biomass gasification units in addition to operating its own gasifier plants. References Taylor Biomass Energy, LLC (TBE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Taylor Biomass Energy, LLC (TBE) is a company located in Montgomery, New York . References ↑ "Taylor Biomass Energy, LLC (TBE)" Retrieved from "http://en.openei.org/w/index.php?title=Taylor_Biomass_Energy_LLC_TBE&oldid=352048" Categories:

43

Experimental determination of the effective Taylor dispersivity in a fracture  

DOE Green Energy (OSTI)

The applicability and accuracy of the approximation for Taylor Dispersion was experimentally determined for the diffusion of a chemical tracer in flow through a fracture. 12 refs., 16 figs., 10 tabs. (ACR)

Gilardi, J.R.

1984-06-01T23:59:59.000Z

44

Pennyrile RECC - Commercial Energy Efficiency Loan Program |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for financing for energy efficiency improvements. Customers may borrow up to 25,000 to increase the efficiency of facilities. The interest rate of the loan is fixed over the...

45

Dorchester County- Renewable Zoning  

Energy.gov (U.S. Department of Energy (DOE))

Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts.

46

SBOT NEW MEXICO CARLSBAD FIELD OFFICE POC Roland Taylor Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEXICO MEXICO CARLSBAD FIELD OFFICE POC Roland Taylor Telephone Email roland.taylor@wipp.ws ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

47

Bistability and chaos in Taylor-Green dynamo  

E-Print Network (OSTI)

Using direct numerical simulations we study dynamo action under the Taylor-Green forcing with Prandtl number less than one. We observe bistability with a weak magnetic field branch and a strong magnetic field branch. Both the dynamo branches undergo subcritical dynamo transition. We also observe host of dynamo states including constant, periodic, quasiperiodic, and chaotic magnetic fields. One of the chaotic state originates through a quasiperiodic route with phase locking, while another chaotic attractor appears to follow Newhouse-Ruelle-Takens route to chaos. We also observe intermittent transitions among quasiperiodic and chaotic states for a given Taylor-Green forcing.

Rakesh Yadav; Mahendra K. Verma; Pankaj Wahi

2011-09-22T23:59:59.000Z

48

Balance : Lancaster County's tragedy  

E-Print Network (OSTI)

Lancaster County, Pennsylvania residents are proud of their agricultural heritage. They do not want to see their farmland disappear. But the County continues to be developed into residential subdivisions. This thesis ...

Gingrich, Valerie (Valerie J.)

2007-01-01T23:59:59.000Z

49

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

50

Carroll County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance sets forth regulations for the zoning, erection, and operation of small wind energy systems in Carroll County, Maryland.

51

Kent County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

52

Taylor Lake Village, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Taylor Lake Village, Texas: Energy Resources Taylor Lake Village, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5752298°, -95.0502069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5752298,"lon":-95.0502069,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Period doubling route to chaos in Taylor-Green dynamo  

E-Print Network (OSTI)

We perform spectral simulations of dynamo for magnetic Prandtl number of one with Taylor-Green forcing. We observe dynamo transition through a supercritical pitchfork bifurcation. Beyond the transition, the numerical simulations reveal complex dynamo states with windows of constant, periodic, quasiperiodic, and chaotic magnetic field configurations. For some forcing amplitudes, multiple attractors were obtained for different initial conditions. We show that one of the chaotic windows follows the period-doubling route to chaos.

R. Yadav; M. Chandra; M. K. Verma; S. Paul; P. Wahi

2010-05-09T23:59:59.000Z

54

Turbulence structure in a Taylor-Couette apparatus  

SciTech Connect

Turbulence measurements were made in a Taylor-Couette apparatus as a basis for future flame propagation studies. Results of the present study extend that of earlier work by more complete characterization of the featureless turbulence regime generated by the Taylor-Couette apparatus. Laser Doppler Velocimetry was used to measure Reynolds stresses, integral and micro time scales and power spectra over a wide range of turbulence intensities typically encountered by turbulent pre-mixed hydrocarbon-air flames. Measurements of radial velocity intensities are consistent with earlier axial and circumferential velocity measurements that indicated a linear relationship between turbulence intensity and the Reynolds number based on the average cylinder rotation speed and wall separation distance. Measured integral and micro time scales and approximated integral length scales were all found to decrease with the Reynolds number, possibly associated with a confinement of the largest scales (of the order of the cylinder wall separation distance). Regions of transverse isotropy were discovered in axial-radial cross correlations for average cylinder Reynolds numbers less than 6000 and are predicted to exist also for circumferential cross correlations at higher average Reynolds numbers, greater than 6000. Power spectra for the independent directions of velocity fluctuation exhibited -5/3 slopes, suggesting that the flow also has some additional isotropic characteristics and demonstrating the role of the Taylor-Couette apparatus as a novel means for generating turbulence for flame propagation studies. (author)

Fehrenbacher, Noah; Aldredge, Ralph C.; Morgan, Joshua T. [Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616 (United States)

2007-10-15T23:59:59.000Z

55

Los Angeles County - LEED for County Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Angeles County - LEED for County Buildings Los Angeles County - LEED for County Buildings Los Angeles County - LEED for County Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Heating Wind Program Info State California Program Type Energy Standards for Public Buildings Provider Los Angeles County In January 2007, the Los Angeles County Board of Supervisors adopted rules to require that all new county buildings greater than 10,000 square feet be LEED Silver certified. All buildings authorized and fully funded on or

56

counties - more challenges | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

- more challenges Counties Data Apps Challenges Policies Counties You are here Data.gov Communities Counties Challenge.gov...

57

Category:Counties | Open Energy Information  

Open Energy Info (EERE)

Counties Counties Jump to: navigation, search This category contains all counties in the United States of America. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "Counties" The following 200 pages are in this category, out of 3,142 total. (previous 200) (next 200) A Abbeville County, South Carolina Acadia Parish, Louisiana Accomack County, Virginia Ada County, Idaho Adair County, Iowa Adair County, Kentucky Adair County, Missouri Adair County, Oklahoma Adams County, Colorado Adams County, Idaho Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Mississippi Adams County, Nebraska Adams County, North Dakota Adams County, Ohio Adams County, Pennsylvania Adams County, Washington Adams County, Wisconsin

58

VEE-0066 - In the Matter of Taylor Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VEE-0066 - In the Matter of Taylor Oil Company VEE-0066 - In the Matter of Taylor Oil Company VEE-0066 - In the Matter of Taylor Oil Company On July 30, 1999, Taylor Oil Company (Taylor) of Somerville, New Jersey filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its Application, Taylor requests that it be relieved of the requirement to file Form EIA-782B, entitled "Resellers/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0066.pdf More Documents & Publications VEE-0067 - In the Matter of M.L. Halle Oil Service, Inc. VEE-0085 - In the Matter of Smith Brothers Gas Company VEE-0030 - In the Matter of Lee Oil Company

59

Wicomico County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

Establishes zoning regulations for the installation and construction of small wind energy systems in Wicomico County for private landowners, subject to reasonable restrictions.

60

Washington County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance establishes regulations to facilitate the installation and construction of Small Wind Energy Systems in Washington County for private landowners, subject to reasonable restrictions...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Montgomery County Public Schools  

Science Conference Proceedings (OSTI)

... Montgomery County Public Schools (MCPS) is the largest school district in the state of Maryland and the 16th-largest school district in the nation. ...

2011-04-19T23:59:59.000Z

62

San Diego County - Design Standards for County Facilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Standards for County Facilities Design Standards for County Facilities San Diego County - Design Standards for County Facilities < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Energy Sources Solar Wind Other Program Info State California Program Type Energy Standards for Public Buildings Provider San Diego County The San Diego County Board of Supervisors established design standards for county facilities and property. Among other requirements, the policy requires that all new county buildings or major building renovations obtain U.S. Green Building Council (USGBC) LEED Building Certification.

63

Harris County - LEED Requirement for County Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harris County - LEED Requirement for County Buildings Harris County - LEED Requirement for County Buildings Harris County - LEED Requirement for County Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Texas Program Type Energy Standards for Public Buildings Provider Harris County In 2009, the Harris County Commissioners Court approved a measure that requires all new county buildings to meet minimum LEED certification standards. Buildings do not have to register with the the U.S. Green Building Council. The Harris County Facilities and Property Management (FPM) Division also requires all county buildings to meet minimum energy efficiency and sustainability measures, as described in the

64

Frederick County- Green Building Program  

Energy.gov (U.S. Department of Energy (DOE))

Frederick County administers a green building program. It has two goals: (1) to ensure that County building projects implement strategies that enhance environmental performance and fiscal...

65

Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities  

SciTech Connect

Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.

Lau, Yue Ying [University of Michigan] [University of Michigan; Gilgenbach, Ronald [University of Michigan] [University of Michigan

2013-07-07T23:59:59.000Z

66

Nonstationary Rayleigh-Taylor instability in supernova ejecta  

SciTech Connect

This paper studies the effect of a nonstationary shell acceleration on the development of the Rayleigh-Taylor instability (RTI) in supernovae remnants (SNRs). Two groups of solutions describing acceleration and deceleration phase of the SNR shell are obtained. Using a special transformation (co-moving coordinate frame), an exact dispersion relation for nonstationary RTI is derived. It is shown that compressible and incompressible branches are separated for the spherically symmetric flow and only the former is unstable. The exact analytic solution is compared to a simpler WKB-like analysis and a good agreement is shown, which proves that this analysis can be useful and easily extended to further applications.

Ribeyre, X.; Hallo, L.; Tikhonchuk, V. T.; Bouquet, S.; Sanz, J. [Centre Lasers Intenses et Applications, Universite Bordeaux 1-CNRS-CEA, 33405 Talence Cedex (France); Commissariat a l'Energie Atomique, DIF/Departement de Physique Theorique et Appliquee, 91680, Bruyeres le Chatel (France); E.T.S.I., Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

2007-11-15T23:59:59.000Z

67

Making the most of Taylor expansion and imaginary chemical potential  

E-Print Network (OSTI)

We present preliminary results for the curvature of the pseudocritical line and susceptibilities in Nf = 2 + 1 flavor QCD. The computations are carried out on lattice sizes of 16x16x16x4, at matching parameters of early work of the Bielefeld group. Emphasis is placed on the control of systematic errors, by cross-validating results obtained by use of the Taylor expansion and measurements at imaginary chemical potential. To this end, we generalize the magnetic equation of state to the analysis of the number density, and we extend it to imaginary values of the chemical potential.

E. Laermann; F. Meyer; M. P. Lombardo

2013-04-11T23:59:59.000Z

68

Regional Lead Agents and County Coordinators 2011 RESPONSIBILITY NAME COUNTY  

E-Print Network (OSTI)

Coordinator Jay Crouch Newberry County Coordinator Vicky Bertagnolli Aiken REGION 8 Regional Lead Karissa

Bolding, M. Chad

69

Suffolk County - LEED Program for County Construction | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Suffolk County - LEED Program for County Construction Suffolk County - LEED Program for County Construction Suffolk County - LEED Program for County Construction < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New York Program Type Energy Standards for Public Buildings Provider Suffolk County In 2006, the Suffolk County Legislature enacted Resolution No. 126-2006, creating the Leadership in Energy and Environment Design (LEED) Program for county construction projects. The program requirements were revised in 2008 (Resolution No. 551-2008), and again in 2011 (Resolution No. 458-2011). The program requires the County Department of Public Works to apply the LEED

70

Coyotes in Cook County  

NLE Websites -- All DOE Office Websites (Extended Search)

Coyotes in Cook County Coyotes in Cook County Nature Bulletin No. 2 Forest Preserve District of Cook County -- July 31, 1969 George W. Dunne, President Roland F. Eisenbeis, Superintendent of Conversation COYOTES IN COOK COUNTY One winter night, a Forest Preserve Ranger heard the yapping howl of some animal that made his hair stand on end. A few days later, a farmer in the Sag valley saw what appeared to be a wolf lope across a road. Finally, the ranger, concealed within sight of a faint path apparently used by wild dogs or foxes, shot a coyote. The little bunch of black bristles at the base of its tail, covering a scent gland beneath the skin identified it as being of the wolf family. The animal was sent to the Illinois Natural History Survey, at Urbana, where it was pronounced to be a prairie wolf (also known as the "brush" wolf). In the west it is generally known by its Spanish name: coyote.

71

County\paa  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eureka County Eureka County Yucca Mountain Information Office P.O. Box 257 Eureka, Nevada 89316 (702) 237-5372 FAX (702) 237-5708 January 29, 1998 U.S. Department of Energy Office of General Counsel, GC-52 1000 Independence Ave. SW Washington DC 20585 RE: Price-Anderson Act To Whom It May Concern: In response the Federal Register notice of December 31, 1997 requesting public comments on the Price-Anderson Act (PAA), Eureka County, Nevada is submitting these comments. Eureka County is one of the affected units of local government under the Nuclear Waste Policy Act of 1982 as amended. With potential socioeconomic, environmental and transportation impacts, we have a strong interest in oversight of the DOE's Yucca Mountain project activities, including transportation impacts and

72

County Wind Ordinance Standards  

Energy.gov (U.S. Department of Energy (DOE))

[http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

73

Caroline County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance amends Chapter 175 of the Code of Public Local Laws of Caroline County, Maryland to provide for the erection, maintenance, and operation of small wind energy systems, as well as...

74

RECIPIENT:Placer County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENfCENTER .. NEAnE:'l'ERlVIIN).'I:rQ1"l PROJECT TITLE: Placer County Biomass Utilization Pilot Project Page 1 of2 . .. . W STATE:CA Funding Opportunity...

75

Property:County | Open Energy Information  

Open Energy Info (EERE)

County County Jump to: navigation, search Property Name County Property Type String Description County Name Pages using the property "County" Showing 25 pages using this property. (previous 25) (next 25) A Akutan Geothermal Project + Aleutians East Borough, AK + Alligator Geothermal Geothermal Project + White Pine County, NV + Alum Geothermal Project + Esmerelda County, NV + Aurora Geothermal Project + Mineral County, NV + B Bald Mountain Geothermal Project + Lassen County, CA + Baltazor Springs Geothermal Project + Humboldt County, NV + Barren Hills Geothermal Project + Lyon, NV + Black Rock I Geothermal Project + Imperial County, OR + Black Rock II Geothermal Project + Imperial County, CA + Black Rock III Geothermal Project + Imperial County, CA +

76

ARM_AVP_SHIS_Taylor_Turner_pdf.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Scanning High-resolution Interferometer Sounder Scanning High-resolution Interferometer Sounder (S-HIS) ARM AVP Workshop on Advances in Airborne Instrumentation for Measuring Aerosols, Clouds, Radiation and Atmospheric State Parameters J. Taylor, D. Turner H. Revercomb, F. Best, D. Tobin, R. Knuteson, R. Holz Space Science and Engineering Center, University of Wisconsin-Madison, WI, USA Slide 2 1. Introduction and Instrument Overview 2. Flight Experience and Operating Environment 3. Instrument Performance 4. ARM Applicable Science/Products 5. Low Cost, High Return Instrument Upgrade Paths Slide 3 1. Introduction and Instrument Overview 2. Flight Experience and Operating Environment 3. Instrument Performance 4. ARM Applicable Science/Products 5. Low Cost, High Return Instrument Upgrade Paths

77

Rayleigh-Taylor Instability at Ionization Fronts: Perturbation Analysis  

E-Print Network (OSTI)

The linear growth rate of the Rayleigh-Taylor instability (RTI) at ionization fronts is investigated via perturbation analysis in the limit of incompressible fluids. In agreement with previous numerical studies is found that absorption of ionizing radiation inside the HII region due to hydrogen recombinations suppresses the growth of instabilities. In the limit of a large density contrast at the ionization front the RTI growth rate has the simple analytical solution n=-nur+(nur^2+gk)^(1/2), where nur is the hydrogen recombination rate inside the HII region, k is the perturbation's wavenumber and g is the effective acceleration in the frame of reference of the front. Therefore, the growth of surface perturbations with wavelengths lambda >> lambda_{cr} = 2\\pi g/nur^2 is suppressed by a factor (lambda_{cr}/4lambda)^(1/2) with respect to the non-radiative incompressible RTI. Implications on stellar and black hole feedback are briefly discussed.

Ricotti, Massimo

2013-01-01T23:59:59.000Z

78

Bubble Acceleration in the Ablative Rayleigh-Taylor Instability  

Science Conference Proceedings (OSTI)

The highly nonlinear evolution of the single-mode Rayleigh-Taylor instability (RTI) at the ablation front of an accelerated target is investigated in the parameter range typical of inertial confinement fusion implosions. A new phase of the nonlinear bubble evolution is discovered. After the linear growth phase and a short constant-velocity phase, it is found that the bubble is accelerated to velocities well above the classical value. This acceleration is driven by the vorticity accumulation inside the bubble resulting from the mass ablation adn vorticity convection off the ablation front. While the albative growth rates are slower than their classical values in the linear regime, the ablative RTI grows faster than the classical RTI in the nonlinear regime for deuterium and tritium ablators.

Betti, R.; Sanz, J.

2006-11-20T23:59:59.000Z

79

Bubble Acceleration in the Ablative Rayleigh-Taylor Instability  

SciTech Connect

The highly nonlinear evolution of the single-mode Rayleigh-Taylor instability (RTI) at the ablation front of an accelerated target is investigated in the parameter range typical of inertial confinement fusion implosions. A new phase of the nonlinear bubble evolution is discovered. After the linear growth phase and a short constant-velocity phase, it is found that the bubble is accelerated to velocities well above the classical value. This acceleration is driven by the vorticity accumulation inside the bubble resulting from the mass ablation and vorticity convection off the ablation front. While the ablative growth rates are slower than their classical values in the linear regime, the ablative RTI grows faster than the classical RTI in the nonlinear regime for deuterium and tritium ablators.

Betti, R.; Sanz, J. [Fusion Science Center for Extreme States of Matter and Fast Ignition Physics, Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

2006-11-17T23:59:59.000Z

80

Rayleigh-Taylor instability in partially ionized prominence plasma  

E-Print Network (OSTI)

We study Rayleigh-Taylor instability (RTI) at the coronal-prominence boundary by means of 2.5D numerical simulations in a single-fluid MHD approach including a generalized Ohm's law. The initial configuration includes a homogeneous magnetic field forming an angle with the direction in which the plasma is perturbed. For each field inclination we compare two simulations, one for the pure MHD case, and one including the ambipolar diffusion in the Ohm's law, otherwise identical. We find that the configuration containing neutral atoms is always unstable. The growth rate of the small-scale modes in the non-linear regime is larger than in the purely MHD case.

Khomenko, E; de Vicente, A; Collados, M; Luna, M

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Rayleigh-Taylor Instability of Ionization Front around Black Holes  

E-Print Network (OSTI)

We examine the role of ionizing radiation emitted from black holes (BHs) in suppressing the growth of the Rayleigh-Taylor instability (RTI) across the ionization front (I-front) that forms when the gas fueling the BH is neutral. We use radiation-hydrodynamic simulations to show that the RTI is suppressed for non-accelerating fronts on all scales resolved in our simulations. A necessary condition for the stability of the I-front is that the radius of the Str\\"omgren sphere is larger than the Bondi radius. When this condition is violated the I-front collapses producing an accretion luminosity burst. Transient growth of the RTI occurs only during the accretion burst when the effective acceleration in the frame of reference of the I-front increases significantly due to the rapid expansion of the Str\\"omgren sphere.

Park, KwangHo; Di Matteo, Tiziana; Reynolds, Christopher S

2013-01-01T23:59:59.000Z

82

Axial dipolar dynamo action in the Taylor-Green vortex  

E-Print Network (OSTI)

We present a numerical study of the magnetic field generated by the Taylor-Green vortex. We show that periodic boundary conditions can be used to mimic realistic boundary conditions by prescribing the symmetries of the velocity and magnetic fields. This gives insight in some problems of central interest for dynamos: the possible effect of velocity fluctuations on the dynamo threshold, the role of boundary conditions on the threshold and on the geometry of the magnetic field generated by dynamo action. In particular, we show that an axial dipolar dynamo similar to the one observed in a recent experiment can be obtained with an appropriate choice of the symmetries of the magnetic field. The nonlinear saturation is studied and a simple model explaining the magnetic Prandtl number dependence of the super/sub critical nature of the dynamo transition is given.

Giorgio Krstulovic; Gentien Thorner; Julien-Piera Vest; Stephan Fauve; Marc Brachet

2011-09-19T23:59:59.000Z

83

Property:FIPS County Code | Open Energy Information  

Open Energy Info (EERE)

FIPS County Code FIPS County Code Jump to: navigation, search This is a property of type String. Pages using the property "FIPS County Code" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina + 001 + Acadia Parish, Louisiana + 001 + Accomack County, Virginia + 001 + Ada County, Idaho + 001 + Adair County, Iowa + 001 + Adair County, Kentucky + 001 + Adair County, Missouri + 001 + Adair County, Oklahoma + 001 + Adams County, Colorado + 001 + Adams County, Idaho + 003 + Adams County, Illinois + 001 + Adams County, Indiana + 001 + Adams County, Iowa + 003 + Adams County, Mississippi + 001 + Adams County, Nebraska + 001 + Adams County, North Dakota + 001 + Adams County, Ohio + 001 + Adams County, Pennsylvania + 001 +

84

Better Buildings Neighborhood Program: Sonoma County  

NLE Websites -- All DOE Office Websites (Extended Search)

County on Twitter Bookmark Better Buildings Neighborhood Program: Sonoma County on Google Bookmark Better Buildings Neighborhood Program: Sonoma County on Delicious Rank Better...

85

Snohomish County Biodiesel Project  

SciTech Connect

Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to ???¢????????grow???¢??????? this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

Terrill Chang; Deanna Carveth

2010-02-01T23:59:59.000Z

86

MINERAL COUNTY COMMISSIONERS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Board of Board of MINERAL COUNTY COMMISSIONERS Telephone: 702-945-2446 Fax: 702-945-0706 P.O. Box 4150 Hawthorne, Nevada 89415 JACKIE WALLIS, Chairman GOVERNING BOARD FOR THE TOWNS OF DAN DILLARD, Vice Chairman HAWTHORNE, LUNING AND MINA BOB LYBARGER, Member LIQUOR BOARD GAMING BOARD U.S. Department of Energy Office of General Counsel, GC-52 1000 Independence Ave. S.W. Washington, DC 20585 Dear Sirs: Attached are the comments for modification of the Price-Anderson Act Notice of Inquiry(NOI) provided to the Board of Mineral County Commissioners, in a letter dated January

87

Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor and the Development  

Office of Scientific and Technical Information (OSTI)

Jerome I. Friedman, Henry W. Kendall, Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor and the Development of the Quark Resources with Additional Information Jerome I. Friedman Jerome I. Friedman Courtesy AIP Emilio Segrè Visual Archives, W. F. Meggers Gallery of Nobel Laureates Richard E. Taylor Richard E. Taylor Courtesy of Stanford Linear Accelerator Center Henry W. Kendall Henry W. Kendall Courtesy AIP Emilio Segrè Visual Archive, W. F. Meggers Gallery of Nobel Laureates The 1990 Nobel Prize in Physics has been awarded to Jerome Friedman and Henry Kendall of MIT [Massachusetts Institute of Technology] and Richard Taylor of SLAC [Stanford Linear Accelerator Center] "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics." ...

