Sample records for tau neutrinos heavy

  1. Atmospheric neutrino oscillations and tau neutrinos in ice

    E-Print Network [OSTI]

    Gerardo Giordano; Olga Mena; Irina Mocioiu

    2010-04-20T23:59:59.000Z

    The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

  2. New upper limits on the tau-neutrino mass from primordial helium considerations

    SciTech Connect (OSTI)

    Dolgov, A.D.; Rothstein, I.Z. (The Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States))

    1993-07-26T23:59:59.000Z

    In this paper we reconsider recently derived bounds on MeV tau neutrinos, taking into account previously unaccounted for effects. We find that, assuming that the neutrino lifetime is longer than [similar to]100 sec, the constraint [ital N][sub eff][lt]3.6 rules out [nu][sub [tau

  3. Tau decays into three charged leptons and two neutrinos

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1996-04-01T23:59:59.000Z

    We search for the radiative leptonic tau decays tau --> ee(+) e(-)nu(tau)nu(e) and tau --> mu e(+)e(-)nu(tau)nu(mu) using 3.60 fb(-1) of data collected by the CLEO-II experiment at the Cornell Electron Storage Ring. We present a first observation...

  4. {mu}-{tau} symmetry, sterile right-handed neutrinos, and leptogenesis

    SciTech Connect (OSTI)

    Riazuddin [National Centre for Physics, Quaid-i-Azam University, Islamabad (Pakistan)

    2008-01-01T23:59:59.000Z

    Leptogenesis is studied in a seesaw model with {mu}-{tau} symmetry for SU{sub L}(2)-singlet right-handed neutrinos. It is shown that lepton asymmetry is not zero and is given by the square of the solar neutrino mass difference and can be of the right order of magnitude. Further it involves the same Majorana phase which appears in the neutrinoless double {beta}-decay. In this framework one of the right-handed seesaw partners of light neutrinos can be made massless. This can be identified with a sterile neutrino, once it acquires a tiny mass ({approx_equal}1 eV) when {mu}-{tau} symmetry is broken in the right-handed neutrino sector. The above mentioned sterile neutrino together with another one can be identified to explain the MiniBooNE and LSND results. The light 5x5 neutrino mass matrix is completely fixed if CP is conserved and so is the effective mass for neutrinoless double {beta}-decay.

  5. Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos

    E-Print Network [OSTI]

    Manimala Mitra; Goran Senjanovic; Francesco Vissani

    2011-12-21T23:59:59.000Z

    The experimental rate of neutrinoless double beta decay can be saturated by the exchange of virtual sterile neutrinos, that mix with the ordinary neutrinos and are heavier than 200 MeV. Interestingly, this hypothesis is subject only to marginal experimental constraints, because of the new nuclear matrix elements. This possibility is analyzed in the context of the Type I seesaw model, performing also exploratory investigations of the implications for heavy neutrino mass spectra, rare decays of mesons as well as neutrino-decay search, LHC, and lepton flavor violation. The heavy sterile neutrinos can saturate the rate only when their masses are below some 10 TeV, but in this case, the suppression of the light-neutrino masses has to be more than the ratio of the electroweak scale and the heavy-neutrino scale; i.e., more suppressed than the naive seesaw expectation. We classify the cases when this condition holds true in the minimal version of the seesaw model, showing its compatibility (1) with neutrinoless double beta rate being dominated by heavy neutrinos and (2) with any light neutrino mass spectra. The absence of excessive fine-tunings and the radiative stability of light neutrino mass matrices, together with a saturating sterile neutrino contribution, imply an upper bound on the heavy neutrino masses of about 10 GeV. We extend our analysis to the Extended seesaw scenario, where the light and the heavy sterile neutrino contributions are completely decoupled, allowing the sterile neutrinos to saturate the present experimental bound on neutrinoless double beta decay. In the models analyzed, the rate of this process is not strictly connected with the values of the light neutrino masses, and a fast transition rate is compatible with neutrinos lighter than 100 meV.

  6. A study of the appearance of tau neutrinos from a gamma ray burst by detecting their horizontal electromagnetic showers

    E-Print Network [OSTI]

    Nayantara Gupta

    2003-07-22T23:59:59.000Z

    We explore the possibilty of detecting horizontal electromagnetic showers of tau neutrinos from individual gamma ray bursts, in large scale detectors like HiRes and Telescope Array. We study the role of the parameters of a gamma ray burst in determining the expected number of tau events from that burst. The horizontal beam of tau leptons produce visible signals in the atmosphere. We find that there is a slim chance of observing tau lepton appearances from GRBs with Telescope Array. The number of signals is strongly dependent on the Lorentz factor $\\Gamma$, redshift $z$ of a GRB, energy emitted in muon neutrinos and antineutrinos $E_{\

  7. Lepton flavor violation decays with the fourth generation neutrino

    E-Print Network [OSTI]

    Wu-Jun Huo; Tai-Fu Feng

    2002-03-22T23:59:59.000Z

    We investigate the lepton flavor violation decays, $\\tau \\to \\mu\\gamma$, $\\tau \\to e\\gamma$ and $\\mu \\to e\\gamma$, in the framwork of a squential fourth generation model with a heavy fourth neutrino, $\

  8. Experimental limits on the proton life-time from the neutrino experiments with heavy water

    E-Print Network [OSTI]

    V. I. Tretyak; Yu. G. Zdesenko

    2001-04-11T23:59:59.000Z

    Experimental data on the number of neutrons born in the heavy water targets of the large neutrino detectors are used to set the limit on the proton life-time independently on decay mode through the reaction d -> n+?. The best up-to-date limit tau_p > 4 10^23 yr with 95% C.L. is derived from the measurements with D_2O target (mass 267 kg) installed near the Bugey reactor. This value can be improved by six orders of magnitude with future data accumulated with the SNO detector containing 1000 t of D_2O.

  9. Prospects of Heavy Neutrino Searches at Future Lepton Colliders

    E-Print Network [OSTI]

    Banerjee, Shankha; Ibarra, Alejandro; Mandal, Tanumoy; Mitra, Manimala

    2015-01-01T23:59:59.000Z

    We discuss the future prospects of heavy neutrino searches at next generation lepton colliders. In particular, we focus on the planned electron-positron colliders, operating in two different beam modes, namely, $e^+e^-$ and $e^-e^-$. In the $e^+e^-$ beam mode, we consider various production and decay modes of the heavy neutrino ($N$), and find that the final state with $e+2j+\\slashed{E}$, arising from the $e^+e^-\\to N\

  10. Heavy Sterile Neutrinos and Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    P. Bamert; C. P. Burgess; R. N. Mohapatra

    1994-10-12T23:59:59.000Z

    We investigate the possibility of producing neutrinoless double beta decay without having an electron neutrino with a mass in the vicinity of 1 eV. We do so by having a much lighter electron neutrino mix with a much heavier (m > 1 GeV) sterile neutrino. We study the constraints on the masses and mixings of such heavy sterile neutrinos from existing laboratory, astrophysical and cosmological information, and discuss the properties it would require in order to produce a detectable signal in current searches for neutrinoless double beta decay.