88

Application of the PriestleyTaylor Approach in a Two-Source Surface Energy Balance Model  

Science Conference Proceedings (OSTI)

The PriestleyTaylor (PT) approximation for computing evapotranspiration was initially developed for conditions of a horizontally uniform saturated surface sufficiently extended to obviate any significant advection of energy. Nevertheless, the PT ...

Nurit Agam; William P. Kustas; Martha C. Anderson; John M. Norman; Paul D. Colaizzi; Terry A. Howell; John H. Prueger; Tilden P. Meyers; Tim B. Wilson

2010-02-01T23:59:59.000Z

89

On the modeling of the Taylor cylinder impact test for orthotropic textured materials: Calculations and experiments  

SciTech Connect

Taylor impact tests using specimens cut from a rolled plate of Ta were conducted. The Ta was well-characterized in terms of flow stress and crystallographic texture. A piece-wise yield surface was interrogated from this orthotropic texture, and used in EPIC-95 3D simulations of the Taylor test. Good agreement was realized between the calculations and the post-test geometries in terms of major and minor side profiles and impact-interface footprints.

Maudlin, P.J.; Bingert, J.F.; House, J.W.

1997-04-01T23:59:59.000Z

90

Observation of the Rayleigh-Taylor instability in ablatively accelerated foils  

SciTech Connect

We present the first absolute, two-dimensionally resolved measurements of areal mass density of laser-driven ablatively accelerated foils, which show the Rayleigh-Taylor instability developing from initial mass perturbations. Our data are near simulation results which predict that the Rayleigh-Taylor growth rate is less than classical. The measurements sometimes show development of significant areal mass inhomogeneity in a direction perpendicular to that of the initially imposed perturbations.

Grun, J.; Emery, M.H.; Kacenjar, S.; Opal, C.B.; McLean, E.A.; Obenschain, S.P.; Ripin, B.H.; Schmitt, A.

1984-10-01T23:59:59.000Z

91

Arlington County - Green Building Incentive Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program...

92

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Mohave County Wind Farm Project, Mohave County, Arizona 41: Mohave County Wind Farm Project, Mohave County, Arizona EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona Summary This EIS, prepared by the Bureau of Land Management with DOE's Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western's transmission lines.The project website is http://www.blm.gov/az/st/en/prog/energy/wind/mohave.html. Public Comment Opportunities None available at this time. Documents Available for Download Draft EIS posted at http://www.blm.gov/az/st/en/prog/energy/wind/mohave/reports/DEIS.html.

93

Santa Clara County - Green Building Policy for County Government Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Policy for County Government Green Building Policy for County Government Buildings Santa Clara County - Green Building Policy for County Government Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Santa Clara County Executive's Office In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009. All new buildings over 5,000 square feet are required to meet LEED Silver

94

Property:Building/County | Open Energy Information  

Open Energy Info (EERE)

County County Jump to: navigation, search This is a property of type Page. County Pages using the property "Building/County" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Stockholm County, Sweden + Sweden Building 05K0002 + Stockholm County, Sweden + Sweden Building 05K0003 + Stockholm County, Sweden + Sweden Building 05K0004 + Stockholm County, Sweden + Sweden Building 05K0005 + Stockholm County, Sweden + Sweden Building 05K0006 + Stockholm County, Sweden + Sweden Building 05K0007 + Stockholm County, Sweden + Sweden Building 05K0008 + Stockholm County, Sweden + Sweden Building 05K0009 + Stockholm County, Sweden + Sweden Building 05K0010 + Stockholm County, Sweden + Sweden Building 05K0011 + Stockholm County, Sweden +

95

Pulsed power driven Magneto-Rayleigh-Taylor experiments.  

SciTech Connect

Numerical simulations indicate that significant fusion yields (>100 kJ) may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized and preheated deuterium-tritium fuel. The primary physics risk to this approach is the Magneto-Rayleigh-Taylor (MRT) instability, which operates during both the acceleration and deceleration phase of the liner implosion. We have designed and performed some experiments to study the MRT during the acceleration phase, where the light fluid is purely magnetic. Results from our first series of experiments and plans for future experiments will be presented. According to simulations, an initial axial magnetic field of 10 T is compressed to >100 MG within the liner during the implosion. The magnetic pressure becomes comparable to the plasma pressure during deceleration, which could significantly affect the growth of the MRT instability at the fuel/liner interface. The MRT instability is also important in some astronomical objects such as the Crab Nebula (NGC1962). In particular, the morphological structure of the observed filaments may be determined by the ratio of the magnetic to material pressure and alignment of the magnetic field with the direction of acceleration [Hester, ApJ, 456, 225 1996]. Potential experiments to study this MRT behavior using the Z facility will be presented.

Sefkow, Adam B.; Peterson, Kyle J.; Rovang, Dean Curtis; Slutz, Stephen A.; Cuneo, Michael Edward; Vesey, Roger Alan; Herrmann, Mark C.; Sinars, Daniel Brian

2010-03-01T23:59:59.000Z

96

GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING  

SciTech Connect

In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

Hicks, E. P. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Rosner, R., E-mail: eph2001@columbia.edu [Computation Institute, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637 (United States)

2013-07-10T23:59:59.000Z

97

Stratorotational instability in MHD Taylor-Couette flows  

E-Print Network (OSTI)

The stability of dissipative Taylor-Couette flows with an axial stable density stratification and a prescribed azimuthal magnetic field is considered. Global nonaxisymmetric solutions of the linearized MHD equations with toroidal magnetic field, axial density stratification and differential rotation are found for both insulating and conducting cylinder walls. Flat rotation laws such as the quasi-Kepler law are unstable against the nonaxisymmetric stratorotational instability (SRI). The influence of a current-free toroidal magnetic field depends on the magnetic Prandtl number Pm: SRI is supported by Pm > 1 and it is suppressed by Pm \\lsim 1. For too flat rotation laws a smooth transition exists to the instability which the toroidal magnetic field produces in combination with the differential rotation. This nonaxisymmetric azimuthal magnetorotational instability (AMRI) has been computed under the presence of an axial density gradient. If the magnetic field between the cylinders is not current-free then also the Tayler instability occurs and the transition from the hydrodynamic SRI to the magnetic Tayler instability proves to be rather complex. Most spectacular is the `ballooning' of the stability domain by the density stratification: already a rather small rotation stabilizes magnetic fields against the Tayler instability. An azimuthal component of the resulting electromotive force only exists for density-stratified flows. The related alpha-effect for magnetic SRI of Kepler rotation appears to be positive for negative d\\rho/dz <0.

G. Ruediger; D. A. Shalybkov

2008-08-05T23:59:59.000Z

98

RAYLEIGH-TAYLOR INSTABILITY IN PARTIALLY IONIZED COMPRESSIBLE PLASMAS  

Science Conference Proceedings (OSTI)

We study the modification of the classical criterion for the linear onset and growing rate of the Rayleigh-Taylor instability (RTI) in a partially ionized plasma in the two-fluid description. The plasma is composed of a neutral fluid and an electron-ion fluid, coupled by means of particle collisions. The governing linear equations and appropriate boundary conditions, including gravitational terms, are derived and applied to the case of the RTI in a single interface between two partially ionized plasmas. The limits of collisionless, no gravity, and incompressible fluids are checked before addressing the general case. We find that both compressibility and ion-neutral collisions lower the linear growth rate, but do not affect the critical threshold of the onset of the RTI. The configuration is always unstable when a lighter plasma is below a heavier plasma regardless the value of the magnetic field strength, the ionization degree, and the ion-neutral collision frequency. However, ion-neutral collisions have a strong impact on the RTI growth rate, which can be decreased by an order of magnitude compared to the value in the collisionless case. Ion-neutral collisions are necessary to accurately describe the evolution of the RTI in partially ionized plasmas such as prominences. The timescale for the development of the instability is much longer than in the classical incompressible fully ionized case. This result may explain the existence of prominence fine structures with life times of the order of 30 minutes. The timescales derived from the classical theory are about one order of magnitude shorter and incompatible with the observed life times.

Diaz, A. J. [Instituto de Astrofisica de Canarias, 38205, C/ Via Lactea, s/n, La Laguna, Tenerife (Spain); Soler, R. [Centre for Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Ballester, J. L., E-mail: tdiaz@iac.es, E-mail: roberto.soler@wis.kuleuven.be, E-mail: dfsjlb0@uib.es [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

2012-07-20T23:59:59.000Z

99

Property:Incentive/AddlPlaceCounty | Open Energy Information  

Open Energy Info (EERE)

AddlPlaceCounty AddlPlaceCounty Jump to: navigation, search Property Name Incentive/AddlPlaceCounty Property Type Page Pages using the property "Incentive/AddlPlaceCounty" Showing 25 pages using this property. (previous 25) (next 25) A Allegany County Wind Ordinance (Maryland) + Allegany County, Maryland + Anne Arundel County - Solar and Geothermal Equipment Property Tax Credit (Maryland) + Anne Arundel County, Maryland + Anne Arundel County - Wind Ordinance (Maryland) + Anne Arundel County, Maryland + B Baltimore County - Solar and Geothermal Equipment Property Tax Credit (Maryland) + Baltimore County, Maryland + Baltimore County - Wind Ordinance (Maryland) + Baltimore County, Maryland + Brownfield Development Tax Abatements (Alabama) + Alabama + C Calvert County - Wind Ordinance (Maryland) + Calvert County, Maryland +

100

Queen Anne's County- Solar Zoning  

Energy.gov (U.S. Department of Energy (DOE))

Queen Anne's County zoning code allows for ground mounted solar arrays in areas zoned as "open space," "agricultural," and "countryside" districts.

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mono County geothermal activity  

SciTech Connect

Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

Lyster, D.L.

1986-01-01T23:59:59.000Z

102

The application of taylor weighting, digital phase shifters, and digital attenuators to phased-array antennas.  

SciTech Connect

Application of Taylor weighting (taper) to an antenna aperture can achieve low peak sidelobes, but combining the Taylor weighting with quantized attenuators and phase shifters at each radiating element will impact the performance of a phased-array antenna. An examination of array performance is undertaken from the simple point of view of the characteristics of the array factor. Design rules and guidelines for determining the Taylor-weighting parameters, the number of bits required for the digital phase shifter, and the dynamic range and number of bits required for the digital attenuator are developed. For a radar application, when each element is fed directly from a transmit/receive module, the total power radiated by the array will be reduced as a result of the taper. Consequently, the issue of whether to apply the taper on both transmit and receive configurations, or only on the receive configuration is examined with respect to two-way sidelobe performance.

Brock, Billy C.

2008-03-01T23:59:59.000Z

103

Stafford County The Kansas County Profile Report is published annually by the Institute for Policy & Social  

E-Print Network (OSTI)

Stafford County #12;Foreword The Kansas County Profile Report is published annually to http://www.census.gov. Kansas County Profile Stafford County, Kansas Page 1 of 58 Population DECENNIAL on these classification systems, please refer to http://www.census.gov. Kansas County Profile Stafford County, Kansas Page

Peterson, Blake R.

104

Canasawacta Creek Project: Chenango County, New York  

E-Print Network (OSTI)

County Soil and Water Conservation District, the U.S. ArmyCounty Soil and Water Conservation District (SWCD) ArmyCounty (NY) soil and Water Conservation District, and as an

OReilly, Mary; MacEwan, David; Greco, Brandon; Nelson, Debra; Long, George; Rowen, John

2007-01-01T23:59:59.000Z

105

Better Buildings Neighborhood Program: Santa Barbara County,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Barbara County, California to someone by E-mail Share Better Buildings Neighborhood Program: Santa Barbara County, California on Facebook Tweet about Better Buildings...

106

Solar Maid Ventura County | Open Energy Information  

Open Energy Info (EERE)

search Logo: Solar Maid Ventura County Name Solar Maid Ventura County Place Lancaster, California Sector Solar Product Solar Operations and Maintenance Year founded 2012 Number...

107

Broome County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Broome County Biomass Facility Jump to: navigation, search Name Broome County Biomass Facility Facility...

108

Craven County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Craven County Biomass Facility Jump to: navigation, search Name Craven County Biomass Facility Facility...

109

Davis County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Davis County Biomass Facility Jump to: navigation, search Name Davis County Biomass Facility Facility...

110

Placer County Water Agency | Open Energy Information  

Open Energy Info (EERE)

Placer County Water Agency Jump to: navigation, search Name Placer County Water Agency Place California Utility Id 15127 Utility Location Yes Ownership P NERC Location WECC NERC...

111

County\PAAN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 1998 9, 1998 U.S. Department of Energy Office of General Counsel, GC-52 1000 Independence Avenue, S.W. Washington, D.C. 20585 COMMENTS TO THE PRICE-ANDERSON ACT NOTICE OF INQUIRY To whom it may concern: The attached comments by the Clark County, Nevada Department of Comprehensive Planning, Nuclear Waste Division, are in reference to a Notice of Inquiry (NOI) released by the Department of Energy (DOE) pursuant to Section 170p of the Atomic Energy Act. From the perspective of local government and the public, we support continuing the comprehensive provisions of the Price-Anderson Act. The need to have available sufficient financial resources to ameliorate impacts from nuclear incidents will be increasingly important in the future. The potential for accidents, for example, will be

112

350 City County Building  

Office of Legacy Management (LM)

(. (. - ,- Department of Eilqgy Washington, DC20585 ,. i x \ .The Honorable Wellington E. Webb .' '. ' 350 City County Building / Denver, Colorado 80202 ., ; Dear Mayor Webb: ., ~, Secretary of Energy' Hazel O'Leary has announced's new approach to openness in the Department of Energy,(OOE) and its communications with the public. In support of this initiative, we,are pleased to forward the'enclosed'information related to the former Uhiversity of Denver Research Institute site in your, jurisdiction that performed work for DOE's predecessor,agencies. This' i~nformation'is provided for your.informatibn, use,,and retention.. ; DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP) is responsible for identification of sitesused by DOE's predecessor agencies, determining

113

RECIPIENT:Monroe County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

p,, '~~' p,, '~~' RECIPIENT:Monroe County u.s. DEP . .\RTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERJl.1INATION PROJECT TITLE: Landfill Gas Utilization Plant Page 1 01'3 STATE: NY Funding Opportunity Announcement Number Pro<:urement Instrument Number NEPA Control Number elD Number CDP DE-EEOO3123 GFO-O003123-001 EE3123 Based on my review of the infonnation concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.IA), I have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description: 85.21 Methane The installation, modification, operation, and removal of commercially available methane gas recovery and gas recovery utilization systems installed within a previously disturbed or developed area on or contiguous to an existlng

114

Ellipsoidal model of the rise of a Taylor bubble in a round tube T. Funada a  

E-Print Network (OSTI)

November 2004 Abstract The rise velocity of long gas bubbles (Taylor bubbles) in round tubes is modeled in Eo; the composition of these separate power laws emerge as 0301-9322/$ - see front matter ? 2005 rising steadily in a li- quid is in a balance of buoyant weight and drag. It is natural to think

Joseph, Daniel D.

115

ESTABLISHMENT OF A BIOLOGICAL STATION ON THE GULF OF MEXICO. By W. EDGAR TAYLOR, PH. D.,  

E-Print Network (OSTI)

ESTABLISHMENT OF A BIOLOGICAL STATION ON THE GULF OF MEXICO. By W. EDGAR TAYLOR, PH. D., Professor the establishment of a biologic station on the Gnlf of Mexico is not simply of interest to the Gulf section oj"Biology, Louisiana Industrial institute. The Gulf region has a coast line much longer than any

116

Power County | Open Energy Information  

Open Energy Info (EERE)

County County Jump to: navigation, search Name Power County Facility Power County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CG Power Solutions Developer CG Power Solutions Energy Purchaser PacifiCorp Location American Falls ID Coordinates 42.66135774°, -112.9727554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.66135774,"lon":-112.9727554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Gratiot County | Open Energy Information  

Open Energy Info (EERE)

Gratiot County Gratiot County Jump to: navigation, search Name Gratiot County Facility Gratiot County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ivenergy Developer Ivenergy Energy Purchaser Detroit Edison Location Breckenridge MI Coordinates 43.38009947°, -84.4896698° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.38009947,"lon":-84.4896698,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Better Buildings Neighborhood Program: Fayette County, Pennsylvania  

NLE Websites -- All DOE Office Websites (Extended Search)

Fayette Fayette County, Pennsylvania to someone by E-mail Share Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Facebook Tweet about Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Twitter Bookmark Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Google Bookmark Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Delicious Rank Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Digg Find More places to share Better Buildings Neighborhood Program: Fayette County, Pennsylvania on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO

119

Geothermal development plan: Yuma county  

DOE Green Energy (OSTI)

One hot spring and 33 wells drilled in the county discharge water at temperatures sufficient for direct-use geothermal applications such as process heat and space heating and cooling. Currently, one industry within the county has been identified which may be able to use geothermal energy for its process heat requirements. Also, a computer simulation model was used to predict geothermal energy on line as a function of time under both private and city-owned utility development of the resource.

White, D.H.

1981-01-01T23:59:59.000Z

120

Geothermal Development Plan: Pima County  

DOE Green Energy (OSTI)

Pima County is located entirely within the Basin and Range physiographic province in which geothermal resources are known to occur. Continued growth as indicated by such factors as population growth, employment and income will require large amounts of energy. It is believed that geothermal energy could provide some of the energy that will be needed. Potential users of geothermal energy within the county are identified.

White, D.H.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities  

SciTech Connect

The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively, adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. The laboratory experiments summarized in this report include shock tube experiments to study a shock-accelerated bubble and a shock-accelerated 2-D sinusoidal interface; and experiments based on the use of magnetorheological fluids for the study of the Rayleigh-Taylor instability. Computational experiments based on the shock tube experimental conditions are also reported.

Bonazza, Riccardo; Anderson, Mark; Smith, Leslie

2005-02-09T23:59:59.000Z

122

Geothermal development plan: Yuma County  

DOE Green Energy (OSTI)

The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

123

Funding for state, city, and county governments in the state...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for state, city, and county governments in the state includes: Funding for state, city, and county governments in the state includes: Funding for state, city, and county...

124

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

125

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Androscoggin County, Maine ASHRAE Standard ASHRAE 169-2006 Climate...

126

Allegan County, Michigan ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Allegan County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allegan County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

127

Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

128

Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bennington County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bennington County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate...

129

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Abbeville County, South Carolina ASHRAE Standard ASHRAE 169-2006...

130

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore County, Maryland ASHRAE Standard ASHRAE 169-2006 Climate...

131

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnwell County, South Carolina ASHRAE Standard ASHRAE 169-2006...

132

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkshire County, Massachusetts ASHRAE Standard ASHRAE 169-2006...

133

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arapahoe County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone...

134

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

135

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albemarle County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

136

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

137

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berks County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

138

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bayfield County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate...

139

Augusta County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Augusta County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Augusta County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

140

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Archuleta County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate...

142

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allendale County, South Carolina ASHRAE Standard ASHRAE 169-2006...

143

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

144

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore City County, Maryland ASHRAE Standard ASHRAE 169-2006...

145

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

146

Alameda County, California ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County,...

147

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone...

148

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford City County, Virginia ASHRAE Standard ASHRAE 169-2006...

149

Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

History Facebook icon Twitter icon Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaufort County, North...

150

Audrain County, Missouri ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Audrain County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Audrain County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

151

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

152

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ballard County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

153

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

154

Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aitkin County, Minnesota...

155

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, West Virginia ASHRAE Standard ASHRAE 169-2006...

156

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beltrami County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate...

157

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashland County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

158

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belknap County, New Hampshire ASHRAE Standard ASHRAE 169-2006...

159

Accomack County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Accomack County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Accomack County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

160

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bertie County, North Carolina ASHRAE Standard ASHRAE 169-2006...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Arlington County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arlington County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arlington County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

162

Asotin County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Asotin County, Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Asotin County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone...

163

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bamberg County, South Carolina ASHRAE Standard ASHRAE 169-2006...

164

Fairfax County - Green Power Purchase (Virginia) | Open Energy...  

Open Energy Info (EERE)

2010), wind power accounted for 10% of the general county's annual electricity consumption (and hence, the county met their stated goal of 10% by 2010). Fairfax County does...

165

111th Congressional Districts and Counties | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Districts and Counties Dataset Summary Description This dataset contains a nationwide inventory of all congressional districts and the counties or pieces of counties associated...

166

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Jump to: navigation, search Name Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass...

167

PP-118 Hill County Electric Cooperative Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18 Hill County Electric Cooperative Inc PP-118 Hill County Electric Cooperative Inc Presidential permit authorizing Hill County Electric Cooperative Inc to construct, operate, and...

168

Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability  

Science Conference Proceedings (OSTI)

A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2004-01-12T23:59:59.000Z

169

RECIPIENT:Lake County, FL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake County, FL Lake County, FL u.s. DEPARTIIIEN T OF ENERGY EERE PROJECT MANAGEMENT CEN T ER NEPA DETERlIJJNATION PROJECf TITLE: Lake County, FL EECBG SOW (S) Page lof2 STATE: FL Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Numbcr CID Numbtr OE·FOA-OOOOO13 DE·EE00Q0786.001 0 Based on my review of the information concerning the proposed adion, as NEPA Compliance Officer (authorized undtr DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: 65.1 Actions to conserve energy, demonstrate potential energy conserva tion, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

170

Geothermal development plan: Maricopa county  

DOE Green Energy (OSTI)

Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

White, D.H.

1981-01-01T23:59:59.000Z

171

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona  

Energy.gov (U.S. Department of Energy (DOE))

This EIS, prepared by the Bureau of Land Management with DOEs Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Westerns transmission lines.

172

Better Buildings Partners: Rutland County, Vermont  

NLE Websites -- All DOE Office Websites (Extended Search)

Rutland County, Vermont Rutland County, Vermont H.E.A.T. Squad Warms Homeowners up to Energy Efficiency Photo of an ornate historical building, with flowering trees beside it. A...

173

Ashe County- Wind Energy System Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a...

174

Miami Dade County Public School Financing Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Profile of Success Miami-Dade County Public Schools Miami-Dade County Public Schools-Stats at a Glance Finance Vehicle Tax-exempt lease purchase agreement (via master lease)...

175

California Energy Commission - Electricity Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Electricity consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009.


...

176

Montgomery County, Kentucky: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

County is a county in Kentucky. Its FIPS County Code is 173. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Montgomery County,...

177

Carroll County, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County is a county in Tennessee. Its FIPS County Code is 017. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Carroll County,...

178

Knox County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Knox County is a county in Kentucky. Its FIPS County Code is 121. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Knox County, Kentucky...

179

Baltimore County - Wind Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore County - Wind Ordinance Eligibility Agricultural Residential Savings For Wind Buying & Making Electricity Program Information Maryland Program Type Siting and...

180

San Diego County - Wind Regulations (California) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Regulations (California) San Diego County - Wind Regulations (California) < Back Eligibility Commercial Industrial Residential Savings Category Wind Buying & Making...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sullivan County, Pennsylvania: Energy Resources | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype A. Places in Sullivan County, Pennsylvania Dushore, Pennsylvania Eagles Mere, Pennsylvania Forksville, Pennsylvania Laporte, Pennsylvania Retrieved from...

182

San Bernardino County - Green Building Incentive | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County's http:www.sbcounty.govgreencountysbbuildersgreenbuilding.aspx Green Building program will receive accelerated plan review, priority inspections, design...

183

Aspen & Pitkin County - Renewable Energy Mitigation Program ...  

Open Energy Info (EERE)

Colorado Name Aspen & Pitkin County - Renewable Energy Mitigation Program Incentive Type Building Energy Code Applicable Sector Commercial, Residential Eligible Technologies...

184

Geothermal development plan: Pima County  

DOE Green Energy (OSTI)

The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F), and in addition, one area is identified as having a temperature of 147{sup 0}F (297{sup 0}F). Geothermal resources are found to occur in Tucson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraint to projected growth. The study also includes a regional energy analysis, future predictions for energy consumption and energy prices. A major section of the report is aimed at identifying potential geothermal users in Pima County and providing projections of maximum economic geothermal utilization. The study identifies 115 firms in 32 industrial classes that have some potential for geothermal use. In addition, 26 agribusiness firms were found in the county.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

185

Marin County - Green Building Requirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marin County - Green Building Requirements Marin County - Green Building Requirements Eligibility Commercial Construction Residential Savings For Heating & Cooling Home...

186

Madison County - Wind Energy Systems Ordinance | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Madison County - Wind Energy Systems Ordinance Madison County - Wind Energy Systems Ordinance < Back Eligibility Agricultural Commercial Industrial Residential Savings Category...

187

Students from Stafford County University of Kansas  

E-Print Network (OSTI)

Page 1 10/10/12 15:23:31 Students from Stafford County Fall 2012 University of Kansas All Campuses Overall counts include students whose permanent residence or last high school attended is in Stafford from Stafford County. In Fall 2012, KU has 11 students from Stafford County: · 10 undergraduate · 1

Peterson, Blake R.

188

Students from Stafford County University of Kansas  

E-Print Network (OSTI)

Page 1 10/17/11 10:19:19 Students from Stafford County Fall 2011 University of Kansas All Campuses Overall counts include students whose permanent residence or last high school attended is in Stafford students from Stafford County. In Fall 2011, KU has 10 students from Stafford County: · 10 undergraduate KU

Peterson, Blake R.

189

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES  

E-Print Network (OSTI)

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES DIVISION OF ENVIRONMENTAL QUALITY ABOVEGROUND OUTDOOR, M.D., M.P.H. Commissioner SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES #12;Suffolk County Department of Health Services' Aboveground Outdoor Tank and Associated Piping Design Standards _____________________ 1

Homes, Christopher C.

190

County Wind Ordinance Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Wind Ordinance Standards County Wind Ordinance Standards County Wind Ordinance Standards < Back Eligibility Agricultural Commercial Industrial Local Government Residential Savings Category Wind Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider California Energy Commission [http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's jurisdiction. The bill also addressed specific aspects of a typical wind ordinance and established the limiting factors by which a county's wind ordinance can be no more restrictive. Counties may freely make more lenient ordinances, but AB 45

191

R[CIPIENT:Loudoun County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loudoun County Loudoun County u.s. DEPARTl\ IENT OF ENER GY EERE PROJECT MANAG EMENT CENTER NEPA DETERl\lINATION PROJEcr TITLE: EECBG Funded Projects - SOW (S) Page I of2 STATE: VA Funding Opportunity Announcement Number Pr(l(urement Instrument Number NEPA Control Number elD Number DE-EEOO00868 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 45t.IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: B5.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

192

R[CIPIENT:Pima County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pima County Pima County u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlHINATION PROJECf TITLE: Activity#13 Garage and Shops Page 1 01'2 STATE: AZ. Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOOD13 DE-EEOOO08S2 GFO-O000852-OO8 0 Based on my review orlhe information concerning the proposed action, as NEPA CompliJmce Officer (authorized under DOE Order 45I.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of polentiatly harmful substances. These actions may involve financial and technical

193

Benton County | Open Energy Information  

Open Energy Info (EERE)

Benton County Benton County Place Tennessee Utility Id 1578 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSA 1 General Power Commercial GSA 2 General Power Commercial GSA 3 General Power Commercial GSB Industrial General Power Service- TDGSA-VULCAN Industrial Outdoor Lighting Service Lighting RS Residential Residential SMSB Industrial SMSC Industrial SMSD Industrial WS-DE Commercial WS-MTOU Wholesale Average Rates Residential: $0.1030/kWh Commercial: $0.1110/kWh Industrial: $0.0875/kWh References

194

Eagle County - Eagle County Efficient Building Code (ECO-Green Build) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eagle County - Eagle County Efficient Building Code (ECO-Green Eagle County - Eagle County Efficient Building Code (ECO-Green Build) Eagle County - Eagle County Efficient Building Code (ECO-Green Build) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Colorado Program Type Building Energy Code Provider Eagle County In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction and renovations/additions over 50% of the existing floor area of single-family and multifamily residences, and commercial buildings.

195

A simple and efficient evolution operator for time-dependent Hamiltonians: the Taylor expansion  

SciTech Connect

No compact expression of the evolution operator is known when the Hamiltonian operator is time dependent, like when Hamiltonian operators describe, in a semiclassical limit, the interaction of a molecule with an electric field. It is well known that Magnus [N. Magnus, Commun. Pure Appl. Math. 7, 649 (1954)] has derived a formal expression where the evolution operator is expressed as an exponential of an operator defined as a series. In spite of its formal simplicity, it turns out to be difficult to use at high orders. For numerical purposes, approximate methods such as 'Runge-Kutta' or 'split operator' are often used usually, however, to a small order (<5), so that only small time steps, about one-tenth or one-hundredth of the field cycle, are acceptable. Moreover, concerning the latter method, split operator, it is only very efficient when a diagonal representation of the kinetic energy operator is known. The Taylor expansion of the evolution operator or the wave function about the initial time provides an alternative approach, which is very simple to implement and, unlike split operator, without restrictions on the Hamiltonian. In addition, relatively large time steps (up to the field cycle) can be used. A two-level model and a propagation of a Gaussian wave packet in a harmonic potential illustrate the efficiency of the Taylor expansion. Finally, the calculation of the time-averaged absorbed energy in fluoroproprene provides a realistic application of our method.

Lauvergnat, David; Blasco, Sophie; Chapuisat, Xavier; Nauts, Andre [Laboratoire de Chimie Physique, Universite Paris-Sud, CNRS, UMR8000, Batiment 490, Orsay F-91405 (France); Laboratoire de Chimie Physique, Universite Paris-Sud, CNRS, UMR8000, Batiment 490, Orsay F-91405 (France); Unite PAMO (Departement de Physique), Universite Catholique de Louvain, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium)

2007-05-28T23:59:59.000Z

196

Ammonite zonation in condensed zone, middle Ozan formation (Taylor group, upper Cretaceous) in Northeast Texas  

SciTech Connect

Recognition of condensed zones is important because they may be marker horizons that are useful in exploration. Such a zone is demonstrated by the occurrence of ammonites belonging to 12 species and 9 genera from the middle Ozan Formation (lower Taylor Marl) in northeast Texas. The 1-foot (0.3-m) thick bed of bioturbated glauconitic biomicrite contains many specimens of disarticulated vertebrates, molluscs, remanie' fossils (blackened phosphatic internal molds), and hiatus concretions. Four of 6 midcontinent ammonite range zones proposed by Cobban and others appear to be represented in the fauna, in ascending order, by Baculites aquilaensis Reeside, Delawarella delawarensis (Morton) (= zones of two unnamed species of Baculites), Baculites obtusus Meek, and Trachyscaphites spiniger porchi Adkins (=zones of Baculites mclearni and B. asperiformis). Young may be correct in assuming that the occurrence of Delawarella delawarensis and Baculites aquilaensis in the Ozan Formation may mean that rocks of the upper Austin Group and parts of the lower Taylor Group are the same age. If correlation with the midcontinent zonation is correct, then the sediments that formed the condensed zone slowly accumulated from 81 to 79 m.y. (mid early Campanian to early late Campanian). Several species of the fauna are preserved as both normal and remanie' fossils, indicating that members of these species lived in the area for an extended period of time, perhaps as a relict fauna. The fauna includes a mixture of cosmopolitan and endemic species (indicating open shelf environment) with several types of heteromorphs (indicating moderate water depths).

Echols, J.

1984-04-01T23:59:59.000Z

197

Jar Decoding: Non-Asymptotic Converse Coding Theorems, Taylor-Type Expansion, and Optimality  

E-Print Network (OSTI)

Recently, a new decoding rule called jar decoding was proposed; under jar decoding, a non-asymptotic achievable tradeoff between the coding rate and word error probability was also established for any discrete input memoryless channel with discrete or continuous output (DIMC). Along the path of non-asymptotic analysis, in this paper, it is further shown that jar decoding is actually optimal up to the second order coding performance by establishing new non-asymptotic converse coding theorems, and determining the Taylor expansion of the (best) coding rate $R_n (\\epsilon)$ of finite block length for any block length $n$ and word error probability $\\epsilon$ up to the second order. Finally, based on the Taylor-type expansion and the new converses, two approximation formulas for $R_n (\\epsilon)$ (dubbed "SO" and "NEP") are provided; they are further evaluated and compared against some of the best bounds known so far, as well as the normal approximation of $R_n (\\epsilon)$ revisited recently in the literature. It t...

Yang, En-Hui

2012-01-01T23:59:59.000Z

198

TWO-DIMENSIONAL BLAST-WAVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY: EXPERIMENT AND SIMULATION  

Science Conference Proceedings (OSTI)

This paper shows results from experiments diagnosing the development of the Rayleigh-Taylor instability with two-dimensional initial conditions at an embedded, decelerating interface. Experiments are performed at the Omega Laser and use {approx}5 kJ of energy to create a planar blast wave in a dense, plastic layer that is followed by a lower density foam layer. The single-mode interface has a wavelength of 50 {mu}m and amplitude of 2.5 {mu}m. Some targets are supplemented with additional modes. The interface is shocked then decelerated by the foam layer. This initially produces the Richtmyer-Meshkov instability followed and then dominated by Rayleigh-Taylor growth that quickly evolves into the nonlinear regime. The experimental conditions are scaled to be hydrodynamically similar to SN1987A in order to study the instabilities that are believed to occur at the He/H interface during the blast-wave-driven explosion phase of the star. Simulations of the experiment were performed using the FLASH hydrodynamics code.

Kuranz, C. C.; Drake, R. P.; Harding, E. C.; Grosskopf, M. J. [University of Michigan, MI (United States); Robey, H. F.; Remington, B. A.; Edwards, M. J.; Miles, A. R.; Perry, T. S. [Lawrence Livermore National Laboratory, University of California, P.O. Box 5508, L-487, Livermore, CA 94550 (United States); Blue, B. E. [General Atomics, San Diego, CA (United States); Plewa, T. [Department of Scientific Computing, Florida State University, Dirac Science Library Tallahassee, FL 32306-4120 (United States); Hearn, N. C. [ASC/Alliances Center for Astrophysical Thermonuclear Flashes, University of Chicago, IL (United States); Knauer, J. P. [Laboratory of Laser Energetics, University of Rochester, Rochester, NY (United States); Arnett, D. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Leibrandt, D. R. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

2009-05-01T23:59:59.000Z

199

New Single-Stage PFC Regulator Using the Sheppard-Taylor Topology  

E-Print Network (OSTI)

This paper describes a new usage of the dc/dc converter developed by D. I. Sheppard and B. E. Taylor in 1983 for achieving high power factor and output regulation. This converter may be viewed as a cascade of a modified boost stage and a buck stage, with the two stages sharing the same active switch. Two possible operation regimes are described. In the first regime, the converter's input part, which is a modified boost converter, operates in discontinuous mode, and the output part, which is a buck converter, operates in continuous mode. In this regime, high power factor is naturally achieved, and the output voltage is regulated by duty-cycle modulation via a simple output feedback. In the second regime, the input part operates in continuous mode, and the output part operates in discontinuous mode, with duty-cycle modulation maintaining a high power factor and frequency modulation regulating the output. Some comparisons between the Sheppard-Taylor converter and conventional boost and bu...

C. K. Tse; Senior Member; M. H. L. Chow

1998-01-01T23:59:59.000Z

200

Data:05e5ec6a-e3c9-4a76-a83f-341cc82d4290 | Open Energy Information  

Open Energy Info (EERE)

ec6a-e3c9-4a76-a83f-341cc82d4290 ec6a-e3c9-4a76-a83f-341cc82d4290 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Taylor County Rural E C C Effective date: 2013/01/01 End date if known: Rate name: Cogeneration and small power production power purchase rate schedule less than 100 kW - Non-Time Differentiated Rates Sector: Commercial Description: Available only to qualified cogeneration or small power production facilities with a design capacity of less than 100 kW which have executed a contract with Taylor County RECC and East Kentucky Power Cooperative for the purchase of electric power by East Kentucky Power Cooperative.

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Data:F5f619ce-ddde-45d2-ab27-3e040b1e8963 | Open Energy Information  

Open Energy Info (EERE)

f619ce-ddde-45d2-ab27-3e040b1e8963 f619ce-ddde-45d2-ab27-3e040b1e8963 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Taylor County Rural E C C Effective date: 2013/01/01 End date if known: Rate name: Cogeneration and small power production power purchase rate schedule less than 100 kW Sector: Description: Available only to qualified cogeneration or small power production facilities with a design capacity of less than 100 kW which have executed a contract with Taylor County RECC and East Kentucky Power Cooperative for the purchase of electric power by East Kentucky Power Cooperative. $0.00964 per kWh is applicable if cogenerator or small power producer is not dispatched by East Kentucky Power Cooperative.

202

Talbot County DPW | Open Energy Information  

Open Energy Info (EERE)

Talbot County DPW Talbot County DPW Jump to: navigation, search Name Talbot County DPW Facility Talbot County DPW Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Talbot County DPW Energy Purchaser Talbot County DPW Location Easton MD Coordinates 38.8182443°, -76.0331583° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8182443,"lon":-76.0331583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Franklin County Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Franklin County Wind LLC Franklin County Wind LLC Facility Franklin County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Franklin County Wind LLC Developer Franklin County Wind LLC Energy Purchaser Merchant (MISO) Location Franklin County IA Coordinates 42.61481487°, -93.36564124° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.61481487,"lon":-93.36564124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties,...

205

Montgomery County - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montgomery County - Green Power Purchasing Montgomery County - Green Power Purchasing Montgomery County - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Buying & Making Electricity Solar Water Wind Program Info State Maryland Program Type Green Power Purchasing Provider Montgomery County In October 2000, a group six county agencies, consisting of Montgomery County, Montgomery County Public Schools, Montgomery County Housing Opportunities Commission, Montgomery College, the Washington Suburban Sanitary Commission, and the Maryland-National Capital Park and Planning Commission, began purchasing power on a competitive basis. In March 2003, the county's energy policy was amended to incorporate the purchase of renewable energy and to expand energy-efficiency efforts. This resolution

206

Humboldt County RESCO Project | Open Energy Information  

Open Energy Info (EERE)

RESCO Project RESCO Project Jump to: navigation, search Name Humboldt County RESCO Project Agency/Company /Organization Redwood Coast Energy Authority Focus Area People and Policy, Renewable Energy, Biomass - Anaerobic Digestion, Biomass - Biofuels, Biomass, Biomass - Biomass Combustion, Biomass - Biomass Gasification, Biomass - Biomass Pyrolysis, Biomass - Landfill Gas, Solar, - Solar Pv, Biomass - Waste To Energy, Wind Phase Create a Vision Resource Type Technical report Availability Free - Publicly Available Publication Date 4/1/2010 Website http://cal-ires.ucdavis.edu/fi Locality Humboldt County References Humboldt County RESCO Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 Related Tools 5 References Overview This introductory document outline's Humboldt county's vision for a local

207

Building Green in Greensburg: Kiowa County Courthouse  

Energy.gov (U.S. Department of Energy (DOE))

This poster highlights energy efficiency, renewable energy, and sustainable features of the renovated high-performing Kiowa County Courthouse building in Greensburg, Kansas.

208

Aspen & Pitkin County - Renewable Energy Mitigation Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buying & Making Electricity Water Heating Wind Program Information Colorado Program Type Building Energy Code The City of Aspen and Pitkin County have adopted the 2009...

209

County Land Preservation and Use Commissions (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance creates Land Preservation and Use Commissions in each county to provide for the orderly use and development of land, to protect agricultural land from nonagricultural development,...

210

Charles County - Agricultural Preservation Districts - Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Siting & Permitting Charles County provides that producing energy "from solar, wind, biomass, and farm waste and residue crops" is a permitted agricultural use in areas...

211

Clallam County PUD- Residential Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Clallam County PUD offers a variety of rebates for residential customers for energy efficiency improvements. Eligible measures and incentives include window upgrades, insulation, air and duct...

212

Biostratigraphy of Jonah quadrangle, Williamson County, Texas.  

E-Print Network (OSTI)

??This paper presents a zonation of the Austin chalk and the Burditt marl, divisions of the Austin group in the Jonah quadrangle, Williamson County, Texas. (more)

Marks, Edward, 1926-

2011-01-01T23:59:59.000Z

213

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

214

Geothermal development plan: Pinal county  

DOE Green Energy (OSTI)

Wells drilled in the county provide evidence of geothermal energy sufficient for process heat and space heating and cooling applications. Annual energy consumption was estimated for industries whose process heat requirements are less than 105/sup 0/C (221/sup 0/F). This information was then used to model the introduction of geothermal energy into the process heat market. Also, agriculture and agribusiness industries were identified. Many of these are located on or near a geothermal resource and might be able to utilize geothermal energy in their operations.

White, D.H.

1981-01-01T23:59:59.000Z

215

Geothermal development plan: Pinal County  

SciTech Connect

The Pinal County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified three suspected geothermal resource areas with potential 70/sup 0/C (158/sup 0/F) temperatures. In addition, one geothermal test well near Coolidge encountered bottom hole temperatures of 120/sup 0/C (248/sup 0/F) at a depth of 2440 m (8005 ft) and produced 18.3 l/sec (290 gpm). Geothermal resources are found to occur near population centers where average growth rates of 1.5% to 2% per year are expected over the next 40 years. Mining, agriculture and manufacturing are all important sectors of the regional economy and provide opportunities for direct utilization of geothermal energy. A regional energy use analysis includes energy use projections and regional energy price information. Agriculture accounts for 95% of the annual water consumption and predicted decreases in water availability will result in less future agricultural activity. The analysis contains a detailed section matching geothermal resources to potential industrial users. Fourteen firms in 10 industrial classes were identified as having some potential for geothermal energy use. In addition, 25 agricultural firms were identified as having some potential for geothermal use, including the prepared feeds industry.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

216

Introduction to the polymorphic tracking code Fibre bundles, polymorphic Taylor types and "Exact tracking"  

E-Print Network (OSTI)

This is a description of the basic ideas behind the ``Polymorphic Tracking Code'' or PTC. PTC is truly a ``kick code'' or symplectic integrator in the tradition of TRACYII, SixTrack, and TEAPOT. However it separates correctly the mathematical atlas of charts and the magnets at a structural level by implementing a ``restricted fibre bundle.'' The resulting structures allow backward propagation and recirculation, something not possible in standard tracking codes. Also PTC is polymorphic in handling real (single, double and even quadruple precision) and Taylor series. Therefore it has all the tools associated to the TPSA packages: Lie methods, Normal Forms, Cosy-Infinity capabilities, beam envelopes for radiation, etc., as well as parameter dependence on-the-fly. However PTC is an integrator, and as such, one must, generally, adhere to the Talman ``exactness'' view of modelling. Incidentally, it supports exact sector and rectangular bends as well. Of course, one can certainly bypass its integrator and the user i...

Schmidt, F; McIntosh, E

2002-01-01T23:59:59.000Z

217

Dynamic stabilization of Rayleigh-Taylor instability in an ablation front  

Science Conference Proceedings (OSTI)

Dynamic stabilization of Rayleigh-Taylor instability in an ablation front is studied by considering a modulation in the acceleration that consists of sequences of Dirac deltas. This allows obtaining explicit analytical expressions for the instability growth rate as well as for the boundaries of the stability region. As a general rule, it is found that it is possible to stabilize all wave numbers above a certain minimum value k{sub m}, but the requirements in the modulation amplitude and frequency become more exigent with smaller k{sub m}. The essential role of compressibility is phenomenologically addressed in order to find the constraint it imposes on the stability region. The results for some different wave forms of the acceleration modulation are also presented.

Piriz, A. R.; Di Lucchio, L.; Rodriguez Prieto, G. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain) and Instituto de Investigaciones Energeticas, 13071 Ciudad Real (Spain)

2011-01-15T23:59:59.000Z

218

Study of two tantalum Taylor impact specimens using experiments and stochastic polycrystal plasticity simulation  

SciTech Connect

We compare the experimentally obtained response of two cylindrical tantalum Taylor impact specimens. The first specimen is manufactured using a powder metallurgy (P/M) process with a random initial texture and relatively equiaxed crystals. The second is sectioned from a roundcorner square rolled (RCSR) rod with an asymmetric texture and elongated crystals. The deformed P/M specimen has an axisymmetric footprint while the deformed RCSR projectile has an eccentric footprint with distinct corners. Also, the two specimens experienced similar crystallographic texture evolution, though the RCSR specimen experienced greater plastic deformation. Our simulation predictions mimic the texture and deformation data measured from the P/M specimen. However, our RCSR specimen simulations over-predict the texture development and do not accurately predict the deformation, though the deformation prediction is improved when the texture is not allowed to evolve. We attribute this discrepancy to the elongated crystal morphology in the RCSR specimen which is not represented in our mean-field model.