  11. Ultra High Energy Cosmic Rays, Z-Shower and Neutrino Astronomy by Horizontal-Upward Tau Air-Showers

    E-Print Network [OSTI]

    D. Fargion

    2003-06-24T23:59:59.000Z

    Ultra High Cosmic Rays (UHECR) Astronomy may be correlated to a primary parental Neutrino Astronomy: indeed any far BL Lac Jet or GRB, sources of UHECR, located at cosmic edges, may send its signal, overcoming the severe GZK cut-off, by help of UHE ZeV energetic neutrino primary. These UHE neutrino scattering on relic light ones (spread on wide Hot Local Groups Halos) maybe fine-tuned : E_(nu) =(M_Z)^2/m_(nu) = 4 10^(22) eV *((0.1eV)/m_(nu)), to combine at once the observed light neutrino masses and the UHECR spectra, leading to a relativistic Z-Shower in Hot Dark Halos (e few tens Mpc wide) whose final nuclear component traces the UHECR event on Earth. Therefore UHECR (with no longer volme GZK constrains) may point to far BL Lac sources. This Z-Burst (Z-Shower) model calls for large neutrino fluxes. Even if Nature do not follow the present Z-model, UHECR while being cut-off by Big Bang Radiation, must produce a minimal UHE neutrino flux, the GZK neutrino secondaries. For both reasons such UHE Neutrino Astronomy must be tested on Earth. Lowest High Energy Astronomy is searched by AMANDA, ANTARES underground deterctors by muons tracks. We suggest a complementary higher energy Neutrino Tau Astronomy inducing Horizontal and Upward Tau AirShowers. Possible early evidence of such a New Neutrino UPTAUs (Upward Tau Showers at PeVs energies) Astronomy may be in BATSE records of Upward Terrestrial Gamma Flashes. Future signals must be found in detectors as EUSO, seeking Upward-Horizontal events: indeed even minimal, guaranteed, GZK neutrino fluxes may be better observed if EUSO threshold reaches 10^(19) eV by enlarging its telescope size.

  12. Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background

    E-Print Network [OSTI]

    George M. Fuller; Chad T. Kishimoto; Alexander Kusenko

    2011-10-28T23:59:59.000Z

    We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with couplings to ordinary active neutrinos large enough to guarantee thermal and chemical equilibrium at epochs in the early universe with temperatures T > 1 GeV, but in a range to give decay lifetimes from seconds to minutes. Such neutrinos would decouple early, with relic densities comparable to those of photons, but decay out of equilibrium, with consequent prodigious entropy generation prior to, or during, Big Bang Nucleosynthesis (BBN). Most of the ranges of sterile neutrino rest mass and lifetime considered are at odds with Cosmic Microwave Background (CMB) limits on the relativistic particle contribution to energy density (e.g., as parameterized by N_eff). However, some sterile neutrino parameters can lead to an acceptable N_eff. These parameter ranges are accompanied by considerable dilution of the ordinary background relic neutrinos, possibly an adverse effect on BBN, but sometimes fall in a range which can explain measured neutrino masses in some particle physics models. A robust signature of these sterile neutrinos would be a measured N_eff not equal to 3 coupled with no cosmological signal for neutrino rest mass when the detection thresholds for these probes are below laboratory-established neutrino mass values, either as established by the atmospheric neutrino oscillation scale or direct measurements with, e.g., KATRIN or neutrino-less double beta decay experiments.

  13. Gravitational Phase Transition of Heavy Neutrino Matter

    E-Print Network [OSTI]

    Neven Bilic; Raoul D. Viollier

    1996-07-16T23:59:59.000Z

    We study the phase transition of a system of self-gravitating neutrinos in the presence of a large radiation density background in the framework of the Thomas-Fermi model. We show that, by cooling a non-degenerate gas of massive neutrinos below some critical temperature, a condensed phase emerges, consisting of quasi-degenerate supermassive neutrino stars. These compact dark objects could play an important role in structure formation in this universe, as they might in fact provide the seeds for galactic nuclei and quasi-stellar objects.

  14. Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background

    E-Print Network [OSTI]

    Fuller, George M; Kusenko, Alexander

    2011-01-01T23:59:59.000Z

    We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with couplings to ordinary active neutrinos large enough to guarantee thermal and chemical equilibrium at epochs in the early universe with temperatures T > 1 GeV, but in a range to give decay lifetimes from seconds to minutes. Such neutrinos would decouple early, with relic densities comparable to those of photons, but decay out of equilibrium, with consequent prodigious entropy generation prior to, or during, Big Bang Nucleosynthesis (BBN). Most of the ranges of sterile neutrino rest mass and lifetime considered are at odds with Cosmic Microwave Background (CMB) limits on the relativistic particle contribution to energy density (e.g., as parameterized by N_eff). However, some sterile neutrino parameters can lead to an acceptable N_eff. These parameter ranges are accompanie...

  15. Heavy neutrinos and the $pp\\to lljj$ CMS data

    E-Print Network [OSTI]

    Gluza, J

    2015-01-01T23:59:59.000Z

    We show that the excess in the $pp \\to ee jj$ CMS data can be naturally interpreted within the Minimal Left Right Symmetric model (MLRSM), keeping $g_L = g_R$, if CP phases and non-degenerate masses of heavy neutrinos are taken into account. As an additional benefit, a natural interpretation of the reported ratio (14:1) of the opposite-sign (OS) $pp\\to l^\\pm l^\\mp jj$ to the same-sign (SS) $pp\\to l^\\pm l^\\pm jj$ lepton signals is possible. Finally, a suppression of muon pairs with respect to electron pairs in the $pp \\to lljj$ data is obtained, in accordance with experimental data. If the excess in the CMS data survives in the future, it would be a first clear hint towards presence of heavy neutrinos in right-handed charged currents with specific CP phases, mixing angles and masses, which will have far reaching consequences for particle physics directions.

  16. Heavy Quark and Neutrino Physics Final Report 2011 – 2014

    SciTech Connect (OSTI)

    Horton-Smith, Glenn A. [Kansas State University] (ORCID:0000000196779167); Bolton, Timothy [Kansas State University; Ivanov, Andrew [Kansas State University; Maravin, Yurii [Kansas State University; Ratra, Bharat [Kansas State University

    2014-07-21T23:59:59.000Z

    This final closeout report covers research supported by the ``Heavy Quark and Neutrino Physics'' grant at Kansas State University during the grant's last renewal period, November 1, 2011, through April 30, 2014. The report begins with an overview of the group, its goals and activities, and personnel. Then summaries are given of achievements in each of the three frontiers: Energy Frontier research in the D0 and CMS experiments; Intensity Frontier research in the Double Chooz and ArgoNeuT experiments as well as research and development for MicroBooNE and LBNE; and Cosmic Frontier and Theoretical research. The report concludes with a list of publications supported by this grant in which our group made a significant contribution during the reporting period, followed by a list of students partially or fully supported by the grant who were awarded a PhD during this period.