Tonks, Michael R [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

219

The Dynamics of Rayleigh-Taylor Stable and Unstable Contact Discontinuities with Anisotropic Thermal Conduction  

E-Print Network (OSTI)

We study the effects of anisotropic thermal conduction along magnetic field lines on an accelerated contact discontinuity in a weakly collisional plasma. We first perform a linear stability analysis similar to that used to derive the Rayleigh-Taylor instability (RTI) dispersion relation. We find that anisotropic conduction is only important for compressible modes, as incompressible modes are isothermal. Modes grow faster in the presence of anisotropic conduction, but growth rates do not change by more than a factor of order unity. We next run fully non-linear numerical simulations of a contact discontinuity with anisotropic conduction. The non-linear evolution can be thought of as a superposition of three physical effects: temperature diffusion due to vertical conduction, the RTI, and the heat flux driven buoyancy instability (HBI). In simulations with RTI-stable contact discontinuities, the temperature discontinuity spreads due to vertical heat conduction. This occurs even for initially horizontal magnetic f...

Lecoanet, Daniel; Quataert, Eliot

2012-01-01T23:59:59.000Z

220

Non-linear Evolution of Rayleigh-Taylor Instability in a Radiation Supported Atmosphere  

E-Print Network (OSTI)

The non-linear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small scale structures are also suppressed in this case. In the non-linear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a variable Eddington tensor (VET) versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the non-linear development of RTI...

Jiang, Yan-Fei; Stone, James

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Rayleigh-Taylor Instability within Sediment Layers Due to Gas Retention: Preliminary Theory and Experiments  

SciTech Connect

In Hanford underground waste storage tanks, a typical waste configuration is settled beds of waste particles beneath liquid layers. The settled beds are typically composed of layers, and these layers can have different physical and chemical properties. One postulated configuration within the settled bed is a less-dense layer beneath a more-dense layer. The different densities can be a result of different gas retention in the layers or different degrees of settling and compaction in the layers. This configuration can experience a Rayleigh-Taylor (RT) instability where the less dense lower layer rises into the upper layer. Previous studies of gas retention and release have not considered potential buoyant motion within a settle bed of solids. The purpose of this report is to provide a review of RT instabilities, discuss predictions of RT behavior for sediment layers, and summarize preliminary experimental observations of RT instabilities in simulant experiments.

Gauglitz, Phillip A.; Wells, Beric E.; Buchmiller, William C.; Rassat, Scot D.

2013-03-21T23:59:59.000Z

222

Formation of jet-like spikes from the ablative Rayleigh-Taylor instability  

Science Conference Proceedings (OSTI)

The mechanism of jet-like spike formation from the ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating is reported. It is found that the preheating plays an essential role in the formation of the jet-like spikes. In the early stage, the preheating significantly increases the plasma density gradient, which can reduce the linear growth of ARTI and suppress its harmonics. In the middle stage, the preheating can markedly increase the vorticity convection and effectively reduce the vorticity intensity resulting in a broadened velocity shear layer near the spikes. Then the growth of ablative Kelvin-Helmholtz instability is dramatically suppressed and the ARTI remains dominant. In the late stage, nonlinear bubble acceleration further elongates the bubble-spike amplitude and eventually leads to the formation of jet-like spikes.

Wang, L. F.; Ye, W. H.; He, X. T. [HEDPS and CAPT, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Zhang, W. Y. [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiaotong University, Shanghai 200240 (China); Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, Bochum D-44780 (Germany)

2012-10-15T23:59:59.000Z

223

Dynamic Stabilization of the Ablative Rayleigh-Taylor Instability for Heavy Ion Fusion  

SciTech Connect

Dynamic stabilization of the ablative Rayleigh-Taylor instability of a heavy ion fusion target induced by a beam wobbling system is studied. Using a sharp-boundary model and Courant-Synder theory, it is shown, with an appropriately chosen modulation waveform, that the instability can be sta- bilized in certain parameter regimes. It is found that the stabilization e ect has a strong dependence on the modulation frequency and the waveform. Modulation with frequency comparable to the instability growth rate is the most e ective in terms of stabilizing the instability. A modulation with two frequency components can result in a reduction of the growth rate larger than the sum of that due to the two components when applied separately.

Hong Qin, Ronald C. Davidson and B. Grant Logan

2012-10-04T23:59:59.000Z

224

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers RECC - Residential Insulation Rebate Program Kentucky Residential Home Weatherization Commercial Weatherization Farmers RECC...

225

Richmond City County, Virginia: Energy Resources | Open Energy...  

Open Energy Info (EERE)

City County is a county in Virginia. Its FIPS County Code is 760. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Retrieved from "http:...

226

Bristol County, Rhode Island: Energy Resources | Open Energy...  

Open Energy Info (EERE)

County is a county in Rhode Island. Its FIPS County Code is 001. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in...

227

2008 Florida Youth Tobacco Survey, County Data Book  

E-Print Network (OSTI)

Tobacco Survey County Data Book Florida Department of HealthFlorida County FYTS Data Book Map 2. Percentage of FloridaFlorida County FYTS Data Book Map 3. Percentage of Florida

Florida Department of Health, Brueau of Epidemiology; Crist, Charlie; Viamonte Ros, Ana M M.D., M.P.H.

2009-01-01T23:59:59.000Z

228

Geothermal development issues: Recommendations to Deschutes County  

DOE Green Energy (OSTI)

This report discusses processes and issues related to geothermal development. It is intended to inform planners and interested individuals in Deschutes County about geothermal energy, and advise County officials as to steps that can be taken in anticipation of resource development. (ACR)

Gebhard, C.

1982-07-01T23:59:59.000Z

229

Commodity Flow Study - Clark County, Nevada, USA  

Science Conference Proceedings (OSTI)

The United States Department of Energy has designated Clark County, Nevada as an 'Affected Unit of Local Government' due to the potential for impacts by activities associated with the Yucca Mountain High Level Nuclear Waste Repository project. Urban Transit, LLC has led a project team of transportation including experts from the University of Nevada Las Vegas Transportation Research Center to conduct a hazardous materials community flow study along Clark County's rail and truck corridors. In addition, a critical infrastructure analysis has also been carried out in order to assess the potential impacts of transportation within Clark County of high level nuclear waste and spent nuclear fuel to a proposed repository 90 miles away in an adjacent county on the critical infrastructure in Clark County. These studies were designed to obtain information relating to the transportation, identification and routing of hazardous materials through Clark County. Coordinating with the United States Department of Energy, the U.S. Department of Agriculture, the U. S. Federal Highway Administration, the Nevada Department of Transportation, and various other stakeholders, these studies and future research will examine the risk factors along the entire transportation corridor within Clark County and provide a context for understanding the additional vulnerability associated with shipping spent fuel through Clark County. (authors)

Conway, S.Ph.D. [Urban Environmental Research LLC, Las Vegas, NV (United States); Navis, I. [AICP Planning Manager, Clark County Nuclear Waste Division, Department of Comprehensive Planning, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

230

Factors influencing county level household fuelwood use  

Science Conference Proceedings (OSTI)

This study explains household fuelwood consumption behavior at the county level by linking it to economic and demographic conditions in counties. Using this link, counties are identified where potential fuelwood use problems and benefits are greatest. A probit equation estimates household probability of wood use (percent woodburners in a county heating degree days, household income, nonwood fuel price, fuelwood price, percent forest land, population density, and fraction of households using various types of heating equipment. A linear-in-parameters equation estimates average wood consumed by a woodburner based on county heating degree days, household income, percent forest land, and price of nonwood fuel divided by fuelwood price. Parameters are estimated using fuelwood use data for individual households from a 1908-81 nationwide survey. The probit equation predicts percentage of wood burns well over a wide range of county conditions. The wood consumption equation overpredicts for counties with high income and high population density (over 6000 persons per square mile). The model shows average woodburning per household over all households decreases with increasing population density, and the influence of county economic characteristics varies with density.

Skog, K.E.

1986-01-01T23:59:59.000Z

231

EA-1852: Cloud County Community College Wind Energy Project, Cloud County,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Cloud County Community College Wind Energy Project, Cloud 2: Cloud County Community College Wind Energy Project, Cloud County, Kansas EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas Summary This EA evaluates the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposes to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download January 10, 2011 EA-1852: Notice of Scoping Cloud County Community College Wind Energy Technology Project, Cloud

232

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Imperial County geothermal development annual meeting: summary  

DOE Green Energy (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

234

Environmental assessment: Deaf Smith County site, Texas  

SciTech Connect

In February 1983, the US Department of Energy (DOE) identified a location in Deaf Smith County, Texas, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Deaf Smith County site and the eight other potentially sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Deaf Smith County site is in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Deaf Smith County site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Deaf Smith County site as one of the five sites suitable for characterization. 591 refs., 147 figs., 173 tabs.

1986-05-01T23:59:59.000Z

235

SHASTA COUNTY The Shasta County Jail is a 115,035 square-foot facility located in Redding. Built in  

E-Print Network (OSTI)

SHASTA COUNTY The Shasta County Jail is a 115,035 square-foot facility located in Redding. Built in 1984, this facility has an 11-story jail wing attached to a two-story County administrative wing

236

Grundy County Rural Elec Coop | Open Energy Information  

Open Energy Info (EERE)

County Rural Elec Coop Jump to: navigation, search Name Grundy County Rural Elec Coop Place Iowa Utility Id 7864 Utility Location Yes Ownership C NERC Location MRO Activity...

237

Funding for state, city, and county governments in the state...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for state, city, and county governments in the state includes: Funding for state, city, and county governments in the state includes: A chart detailling the funding for...

238

RECIPIENT:Utah County STATE: UT PROJECT TITLE:  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah County STATE: UT PROJECT TITLE: EECBG - Utah County Energy Efficiency Retrofits Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm...

239

Florida County Helping Homeowners Save Energy and Money | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida County Helping Homeowners Save Energy and Money Florida County Helping Homeowners Save Energy and Money March 9, 2011 - 1:23pm Addthis Jennifer Holman Project Officer,...

240

Elko County School District District Heating Low Temperature...  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson Vascular...

242

Pages that link to "Camas County, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Camas County, Idaho" Camas County, Idaho Jump to: navigation, search What links here Page: Camas...

243

Pages that link to "Bonner County, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Bonner County, Idaho" Bonner County, Idaho Jump to: navigation, search What links here Page: Bonner...

244

Pages that link to "Clearwater County, Idaho" | Open Energy Informatio...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Pages that link to "Clearwater County, Idaho" Clearwater County, Idaho Jump to: navigation, search What links here Page:...

245

Pages that link to "Clark County, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Clark County, Idaho" Clark County, Idaho Jump to: navigation, search What links here Page: Clark...

246

Wabash County REMC - Residential Geothermal and Air-source Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Wabash County REMC - Residential Geothermal...

247

White County REMC - Residential Geothermal Heat Pump Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings White County REMC - Residential Geothermal Heat Pump Rebate Program White County REMC - Residential Geothermal Heat Pump Rebate...

248

Baltimore County - Property Tax Credit for Solar and Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Baltimore County - Property Tax Credit for Solar and Geothermal Devices (Maryland) Baltimore County - Property Tax Credit for Solar and Geothermal...

249

Anne Arundel County - Solar and Geothermal Equipment Property...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Anne Arundel County - Solar and Geothermal Equipment Property Tax Credit Anne Arundel County - Solar and Geothermal Equipment...

250

Anne Arundel County - Solar and Geothermal Equipment Property...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Anne Arundel County - Solar and Geothermal Equipment Property Tax Credits Anne Arundel County - Solar and Geothermal Equipment...

251

Benton County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

252

Benton County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

253

Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

254

Benton County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

255

Broward County - Green Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Broward County - Green Building Policy Broward County - Green Building Policy Eligibility Local Government Savings For Heating & Cooling Home Weatherization Construction Commercial...

256

A Design-Builder's Perspective: Anaerobic Digestion, Forest County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi...

257

EA-1960: Townsite Solar Project Transmission Line, Clark County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Townsite Solar Project Transmission Line, Clark County, Nevada EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada SUMMARY The Bureau of Land Management,...

258

Luce County, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Subtype A. Places in Luce County, Michigan Newberry, Michigan Retrieved from "http:en.openei.orgwindex.php?titleLuceCounty,Michiga...

259

Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it Better: Greensburg, Kansas, Kiowa County Memorial Hospital (Brochure) (Revised) Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial Hospital (Brochure) (Revised)...

260

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Broward County - Green Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Broward County - Green Building Policy Broward County - Green Building Policy Eligibility Local Government...

262

Carroll County - Green Building Property Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Carroll County - Green Building Property Tax Credit Carroll County - Green Building Property Tax Credit...

263

Antu County Hengxin Hydro Power Development Co Ltd | Open Energy...  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Antu County Hengxin Hydro Power Development Co Ltd Jump to: navigation, search Name Antu County Hengxin Hydro...

264

Cutting Electricity Costs in Miami-Dade County, Florida | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Cutting Electricity Costs in Miami-Dade County, Florida Cutting Electricity Costs in Miami-Dade County,...

265

Boulder County - EnergySmart Residential Energy Efficiency Loan...  

Open Energy Info (EERE)

to Summary by DSIRE 04302012 References DSIRE1 Summary Boulder County homeowners participating in the county's EnergySmart program may be eligible for microloans of...

266

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

Naval Base Ventura County Standby Generator OptimizationC&H Engineering performed a standby generator optimizationOn Naval Base Ventura County Standby Generator Optimization

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

267

EA-1969: Clark Fork River Delta Restoration Project, Bonner County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho Summary Bonneville Power...

268

EA-1097: Solid waste Disposal - Nevada Test Site, Nye County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Solid waste Disposal - Nevada Test Site, Nye County, Nevada EA-1097: Solid waste Disposal - Nevada Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental...

269

Boulder County - EnergySmart Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boulder County - EnergySmart Commercial Energy Efficiency Rebate Program (Colorado) Boulder County - EnergySmart Commercial Energy Efficiency Rebate Program (Colorado) Eligibility...

270

Harris County - Green Building Tax Abatement for New Commercial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harris County - Green Building Tax Abatement for New Commercial Construction (Texas) Harris County - Green Building Tax Abatement for New Commercial Construction (Texas) < Back...

271

Better Buildings Neighborhood Program: St. Lucie County, Florida  

NLE Websites -- All DOE Office Websites (Extended Search)

*Progress is reported through December 2012. Learn more about earlier program milestones Solar and Energy Loan Fund Location: St. Lucie County; Brevard County; City of Fellsmere;...

272

EA-1955: Campbell County Wind Project, Pollock, South Dakota...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EA-1955: Campbell County Wind Project, Pollock, South Dakota EA-1955: Campbell County Wind Project, Pollock, South Dakota SUMMARY DOE's...

273

EIS-0376: White Wind Farm Brookings County, South Dakota | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EIS-0376: White Wind Farm Brookings County, South Dakota EIS-0376: White Wind Farm Brookings County, South Dakota Summary This EIS...

274

Pages that link to "Codington County, South Dakota" | Open Energy...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Codington County, South Dakota" Codington County, South Dakota Jump to: navigation, search What links...

275

Los Alamos County Completes Abiquiu Hydropower Project, Bringing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean...

276

EA-1812: Haxtun Wind Energy Project, Logan and Phillips County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Haxtun Wind Energy Project, Logan and Phillips County, Colorado EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado Summary This EA evaluates the...

277

Costilla County Biodiesel Pilot Project  

DOE Green Energy (OSTI)

The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

Doon, Ben; Quintana, Dan

2011-08-25T23:59:59.000Z

278

One Grant, Nine Energy Efficiency Programs for Illinois County | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Grant, Nine Energy Efficiency Programs for Illinois County One Grant, Nine Energy Efficiency Programs for Illinois County One Grant, Nine Energy Efficiency Programs for Illinois County August 3, 2010 - 12:32pm Addthis The Kane County Judicial Center is one building that received retrofits to save the county energy with a Recovery Act-funded block grant. | Photo courtesy of Kane County The Kane County Judicial Center is one building that received retrofits to save the county energy with a Recovery Act-funded block grant. | Photo courtesy of Kane County Joshua DeLung What are the key facts? $2.2 million Recovery Act grant awarded to Kane County, Illinios. $150,000 estimated annual savings from retrofits at county buildings 424,000 square feet of building to be retrofitted West of Chicago, one Illinois municipality is putting its $2.2 million

279

One Grant, Nine Energy Efficiency Programs for Illinois County | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Grant, Nine Energy Efficiency Programs for Illinois County One Grant, Nine Energy Efficiency Programs for Illinois County One Grant, Nine Energy Efficiency Programs for Illinois County August 3, 2010 - 12:32pm Addthis The Kane County Judicial Center is one building that received retrofits to save the county energy with a Recovery Act-funded block grant. | Photo courtesy of Kane County The Kane County Judicial Center is one building that received retrofits to save the county energy with a Recovery Act-funded block grant. | Photo courtesy of Kane County Joshua DeLung What are the key facts? $2.2 million Recovery Act grant awarded to Kane County, Illinios. $150,000 estimated annual savings from retrofits at county buildings 424,000 square feet of building to be retrofitted West of Chicago, one Illinois municipality is putting its $2.2 million

280

Category:County Climate Zones | Open Energy Information  

Open Energy Info (EERE)

County Climate Zones County Climate Zones Jump to: navigation, search This category contains county climate zone information in the United States of America. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "County Climate Zones" The following 200 pages are in this category, out of 3,141 total. (previous 200) (next 200) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone Accomack County, Virginia ASHRAE 169-2006 Climate Zone Ada County, Idaho ASHRAE 169-2006 Climate Zone Adair County, Iowa ASHRAE 169-2006 Climate Zone Adair County, Kentucky ASHRAE 169-2006 Climate Zone Adair County, Missouri ASHRAE 169-2006 Climate Zone Adair County, Oklahoma ASHRAE 169-2006 Climate Zone

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Michigan County's Energy Upgrades Back on Track  

Energy.gov (U.S. Department of Energy (DOE))

Qhen officials in Michigans Shiawassee County were faced with fiscal challenges, they had no choice but to put off recommendations from a 2007 report highlighting energy problems at county government buildings. But after receiving an Energy Efficiency and Conservation Block Grant from the U.S. Department of Energy (DOE) worth $302,000 from the American Recovery and Reinvestment Act and $900,000 in low-interest bonds with the government, the county is giving the report a second look.

282

Experimental Investigation of the Effect of Initial Conditions on Rayleigh-Taylor Instability  

E-Print Network (OSTI)

An experimental study of the effect of initial conditions on the development of Rayleigh Taylor Instabilities (RTI) at low Atwood numbers (order of 10-4) was performed in the water channel facility at TAMU. Initial conditions of the flow were generated using a controllable, highly reliable Servo motor. The uniqueness of the study is the systems capability of generating the required initial conditions precisely as compared to the previous endeavors. Backlit photography was used for imaging and ensemble averaging of the images was performed to study mixing width characteristics in different regimes of evolution of Rayleigh-Taylor Instability (RTI). High-speed imaging of the flows was performed to provide insights into the growth of bubble and spikes in the linear and non-linear regime of instability development. RTI are observed in astrophysics, geophysics and in many instances in nature. The vital role of RTI in the feasibility and efficiency of the Inertial Confinement Fusion (ICF) experiment warrants a comprehensive study of the effect of mixing characteristics of RTI and its dependence on defining parameters. With this broader objective in perspective, the objectives of this present investigation were mainly threefold: First was the validation of the novel setup of the Water channel system. Towards this objective, validation of Servo motor, splitter plate thickness effects, density and temperature measurements and single-mode experiments were performed. The second objective was to study the mixing and growth characteristics of binary and multi-mode initial perturbations seeking an explanation of behavior of the resultant flow structures by performing the first ever set of such highly controlled experiments. The first-ever set of experiments with highly controlled multi-mode initial conditions was performed. The final objective of this study was to measure and compare the bubble and spike velocities with single-mode initial conditions with existing analytical models. The data derived from these experiments would qualitatively and quantitatively enhance the understanding of dependence of mixing width on parametric initial conditions. The knowledge would contribute towards a generalized theory for RTI mixing with specified dependence on various parameters, which has a wide range of applications. The system setup was validated to provide a reliable platform for the novel multi-modal experiments to be performed in the future. It was observed that the ensemble averaged mixing width of the binary system does not vary significantly with the phase-difference between the modes of a binary mode initial condition experiment, whereas it varies with the amplitudes of the component modes. In the exponential and non-linear regimes of evolution, growth rates of multi-mode perturbations were found to be higher than the component modes, whereas saturation growth rates correspond to the dominant wavelength. Quadratic saturation growth rate constants, alpha were found to be about 0.07 0.01 for binary and multi modes whereas single-mode data measured alpha about 0.06 0.01. High-speed imaging was performed to measure bubble and spike amplitudes to obtain velocities and growth rates. It was concluded that higher temporal and spatial resolution was required for accurate measurement. The knowledge gained from the above study will facilitate a better understanding of the physics underlying Rayleigh-Taylor instability. The results of this study will also help validating numerical models for simulation of this instability, thereby providing predictive capability for more complex configurations.

Kuchibhatla, Sarat Chandra

2010-08-01T23:59:59.000Z

283

RAYLEIGH-TAYLOR STRENGTH EXPERIMENTS OF THE PRESSURE-INDUCED alpha->epsilon->alpha' PHASE TRANSITION IN IRON  

SciTech Connect

We present here the first dynamic Rayleigh-Taylor (RT) strength measurement of a material undergoing solid-solid phase transition. Iron is quasi-isentropically driven across the pressure-induced bcc ({alpha}-Fe) {yields} hcp ({var_epsilon}-Fe) phase transition and the dynamic strength of the {alpha}, {var_epsilon} and reverted {alpha}{prime} phases have been determined via proton radiography of the resulting Rayleigh-Taylor unstable interface between the iron target and high-explosive products. Simultaneous velocimetry measurements of the iron free surface yield the phase transition dynamics and, in conjunction with detailed hydrodynamic simulations, allow for determination of the strength of the distinct phases of iron. Forward analysis of the experiment via hydrodynamic simulations reveals significant strength enhancement of the dynamically-generated {var_epsilon}-Fe and reverted {alpha}{prime}-Fe, comparable in magnitude to the strength of austenitic stainless steels.

Belof, J L; Cavallo, R M; Olson, R T; King, R S; Gray, G T; Holtkamp, D B; Chen, S R; Rudd, R E; Barton, N R; Arsenlis, A; Remington, B A; Park, H; Prisbrey, S T; Vitello, P A; Bazan, G; Mikaelian, K O; Comley, A J; Maddox, B R; May, M J

2011-08-10T23:59:59.000Z

284

Montgomery County to the Rescue! - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Montgomery County to the Rescue! Montgomery County to the Rescue! Summary Scenario Student Pages Index of Projects Subject: Investigating Ethnic/Cultural Diversity in the Community Grade Level: 2 Abstract: The hometown of the Power Rangers, popular TV and movie action characters, has been destroyed by evil forces. The Rangers post an Internet plea for help in locating a new home base that is ethnically and culturally diverse. In order to convince the Rangers to adopt Montgomery County as their new home base, students must find out specific facts about different ethnic and cultural groups in the community, and present these facts in a persuasive case to the Rangers. Students use the Internet and e-mail to obtain current facts about Montgomery County, and send their invitation back to the Rangers.