  17. Discriminating among the theoretical origins of new heavy Majorana neutrinos at the CERN LHC

    E-Print Network [OSTI]

    F. M. L. de Almeida Jr.; Y. A. Coutinho; J. A. Martins Simoes; A. J. Ramalho; S. Wulck; M. A. B. do Vale

    2007-03-08T23:59:59.000Z

    A study on the possibility of distinguishing new heavy Majorana neutrino models at LHC energies is presented. The experimental confirmation of standard neutrinos with non-zero mass and the theoretical possibility of lepton number violation find a natural explanation when new heavy Majorana neutrinos exist. These new neutrinos appear in models with new right-handed singlets, in new doublets of some grand unified theories and left-right symmetrical models. It is expected that signals of new particles can be found at the CERN high-energy hadron collider (LHC). We present signatures and distributions that can indicate the theoretical origin of these new particles. The single and pair production of heavy Majorana neutrinos are calculated and the model dependence is discussed. Same-sign dileptons in the final state provide a clear signal for the Majorana nature of heavy neutrinos, since there is lepton number violation. Mass bounds on heavy Majorana neutrinos allowing model discrimination are estimated for three different LHC luminosities.

  18. Neutrinos from Stellar Collapse: Comparison of signatures in water and heavy water detectors

    E-Print Network [OSTI]

    Gautam Dutta; D. Indumathi; M. V. N. Murthy; G. Rajasekaran

    2001-06-29T23:59:59.000Z

    Signatures of neutrino and antineutrino signals from stellar collapse in heavy water detectors are contrasted with those in water detectors. The effects of mixing, especially due to the highly dense matter in the supernova core, are studied. The mixing parameters used are those sets allowed by current understanding of available neutrino data: from solar, atmospheric and laboratory neutrino experiments. Signals at a heavy water detector, especially the dominant charged current reactions on deuteron, are very sensitive to some of these sets of allowed mixing parameters. Theoretical uncertainties on supernova neutrino spectra notwithstanding, a combination of supernova measurements with water and heavy water detectors may be able to distinguish many of these mixing possibilities and thus help in ruling out many of them.

  19. Mind the gap on Icecube: Cosmic neutrino spectrum and muon anomalous magnetic moment in the gauged L_{\\mu} - L_{\\tau} model

    E-Print Network [OSTI]

    Araki, Takeshi; Konishi, Yasufumi; Ota, Toshihiko; Sato, Joe; Shimomura, Takashi

    2014-01-01T23:59:59.000Z

    The energy spectrum of cosmic neutrinos, which was recently reported by the IceCube collaboration, shows a gap between 400 TeV and 1 PeV. An unknown neutrino interaction mediated by a field with a mass of the MeV scale is one of the possible solutions to this gap. We examine if the leptonic gauge interaction L_{\\mu} - L_{\\tau} can simultaneously explain the two phenomena in the lepton sector: the gap in the cosmic neutrino spectrum and the unsettled disagreement in muon anomalous magnetic moment. We illustrate that there remains the regions in the model parameter space, which account for both the problems. Our results also provide a hint for the distance to the source of the high-energy cosmic neutrinos.

  20. Heavy Sterile Neutrinos and Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Manimala Mitra; Goran Senjanovic; Francesco Vissani

    2012-05-17T23:59:59.000Z

    Sterile neutrinos of mass up to a few tens of TeV can saturate the present experimental bound of neutrinoless double beta decay process. Due to the updated nuclear matrix elements, the bound on mass and mixing angle is now improved by one order of magnitude. We have performed a detailed analysis of neutrinoless double beta decay for the minimal Type I seesaw scenario. We have shown that in spite of the naive expectation that the light neutrinos give the dominant contribution, sterile neutrinos can saturate the present experimental bound of neutrinoless double beta decay process. However, in order to be consistent with radiative stability of light neutrino masses, the mass scale of sterile neutrinos should be less than 10 GeV.

  1. Neutrinos at high energy accelerators

    E-Print Network [OSTI]

    Probir Roy

    1993-08-02T23:59:59.000Z

    PREAMBLE, BRIEF HISTORY AND PRELIMINARIES, QUICK REVIEW OF BASIC NEUTRINO PROPERTIES, CHARGED CURRENT NEUTRINO PROCESSES, NEUTRAL CURRENT NEUTRINO PROCESSES, VERY HEAVY NEUTRINOS, CONCLUDING SUMMARY

  2. Neutrinos and the synthesis of heavy elements: the role of gravity

    E-Print Network [OSTI]

    O. L. Caballero; R. Surman; G. C. McLaughlin

    2014-10-28T23:59:59.000Z

    The synthesis of heavy elements in the Universe presents several challenges. From one side the astrophysical site is still undetermined and on other hand the input from nuclear physics requires the knowledge of properties of exotic nuclei, some of them perhaps accessible in ion beam facilities. Black hole accretion disks have been proposed as possible r-process sites. Analogously to Supernovae these objects emit huge amounts of neutrinos. We discuss the neutrino emission from black hole accretion disks. In particular we show the influence that the black hole strong gravitational field has on changing the electron fraction relevant to the synthesis of elements.

  3. Gamma-ray and neutrino fluxes from Heavy Dark Matter in the Galactic Center

    E-Print Network [OSTI]

    V. Gammaldi; J. A. R. Cembranos; A. de la Cruz-Dombriz; R. A. Lineros; A. L. Maroto

    2014-04-09T23:59:59.000Z

    We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.

  4. Parity violating radiative emission of neutrino pair in heavy alkaline earth atoms of even isotopes

    E-Print Network [OSTI]

    M. Yoshimura; N. Sasao; S. Uetake

    2014-03-26T23:59:59.000Z

    Metastable excited states ${}^3P_2, {}^3P_0$ of heavy alkaline earth atoms of even isotopes are studied for parity violating (PV) effects in radiative emission of neutrino pair (RENP). PV terms arise from interference between two diagrams containing neutrino pair emission of valence spin current and nuclear electroweak charge density proportional to the number of neutrons in nucleus. This mechanism gives large PV effects, since it does not suffer from the suppression of 1/(electron mass) usually present for non-relativistic atomic electrons. A controllable magnetic field is crucial to identify RENP process by measuring PV observables. Results of PV asymmetries under the magnetic field reversal and the photon circular polarization reversal are presented for an example of Yb atom.

  5. Reducing cosmological small scale structure via a large dark matter-neutrino interaction: constraints and consequences

    E-Print Network [OSTI]

    Bridget Bertoni; Seyda Ipek; David McKeen; Ann E. Nelson

    2014-12-09T23:59:59.000Z

    Cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. Solutions to these small scale structure problems may indicate that simulations need to improve how they include feedback from baryonic matter, or may imply that dark matter properties differ from the standard cold, noninteracting scenario. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable, model with new interactions between neutrinos and dark matter. We show that addressing the small scale structure problems requires dark matter with a mass that is tens of MeV, and a present-day density determined by an initial particle-antiparticle asymmetry in the dark sector. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial $\\tau$ neutrino component, while the three nearly massless neutrinos are partly sterile. We provide the first discussion of how such dark matter-neutrino interactions affect neutrino (especially $\\tau$ neutrino) phenomenology. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. A feature in the neutrino energy spectrum and flavor content from a future nearby supernova would provide strong evidence of neutrino-dark matter interactions. Promising signatures include anomalous matter effects in neutrino oscillations due to nonstandard interactions and a component of the $\\tau$ neutrino with mass around 100 MeV.

  6. 8Li electron spectrum versus 8B neutrino spectrum Implications for measuring solar neutrinos with a heavy water detector

    E-Print Network [OSTI]

    Jonkmans, G; Sur, B

    1998-01-01T23:59:59.000Z

    The sensitivity of the Sudbury Neutrino Observatory (SNO) to measure the shape of the recoil electron spectrum in the charged-current reaction of $^{8}$B solar neutrinos interacting with deuterium can be improved if the results of a $^{8}$Li beta-decay calibration experiment are included in the test. We calculate an improvement in sensitivity, under certain idealistic assumptions, of about a factor of 2, sufficient to resolve different neutrino-oscillation solutions to the solar-neutrino problem. We further examine the role of recoil and radiative corrections on both the $^{8}$B neutrino spectrum and the $^{8}$Li electron spectrum and conclude that the influence of these effects on the ratio of the two spectra as measured by SNO is very small.

  7. Probing the coupling of heavy dark matter to nucleons by detecting neutrino signature from the Earth core

    E-Print Network [OSTI]

    Guey-Lin Lin; Yen-Hsun Lin

    2014-04-02T23:59:59.000Z

    We argue that the detection of neutrino signature from the Earth core is an ideal approach for probing the coupling of heavy dark matter ($m_{\\chi}>10^{4}$ GeV) to nucleons. We first note that direct searches for dark matter (DM) in such a mass range do not provide stringent constraints. Furthermore the energies of neutrinos arising from DM annihilations inside the Sun cannot exceed a few TeV at the Sun surface due to the attenuation effect. Therefore the sensitivity to the heavy DM coupling is lost. Finally, the detection of neutrino signature from galactic halo can only probe DM annihilation cross sections. After presenting the rationale of our studies, we discuss the event rates in IceCube and KM3NeT arising from the neutrino flux produced by annihilations of Earth-captured DM heavier than $10^{4}$ GeV. The IceCube and KM3NeT sensitivities to spin independent DM-proton scattering cross section $\\sigma_{\\chi p}$ and isospin violation effect in this mass range are presented. The implications of our results are also discussed.

  8. ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG

    E-Print Network [OSTI]

    ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG Abstract. The current neutrino oscillation an alternative resolution to the solar neutrino loss problem. Contents 1. Introduction 1 2. Discrepancy of Solar, there are three flavors of neutrinos: the electron neutrino e, the tau neutrino and the mu neutrino µ. The solar

  9. Can Neutrinos be Degenerate in Mass?

    E-Print Network [OSTI]

    John Ellis; Smaragda Lola

    1999-04-13T23:59:59.000Z

    We reconsider the possibility that the masses of the three light neutrinos of the Standard Model might be almost degenerate and close to the present upper limits from Tritium beta decay and cosmology. In such a scenario, the cancellations required by the latest upper limit on neutrinoless double-beta decay enforce near-maximal mixing that may be compatible only with the vacuum-oscillation scenario for solar neutrinos. We argue that the mixing angles yielded by degenerate neutrino mass-matrix textures are not in general stable under small perturbations. We evaluate within the MSSM the generation-dependent one-loop renormalization of neutrino mass-matrix textures that yielded degenerate masses and large mixing at the tree level. We find that m_{nu_e} > m_{nu_mu} > m_{nu_tau} after renormalization, excluding MSW effects on solar neutrinos. We verify that bimaximal mixing is not stable, and show that the renormalized masses and mixing angles are not compatible with all the experimental constraints, even for tanbeta as low as unity. These results hold whether the neutrino masses are generated by a see-saw mechanism with heavy neutrinos weighing approx. 10^{13} GeV or by non-renormalizable interactions at a scale approx. 10^5 GeV. We also comment on the corresponding renormalization effects in the minimal Standard Model, in which m_{nu_e} < m_{nu_mu} < m_{nu_tau}. Although a solar MSW effect is now possible, the perturbed neutrino masses and mixings are still not compatible with atmospheric- and solar-neutrino data.

  10. Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeam ExcitationNeutrino

  11. Isospin-Violating Dark Matter and Neutrinos From the Sun

    E-Print Network [OSTI]

    Shao-Long Chen; Yue Zhang

    2011-06-20T23:59:59.000Z

    We study the indirect detection of dark matter through neutrino flux from their annihilation in the center of the Sun, in a class of theories where the dark matter-nucleon spin-independent interactions break the isospin symmetry. We point out that, while the direct detection bounds with heavy targets like Xenon are weakened and reconciled with the positive signals in DAMA and CoGeNT experiments, the indirect detection using neutrino telescopes can impose a relatively stronger constraint and brings tension to such explanation, if the annihilation is dominated by heavy quark or $\\tau$-lepton final states. As a consequence, the qualified isospin violating dark matter candidate has to preferably annihilate into light flavors.

  12. Search for heavy Majorana neutrinos in $\\mu^\\pm \\mu^\\pm$+jets events in proton-proton collisions at $\\sqrt{s}$ = 8 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01T23:59:59.000Z

    A search is performed for heavy Majorana neutrinos (N) using an event signature defined by two muons of the same charge and two jets ($\\mu^\\pm \\mu^\\pm \\mathrm{j j}$). The data correspond to an integrated luminosity of 19.7 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No excess of events is observed beyond the expected standard model background and upper limits are set on $|V_{\\mu\\mathrm{N}}|^2$ as a function of Majorana neutrino mass $\\mathrm{m}_{\\mathrm{N}}$ for masses in the range of 40-500 GeV, where $|V_{\\mu\\mathrm{N}}|$ is the mixing element of the heavy neutrino with the standard model muon neutrino. The limits obtained are $|V_{\\mu\\mathrm{N}}|^2 \\le 0.00470$ for $\\mathrm{m}_{\\mathrm{N}} = 90$ GeV, $|V_{\\mu\\mathrm{N}}|^2 \\le 0.0123$ for $\\mathrm{m}_{\\mathrm{N}} = 200$ GeV, and $|V_{\\mu\\mathrm{N}}|^2 \\le 0.583$ for $\\mathrm{m}_{\\mathrm{N}} = 500$ GeV. These results extend considerably the regions excluded by previous direct s...