285

Los Alamos County | Open Energy Information  

Open Energy Info (EERE)

Alamos County Alamos County Place New Mexico Utility Id 11204 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service - Metered Commercial TOU Lighting Area Lighting Service - Metered County TOU Lighting Area Lighting Service - Metered Large Commercial Lighting Area Lighting Service - Metered Large County Lighting

286

Winona County Wind | Open Energy Information  

Open Energy Info (EERE)

Winona County Wind Winona County Wind Jump to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind Developer Juhl Wind Energy Purchaser NSP/Xcel Energy Location 3 miles northwest of Altura MN Coordinates 44.101281°, -91.975715° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.101281,"lon":-91.975715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Story County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

County Wind Farm County Wind Farm Facility Story County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location Story and Hardin Counties IA Coordinates 42.301351°, -93.45156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.301351,"lon":-93.45156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Recipient: County of San Bernadino,CA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recipient: County of San Bernadino,CA Recipient: County of San Bernadino,CA Award #: EE 000 0903 ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Greenhouse Gas Emissions Reduction Plan Environmental Impact Report (EECS) A9, All None - this NEPA determination is for the report only. Solar Electric System for Rancho Cucamonga County Office Building A9, All Waste Stream Clause Historic Preservation Clause Engineering Clause **This NEPA determination is limited to a roof-mounted system only. County Heating Ventilation and Air-Condition (HVAC) Retrofit Program B5.1 Waste Stream Clause Historic Preservation Clause Engineering clause Solar Electric System for High Desert Government Center

289

Fannin County Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Fannin County Electric Coop Fannin County Electric Coop Jump to: navigation, search Name Fannin County Electric Coop Place Texas Utility Id 6173 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Security Lighting-175 Watt Mercury Vapor Lighting Small Commercial Commercial Average Rates Residential: $0.1210/kWh Commercial: $0.1010/kWh Industrial: $0.1320/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Fannin_County_Electric_Coop&oldid=410679

290

County Employment Of West Virginia Higher  

E-Print Network (OSTI)

.................................................................................................1 Results By Region, County, And Summary Degree ................................................3 I: Detailed Description Of Employment Data .........................................26 Appendix II: List of Institutions, Degrees, And Areas Of Concentration................28 #12;List Of Tables 1

Mohaghegh, Shahab

291

Better Buildings Neighborhood Program: Eagle County, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

VA WA | WI Eagle County, Colorado Three Resort Communities in Colorado Get Smart With Energy Upgrades Photo of a ski lodge with snow surrounding it. An image of a map of the...

292

Western Baldwin County, AL Grid Interconnection Project  

SciTech Connect

The Objective of this Project was to provide an additional supply of electricity to the affected portions of Baldwin County, AL through the purchase, installation, and operation of certain substation equipment.

Thomas DeBell

2011-09-30T23:59:59.000Z

293

Quaternary faulting of Deschutes County, Oregon.  

E-Print Network (OSTI)

??Sixty-one normal faults were identified in a 53-kilometer long by 21-kilometer wide northwest-trending zone in central and northern Deschutes County, Oregon. The faults are within (more)

Wellik, John M.

2008-01-01T23:59:59.000Z

294

Environmental assessment: Deaf Smith County site, Texas  

Science Conference Proceedings (OSTI)

In February 1983, the US Department of Energy (DOE) identified a location in Deaf Smith County, Texas, as one of the nine potentially acceptable sites for mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Deaf Smith County site and eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Deaf Smith County site is in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Deaf Smith County site is not disqualified under the guidelines.

Not Available

1986-05-01T23:59:59.000Z

295

Marin County- Wood Stove Replacement Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The County of Marin has created a rebate program to encourage homeowners to remove or replace non-EPA certified wood-burning heaters (wood stoves and fireplace inserts) with cleaner burning stoves...

296

Energy Efficient County Buildings Realizing Money  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient County Buildings Realizing Money and Energy-Saving Opportunities About IBTS IBTS is a 501(c)(3) non-profit organization that helps governments provide high-quality,...

297

County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for a double circuit upgrade along the existing Empire-EDS 11S-kV transmission line, Pinal County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION: Amendment No.2 A....

298

Inter-County Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Inter-County Energy Cooperative offers loans for members that install Electric Thermal Storage units, geothermal and air-to-air heat pump heating and cooling equipment in their homes. Loans are...

299

Geothermal development plan: northern Arizona counties  

Science Conference Proceedings (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

300

County Solid Waste Control Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this chapter is to authorize a cooperative effort by counties, public agencies, and other persons for the safe and economical collection, transportation, and disposal of solid waste...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Environmental assessment, Deaf Smith County site, Texas  

SciTech Connect

The Nuclear Waste Policy Act of 1982 (42 USC sections 10101-10226) requires the environmental assessment of a proposed site to include a statement of the basis for nominating a site as suitable for characterization. Volume 2 provides a detailed statement evaluating the site suitability of the Deaf Smith County Site under DOE siting guidelines, as well as a comparison of the Deaf Smith County Site to the other sites under consideration. The evaluation of the Deaf Smith County Site is based on the impacts associated with the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The second part of this document compares the Deaf Smith County Site to Davis Canyon, Hanford, Richton Dome and Yucca Mountain. This comparison is required under DOE guidelines and is not intended to directly support subsequent recommendation of three sites for characterization as candidate sites. 259 refs., 29 figs., 66 refs. (MHB)

Not Available

1986-05-01T23:59:59.000Z

302

Clark County - Energy Conservation Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark County - Energy Conservation Code Clark County - Energy Conservation Code Clark County - Energy Conservation Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Nevada Program Type Building Energy Code Provider Clark County In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings located within Clark County. The code was developed by the Southern Nevada Building Officials' International Energy Conservation Committee, comprised of seven municipalities throughout Nevada (including Clark County, Las Vegas, North

303

Better Buildings Neighborhood Program: Fayette County Training Makes All  

NLE Websites -- All DOE Office Websites (Extended Search)

Fayette County Fayette County Training Makes All the Difference for Pennsylvania Business Owner to someone by E-mail Share Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Facebook Tweet about Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Twitter Bookmark Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Google Bookmark Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Delicious Rank Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Digg

304

Better Buildings Neighborhood Program: Santa Barbara County, California  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Barbara Santa Barbara County, California to someone by E-mail Share Better Buildings Neighborhood Program: Santa Barbara County, California on Facebook Tweet about Better Buildings Neighborhood Program: Santa Barbara County, California on Twitter Bookmark Better Buildings Neighborhood Program: Santa Barbara County, California on Google Bookmark Better Buildings Neighborhood Program: Santa Barbara County, California on Delicious Rank Better Buildings Neighborhood Program: Santa Barbara County, California on Digg Find More places to share Better Buildings Neighborhood Program: Santa Barbara County, California on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA

305

Linn County Rural Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linn County Rural Electric Cooperative - Residential Energy Linn County Rural Electric Cooperative - Residential Energy Efficiency Rebate Program Linn County Rural Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Varies by technology Provider Linn County Rural Electric Cooperative Association Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County

306

Retrofit Savings for Brazos County  

E-Print Network (OSTI)

This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a $31,743 dollars savings, $24,650 from electricity use and $7,093 from the electric demand. These savings represent a 60.8% of the audit-estimated savings and a 93.7% of the audit-estimated savings if just the positive one were taken in account. The savings have improved somewhat from the previous report that included the billing periods for January to August 1999. The savings for the earlier period were 48.0% of the audit-estimated savings that means compared with 60.8% for the current period. In general has been an improvement in the energy saving in most of the facilities. The cases where are observed negative savings are the Minimum Security Jail, where is known that the area was increased significantly, the Arena Hall, where the modeling can be normalized due to kind of use of this facility, and the Road and bridges Shop, which looks to be operated more time in this period.

Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

2001-01-01T23:59:59.000Z

307

Geothermal development plan: Maricopa County  

DOE Green Energy (OSTI)

The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

308

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

309

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

310

The magnetic Rayleigh-Taylor instability and flute waves at the ion Larmor radius scales  

Science Conference Proceedings (OSTI)

The theory of flute waves (with arbitrary spatial scales compared to the ion Larmor radius) driven by the Rayleigh-Taylor instability (RTI) is developed. Both the kinetic and hydrodynamic models are considered. In this way we have extended the previous analysis of RTI carried out in the long wavelength limit. It is found that complete finite ion Larmor radius stabilization is absent when the ion diamagnetic velocity attains the ion gravitation drift velocity. The hydrodynamic approach allowed us to deduce a new set of nonlinear equations for flute waves with arbitrary spatial scales. It is shown that the previously deduced equations are inadequate when the wavelength becomes of the order of the ion Larmor radius. In the linear limit a Fourier transform of these equations yields the dispersion relation which in the so-called Pade approximation corresponds to the results of the fully kinetic treatment. The development of such a theory gives us enough grounds for an adequate description of the RTI stabilization by the finite ion Larmor radius effect.

Onishchenko, O. G.; Pokhotelov, O. A. [Institute of Physics of the Earth, 10 B. Gruzinskaya, 123995 Moscow (Russian Federation); Stenflo, L. [Department of Physics, Linkoeping University, SE-58183 Linkoeping (Sweden); Shukla, P. K. [RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2011-02-15T23:59:59.000Z

311

Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas  

Science Conference Proceedings (OSTI)

Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion (ICF) implosions are expected to generate magnetic fields at the gas-ice interface and at the ice-ablator interface. The focus here is on the gas-ice interface where the temperature gradient is the largest. A Hall-MHD model is used to study the magnetic field generation and growth for 2-D single-mode and multimode RTI in a stratified two-fluid plasma, the two fluids being ions and electrons. Self-generated magnetic fields are observed and these fields grow as the RTI progresses via the {nabla}n{sub e} Multiplication-Sign {nabla}T{sub e} term in the generalized Ohm's law. Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] present results of the magnetic field generation and growth, and some scaling studies in 2-dimensions. The results presented here study the mechanism behind the magnetic field generation and growth, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. Additionally, the results of Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] are described in greater detail. Additional scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, perturbation wavelength, Atwood number, and ion mass.

Srinivasan, Bhuvana; Tang Xianzhu [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

2012-08-15T23:59:59.000Z

312

Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability  

Science Conference Proceedings (OSTI)

The nonlinear evolutions of the Rayleigh-Taylor instability (RTI) with preheat is investigated by numerical simulation (NS). A new phase of the spike deceleration evolution in the nonlinear ablative RTI (ARTI) is discovered. It is found that nonlinear evolution of the RTI can be divided into the weakly nonlinear regime (WNR) and the highly nonlinear regime (HNR) according to the difference of acceleration velocities for the spike and the bubble. With respect to the classical RTI (i.e., without heat conduction), the bubble first accelerates in the WNR and then decelerates in the HNR while the spike holds acceleration in the whole nonlinear regime (NR). With regard to the ARTI, on the contrary, the spike first accelerates in the WNR and then decelerates in the HNR while the bubble keeps acceleration in the whole NR. The NS results indicate that it is the nonlinear overpressure effect at the spike tip and the vorticity accumulation inside the bubble that lead to, respectively, the spike deceleration and bubble acceleration, in the nonlinear ARTI. In addition, it is found that in the ARTI the spike saturation velocity increases with the perturbation wavelength.

Ye, W. H.; He, X. T. [Department of Physics, Zhejiang University, Hangzhou 310027 (China); CAPT, Peking University, Beijing 100871 (China) and LCP, Institute of Applied Physics Computational Mathematics, Beijing 100088 (China); Wang, L. F. [CAPT, Peking University, Beijing 100871 (China) and LCP, Institute of Applied Physics Computational Mathematics, Beijing 100088 (China); SMCE, China University of Mining and Technology, Beijing 100083 (China)

2010-12-15T23:59:59.000Z

313

Effect of shear flow and magnetic field on the Rayleigh-Taylor instability  

Science Conference Proceedings (OSTI)

The effects of sheared equilibrium flow and magnetic field on the Rayleigh-Taylor instability (RTI) are investigated and the linear growth rate is obtained analytically in the presence of a sharp interface. It is shown that the shear flow acts as a driving force and is the dominating drive when Atwood number A{sub T}, wave number k, flow shear {delta}{sub u}, and gravitational acceleration g satisfy k(1-A{sub T}{sup 2}){delta}{sub u}{sup 2}/A{sub T}>>g. As A{sub T} increases growth rate increases first and then falls down if (2k{delta}{sub u}{sup 2})RTI only occurs in the long wave region and not only the permitted band, 0

Zhang Wenlu; Wu Zhengwei; Li Ding [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

2005-04-15T23:59:59.000Z

314

Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime  

SciTech Connect

In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces the nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1lambda. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.

Wang, L. F. [LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); Ye, W. H. [LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Department of Physics, Zhejiang University, Hangzhou 310027, China and CAPT, Peking University, Beijing 100871 (China); Li, Y. J. [State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

2010-05-15T23:59:59.000Z

315

Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures  

SciTech Connect

Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure effective lattice viscosity in metal foils are presented. Stabilization of RT instability (RTI) by ablation and density gradients has been studied for decades. The regime of stabilized RTI due to material strength at high pressure is new. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at approx1 Mbar pressures, while maintaining the samples in the solid-state. Provided strong shocks are avoided, the higher the applied peak pressure, the higher the predicted foil strength, and hence, the higher the degree of strength stabilization of RTI. Several experiments were conducted where the amount of RT growth is measured by face-on radiography. The vanadium samples are probed by a laser driven He-alpha x-ray backlighter which produced 5.2 keV radiation. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

Park, Hye-Sook; Remington, B. A.; Becker, R. C.; Bernier, J. V.; Cavallo, R. M.; Lorenz, K. T.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Barton, N. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2010-05-15T23:59:59.000Z

316

Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation  

Science Conference Proceedings (OSTI)

A novel method for reducing the Rayleigh-Taylor instability (RTI) growth in inertial confinement fusion (ICF) targets is reported. It is well known that high-density compression of ICF targets is potentially prevented by the RTI. Previous studies [K. Shigemori et al., Phys. Rev. Lett. 78, 250 (1997), S. G. Glendinning et al., Phys. Rev. Lett. 78, 3318 (1997), and H. Azechi et al., Phys. Plasmas 4, 4079 (1997)] have indicated that nonlocal electron heat transport enhances the effect on the ablative stabilization of the RTI growth with long wavelength laser irradiation. Planar target experiments, using a small fraction of a long wavelength laser ({lambda}=0.53 or 1.05 {mu}m) in addition to the main drive laser ({lambda}=0.35 {mu}m), were conducted to verify the RTI reduction by inducing the effect of the nonlocal electron heat transport. The measured RTI growth rate for this ''cocktail-color'' laser irradiation was clearly reduced from that for the ''single-color'' short-wavelength laser irradiation. The experimental growth factors are in good agreement with the ablative RTI formula coupled with a one-dimensional Fokker-Planck simulation code.

Otani, K.; Shigemori, K.; Sakaiya, T.; Fujioka, S.; Sunahara, A.; Nakai, M.; Shiraga, H.; Azechi, H.; Mima, K. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan)

2007-12-15T23:59:59.000Z

317

Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas  

Science Conference Proceedings (OSTI)

In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the density gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.

Wang, L. F.; Ye, W. H.; He, X. T. [HEDPS and CAPT, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yang, B. L. [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Graduate School, China Academy of Engineering Physics, Beijing 100088 (China)

2012-07-15T23:59:59.000Z

318

Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities  

Science Conference Proceedings (OSTI)

The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively (RMI and RTI), adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the ablated shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. Specifically, our work is articulated in three main directions: study of impulsively accelerated spherical gas inhomogeneities; study of impulsively accelerated 2-D interfaces; study of a liquid interface under the action of gravity. The objectives common to all three activities are to learn some physics directly from our experiments and calculations; and to develop a database at previously untested conditions to be used to calibrate and verify some of the computational tools being developed within the RTI/RMI community at the national laboratories and the ASCI centers.

Riccardo Bonazza

2006-03-09T23:59:59.000Z

319

Magnetic field gradient effects on Rayleigh-Taylor instability with continuous magnetic field and density profiles  

SciTech Connect

In this paper, the effects of magnetic field gradient (i.e., the magnetic field transition layer effects) on the Rayleigh-Taylor instability (RTI) with continuous magnetic field and density profiles are investigated analytically. The transition layers of magnetic field and density with two different typical profiles are studied and the analytic expressions of the linear growth rate of the RTI are obtained. It is found that the magnetic field effects strongly reduce the linear growth rate of the RTI, especially when the perturbation wavelength is short. The linear growth rate of the RTI increases with the thickness of the magnetic field transition layer, especially for the case of small thickness of the magnetic field transition layer. When the magnetic field transition layer width is long enough, the linear growth rate of the RTI can be saturated. Thus when one increases the width of the magnetic field transition layer, the linear growth rate of the RTI increases only in a certain range, which depends on the magnetic field strength. The numerical results are compared with the analytic linear growth rates and they agree well with each other.

Yang, B. L. [Graduate School, China Academy of Engineering Physics, Beijing 100088 (China); Wang, L. F.; Ye, W. H. [HEDPS and CAPT, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Xue, C. [LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

2011-07-15T23:59:59.000Z

320

Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability  

Science Conference Proceedings (OSTI)

We report nonlinear solutions for a system of conservation laws describing the dynamics of the large-scale coherent structure of bubbles and spikes in the Rayleigh-Taylor instability (RTI) for fluids with a finite density ratio. Three-dimensional flows are considered with general type of symmetry in the plane normal to the direction of gravity. The nonlocal properties of the interface evolution are accounted for on the basis of group theory. It is shown that isotropic coherent structures are stable. For anisotropic structures, secondary instabilities develop with the growth rate determined by the density ratio. For stable structures, the curvature and velocity of the nonlinear bubble have nontrivial dependencies on the density ratio, yet their mutual dependence on one another has an invariant form independent of the density ratio. The process of bubble merge is not considered. Based on the obtained results we argue that the large-scale coherent dynamics in RTI has a multiscale character and is governed by two length scales: the period of the coherent structure and the bubble (spike) position.

Abarzhi, S.I. [FLASH, University of Chicago, Chicago, Illinois (United States); Center for Turbulence Research, Stanford University, Stanford, California (United States); Nishihara, K. [Institute for Laser Engineering, Osaka University, Osaka (Japan); Rosner, R. [FLASH, University of Chicago, Chicago, Illinois (United States)

2006-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wolter-like high resolution x-ray imaging microscope for Rayleigh Taylor instabilities studies  

SciTech Connect

In the context of the inertial confinement fusion, experiments have been carried out on the Phebus laser facility to study the Rayleigh-Taylor instabilities (RTIs) at the ablation front. Premodulated brominated plastic targets (25 {mu}m thick) with a modulation wavelength between 12 and 50 {mu}m were accelerated with a temporally shaped soft x-ray pulse emitted from a hohlraum with a maximum radiation temperature of about 115 eV. The RTI growth was measured by face-on radiography using a microscope coupled with an x-ray streak camera, which has spatial and temporal resolutions of about 5 {mu}m and 50 ps, respectively. The acceleration was derived from side-on velocity measurements. The microscope we have developed is a Wolter-like microscope which consists of two toroiedal mirrors. We will present the experimental and theoretical potentialities of this microscope: characterization with an x-ray generator and plasma laser x-ray source (Phebus facility) for two-dimensional (2D) and 1D time-resolved imaging studies. Spatial resolution of about 4 {mu}m was achieved in the 1-5 keV range. The Wolter-like constitutes an interesting device for laser plasma diagnostics and will be very useful in the Laser Megajoules experiments conducted with more powerful lasers.

Troussel, Ph.; Meyer, B.; Reverdin, R.; Angelier, B.; Lidove, G.; Salvatore, P.; Richard, A. [Commissariat a l'Energie Atomique, DAM-Ile de France, BP 12, 91680 Bruyeres-les-Chatel (France); Commissariat a l'Energie Atomique, Saclay 91191 (France); Commissariat a l'Energie Atomique, CESTA, BP2, 33114 Le Barp (France)

2005-06-15T23:59:59.000Z

322

Forced MHD turbulence in three dimensions using Taylor-Green symmetries  

E-Print Network (OSTI)

We examine the scaling laws of MHD turbulence for three different types of forcing functions and imposing at all times the four-fold symmetries of the Taylor-Green (TG) vortex generalized to MHD; no uniform magnetic field is present and the magnetic Prandtl number is equal to unity. We also include a forcing in the induction equation, and we take the three configurations studied in the decaying case in [E. Lee et al. Phys. Rev.E {\\bf 81}, 016318 (2010)]. To that effect, we employ direct numerical simulations up to an equivalent resolution of $2048^3$ grid points. We find that, similarly to the case when the forcing is absent, different spectral indices for the total energy spectrum emerge, corresponding to either a Kolmogorov law, an Iroshnikov-Kraichnan law that arises from the interactions of turbulent eddies and Alfv\\'en waves, or to weak turbulence when the large-scale magnetic field is strong. We also examine the inertial range dynamics in terms of the ratios of kinetic to magnetic energy, and of the turn-over time to the Alfv\\'en time, and analyze the temporal variations of these quasi-equilibria.

G. Krstulovic; M. E. Brachet; A. Pouquet

2012-12-31T23:59:59.000Z

323

Dissipative Taylor-Couette flows under the influence of helical magnetic fields  

E-Print Network (OSTI)

The linear stability of MHD Taylor-Couette flows in axially unbounded cylinders is considered, for magnetic Prandtl number unity. Magnetic fields varying from purely axial to purely azimuthal are imposed, with a general helical field parameterized by \\beta=B_\\phi/B_z. We map out the transition from the standard MRI for \\beta=0 to the nonaxisymmetric Azimuthal MagnetoRotational Instability (AMRI) for \\beta\\to \\infty. For finite \\beta, positive and negative wave numbers m, corresponding to right and left spirals, are no longer identical. The transition from \\beta=0 to \\beta\\to\\infty includes all the possible forms of MRI with axisymmetric and nonaxisymmetric modes. For the nonaxisymmetric modes, the most unstable mode spirals in the opposite direction to the background field. The standard (\\beta=0) MRI is axisymmetric for weak fields (including the instability with the lowest Reynolds number) but is nonaxisymmetric for stronger fields. If the azimuthal field is due in part to an axial current flowing through th...

Ruediger, G; Schultz, M; Hollerbach, R

2010-01-01T23:59:59.000Z

324

Effect of Initial Conditions on Compressible Rayleigh-Taylor Instability and Transition to Turbulence  

Science Conference Proceedings (OSTI)

Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, we present the first results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility. Using the multiphysics, AMR, higher order Godunov Eulerian hydrocode, Raptor, we consider the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types. We show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. The initial conditions are shown to have a strong affect on the time to transition to the quasi-self-similar regime.