  13. Tau Neutrino Appearance via Neutrino Oscillations in Atmospheric Neutrinos

    E-Print Network [OSTI]

    Tokyo, University of

    . . . . . . . . . . . . . . . . . . . 24 2.3.2 Outer Detector PMT . . . . . . . . . . . . . . . . . . . 28 2.4 Water Purification System . . . . . . . . . . . . . . . . . . . . 28 2.5 Radon Hut and Air Purification System . . . . . . . . . . . . 29 2.6 Electronics and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Cherenkov Radiation . . . . . . . . . . . . . . . . . . . 20 2.2 Water Tank: Detector

  14. SNO: solving the mystery of the missing neutrinos

    E-Print Network [OSTI]

    Jelley, Nick; Poon, Alan

    2007-01-01T23:59:59.000Z

    Chen in 1985, of using heavy water (D 2 O) to detect theneutrino deficit. In heavy water neutrinos of all types canday using 1000 tonnes of heavy water. Neutrino interactions

  15. CERN Neutrinos to Gran Sasso (CNGS) First Beam

    E-Print Network [OSTI]

    Gschwendtner, E

    2006-01-01T23:59:59.000Z

    The CNGS, CERN Neutrinos to Gran Sasso project, aims at directly detecting muon-neutrino to tau-neutrino oscillations. An intense muon-neutrino beam (10 to the 17 muon neutrinos)is generated at CERN per day and directed towards the Gran Sasso National Laboratory, LNGS, in Italy, 732 km away from CERN. In LNGS large and complex detectors will allow to detect, in particular, the rare tau-neutrinos created by â??oscillation' from muon-neutrinos on their way between CERN and LNGS. On average around three tau-neutrino events are predicted per year in each of the ~2000 ton detectors. The construction of the CNGS beam facility started in September 2000, and the first neutrino beam has been produced in July 2006. In the presently approved physics programme, it is foreseen to run the facility for five years.

  16. MINOS Sterile Neutrino Search

    SciTech Connect (OSTI)

    Koskinen, David Jason; /University Coll. London

    2009-09-01T23:59:59.000Z

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  17. Electromagnetic properties of massive neutrinos

    SciTech Connect (OSTI)

    Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

    2013-10-15T23:59:59.000Z

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  18. ``STUDIES OF THE SUDBURY NEUTRINO OBSERVATORY DETECTOR AND SONOLUMINESCENCE USING A SONOLUMINESCENT SOURCE''

    E-Print Network [OSTI]

    heavy water Cerenkov solar neutrino detector. 1000 metric tonnes of heavy water is used as a neutrino electron neutrinos via charged current interactions of electron neutrinos with deuterons in the heavy water Water, have taught me the most. It is incredible how willing they were to help at any time they were

  19. Test of Lorentz invariance with atmospheric neutrinos

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; K. Abe; Y. Haga; Y. Hayato; M. Ikeda; K. Iyogi; J. Kameda; Y. Kishimoto; M. Miura; S. Moriyama; M. Nakahata; Y. Nakano; S. Nakayama; H. Sekiya; M. Shiozawa; Y. Suzuki; A. Takeda; H. Tanaka; T. Tomura; K. Ueno; R. A. Wendell; T. Yokozawa; T. Irvine; T. Kajita; I. Kametani; K. Kaneyuki; K. P. Lee; T. McLachlan; Y. Nishimura; E. Richard; K. Okumura; L. Labarga; P. Fernandez; J. Gustafson; E. Kearns; J. L. Raaf; S. Berkman; H. A. Tanaka; S. Tobayama; J. L. Stone; L. R. Sulak; M. Goldhaber; G. Carminati; W. R. Kropp; S. Mine; P. Weatherly; A. Renshaw; M. B. Smy; H. W. Sobel; V. Takhistov; K. S. Ganezer; B. L. Hartfiel; J. Hill; W. E. Keig; N. Hong; J. Y. Kim; I. T. Lim; T. Akiri; A. Himmel; K. Scholberg; C. W. Walter; T. Wongjirad; T. Ishizuka; S. Tasaka; J. S. Jang; J. G. Learned; S. Matsuno; S. N. Smith; T. Hasegawa; T. Ishida; T. Ishii; T. Kobayashi; T. Nakadaira; K. Nakamura; Y. Oyama; K. Sakashita; T. Sekiguchi; T. Tsukamoto; A. T. Suzuki; Y. Takeuchi; C. Bronner; S. Hirota; K. Huang; K. Ieki; T. Kikawa; A. Minamino; A. Murakami; T. Nakaya; K. Suzuki; S. Takahashi; K. Tateishi; Y. Fukuda; K. Choi; Y. Itow; G. Mitsuka; P. Mijakowski; J. Hignight; J. Imber; C. K. Jung; C. Yanagisawa; H. Ishino; A. Kibayashi; Y. Koshio; T. Mori; M. Sakuda; R. Yamaguchi; T. Yano; Y. Kuno; R. Tacik; S. B. Kim; H. Okazawa; Y. Choi; K. Nishijima; M. Koshiba; Y. Suda; Y. Totsuka; M. Yokoyama; K. Martens; Ll. Marti; M. R. Vagins; J. F. Martin; P. de Perio; A. Konaka; M. J. Wilking; S. Chen; Y. Zhang; K. Connolly; R. J. Wilkes

    2015-03-17T23:59:59.000Z

    A search for neutrino oscillations induced by Lorentz violation has been performed using 4,438 live-days of Super-Kamiokande atmospheric neutrino data. The Lorentz violation is included in addition to standard three-flavor oscillations using the non-perturbative Standard Model Extension (SME), allowing the use of the full range of neutrino path lengths, ranging from 15 to 12,800 km, and energies ranging from 100 MeV to more than 100 TeV in the search. No evidence of Lorentz violation was observed, so limits are set on the renormalizable isotropic SME coefficients in the $e\\mu$, $\\mu\\tau$, and $e\\tau$ sectors, improving the existing limits by up to seven orders of magnitude and setting limits for the first time in the neutrino $\\mu\\tau$ sector of the SME.

  20. Lepton number violating processes mediated by Majorana neutrinos at hadron colliders

    SciTech Connect (OSTI)

    Kovalenko, Sergey; Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico, Santa Maria, Casilla 110-V, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

    2009-10-01T23:59:59.000Z

    We study the lepton number violating like-sign dilepton processes h{sub 1}h{sub 2}{yields}l{sup {+-}}l{sup '{+-}}jjX and h{sub 1}h{sub 2}{yields}l{sup {+-}}l{sup '{+-}}W{sup {+-}}X, mediated by heavy GeV scale Majorana neutrinos. We focus on the resonantly enhanced contributions with a nearly on-mass-shell Majorana neutrino in the s channel. We study the constraints on like-sign dilepton production at the Tevatron and the LHC on the basis of the existing experimental limits on the masses of heavy neutrinos and their mixings U{sub {alpha}}{sub N} with {alpha}={nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}. Special attention is paid to the constraints from neutrinoless double beta decay. We note that searches for like-sign e{sup {+-}}e{sup {+-}} events at Tevatron and LHC may provide evidence of CP violation in the neutrino sector. We also discuss the conditions under which it is possible to extract individual constraints on the mixing matrix elements in a model independent way.

  1. Neutrino conversions in cosmological gamma-ray burst fireballs

    E-Print Network [OSTI]

    H. Athar

    2000-04-20T23:59:59.000Z

    We study neutrino conversions in a recently envisaged source of high-energy neutrinos (E \\geq 10^6 GeV), that is, in the vicinity of cosmological Gamma-Ray Burst fireballs (GRB). We consider the effects of flavor and spin-flavor conversions and point out that in both situations, a some what higher than estimated high energy tau neutrino flux from GRBs is expected in new km^2 surface area under water/ice neutrino telescopes.

  2. Is "just-so" Higgs splitting needed for t-b-\\tau Yukawa unified SUSY GUTs?

    E-Print Network [OSTI]

    Baer, Howard; Sekmen, Sezen

    2009-01-01T23:59:59.000Z

    Recent renormalization group calculations of the sparticle mass spectrum in the Minimal Supersymmetric Standard Model (MSSM) show that t-b-\\tau Yukawa coupling unification at M_{\\rm GUT} is possible when the mass spectra follow the pattern of a radiatively induced inverted scalar mass hierarchy. The calculation is entirely consistent with expectations from SO(10) SUSY GUT theories, with one exception: it seems to require MSSM Higgs soft term mass splitting at M_{\\rm GUT}, dubbed "just-so Higgs splitting" (HS) in the literature, which apparently violates the SO(10) gauge symmetry. Here, we investigate three alternative effects: {\\it i}). SO(10) D-term splitting, {\\it ii}). inclusion of right hand neutrino in the RG calculation, and {\\it iii}). first/third generation scalar mass splitting. By combining all three effects (the DR3 model), we find t-b-\\tau Yukawa unification at M_{\\rm GUT} can be achieved at the 2.5% level. In the DR3 case, we expect lighter (and possibly detectable) third generation and heavy Hig...

  3. Measurement of sigma(ppbar->Z) Br(Z->tau+tau-) and search for Higgs bosons decaying to tau+tau- at s**(1/2) = 1.96 TeV

    SciTech Connect (OSTI)

    Galea, Cristina Florina; /Nijmegen U.

    2008-01-01T23:59:59.000Z

    The resonant production of tau-lepton pairs is as interesting for the study of Standard Model (SM) physics as the production of lighter leptons pairs. For new phenomena, such as Higgs boson production or in case new particles beyond the SM would arise, the detection of (resonant) pairs of tau leptons becomes much more interesting. This is due to the fact that tau leptons are much heavier than the other leptons, which increases the chance that these new phenomena would be observed first in this channel. Unfortunately their clean detection is far more difficult than that of muons or electrons. The cross section times branching ratio {sigma}{center_dot} Br for the process p{bar p} {yields} Z {yields} {tau}{sup +}{tau}{sup -} was measured at {radical}s = 1.96 GeV using 1.0 fb{sup -1} of data collected by the D0 experiment. This measurement was performed in the channel in which one of the tau leptons decays to a muon and neutrinos, while the other decays either hadronically or to an electron and neutrinos. A set of 1511 events, of which about 20% estimated background, passed all selection criteria. The trigger and muon reconstruction efficiencies, as well as the efficiency for track reconstruction were obtained from data using the 'tag and probe' method on Z {yields} {mu}{sup +}{mu}{sup -} events. The multijet background was estimated from the sample of events which passed all selection criteria but in which the muon and the tau candidate had the same charge. The W {yields} {mu}{nu} + jets background was modeled by Monte Carlo simulations, but normalized to data. All the other backgrounds, as well as the efficiency for Z {yields} {tau}{sup +}{tau}{sup -} events were estimated using simulated events normalized to the theoretical calculations of cross sections at next-to-leading order or next-to-next-to-leading order. The energy of the tau candidates was corrected for the estimated response of the charged pions in the calorimeter, which is of the order 50-80%. Since the charged pion response in data was not well reproduced by the default simulation of hadronic interactions (Geisha), a different simulation (gCALOR) was used to obtain an estimated charged pion response consistent with the one measured in data. This tau energy correction method makes use of the superior resolution of the track momentum measurement compared to the resolution of the tau candidate energy as measured by the calorimeter, which leads to a better data--simulation agreement and a decrease of 10% in the resolution of the visible mass peak. The result of this measurement is {sigma}(p{bar p} {yields} Z) {center_dot} Br(Z {yields} {tau}{sup +}{tau}{sup -}) = 240 {+-} 8(stat) {+-} 12(syst) {+-} 15(lumi) pb, in good agreement with the theoretical predictions of 241.6{sub -3.2}{sup +3.6} pb [79] or 251.9{sub -12}{sup +5.1} pb [93-95], as well as with other measurements performed by the D0 and CDF experiments in all channels in which the Z boson decays leptonically [96-100]. This is the most precise Z boson cross section measurement to date performed in the tau lepton channel at hadron colliders. The analysis demonstrates the ability of the D0 experiment to identify tau leptons decaying hadronically with good efficiency and high purity, a challenging task in p{bar p} collisions where the number of jets resembling tau leptons is very high. This achievement forms a solid basis for other analyses using hadronic tau lepton decays, such as the search for the Higgs boson decaying into tau-lepton pairs, which was performed for the last part of this thesis.