Miles, A R; Edwards, M; Greenough, J A

2004-01-07T23:59:59.000Z

325

Bubble merger model for the nonlinear Rayleigh-Taylor instability driven by a strong blast wave  

Science Conference Proceedings (OSTI)

A bubble merger model is presented for the nonlinear evolution of the Rayleigh-Taylor instability driven by a strong blast wave. Single bubble motion is determined by an extension of previous buoyancy-drag models extended to the blast wave driven case, and a simple bubble merger law in the spirit of the Sharp-Wheeler model allows for the generation of larger scales. The blast wave driven case differs in several respects from the classical case of incompressible fluids in a uniform gravitational field. Because of material decompression in the rarefaction behind the blast front, the asymptotic bubble velocity and the merger time depend on time as well as the transverse scale and the drive. For planar blast waves, this precludes the emergence of a self-similar regime independent of the initial conditions. With higher-dimensional blast waves, divergence restores the properties necessary for the establishment of the self-similar state, but its establishment requires a very high initial characteristic mode number and a high Mach number for the incident blast wave.

Miles, A R

2004-03-18T23:59:59.000Z

326

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 24150 of 28,905 results. 41 - 24150 of 28,905 results. Rebate Mansfield Municipal Electric Department- Residential Energy Efficiency Rebate Program Mansfield Municipal Electric Department encourages energy efficiency through the ENERGY STAR Appliance Rebate Incentive Program. Cash rebates are offered for ENERGY STAR central air conditioners,... http://energy.gov/savings/mansfield-municipal-electric-department-residential-energy-efficiency-rebate-program Rebate Meade County RECC- Residential Rebate Program Meade County RECC offers rebates to residential members who install energy-efficient systems and equipment. New homebuilders can also access rebates for installing energy-efficient equipment... http://energy.gov/savings/meade-county-recc-residential-rebate-program Rebate Minnesota Power- Residential New Construction Rebate Program

327

A Michigan County Unearths Savings with Geothermal Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy January 22, 2013 - 9:55am Addthis Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What are the key facts? Kent County Correctional Facility installed a 96-well geothermal system to help reduce its energy consumption. The new heating and cooling system is expected to save the county an

328

Category:Eagle County, CO | Open Energy Information  

Open Energy Info (EERE)

Eagle County, CO Eagle County, CO Jump to: navigation, search Go Back to PV Economics By Location Media in category "Eagle County, CO" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Eagle County CO Public Service Co of Colorado.png SVFullServiceRestauran... 63 KB SVMidriseApartment Eagle County CO Public Service Co of Colorado.png SVMidriseApartment Eag... 67 KB SVQuickServiceRestaurant Eagle County CO Public Service Co of Colorado.png SVQuickServiceRestaura... 63 KB SVSecondarySchool Eagle County CO Public Service Co of Colorado.png SVSecondarySchool Eagl... 68 KB SVStandAloneRetail Eagle County CO Public Service Co of Colorado.png SVStandAloneRetail Eag... 67 KB SVHospital Eagle County CO Public Service Co of Colorado.png SVHospital Eagle Count...

329

A Michigan County Unearths Savings with Geothermal Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy January 22, 2013 - 9:55am Addthis Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What are the key facts? Kent County Correctional Facility installed a 96-well geothermal system to help reduce its energy consumption. The new heating and cooling system is expected to save the county an

330

Gray County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Gray County Wind Farm Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Aquila Location Gray County KS Coordinates 37.5855°, -100.384° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5855,"lon":-100.384,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Baraga County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baraga County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baraga County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

332

Arthur County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Arthur County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arthur County, Nebraska...

333

Bee County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Bee County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bee County, Texas...

334

Berrien County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Berrien County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berrien County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

335

Barbour County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barbour County, Alabama ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, Alabama ASHRAE Standard ASHRAE 169-2006 Climate Zone...

336

Banner County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Banner County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Banner County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

337

Amelia County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Amelia County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Amelia County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

338

Andrew County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Andrew County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Andrew County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

339

Ashley County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Ashley County, Arkansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashley County, Arkansas...

340

Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aroostook County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aroostook County, Maine ASHRAE Standard ASHRAE 169-2006 Climate Zone...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Bates County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bates County, Missouri...

342

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baldwin County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

343

Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Adams County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Ohio ASHRAE...

344

Alpena County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alpena County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alpena County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

345

Alcona County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alcona County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alcona County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

346

Belmont County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Belmont County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belmont County, Ohio...

347

Armstrong County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Armstrong County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Armstrong County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

348

Atchison County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Atchison County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atchison County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

349

Barnes County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Barnes County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnes County, North...

350

Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Addison County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Addison County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate Zone...

351

Antrim County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Antrim County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Antrim County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

352

Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North...

353

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anoka County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

354

Alachua County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alachua County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alachua County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone...

355

Barton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barton County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barton County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

356

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaver County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

357

COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT COMMENT BY ESMERALDA COUNTY, NEVADA CONCERNING THE CONTINUATION...

358

Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime  

SciTech Connect

The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model {kappa}(T)={kappa}{sub SH}[1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where {kappa}{sub SH} is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

Wang, L. F. [SMCE, China University of Mining and Technology, Beijing 100083 (China); CAPT, Peking University, Beijing 100871 (China) and LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Department of Mathematics, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, W. H.; He, X. T. [CAPT, Peking University, Beijing 100871 (China) and LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Sheng, Z. M. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Don, Wai-Sun [Department of Mathematics, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Li, Y. J. [SMCE, China University of Mining and Technology, Beijing 100083 (China)

2010-12-15T23:59:59.000Z

359

Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability  

Science Conference Proceedings (OSTI)

Weakly nonlinear (WN) Rayleigh-Taylor instability (RTI) initiated by single-mode cosinusoidal interface and velocity perturbations is investigated analytically up to the third order. Expressions of the temporal evolutions of the amplitudes of the first three harmonics are derived. It is shown that there are coupling between interface and velocity perturbations, which plays a prominent role in the WN growth. When the 'equivalent amplitude' of the initial velocity perturbation, which is normalized by its linear growth rate, is compared to the amplitude of the initial interface perturbation, the coupling between them dominates the WN growth of the RTI. Furthermore, the RTI would be mitigated by initiating a velocity perturbation with a relative phase shift against the interface perturbation. More specifically, when the phase shift between the interface perturbation and the velocity perturbation is {pi} and their equivalent amplitudes are equal, the RTI could be completely quenched. If the equivalent amplitude of the initial velocity perturbation is equal to the initial interface perturbation, the difference between the WN growth of the RTI initiated by only an interface perturbation and by only a velocity perturbation is found to be asymptotically negligible. The dependence of the WN growth on the Atwood numbers and the initial perturbation amplitudes is discussed. In particular, we investigate the dependence of the saturation amplitude (time) of the fundamental mode on the Atwood numbers and the initial perturbation amplitudes. It is found that the Atwood numbers and the initial perturbation amplitudes play a crucial role in the WN growth of the RTI. Thus, it should be included in applications where the seeds of the RTI have velocity perturbations, such as inertial confinement fusion implosions and supernova explosions.

Wang, L. F.; Ye, W. H.; He, X. T. [HEDPS and CAPT, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Wu, J. F.; Fan, Z. F.; Zhang, W. Y.; Dai, Z. S.; Gu, J. F.; Xue, C. [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

2012-11-15T23:59:59.000Z

360

San Bernardino County - Green Building Requirement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bernardino County - Green Building Requirement Bernardino County - Green Building Requirement San Bernardino County - Green Building Requirement < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Energy Standards for Public Buildings In August 2007, the San Bernardino County Board of Supervisors approved a policy requiring that all new county buildings and major renovations be built to LEED Silver standards. The decision was part of the Green County San Bernardino project, which also includes incentives to encourage residents, builders, and businesses to adopt more sustainable practices. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CA73R

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

St. Louis County - Residential Energy Efficiency Loan Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

St. Louis County - Residential Energy Efficiency Loan Program St. Louis County - Residential Energy Efficiency Loan Program St. Louis County - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate $15,000 Program Info Funding Source St. Louis County State Missouri Program Type Local Loan Program Rebate Amount $2,500-$15,000 Provider St. Louis County St. Louis County SAVES offers loans to residents for energy efficiency improvements in owner-occupied, single-family homes. Loans are available

362

Solano County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Solano County Wind Farm Facility Solano County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Kenetech Windpower Energy Purchaser Pacific Gas & Electric Co Location Solano County CA Coordinates 38.1535°, -121.858° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1535,"lon":-121.858,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Franklin County Wind Project | Open Energy Information  

Open Energy Info (EERE)

Franklin County Wind Project Franklin County Wind Project Facility Franklin County Sector Wind energy Facility Type Community Wind Coordinates 37.014702°, -79.895096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.014702,"lon":-79.895096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Crisp County Power Comm | Open Energy Information  

Open Energy Info (EERE)

Crisp County Power Comm Crisp County Power Comm Jump to: navigation, search Name Crisp County Power Comm Place Georgia Utility Id 4538 Utility Location Yes Ownership P NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agriculture Process Service Commercial Farm Service Commercial Fuel Cost Recovery Schedule- Primary Distribution Commercial Fuel Cost Recovery Schedule- Secondary Distribution Commercial Fuel Cost Recovery Schedule- Transmission Commercial

365

Ralls County Electric Coop | Open Energy Information  

Open Energy Info (EERE)

County Electric Coop County Electric Coop Jump to: navigation, search Name Ralls County Electric Coop Place Missouri Utility Id 15672 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel General Service Large - Over 300 kW Geothermal Heat Pump Large Power (100 kW to 300 kW) Security Light Lighting Single Phase Under 100 kW Three Phase Under 100 kW Average Rates Residential: $0.1240/kWh Commercial: $0.1060/kWh Industrial: $0.0596/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

366

Mississippi County Electric Coop | Open Energy Information  

Open Energy Info (EERE)

County Electric Coop County Electric Coop Jump to: navigation, search Name Mississippi County Electric Coop Place Arkansas Utility Id 12681 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Load Control of Irrigation Service I - Alternate Commercial Load Control of Irrigation Service II - Alternate Commercial Rate # 11-- Industrial Power Service Industrial Rate #1- Single Service Residential Rate #2- Three Phase Service Under 50 kW Commercial Rate #3- Large Commercial Service Commercial

367

Appling County Pellets | Open Energy Information  

Open Energy Info (EERE)

Appling County Pellets Appling County Pellets Jump to: navigation, search Name Appling County Pellets Place Graham, Georgia Zip 31513 Sector Biomass Product Producer of wood pellets and other biomass products located in Georgia. Coordinates 47.055765°, -122.294774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.055765,"lon":-122.294774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Quad County Corn Processors | Open Energy Information  

Open Energy Info (EERE)

Quad County Corn Processors Quad County Corn Processors Jump to: navigation, search Name Quad County Corn Processors Place Galva, Iowa Zip 51020 Product Farmer owned corn processing facility management company. Coordinates 38.38422°, -97.537539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.38422,"lon":-97.537539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Brown County Wind | Open Energy Information  

Open Energy Info (EERE)

Brown County Wind Brown County Wind Facility Brown County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric Cooperative Developer Adams Electric Cooperative Energy Purchaser Adams Electric Cooperative Location Mt. Sterling IL Coordinates 39.97340387°, -90.69939137° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.97340387,"lon":-90.69939137,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Northern Wasco County PUD | Open Energy Information  

Open Energy Info (EERE)

County PUD County PUD Jump to: navigation, search Name Northern Wasco County PUD Place Oregon Utility Id 13788 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE - Schedule 250 Commercial COMMERCIAL PRIMARY SERVICE - Schedule 300 Commercial Commercial Commercial Residential Residential Average Rates Residential: $0.0581/kWh

371

Lincoln County Wind Farms | Open Energy Information  

Open Energy Info (EERE)

Name Lincoln County Wind Farms Facility Lincoln County Wind Farms Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Jay Gislason Developer Diversified Energy Solutions Energy Purchaser Otter Tail Power Location Lincoln County MN Coordinates 44.4039°, -96.2646° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4039,"lon":-96.2646,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Dunn County Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Dunn County Electric Coop Dunn County Electric Coop Place Wisconsin Utility Id 5417 Utility Location Yes Ownership C NERC Location MRO NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dusk/Dawn Lighting HPS 100 W Lighting Industrial Industrial Residential Residential Average Rates Residential: $0.1210/kWh Commercial: $0.1030/kWh Industrial: $0.0716/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Dunn_County_Electric_Coop&oldid=410605" Categories: EIA Utility Companies and Aliases

373

Yuba County Water Agency | Open Energy Information  

Open Energy Info (EERE)

Yuba County Water Agency Yuba County Water Agency Place California Utility Id 21140 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Yuba_County_Water_Agency&oldid=412223" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

374

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

375

Clyde Thurman of Monroe County, Tennessee, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Clyde Thurman of Monroe County, Tennessee, and Clyde Thurman of Monroe County, Tennessee, and his 76 acres of switchgrass. Thurman was among the first farmers to grow switchgrass as part of the University of Tennessee Biofuels Initiative. (Photo: Ken Goddard, UT Extension) a BIOENERGY ecosystem ecosystem." "We are working with the biotech firm Ceres to develop more efficient feedstocks based on our science. Once regu- latory hurdles are satisfied, we can see a day where Ceres will in turn work with Genera, a University of Tennessee bioenergy spinoff company, to grow those feedstocks with the cooperation of a consortium of Tennessee

376

Sac County Rural Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sac County Rural Electric Coop Jump to: navigation, search Name Sac County Rural Electric Coop Place Iowa Utility Id 16529 Ownership C NERC Location MRO NERC MRO Yes Activity...

377

Newton County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

Newton County Rural E M C Jump to: navigation, search Name Newton County Rural E M C Place Indiana Utility Id 13566 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes...

378

Woodbury County Rural E C A | Open Energy Information  

Open Energy Info (EERE)

Woodbury County Rural E C A Jump to: navigation, search Name Woodbury County Rural E C A Place Iowa Utility Id 20951 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes...

379

Jasper County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

Jasper County Rural E M C Jump to: navigation, search Name Jasper County Rural E M C Place Indiana Utility Id 9665 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes...

380

Aiken County Center for Hydrogen Research | Open Energy Information  

Open Energy Info (EERE)

County Center for Hydrogen Research County Center for Hydrogen Research Jump to: navigation, search Name Aiken County Center for Hydrogen Research Place South Carolina Zip 29803 Sector Hydro, Hydrogen Product Aiken County Center for Hydrogen Reseach will launch its activities in 2005, involving with industrial and academic stakeholders. References Aiken County Center for Hydrogen Research[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Aiken County Center for Hydrogen Research is a company located in South Carolina . References ↑ "Aiken County Center for Hydrogen Research" Retrieved from "http://en.openei.org/w/index.php?title=Aiken_County_Center_for_Hydrogen_Research&oldid=341931"

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Better Buildings Neighborhood Program: Los Angeles County's Green Idea  

NLE Websites -- All DOE Office Websites (Extended Search)

County's Green Idea House Achieves Efficient Goals to someone by E-mail County's Green Idea House Achieves Efficient Goals to someone by E-mail Share Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Facebook Tweet about Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Twitter Bookmark Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Google Bookmark Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Delicious Rank Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Digg Find More places to share Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on

382

Software Helps Kentucky County Gauge Energy Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis How does it work? Software tracks energy usage, greenhouse gas levels and analyzes utility bills. County could see savings and cost recoveries of $100,000 to $200,000. Information allows county to make energy usage changes and identify retrofit needs. For county officials conscious of energy efficiency, deciphering complex utility bills and identifying both municipal energy-use trends and potential savings opportunities can be complex without sophisticated software. "We knew we needed a better system," says James Bush, energy manager for Lexington-Fayette Urban County, Kentucky. Last month, the county invested $140,000 of a $2.7 million Energy

383

Solar Projects Provide Energy to County Fairgrounds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Provide Energy to County Fairgrounds Projects Provide Energy to County Fairgrounds Solar Projects Provide Energy to County Fairgrounds September 23, 2010 - 1:01pm Addthis Solar panels have been installed at a shelter facility near Ulster County Fairgrounds. | Photo courtesy of Ulster County Solar panels have been installed at a shelter facility near Ulster County Fairgrounds. | Photo courtesy of Ulster County Kevin Craft What are the key facts? This project is expected to save local taxpayers $4,000 a year. All supplies and labor came from local, private contractors. Fairs, food festivals -- and solar panels. Every year, thousands of people attend events at the Ulster County Fairgrounds in New York State. This year visitors to the fairgrounds will get a first-hand look at two solar energy installations that are saving

384

Manager Helps Washington County Develop Energy Efficiency Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manager Helps Washington County Develop Energy Efficiency Projects Manager Helps Washington County Develop Energy Efficiency Projects Manager Helps Washington County Develop Energy Efficiency Projects August 11, 2010 - 1:01pm Addthis An Energy Department grant funded Autumn Salamack's new job as resource conservation manager for Kitsap County, Washington, and the energy efficient windows framed behind her. | Photo courtesy of Kitsap County, WA | An Energy Department grant funded Autumn Salamack's new job as resource conservation manager for Kitsap County, Washington, and the energy efficient windows framed behind her. | Photo courtesy of Kitsap County, WA | Maya Payne Smart Former Writer for Energy Empowers, EERE Autumn Salamack's career moved in a welcome new direction when she became the resource conservation manager for Kitsap County, Washington, in

385

Final Environmental Assessment, Burleigh County Wind Energy Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1542 August 2005 Environmental Assessment Environmental Assessment Environmental Assessment Environmental Assessment Environmental Assessment Burleigh County Wind Energy Center Burleigh County, North Dakota Final Burleigh County Wind, LLC BASIN ELECTRIC POWER COOPERATIVE Central Power Electric Cooperative, Inc. Introduction 1-1 Burleigh County Wind Energy Center Environmental Assessment CHAPTER 1 INTRODUCTION The Burleigh County Wind Energy Center is a wind generation project proposed by FPL Energy Burleigh County Wind, LLC (Burleigh County Wind). The proposed project would produce up to 50 megawatts (MW) of electricity, averaged annually. The proposed project is located in Burleigh County, North Dakota, approximately 3 miles south and 2 miles east of the town of Wilton, North Dakota (Figures 1-1

386

Big Horn County Elec Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Twitter icon Big Horn County Elec Coop, Inc (Wyoming) Jump to: navigation, search Name Big Horn County Elec Coop, Inc Place Wyoming Utility Id 1683 References EIA Form EIA-861...

387

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

4-County Electric Power Assn for March 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-03 Utility Company 4-County Electric Power Assn (Mississippi) Place...

388

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

4-County Electric Power Assn for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company 4-County Electric Power Assn (Mississippi) Place...

389

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

4-County Electric Power Assn for October 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-10 Utility Company 4-County Electric Power Assn (Mississippi) Place...

390

The Jury's In: Hillsborough County Courthouse Goes Solar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County. On Friday, the county formally flipped the switch of an extensive array of solar panels mounted on the rooftop of the Old Main Courthouse Building in downtown Tampa....

391

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

392

Park County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montana. Its FIPS County Code is 067. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Park County, Montana Clyde Park, Montana Cooke...

393

Solar Projects Provide Energy to County Fairgrounds | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Projects Provide Energy to County Fairgrounds Solar Projects Provide Energy to County Fairgrounds September 23, 2010 - 1:01pm Addthis Solar panels have been installed at a...

394

EA-1136: Double Tracks Test Site, Nye County, Nevada | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Double Tracks Test Site, Nye County, Nevada EA-1136: Double Tracks Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S....

395

California Energy Commission - Natural Gas Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Natural gas consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009. 2010-12-21T23:17:54Z...

396

UNIVERSITY OF CALIFORNIA (ALAMEDA COUNTY BUILDING AND CONSTRUCTION TRADES COUNCIL)  

E-Print Network (OSTI)

1 UNIVERSITY OF CALIFORNIA AND ACBCTC (ALAMEDA COUNTY BUILDING AND CONSTRUCTION TRADES COUNCIL, a corporation (hereinafter referred to as the "UNIVERSITY" or "MANAGEMENT"), and the Alameda County Building OPERATING ENGINEER LEADWORKER 8141 INSULATION WORKER 8142 MACHINIST LEADWORKER 8143 MACHINIST 8147

Walker, Matthew P.

397

Effect of initial conditions on the development of Rayleigh-Taylor instabilities  

E-Print Network (OSTI)

There are two coupled objectives for this study of buoyancy-driven turbulence. The first objective is to determine if the development of a Rayleigh-Taylor (RT) mixing layer can be manipulated experimentally by altering the initial condition of the experiment. The second objective is to evaluate the performance of the Besnard, Harlow, and Rauenzahn (BHR) turbulent transport model when initialized with experimentally measured initial conditions. An existing statistically steady water channel facility at Texas A&M University and existing experimental diagnostics developed for this facility have been used to measure the turbulent quantities of buoyancy-driven turbulence. A stationary, bi-planar grid with a high solidity ratio, ?, has been placed immediately downstream of the termination of the splitter plate, perpendicular to the flow direction, to generate a turbulent initial condition. The self-similar growth parameter, ? , for the RT mixing layer has been measured using a visualization technique to determine if the initial conditions affect the development of the RT mixing layer. The self-similar growth parameter, ? , decreased from a value of 0.072 0.0003 with the fine grid to values of 0.063 0.0003 and 0.060 0.0003 with the medium and coarse grids, respectively. With the results from the first objective, a unique opportunity arose to evaluate the performance of the variable density, RANS-type, BHR turbulent transport model. Measurements of velocity statistics necessary to initialize the model accurately have been obtained using particle image velocimetry (PIV). The performance of the BHR model was evaluated through comparison of the experimentally measured and BHR modeled self-similar growth parameter, ? , from the penetration height of the bubbles/spikes and the self-similar growth parameter, K ? , of the turbulent kinetic energy at the centerline of the low Atwood RT driven turbulent mixing layer. When initialized with the experimentally measured initial conditions, the BHR model did agree with the experimental measurements of the penetration height growth parameter, ? , as well as the centerline turbulent kinetic energy growth parameter, K ? , in the self-similar portion of the flow.