  4. A New Mass Reconstruction Technique for Resonances Decaying to di-tau

    E-Print Network [OSTI]

    A. Elagin; P. Murat; A. Pranko; A. Safonov

    2011-02-22T23:59:59.000Z

    Accurate reconstruction of the mass of a resonance decaying to a pair of $\\tau$ leptons is challenging because of the presence of multiple neutrinos from $\\tau$ decays. The existing methods rely on either a partially reconstructed mass, which has a broad spectrum that reduces sensitivity, or the collinear approximation, which is applicable only to the relatively small fraction of events. We describe a new technique, which provides an accurate mass reconstruction of the original resonance and does not suffer from the limitations of the collinear approximation. The major improvement comes from replacing assumptions of the collinear approximation by a requirement that mutual orientations of the neutrinos and other decay products are consistent with the mass and decay kinematics of a $\\tau$ lepton. This is achieved by minimizing a likelihood function defined in the kinematically allowed phase space region. In this paper we describe the technique and illustrate its performance using $Z/\\gamma^{*}\\to\\tau\\tau$ and $H\\to\\tau\\tau$ events simulated with the realistic detector resolution. The method is also tested on a clean sample of data $Z/\\gamma^{*}\\to\\tau\\tau$ events collected by the CDF experiment at the Tevatron. We expect that this new technique will allow for a major improvement in searches for the Higgs boson at both the LHC and the Tevatron.

  5. MSW effect with flavor changing interactions and the atmospheric neutrino problem

    E-Print Network [OSTI]

    J. C. Montero; V. Pleitez

    2000-05-08T23:59:59.000Z

    We consider flavor changing effective neutrino interactions in the context of massive neutrinos in the issue of atmospheric neutrinos. Assuming as usual that this is an indication of the oscillation of muon neutrinos into tau neutrinos we show that there is a set of parameters which is consistent with the MSW resonance condition for the typical Earth density and atmospheric neutrino energies. In particular we show that even if the vacuum mixing angle vanishes it is still possible to have a resonance which is compatible with the atmospheric neutrino data. We also briefly consider the case of the solar neutrino problem.

  6. Measurement of the nue and Total 8B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase I Data Set

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Neutrino Observatory Heavy Water, Earth Sciences Di- vision,17 O Measurement in Bruce Heavy Water Samples with 17 O NMR,O Analysis of Ontario Hydro Heavy Water, Center for Isotope

  7. Search for Heavy Majorana Neutrinos in Same-Sign mumu+jets and ee+jets Events in pp Collisions at sqrt(s) = 7 GeV

    E-Print Network [OSTI]

    Giordano, Ferdinando

    2013-01-01T23:59:59.000Z

    neutrinos in neutrinoless double beta decay. Phys. Rev. D,non-observation of neutrinoless double beta decay [16], re-

  8. Constraints on the non-standard interaction in propagation from atmospheric neutrinos

    E-Print Network [OSTI]

    Fukasawa, Shinya

    2015-01-01T23:59:59.000Z

    The sensitivity of the atmospheric neutrino experiments to the non-standard flavor-dependent interaction in neutrino propagation is studied under the assumption that the only nonvanishing components of the non-standard matter effect are the electron and tau neutrino components $\\epsilon_{ee}$, $\\epsilon_{e\\tau}$, $\\epsilon_{\\tau\\tau}$ and that the tau-tau component satisfies the constraint $\\epsilon_{\\tau\\tau}=|\\epsilon_{e\\tau}|^2/(1+\\epsilon_{ee})$ which is suggested from the high energy behavior for atmospheric neutrino data. It is shown that the Superkamiokande (SK) data for 4438 days constrains $|\\tan\\beta|\\equiv|\\epsilon_{e\\tau}/(1+\\epsilon_{ee})|\\lesssim 0.8$ at 2.5$\\sigma$ (98.8\\%) CL whereas the future Hyperkamiokande experiment for the same period of time as SK will constrain as $|\\tan\\beta|\\lesssim 0.3$ at 2.5$\\sigma$CL from the energy rate analysis and the energy spectrum analysis will give even tighter bounds on $\\epsilon_{ee}$ and $|\\epsilon_{e\\tau}|$.

  9. DECAYS OF THE HEAVY LEPTON, TAU (1785)

    E-Print Network [OSTI]

    Blocker, Craig Alan

    2010-01-01T23:59:59.000Z

    G. S. Abrams et. a_K , PRL 4_3, 1555 (1979) W. Davies-WhiteL. v. C. Perl L. e t al_. , PRL 3 5 , al_. , et 63B, f,f^l. , Cavalli-Sforza J. Felinan PRL _3f r 558 H" (197

  10. Neutrino Physics

    E-Print Network [OSTI]

    Gil-Botella, I

    2013-01-01T23:59:59.000Z

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

  11. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11T23:59:59.000Z

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  12. Neutrino Mixing and CP Phase Correlations

    E-Print Network [OSTI]

    Ma, Ernest; Popov, Oleg

    2015-01-01T23:59:59.000Z

    A special form of the $3 \\times 3$ Majorana neutrino mass matrix derivable from $\\mu - \\tau$ interchange symmetry accompanied by a generalized $CP$ transformation was obtained many years ago. It predicts $\\theta_{23} = \\pi/4$ as well as $\\delta_{CP} = \\pm \\pi/2$, with $\\theta_{13} \

  13. $\\tau$ decays with neutral kaons

    E-Print Network [OSTI]

    Abbiendi, G; Ĺkesson, P F; Alexander, Gideon; Allison, J; Anderson, K J; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Bailey, I; Ball, A H; Barberio, E; Barlow, R J; Batley, J Richard; Baumann, S; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bloodworth, Ian J; Bock, P; Böhme, J; Boeriu, O; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couchman, J; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Dallison, S; Davis, R; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Ferrari, P; Fiedler, F; Fierro, M; Fleck, I; Frey, A; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Harin-Dirac, M; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J I; Karapetian, G V; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kobayashi, T; Kobel, M; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lawson, I; Layter, J G; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; Lillich, J; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Lü, J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Marchant, T E; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Méndez-Lorenzo, P; Merritt, F S; Mes, H; Meyer, I; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Okpara, A N; Oreglia, M J; Orito, S; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poli, B; Polok, J; Przybycien, M B; Quadt, A; Rembser, C; Rick, Hartmut; Robins, S A; Rodning, N L; Roney, J M; Rosati, S; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Torrence, E; Towers, S; Trefzger, T M; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Zacek, V; Zer-Zion, D

    2000-01-01T23:59:59.000Z

    The branching ratio of the tau lepton to a neutral K meson is measured from a sample of approximately 200,000 tau decays recorded by the OPAL detector at centre-of-mass energies near the Z0 resonance. The measurement is based on two samples which identify one-prong tau decays with KL and KS mesons. The combined branching ratios are measured to be B(tau- -->pi- K0bar nutau) = (9.33+-0.68+-0.49)x10^-3 B(tau- -->pi- K0bar [>=1pi0] nutau) = (3.24+-0.74+-0.66)x10^-3 B(tau- -->K- K0bar [>=0pi0] nutau) = (3.30+-0.55+-0.39)x10^-3 where the first error is statistical and the second systematic.