Peart, Freeman Michael

2008-08-01T23:59:59.000Z

398

Day County Wind Project | Open Energy Information  

Open Energy Info (EERE)

County Wind Project County Wind Project Jump to: navigation, search Name Day County Wind Project Facility Day County Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location East of Groton SD Coordinates 45.457157°, -97.754831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.457157,"lon":-97.754831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Hancock County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hancock County Wind Farm Hancock County Wind Farm Facility Hancock County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Alliant Energy (44 MW); rest purchased by Corn Belt Cooperative and Cedar Falls Location Hancock County IA Coordinates 43.066524°, -93.70481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.066524,"lon":-93.70481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Grant County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Grant County Wind Farm Grant County Wind Farm Jump to: navigation, search Name Grant County Wind Farm Facility Grant County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Olympus Power Developer Suzlon and Juhl Wind Location 5 miles west of Hoffman and 6 miles south of Barrett MN Coordinates 45.82868°, -95.795288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.82868,"lon":-95.795288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal development plan: northern Arizona counties  

DOE Green Energy (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (<90{sup 0}C, 194{sup 0}F) potential and one possible igneous system. The average population growth rate in the Northern Counties is expected to be five percent per year over the next 40 years, with Mohave and Yavapai Counties growing the fastest. Rapid growth is anticipated in all major employment sectors, including trade, service, manufacturing, mining and utilities. A regional energy use analysis is included, containing information on current energy use patterns for all user classes. Water supplies are expected to be adequate for expected growth generally, though Yavapai and Gila Counties will experience water deficiencies. A preliminary district heating analysis is included for the towns of Alpine and Springerville. Both communities are believed located on geothermal resource sites. The study also contains a section identifying potential geothermal resource users in northern Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

402

Wind Energy Guide for County Commissioners  

DOE Green Energy (OSTI)

One of the key stakeholders associated with economic development are local government officials, who are often required to evaluate and vote on commercial wind energy project permits, as well as to determine and articulate what wind energy benefits accrue to their counties. Often these local officials lack experience with large-scale wind energy and need to make important decisions concerning what may be a complicated and controversial issue. These decisions can be confounded with diverse perspectives from various stakeholders. This project is designed to provide county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county. The guidebook provides readers with information on the following 13 topics: Brief Wind Energy Overview; Environmental Benefits; Wind Energy Myths and Facts; Economic Development Benefits; Wind Economics; The Development Process; Public Outreach; Siting Issues; Property Tax Incentives; Power System Impacts; Permitting, Zoning, and Siting Processes; Case Studies; and Further Information. For each of the above topics, the guidebook provides an introduction that identifies the topic, why local government should care, a topic snapshot, how the topic will arise, and a list of resources that define and assess the topic.

Costanti, M.

2006-10-01T23:59:59.000Z

403

Clark County REMC- Clark County REMC- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Clark County REMC provides incentives for residential members to upgrade to more efficient household equipment. Rebates are available for air-source heat pumps, geothermal heat pumps, central air...

404

Energy Efficient Buildings, Salt Lake County, Utah  

DOE Green Energy (OSTI)

Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

405

Three-dimensional blast-wave-driven Rayleigh-Taylor instability and the effects of long-wavelength modes  

Science Conference Proceedings (OSTI)

This paper describes experiments exploring the three-dimensional (3D) Rayleigh-Taylor instability at a blast-wave-driven interface. This experiment is well scaled to the He/H interface during the explosion phase of SN1987A. In the experiments, {approx}5 kJ of energy from the Omega laser was used to create a planar blast wave in a plastic disk, which is accelerated into a lower-density foam. These circumstances induce the Richtmyer-Meshkov instability and, after the shock passes the interface, the system quickly becomes dominated by the Rayleigh-Taylor instability. The plastic disk has an intentional pattern machined at the plastic/foam interface. This perturbation is 3D with a basic structure of two orthogonal sine waves with a wavelength of 71 {mu}m and an amplitude of 2.5 {mu}m. Additional long-wavelength modes with a wavelength of either 212 or 424 {mu}m are added onto the single-mode pattern. The addition of the long-wavelength modes was motivated by the results of previous experiments where material penetrated unexpectedly to the shock front, perhaps due to an unintended structure. The current experiments and simulations were performed to explore the effects of this unintended structure; however, we were unable to reproduce the previous results.

Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Budde, A.; Krauland, C.; Marion, D. C.; Visco, A. J.; Ditmar, J. R. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Robey, H. F.; Remington, B. A.; Miles, A. R.; Cooper, A. B. R.; Sorce, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Plewa, T. [Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306 (United States); Hearn, N. C. [ASC Flash Center, University of Chicago, Chicago, Illinois 60637 (United States); Killebrew, K. L. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States); Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York (United States); Arnett, D. [Steward Observatory, University of Arizona, Tucson, Arizona 85721 (United States); Donajkowski, T. [Jet Propulsion Laboratory, Pasadena, California 91109 (United States)

2009-05-15T23:59:59.000Z

406

Design of experiments to observe radiation stabilized Rayleigh-Taylor instability growth at an embedded decelerating interface  

Science Conference Proceedings (OSTI)

Using a hohlraum produced thermal x-ray drive at the National Ignition Facility (NIF) to create pressure by material ablation, a shock exceeding 200 Mbar can be driven through a planar, solid-density target and into a lower-density foam material. The shock driven through the foam is strongly radiative, and this radiation significantly alters the dynamics of the system, including those of the Rayleigh-Taylor (RT) fluid instability at the interface between the two materials. We discuss here the design of experiments that can produce such radiative conditions. One will be able to compare the observed growth rates with an extensive body of hydrodynamic experiments performed previously. In this paper, we describe a set of 1D simulations performed to understand the mechanisms of stabilization in a strongly radiative Rayleigh-Taylor unstable system. Simulation results are used to calculate modified analytic RT growth rates which have been proposed in the literature. Calculations predict reduced RT spike growth as a result of increases in density gradient scale length and mass ablation from the unstable interface. This work has direct applicability to the observable features in upcoming NIF experiments.

Huntington, C. M.; Kuranz, C. C.; Drake, R. P. [AOSS, University of Michigan, Ann Arbor, Michigan 48103 (United States); Miles, A. R.; Prisbrey, S. T.; Park, H.-S.; Robey, H. F.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-11-15T23:59:59.000Z

407

The dynamics of unforced turbulence at high Reynolds number for Taylor-Green vortices generalized to MHD  

E-Print Network (OSTI)

We study decaying magnetohydrodynamics (MHD) turbulence stemming from the evolution of the Taylor-Green (TG) flow generalized recently to MHD, with equal viscosity and magnetic resistivity and up to equivalent grid resolutions of 2048^3 points. A pseudo-spectral code is used in which the symmetries of the velocity and magnetic fields have been implemented, allowing for sizable savings in both computer time and usage of memory at a given Reynolds number. The flow is non-helical, and at initial time the kinetic and magnetic energies are taken to be equal and concentrated in the large scales. After testing the validity of the method on grids of 512^3 points, we analyze the data on the large grids up to Taylor Reynolds numbers of ~2200. We find that the global temporal evolution is accelerated in MHD, compared to the corresponding neutral fluid case. We also observe an interval of time when such configurations have quasi-constant total dissipation, time during which statistical properties are determined after ave...

Pouquet, A; Brachet, M E; Mininni, P D; Rosenberg, D

2009-01-01T23:59:59.000Z

408

Fewer lights, Brighter Shine in New Hampshire County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fewer lights, Brighter Shine in New Hampshire County Fewer lights, Brighter Shine in New Hampshire County Fewer lights, Brighter Shine in New Hampshire County September 20, 2010 - 3:00pm Addthis New sodium lamp lights at Strafford County’s courthouse parking lot are expected to save the county $6,000 on energy bills annually. | Photo courtesy of Strafford County New sodium lamp lights at Strafford County's courthouse parking lot are expected to save the county $6,000 on energy bills annually. | Photo courtesy of Strafford County New sodium lamp lights at Strafford County's courthouse parking lot are expected to save the county $6,000 on energy bills annually. | Photo courtesy of Strafford County | New sodium lamp lights at Strafford County's courthouse parking lot are expected to save the county $6,000 on energy bills annually. | Photo courtesy of Strafford County

409

Fewer lights, Brighter Shine in New Hampshire County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fewer lights, Brighter Shine in New Hampshire County Fewer lights, Brighter Shine in New Hampshire County Fewer lights, Brighter Shine in New Hampshire County September 20, 2010 - 3:00pm Addthis New sodium lamp lights at Strafford County’s courthouse parking lot are expected to save the county $6,000 on energy bills annually. | Photo courtesy of Strafford County New sodium lamp lights at Strafford County's courthouse parking lot are expected to save the county $6,000 on energy bills annually. | Photo courtesy of Strafford County New sodium lamp lights at Strafford County's courthouse parking lot are expected to save the county $6,000 on energy bills annually. | Photo courtesy of Strafford County | New sodium lamp lights at Strafford County's courthouse parking lot are expected to save the county $6,000 on energy bills annually. | Photo courtesy of Strafford County

410

Durham County - High-Performance Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Durham City and County Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and facilities greater than

411

Arlington County - Green Building Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program < Back Eligibility Commercial Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Virginia Program Type Green Building Incentive Provider Arlington County In October 1999, the County Board of Arlington adopted a Pilot Green Building Incentive Program using the standards established by the U. S. Green Building Council's Leadership in Energy and Environmental Design

412

Rockingham County - Small Wind Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rockingham County - Small Wind Ordinance Rockingham County - Small Wind Ordinance Rockingham County - Small Wind Ordinance < Back Eligibility Agricultural Commercial Construction Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Wind Buying & Making Electricity Program Info State Virginia Program Type Solar/Wind Permitting Standards Provider Virginia Wind Energy Collaborative In October 2004, the Rockingham County Board of Supervisors approved a zoning ordinance for small wind energy systems, the first of its kind in Virginia. Students at James Madison University drafted the original ordinance with guidance from members of the Virginia Wind Energy Collaborative (VWEC) and assistance from members of Rockingham County's planning board. Although net metering is not required, the ordinance complements the

413

County of Los Angeles, California | Open Energy Information  

Open Energy Info (EERE)

Los Angeles, California Los Angeles, California Jump to: navigation, search Name County of Los Angeles Place Los Angeles, CA Website http://www.countyoflosangeles. References County of Los Angeles, California[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! County of Los Angeles, California is a company located in Los Angeles, CA. References ↑ "County of Los Angeles, California" Retrieved from "http://en.openei.org/w/index.php?title=County_of_Los_Angeles,_California&oldid=379305" Categories: Clean Energy Organizations Companies

414

Los Angeles County - Commercial PACE (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Angeles County - Commercial PACE (California) Los Angeles County - Commercial PACE (California) Los Angeles County - Commercial PACE (California) < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Home Weatherization Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type PACE Financing Businesses in Los Angeles County may be eligible for the county's Property Assessed Clean Energy (PACE) program. PACE programs allow businesses to finance energy and water efficiency projects which are repaid through a special assessment on the business's property taxes. The property must be

415

Aspen and Pitkin County - Renewable Energy Mitigation Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aspen and Pitkin County - Renewable Energy Mitigation Program Aspen and Pitkin County - Renewable Energy Mitigation Program Aspen and Pitkin County - Renewable Energy Mitigation Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Colorado Program Type Building Energy Code Provider Community Office for Resource Efficiency (CORE) The City of Aspen and Pitkin County have adopted the 2009 International Energy Conservation Code (IECC), with some amendments, as their official energy code effective March 9, 2010. The [http://www.aspenpitkin.com/Portals/0/docs/county/countycode/Building%20C...

416

Mason County PUD 3 - Commercial and Industrial Energy Rebates | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Rebates Commercial and Industrial Energy Rebates Mason County PUD 3 - Commercial and Industrial Energy Rebates < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting Rebates: Up to 70% of project cost Prescriptive Rebates: Varies widely, contact Mason County PUD 3 Custom Rebates: Varies widely, contact Mason County PUD 3 Provider Mason County PUD 3 Mason County PUD 3 offers rebates to its non-residential customers for

417

Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linn County Rural Electric Cooperative - Solar Water Heater Rebate Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program < Back Eligibility Agricultural Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount $500 Provider Linn County Rural Electric Cooperative Association Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial, residential, and agricultural customers. Owners of both new construction and existing buildings are eligible for a $500 rebate for solar water heaters. The water heaters must have an auxiliary tank of at least 40 gallons and the solar water heater

418

Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth Forest County Potawatomi Tribe Cuts Emissions, Promotes Green Growth February 23, 2012 - 6:29pm Addthis The Forest County Potawatomi Tribe's solar system is providing heating, cooling, and electricity to the Tribe's administration building in Milwaukee, Wisconsin. Photo from the Forest County Potawatomi Tribe. The Forest County Potawatomi Tribe's solar system is providing heating, cooling, and electricity to the Tribe's administration building in Milwaukee, Wisconsin. Photo from the Forest County Potawatomi Tribe. Project Benefits Produce approximately 35,000 kilowatt-hours of clean electricity annually Reduce carbon dioxide emissions by an estimated 41 tons per year Preserve and increase local jobs for tribal members and others

419

Cap May County Municipal Utilities Authority | Open Energy Information  

Open Energy Info (EERE)

Cap May County Municipal Utilities Authority Cap May County Municipal Utilities Authority Jump to: navigation, search Name Cap May County Municipal Utilities Authority Place Cape May Court House, New Jersey Zip 8210 Product The CMCMUA was created to design, construct and operate efficient wastewater treatment facilities. References Cap May County Municipal Utilities Authority[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cap May County Municipal Utilities Authority is a company located in Cape May Court House, New Jersey . References ↑ "Cap May County Municipal Utilities Authority" Retrieved from "http://en.openei.org/w/index.php?title=Cap_May_County_Municipal_Utilities_Authority&oldid=343207"

420

Hyde County - Wind Energy Facility Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hyde County - Wind Energy Facility Ordinance Hyde County - Wind Energy Facility Ordinance Hyde County - Wind Energy Facility Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Hyde County Hyde County, located in eastern North Carolina, adopted a wind ordinance in 2008 to regulate the use of wind energy facilities throughout the county, including waters within the boundaries of Hyde County. The ordinance is substantially similar to the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... model wind ordinance] drafted by the North Carolina Wind Working Group, and

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Miami-Dade County - Sustainable Buildings Program (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miami-Dade County - Sustainable Buildings Program (Florida) Miami-Dade County - Sustainable Buildings Program (Florida) Miami-Dade County - Sustainable Buildings Program (Florida) < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Florida Program Type Energy Standards for Public Buildings Provider Miami-Dade County In 2005, the Miami-Dade Board of County Commissioners passed a [http://www.miamidade.gov/govaction/matter.asp?matter=052213&file=true&ye... resolution] to incorporate sustainable building measures into county facilities. In 2007, Ordinance 07-65 created the Sustainable Buildings Program in the County Code, and Implementing Order 8-8 established specific

422

Los Angeles County Metropolitan Transportation Authority Metro | Open  

Open Energy Info (EERE)

County Metropolitan Transportation Authority Metro County Metropolitan Transportation Authority Metro Jump to: navigation, search Name Los Angeles County Metropolitan Transportation Authority (Metro) Place Los Angeles, California Zip 90012-2952 Sector Renewable Energy Product Metro is the regional transportation planner for all of Los Angeles County. It is a developer of renewable energy projects. References Los Angeles County Metropolitan Transportation Authority (Metro)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Los Angeles County Metropolitan Transportation Authority (Metro) is a company located in Los Angeles, California . References ↑ "Los Angeles County Metropolitan Transportation Authority

423

Antu County 303 Hydropower Station Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Antu County 303 Hydropower Station Co Ltd Antu County 303 Hydropower Station Co Ltd Jump to: navigation, search Name Antu County 303 Hydropower Station Co., Ltd. Place Jilin Province, China Zip 133613 Sector Hydro Product China-based small hydro CDM project developer. References Antu County 303 Hydropower Station Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antu County 303 Hydropower Station Co., Ltd. is a company located in Jilin Province, China . References ↑ "Antu County 303 Hydropower Station Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Antu_County_303_Hydropower_Station_Co_Ltd&oldid=342210" Categories: Clean Energy Organizations Companies Organizations

424

Better Buildings Neighborhood Program: Los Angeles County, California  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Angeles Los Angeles County, California to someone by E-mail Share Better Buildings Neighborhood Program: Los Angeles County, California on Facebook Tweet about Better Buildings Neighborhood Program: Los Angeles County, California on Twitter Bookmark Better Buildings Neighborhood Program: Los Angeles County, California on Google Bookmark Better Buildings Neighborhood Program: Los Angeles County, California on Delicious Rank Better Buildings Neighborhood Program: Los Angeles County, California on Digg Find More places to share Better Buildings Neighborhood Program: Los Angeles County, California on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO

425

Forest County Potawatomi Community Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forest County Potawatomi Community Project Forest County Potawatomi Community Project Forest County Potawatomi Community Project November 13, 2013 - 10:45am Addthis The Forest County Potawatomi Community, a federally recognized tribe with its reservation in Forest County, Wisconsin, and with trust lands in Milwaukee, Wisconsin, is implementing an integrated renewable energy deployment plan that will provide electricity for the Tribe's government buildings. The U.S. Department of Energy provided $2.6 million in funding for this Community Renewable Energy Deployment (CommRE) project. Biogas Generation Facility The Forest County Potawatomi CommRE project will include installation of a biogas generation plant on Tribe-owned land in Milwaukee County. The digesters associated with the biogas cogeneration plant will utilize a

426

Riverside County - Sustainable Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County - Sustainable Building Policy County - Sustainable Building Policy Riverside County - Sustainable Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Energy Standards for Public Buildings Provider County of Riverside In February 2009, the County of Riverside Board of Supervisors adopted Policy Number H-29, creating the Sustainable Building Policy. The Policy requires that all new county building projects initiated on or after March 1, 2009 must meet the criteria for LEED certification.The Board of Supervisors may grant exceptions, especially for projects under 5,000 square feet. Additionally, all county buildings project must have a LEED

427

Morris County Improvement Authority, Morris County, New Jersey Renewable Energy Initiative  

Science Conference Proceedings (OSTI)

The Morris County Improvement Authority (?Authority?), a public body corporate and politic of the State of New Jersey and created and controlled by the County, at the direction of the County and through the Program guaranteed by the County, financed 3.2 MW of solar projects (?Solar Projects?) at fifteen (15) sites for seven (7) local government units (?Local Units?) in and including the County. The Program uses a Power Purchase Agreement (?PPA?) structure, where the Solar Developer constructs, operates and maintains all of the Solar Projects, for the benefit of the Local Units and the Authority, for the maximum State law allowable PPA period of fifteen (15) years. Although all fifteen (15) sites were funded by the Authority, only the Mennen Arena site was considered for the purposes of the required local match funding for this grant. Specifically at the Mennen Arena site, the Authority financed 1.6 MW of solar panels. On October 18, 2013, the DOE Grant was drawn down following completion of the necessary application documents and final execution of an agreement memorializing the contemplated transaction by the Local Units, the County, The Authority and the solar developer. The proceeds of the DOE Grant were then applied to reduce the PPA price to all Local Units across the program and increase the savings from approximately 1/3 to almost half off the existing and forecasted utility pricing over the fifteen (15) year term, without adversely affecting all of the other benefits. With the application of the rate buy down, the price of electricity purchased under the PPA dropped from 10.9 to 7.7 cents/kWh. This made acquisition of renewable energy much more affordable for the Local Units, and it enhanced the success of the program, which will encourage other counties and local units to develop similar programs.

Bonanni, John [Chair, Morris County Improvement Authority] Chair, Morris County Improvement Authority

2013-05-01T23:59:59.000Z

428

Philadelphia County, Pennsylvania: Energy Resources | Open Energy  

Open Energy Info (EERE)

Philadelphia County, Pennsylvania: Energy Resources Philadelphia County, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0152766°, -75.1311874° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0152766,"lon":-75.1311874,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Sevier County Electric System | Open Energy Information  

Open Energy Info (EERE)

System System Jump to: navigation, search Name Sevier County Electric System Place Tennessee Utility Id 16949 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate- GSA1 Commercial Commercial Rate- GSA2 Commercial Commercial Rate- GSA3 Commercial Residential Rate Residential Average Rates Residential: $0.0925/kWh Commercial: $0.0984/kWh Industrial: $0.0834/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Sevier_County_Electric_System&oldid=411506

430

Building Green in Greensburg: Kiowa County Courthouse  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Courthouse Courthouse The Kiowa County Courthouse, originally built in 1914, was one of the only buildings not completely destroyed by the tornado. However, it was severely damaged by a vehicle that crashed through the roof, allowing rain to fall inside for 3 days. Luckily, most of the County's paperwork was salvaged thanks to quick action taken by the community the day after the tornado. Completed in July 2009, the building was renovated with sustainable and energy- saving technologies while staying true to the structure's original design. It is designed to meet the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Gold designation and is projected to be 37% more energy efficient than an ASHRAE 90.1-2004 energy code minimum courthouse.

431

Tallahatchie County, Mississippi: Energy Resources | Open Energy  

Open Energy Info (EERE)

County, Mississippi: Energy Resources County, Mississippi: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9302578°, -90.1869644° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9302578,"lon":-90.1869644,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Barnstable County, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Barnstable County, Massachusetts: Energy Resources Barnstable County, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8111143°, -70.1455805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8111143,"lon":-70.1455805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Susquehanna County, Pennsylvania: Energy Resources | Open Energy  

Open Energy Info (EERE)

Susquehanna County, Pennsylvania: Energy Resources Susquehanna County, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.745553°, -75.8069082° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.745553,"lon":-75.8069082,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

County, Nevada RECORD OF CATEGORICAL EXCLUSION DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

antenna re-alignment antenna re-alignment within the fenced area of the Christmas Tree Pass Communication Site, located in Clark County, Nevada RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to re-align the Christmas Tree to Davis antenna within the fenced area of the Christmas Tree Pass Communication Site, Clark County, Nevada. This work is necessary to maintain the safety and reliability of the bulk electrical system. Western will use existing access roads and vehicles such as pickup trucks & crew trucks to bring personnel and equipmentto the work area. The attached map shows the project area location. The legal description is Section 17 Township 31 South, Range 65 East on the Mt. Diablo Meridian (USGS Spirit Mountain, Nevada 7.5' maps). This work is planned to be completed by December 31, 2011.

435

Early Cook County Roads -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Two Nature Bulletin No. 739 January 18, 1964 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor EARLY COOK COUNTY ROADS -- PART TWO -- THE PLANK ROAD ERA For ten years after Chicago, with a population of 4,170, was chartered as a city in 1837, its commerce and growth were crippled by wretched transportation to and from the hinterlands. During many periods of each year it was surrounded and isolated by mud. To be sure, there were dirt thoroughfares in all directions, graded and drained as best they could in those days, but not surfaced. No one who has never experienced it can appreciate how gooey and gluey a black prairie soil can be when wet. A wagon's wheels often become solid cylinders of mud as wide as a bass drum.

436

Bexar County Parking Garage Photovoltaic Panels  

Science Conference Proceedings (OSTI)

The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

Golda Weir

2012-01-23T23:59:59.000Z

437

Energy Efficient County Buildings Realizing Money  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient County Buildings Realizing Money and Energy-Saving Opportunities About IBTS IBTS is a 501(c)(3) non-profit organization that helps governments provide high-quality, cost-effective services, manage risk, and meet new challenges through public/non-profit partnerships. Established to provide unbiased professional services, IBTS is committed to promoting enduring solutions to strengthen communities, enhancing trust and confidence in governance, and empowering people to serve communities -- all with the goal of lessening the

438

Geothermal development plan: Graham-Greenlee counties  

DOE Green Energy (OSTI)

Geothermal potential in Graham and Greenlee counties both of which contain significant quantities of geothermal energy that could be used for industrial, agricultural or residential use, is described. Projections are made of geothermal heat on line under both private and city-owned utility development. Potential users of geothermal energy, however, are limited since this area is sparsely populated and lacks an industrial base. Only a couple of industries were identified which could use geothermal energy for their process heat needs.

White, D.H.

1981-01-01T23:59:59.000Z

439

Safety, Reliability and Risk Analysis: Beyond the Horizon Steenbergen et al. (Eds) 2014 Taylor & Francis Group, London, ISBN 978-1-138-00123-7  

E-Print Network (OSTI)

Taylor & Francis Group, London, ISBN 978-1-138-00123-7 Predictive control for reliable microgrid energy to reliable microgrid energy man- agement based on receding horizon control. The microgrid considered management within a microgrid are reported in the literature. For example, (Jimeno, Anduaga, Oyarzabal, & de

Recanati, Catherine

440

c 2011 Taylor and Francis Group, LLC In the context of human history, computers are a fairly recent invention. But the idea  

E-Print Network (OSTI)

c 2011 Taylor and Francis Group, LLC Preface In the context of human history, computers are a fairly recent invention. But the idea of computation--of solving a complex problem by repeated and their relationships, and developed computational methods that are still used today. In post- Renaissance Europe

Oregon, University of

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Carroll County (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Carroll County (Utility Company) Carroll County (Utility Company) Jump to: navigation, search Name Carroll County Place Tennessee Utility Id 3075 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSC (15,000-25,000 kW demand) Commercial General Power Schedule: GSA1 (Under 50kW demand & less than 15,000 kWh) Commercial General Power Schedule: GSA2 (51-1,000 kW demand or more than 15,000 kWh) Commercial General Power Schedule: GSA3 (1,001-5,000 kW demand) Industrial General Service Seasonal: GSB (5,001-15,000 kW demand) Commercial

442

July 24, 2009, Visiting Speakers Program - Public-Private Partnerships and Technology Transfer by Dr. Ralph Taylor-Smith  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech-Transfer & the 21 Tech-Transfer & the 21 st Century Public-Private Partnership Ralph E. Taylor-Smith PhD MBA Battelle Venture Partners DOE-NAPA Forum Washington DC July 24, 2009 Commentary: Derived from Private-Sector Perspective on Tech-Commercialization * Active venture-capital (VC) industry player; various early-stage tech start-ups (federally-funded R&D) * University teaching as active adjunct Professor on Tech-Entrepreneurship & Industrial Innovation * Technology I-Banking (M&A, IPOs) on Wall-St * Prior decade-long industrial experience at Bell Labs as R&D scientist and technology manager * LLNL Industrial Advisory Board; NSF SBIR/STTR Focus on taking Federally-funded R&D to Commercial Market * DOE National Lab focus: LawrenceLivermore, OakRidge, Pacific Northwest, Brookhaven,

443

Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies  

DOE Green Energy (OSTI)

The 'tilted-rig' test problem originates from a series of experiments (Smeeton & Youngs, 1987, Youngs, 1989) performed at AWE in the late 1980's, that followed from the 'rocket-rig' experiments (Burrows et al., 1984; Read & Youngs, 1983), and exploratory experiments performed at Imperial College (Andrews, 1986; Andrews and Spalding, 1990). A schematic of the experiment is shown in Figure 1, and comprises a tank filled with light fluid above heavy, and then 'tilted' on one side of the apparatus, thus causing an 'angled interface' to the acceleration history due to rockets. Details of the configuration given in the next chapter include: fluids, dimensions, and other necessary details to simulate the experiment. Figure 2 shows results from two experiments, Case 110 (which is the source for this test problem) that has an Atwood number of 0.5, and Case 115 (a secondary source described in Appendix B), with Atwood of 0.9 Inspection of the photograph in Figure 2 (the main experimental diagnostic) for Case 110. reveals two main areas for mix development; 1) a large-scale overturning motion that produces a rising plume (spike) on the left, and falling plume (bubble) on the right, that are almost symmetric; and 2) a Rayleigh-Taylor driven mixing central mixing region that has a large-scale rotation associated with the rising and falling plumes, and also experiences lateral strain due to stretching of the interface by the plumes, and shear across the interface due to upper fluid moving downward and to the right, and lower fluid moving upward and to the left. Case 115 is similar but differs by a much larger Atwood of 0.9 that drives a strong asymmetry between a left side heavy spike penetration and a right side light bubble penetration. Case 110 is chosen as the source for the present test problem as the fluids have low surface tension (unlike Case 115) due the addition of a surfactant, the asymmetry small (no need to have fine grids for the spike), and there is extensive reasonable quality photographic data. The photographs in Figure 2 also reveal the appearance of a boundary layer at the left and right walls; this boundary layer has not been included in the test problem as preliminary calculations suggested it had a negligible effect on plume penetration and RT mixing. The significance of this test problem is that, unlike planar RT experiments such as the Rocket-Rig (Youngs, 1984), Linear Electric Motor - LEM (Dimonte, 1990), or the Water Tunnel (Andrews, 1992), the Tilted-Rig is a unique two-dimensional RT mixing experiment that has experimental data and now (in this TP) Direct Numerical Simulation data from Livescu and Wei. The availability of DNS data for the tilted-rig has made this TP viable as it provides detailed results for comparison purposes. The purpose of the test problem is to provide 3D simulation results, validated by comparison with experiment, which can be used for the development and validation of 2D RANS models. When such models are applied to 2D flows, various physics issues are raised such as double counting, combined buoyancy and shear, and 2-D strain, which have not yet been adequately addressed. The current objective of the test problem is to compare key results, which are needed for RANS model validation, obtained from high-Reynolds number DNS, high-resolution ILES or LES with explicit sub-grid-scale models. The experiment is incompressible and so is directly suitable for algorithms that are designed for incompressible flows (e.g. pressure correction algorithms with multi-grid); however, we have extended the TP so that compressible algorithms, run at low Mach number, may also be used if careful consideration is given to initial pressure fields. Thus, this TP serves as a useful tool for incompressible and compressible simulation codes, and mathematical models. In the remainder of this TP we provide a detailed specification; the next section provides the underlying assumptions for the TP, fluids, geometry details, boundary conditions (and alternative set-ups), initial conditions, and acceleration history (an

Andrews, Malcolm J. [Los Alamos National Laboratory; Livescu, Daniel [Los Alamos National Laboratory; Youngs, David L. [AWE

2012-08-14T23:59:59.000Z

444

Maricopa County - Renewable Energy Systems Zoning Ordinance | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maricopa County - Renewable Energy Systems Zoning Ordinance Maricopa County - Renewable Energy Systems Zoning Ordinance Maricopa County - Renewable Energy Systems Zoning Ordinance < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Water Buying & Making Electricity Energy Sources Solar Heating & Cooling Water Heating Wind Other Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa County The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil fuels or nuclear fission." Renewable energy systems may be built in any zoning district within the county as long as certain siting requirements are met. Setbacks: Renewable energy systems must be set back at least 3 feet away

445

EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Townsite Solar Project Transmission Line, Clark County, 60: Townsite Solar Project Transmission Line, Clark County, Nevada EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada SUMMARY The Bureau of Land Management, with Western Area Power Administration as a cooperating agency, prepared an EA to evaluate potential impacts of a proposal to build and operate a 180-MW photovoltaic facility; a 220, 230, or 500 kV transmission line; and associated facilities in Clark County, Nevada. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 28, 2013 EA-1960: Finding of No Significant Impact Townsite Solar Project Transmission Line, Clark County, Nevada June 28, 2013 EA-1960: Final Environmental Assessment Townsite Solar Project Transmission Line, Clark County, Nevada

446

County Aims to Save with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Aims to Save with Upgrades County Aims to Save with Upgrades County Aims to Save with Upgrades August 5, 2010 - 6:50pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Fulton County, Georgia is an example of how large-scale energy upgrades can save local governments millions of dollars and develop a new green workforce. A retrofit program, funded by an $814,300 Energy Efficiency and Conservation Block Grant (EECBG) through the American Recovery and Reinvestment Act, was the topic of a recent video. Under the program, more than a dozen county facilities are being upgraded with equipment such as occupancy sensors, digital thermostats and LED exit signs. County workers will also be trained on how to conduct the upgrades and keep buildings energy efficient.

447

New Boilers, Big Savings for Minnesota County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

448

Santa Cruz County - Solar Access Protection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cruz County - Solar Access Protection Cruz County - Solar Access Protection Santa Cruz County - Solar Access Protection < Back Eligibility Commercial Industrial Residential Program Info State California Program Type Solar/Wind Access Policy Provider County of Santa Cruz Although the California Solar Rights Act of 1978 requires local governments to plan for future passive or natural heating or cooling opportunities in new residential construction, and the California Shade Control Act protects solar systems from shading by vegetation, current state and local laws do not protect installed solar energy systems from shading caused by structures. The County of Santa Cruz has developed a process for registering solar energy systems to provide additional protection to solar energy system owners. The County's Building Regulations Code requires that any obstructions of

449

Chicagoland County Saving Green by Going Green | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicagoland County Saving Green by Going Green Chicagoland County Saving Green by Going Green Chicagoland County Saving Green by Going Green March 9, 2010 - 4:00pm Addthis Faster commutes, ENERGY STAR rated roofs and recycling initiatives are just a few of the projects DuPage County plans to launch. This community, one of the largest in Illinois, has received a $4.6 million Energy Efficiency and Conservation Block Grant that will reduce both energy use and fossil fuel emissions. Jeff Redick, chairman of DuPage County's environmental committee, says the block grant will help save tax payers money by lowering expenses. "By reducing our energy consumptions we will reduce our operating costs," Jeff says. A total of 12 projects will be launched to make the county more energy efficient. Companies chosen to complete several of the projects must meet

450

New Boilers, Big Savings for Minnesota County | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boilers, Big Savings for Minnesota County Boilers, Big Savings for Minnesota County New Boilers, Big Savings for Minnesota County August 25, 2010 - 12:00pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. The two boilers were inefficient, labor intensive and well past their life expectancy. Any upgrades to the system were put on hold as the county tightened its purse strings amid a tough economy. "We kept asking: 'Can we make these things last one more year?'" says Dave Lucas, Sherburne County's solid waste administrator. However, hopes for a new set of boilers were revived in April after the

451

Currituck County - Wind Energy Systems Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Currituck County - Wind Energy Systems Ordinance Currituck County - Wind Energy Systems Ordinance Currituck County - Wind Energy Systems Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Currituck County In January 2008, Currituck County adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to obtain a zoning permit from the county planning board. Small-scale systems require only administrative approval for the permit, while large systems and utility-scale projects require approval from the board of commissioners.

452

Ashe County - Wind Energy System Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal Utility Nonprofit Residential Rural Electric Cooperative Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Ashe County Planning Department In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a system may be obtained. This policy was adopted in the context of an ongoing debate over

453

King County - Green Building Initiative (Washington) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

King County - Green Building Initiative (Washington) King County - Green Building Initiative (Washington) King County - Green Building Initiative (Washington) < Back Eligibility Local Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider King County Solid Waste Division The King County Green Building Initiative started in 2001, and was included in the King Code Code with the Green Building and Sustainable Development Ordinance in 2008. The ordinance requires that all county-owned facilities and financial capital projects be built to LEED Gold standards, including new construction, major renovations, and projects using alternative funding. Major renovations are defined in the statutes as work that affects

454

Hamilton County - Home Improvement Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hamilton County - Home Improvement Program Hamilton County - Home Improvement Program Hamilton County - Home Improvement Program < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating Heat Pumps Insulation Solar Lighting Buying & Making Electricity Water Heating Wind Maximum Rebate $50,000 Program Info State Ohio Program Type Local Loan Program Rebate Amount $1,500-$50,000 Provider Hamilton County Department of Planning and Development The Hamilton County, Ohio, Home Improvement Program (HIP) was originally initiated in 2002, and then reinstated in May 2008. The HIP loan allows homeowners in Hamilton County communities to borrow money to repair or

455

Clallam County PUD - Residential and Small Business Solar Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clallam County PUD - Residential and Small Business Solar Loan Clallam County PUD - Residential and Small Business Solar Loan Program Clallam County PUD - Residential and Small Business Solar Loan Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $15,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount $1,000 - $15,000 Provider PUD #1 of Clallam County In conjunction with First Federal Savings and Loan, Clallam County PUD offers residential and small commercial customers a low-interest loan program for the purchase of solar photovoltaic systems. There is no application fee and Clallam County PUD covers the loan fee. A list of [http://www.clallampud.net/conservation/res_Eligible_Measures.asp eligible measures] for the loan program is located on the program website. Loans are

456

Geothermal Development in Imperial County | Open Energy Information  

Open Energy Info (EERE)

in Imperial County in Imperial County Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Development in Imperial County Abstract Imperial County is estimated to have a potential geothermal energy resource of 10,000 to 20,000 megawatts of electricity, of which 4,500 MW appears feasible for development with present technology in the next forty years. Imperial County, under NSF/ERDA Grant AER75-08793, contracted with UCR and Cal Tech for research covering the areas of: (a) resource assessment, (b) engineering, (c) geography, (d) social, (e) economic, and (f) political and legal implications of geothermal development. This summary reports the findings. Imperial County has been the site of active geothermal exploration and development by oil and utility companies for the past

457

Chicagoland County Saving Green by Going Green | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicagoland County Saving Green by Going Green Chicagoland County Saving Green by Going Green Chicagoland County Saving Green by Going Green March 9, 2010 - 4:00pm Addthis Faster commutes, ENERGY STAR rated roofs and recycling initiatives are just a few of the projects DuPage County plans to launch. This community, one of the largest in Illinois, has received a $4.6 million Energy Efficiency and Conservation Block Grant that will reduce both energy use and fossil fuel emissions. Jeff Redick, chairman of DuPage County's environmental committee, says the block grant will help save tax payers money by lowering expenses. "By reducing our energy consumptions we will reduce our operating costs," Jeff says. A total of 12 projects will be launched to make the county more energy efficient. Companies chosen to complete several of the projects must meet

458

Pitt County - Wind Energy Systems Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance < Back Eligibility Commercial Residential Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Pitt County The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting requirements for their installation. The ordinance applies to small to medium systems designed primarily for on-site use in conjunction with a principal dwelling unit or business. The ordinance does not apply to utility scale systems. '''Blade Clearance:''' Wind turbine blades may not be closer than 15 feet

459

County Partners with Siemens on Energy Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Partners with Siemens on Energy Upgrades County Partners with Siemens on Energy Upgrades County Partners with Siemens on Energy Upgrades July 9, 2010 - 11:11am Addthis What does this project do? Allows McHenry County to install cutting edge technology to reduce our energy costs. When you're really committed to energy efficiency and looking at $118,000 in potential energy savings annually, you want to share it. That's the view in McHenry County, Ill., which partnered with Siemens Building Technologies to launch mchenrycounty-eecbg.net to let residents understand the connection between recent energy efficiency projects and C02 emissions. The county, located outside the Chicago metropolitan area, was awarded $2,475,900 in Energy Efficiency and Conservation Block Grant (EECBG) funds through the Recovery Act in November. Through the Recovery Act-funded

460

Franklin County PUD - Solar Energy System Loan (Washington) ...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Franklin County PUD - Solar Energy System Loan (Washington) This is the approved revision of this page, as well...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Miami-Dade County - Expedited Green Buildings Process | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miami-Dade County - Expedited Green Buildings Process Miami-Dade County - Expedited Green Buildings Process Miami-Dade County - Expedited Green Buildings Process < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State Florida Program Type Green Building Incentive Provider Miami-Dade Permitting and Inspection Center In an effort to promote environmentally sensitive design and construction, the Miami-Dade County Commissioners passed an ordinance in June 2005 to expedite the permitting process for "green" buildings certified by a recognized environmental rating agency. Commercial, industrial, and

462

Los Angeles County - Green Building Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Angeles County - Green Building Program Los Angeles County - Green Building Program Los Angeles County - Green Building Program < Back Eligibility Commercial Construction Industrial Local Government Multi-Family Residential Nonprofit Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Program Info State California Program Type Building Energy Code Provider Los Angeles County Department of Regional Planning '''''Note: The Regional Planning Commission is considering amendments to the requirements outlined here. See the website above for the most recent

463

San Bernardino County - Green Building Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » San Bernardino County - Green Building Incentive San Bernardino County - Green Building Incentive < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Water Heating Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Wind Program Info State California Program Type Green Building Incentive San Bernardino's Board of Supervisors launched Green County San Bernardino in August 2007. The program includes a number of incentives to encourage residents, builders, and businesses to adopt more sustainable practices. Builders who participate in San Bernardino County's

464

Kenton County School District's Energy Management Policy | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kenton County School District's Energy Management Policy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings...

465

Kalawao County, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kalawao County, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.2273942, -156.9749731 Loading map... "minzoom":false,"mappingservice...

466

City and County of Honolulu - Solar Loan Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and County of Honolulu. The program offers zero-interest loans to income-eligible homeowners for the installation of solar water heating and photovoltaic systems through the...

467

Prince George's County- Solar and Geothermal Residential Property Tax Credit  

Energy.gov (U.S. Department of Energy (DOE))

In 2008 Prince George's County enacted legislation offering a property tax credit on residential structures equipped with solar and geothermal systems. As originally devised, the credit could only...

468

Snohomish County PUD No 1 - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Custom incentives are paid based on the amount of electricity saved. Commercial, industrial, school, non-profit, or governmental buildings in Snohomish County can be...

469

Clean Cities: Western Riverside County Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Western Riverside County Clean Cities coalition Contact...

470

Analysis of Power Quality Concerns at a County High School  

Science Conference Proceedings (OSTI)

This case study describes the findings from the site survey at a county high school and outlines recommended procedures for dealing with the new computer loads.

2003-12-31T23:59:59.000Z

471

Harshaw Trane and Hardin County Schools: SPP Success Story |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Harshaw Trane and Hardin County Schools: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings...

472

Success Story Harshaw Trane and Hardin County Schools  

NLE Websites -- All DOE Office Websites (Extended Search)

Story Service and Product Provider Partner Customer Harshaw Trane Hardin County Schools 12700 Plantside Drive 65 W. A. Jenkins Road Louisville, KY 40299 Elizabethtown, KY...

473

Coos County, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bay, Oregon Coquille, Oregon Lakeside, Oregon Myrtle Point, Oregon North Bend, Oregon Powers, Oregon Retrieved from "http:en.openei.orgwindex.php?titleCoosCounty,Oregon&old...

474

Moffat County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 6 Climate Zone Subtype B. Places in Moffat County, Colorado Craig, Colorado Dinosaur, Colorado Retrieved from "http:en.openei.orgw...

475

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal...

476

EA-1813: Forest County Potawatomi Comprehensive Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potawatomi Comprehensive Renewable Energy Project, Carter or Crandon (Stone Lake), Wisconsin EA-1813: Forest County Potawatomi Comprehensive Renewable Energy Project, Carter or...

477

Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Brochure) (Revised) This brochure details the sustainable and green aspects of the LEED Platinum-designed Kiowa County Memorial Hospital in Greensburg, Kansas. 47461.pdf More...

478

Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial Hospital (Brochure)  

Science Conference Proceedings (OSTI)

This brochure details the sustainable and green aspects of the LEED Platinum-designed Kiowa County Memorial Hospital in Greensburg, Kansas.

Not Available

2010-03-01T23:59:59.000Z

479

Building Green in Greensburg: Kiowa County Memorial Hospital  

Energy.gov (U.S. Department of Energy (DOE))

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Kiowa County Memorial Hospital building in Greensburg, Kansas.

480

Alpena County, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alpena County, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0168239, -83.1116742 Loading map... "minzoom":false,"mappingservice...

Note: This page contains sample records for the topic "taylor county recc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Clallam County PUD - Residential and Small Business Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Loan Program Clallam County PUD - Residential and Small Business Efficiency Loan Program Eligibility Commercial Residential Savings For Home Weatherization Commercial...

482

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for April 2008. Monthly Electric Utility Sales and Revenue Data Short...

483

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 Jump to:...

484

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for November 2008. Monthly Electric Utility Sales and Revenue Data...

485

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for July 2008. Monthly Electric Utility Sales and Revenue Data Short...

486

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for May 2008. Monthly Electric Utility Sales and Revenue Data Short...

487

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for June 2008. Monthly Electric Utility Sales and Revenue Data Short...

488

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for August 2008. Monthly Electric Utility Sales and Revenue Data Short...

489

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for January 2008. Monthly Electric Utility Sales and Revenue Data...

490

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for February 2009. Monthly Electric Utility Sales and Revenue Data...

491

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for September 2008. Monthly Electric Utility Sales and Revenue Data...

492

Inter-County Energy Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heater Inter-County Energy Cooperative offers several energy efficiency and demand-side management programs for residential customers. Incentives are available for heat pumps...

493

Better Buildings Neighborhood Program: Los Angeles County Makeover...  

NLE Websites -- All DOE Office Websites (Extended Search)

Than Just Winners A graphic that contains the words 'Energy Upgrade California.' Six homeowners from Los Angeles County will receive free home energy makeovers from a contest...

494

Prince George's County - Solar Zoning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Program Information Maryland Program Type Siting & Permitting Prince George's County has created special provisions for solar panels in their zoning codes. Maryland...

495

City and County of Honolulu - Solar Loan Program (Hawaii) | Open...  

Open Energy Info (EERE)

and County of Honolulu. The program offers zero-interest loans to income-eligible homeowners for the installation of solar water heating and photovoltaic systems through the...

496

City and County of Denver - Denver Energy Challenge for Residents...  

Open Energy Info (EERE)

(DSIRE)1 Summary The City and County of Denver are providing rebates to Denver homeowners through the Denver Energy Challenge. To be eligible, participants must first sign up...

497

City and County of Honolulu - Real Property Tax Exemption for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Real Property Tax Exemption for Alternative Energy Improvements City and County of Honolulu - Real Property Tax Exemption for Alternative Energy Improvements Eligibility Commercial...

498

Clark County- Solar and Wind Building Permit Guides  

Energy.gov (U.S. Department of Energy (DOE))

Clark County, Nevada has established guides for obtaining building permits for wind and solar photovoltaic (PV) systems for both residential and commercial purposes. The guides outline applicable...

499

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

Eleven: Lake County Geothermal Energy Resource. . . .by t h e Report of t h e State Geothermal Task Force WDISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOP~NTIN LAKE

Churchman, C.W.

2011-01-01T23:59:59.000Z

500

Chippewa County, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Subtype A. Places in Chippewa County, Michigan De Tour Village, Michigan Sault Ste. Marie, Michigan Retrieved from "http:en.openei.orgw...