  14. Search for neutrinoless tau decays involving pi(0) or eta mesons

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1997-08-01T23:59:59.000Z

    We have searched for lepton flavor violating decays of the tau lepton using final states with an electron Or a muon and one or two pi(0) or eta mesons but no neutrinos. The data used in the search were collected with the CLEO II detector...

  15. Evidence for a Higgs boson in tau decays with the CMS detector

    E-Print Network [OSTI]

    Dutta, Valentina

    2014-01-01T23:59:59.000Z

    In this thesis, I describe the search for a Higgs boson through its decay to a pair of tan leptons with the tau-pair subsequently decaying to ail electron, a muon, and neutrinos. The search is performed using data collected ...

  16. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09T23:59:59.000Z

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  17. Cosmological and supernova neutrinos

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, ?i?li, ?stanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24T23:59:59.000Z

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  18. Neutrino Mixing

    E-Print Network [OSTI]

    Carlo Giunti; Marco Laveder

    2004-10-01T23:59:59.000Z

    In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

  19. Tau identification at the Tevatron

    SciTech Connect (OSTI)

    Levy, Stephen; /Chicago U., EFI

    2005-07-01T23:59:59.000Z

    Methods for reconstructing and identifying the hadronic decays of tau leptons with the CDF and D0 detectors at the Fermilab Tevatron collider in Run II are described. Precision electroweak measurements of W and Z gauge boson cross sections are presented as well as results of searches for physics beyond the Standard Model with hadronically decaying tau leptons in the final state.

  20. Measurement of the ?[subscript e] and total [superscript 8]B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set

    E-Print Network [OSTI]

    Formaggio, Joseph A.

    This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of [superscript 3]He proportional counters was installed in the heavy-water ...

  1. Neutrino masses, leptogenesis, and sterile neutrino dark matter

    E-Print Network [OSTI]

    Takanao Tsuyuki

    2014-07-20T23:59:59.000Z

    We analyze a scenario in which the lightest heavy neutrino $N_1$ is a dark matter candidate and the second- heaviest neutrino $N_2$ decays producing a lepton number. If $N_1$ were in thermal equilibrium, its energy density today would be much larger than that of the observed dark matter, so we consider energy injection by the decay of $N_2$. In this paper, we show the parameters of this scenario that give the correct abundances of dark matter and baryonic matter and also induce the observed neutrino masses. This model can explain a possible sterile neutrino dark matter signal of $M_1$=7 keV in the x-ray observation of x-ray multi-mirror mission.

  2. Neutrino Astronomy and Cosmic Rays Spectroscopy at Horizons

    E-Print Network [OSTI]

    D. Fargion

    2006-04-20T23:59:59.000Z

    A new air-showering physics may rise in next years at horizon, offering at different angles and altitudes a fine tuned filtered Cosmic Rays astrophysics and an upward Neutrino induced air-showering astronomy. Most of this opportunity arises because of neutrino masses, their mixing and the consequent replenishment of rarest tau flavor during its flight in Space. Horizontal air atmosphere act as a filter for High energy Cosmic Rays (CR) and as a beam dump for Ultra High Energy (UHE) neutrinos and a powerfull amplifier for its tau decay in air by its wide showering areas. Earth sharp shadows plays the role of a huge detector volume for UHE neutrino and a noise-free screen for upcoming EeVs tau air-showers (as well PeVs anti-neutrino electron air interactions). Projects for Tau Airshowers are growing at the top of a mountains or at the edge of a cliff. ASHRA in Hawaii and CRNTN in Utah are tracking fluorescence lights, while other novel projects on Crown array detectors on mountains, on balloons and satellites are elaborated for Cherenkov lights. AUGER, facing the Ande edges, ARGO located within a deep valley are testing inclined showers; MILAGRO (and MILAGRITO) may be triggered by horizontal up-going muon bundles from the Earth edges; HIRES and AUGER UHECR detectors, linking twin array telescopes along their axis may test horizontal Cerenkov blazing photons. MAGIC (Hess, Veritas) and Shalon Telescopes may act already like a detector for few PeVs and Glashow resonance neutrino events; MAGIC pointing downward to terrestrial ground acts as a massive tens of km^3 detector, making it the most sensitive dedicated neutrino telescope. MAGIC facing the sea edges must reveal mirrored downward UHECR Air-showers Cherenkov flashes. Magic-crown systems may lead to tens km^3, neutrino detectors.

  3. UHE Cosmic Rays and Neutrinos Showering on Planet Edges

    E-Print Network [OSTI]

    D. Fargion; P. Oliva; O. Lanciano

    2006-10-24T23:59:59.000Z

    Ultra High Energy (UHE) Cosmic Rays, UHECR, may graze high altitude atmosphere leading to horizontal upward air-showers. Also PeVs electron antineutrino hitting electron in atmosphere may air-shower at W boson resonant mass. On the other side ultra high energy muon and electron neutrinos may also lead, by UHE neutrinos mass state mixing, to the rise of a corresponding UHE Tau neutrino flavor; the consequent UHE tau neutrinos, via charge current interactions in matter, may create UHE taus at horizons (Earth skimming neutrinos or Hor-taus) whose escape in atmosphere and whose consequent decay in flight, may be later amplified by upward showering on terrestrial, planetary atmospheres. Indeed because of the finite terrestrial radius, its thin atmosphere size its dense crust, the UHE tau cannot extend much more than 360 kilometers in air, corresponding to an energy of about 7.2 EeV, near but below GZK cut-off ones; on the contrary Jupiter (or even Saturn) may offer a wider, less dense and thicker gaseous layer at the horizons where Tau may loose little energy, travel longer before decay and rise and shower at 4-6 10^{19} eV or ZeV extreme energy. Titan atmosphere may open a rare window of opportunity for Up-ward Taus at PeVs. Also solar atmosphere may play a role, but unfortunately tau-showers secondaries maybe are too noisy to be disentangled, while Jupiter atmosphere, or better, Saturn one, may offer a clearer imprint for GZK (and higher Z-Burst) Tau showering, well below the horizons edges.

  4. Propagation of Neutrinos through Magnetized Gamma-Ray Burst Fireball

    E-Print Network [OSTI]

    Sarira Sahu; Nissim Fraija; Yong-Yeon Keum

    2009-11-10T23:59:59.000Z

    The neutrino self-energy is calculated in a weakly magnetized plasma consists of electrons, protons, neutrons and their anti-particles and using this we have calculated the neutrino effective potential up to order $M^{-4}_W$. In the absence of magnetic field it reduces to the known result. We have also calculated explicitly the effective potentials for different backgrounds which may be helpful in different environments. By considering the mixing of three active neutrinos in the medium with the magnetic field we have derived the survival and conversion probabilities of neutrinos from one flavor to another and also the resonance condition is derived. As an application of the above, we considered the dense and relativistic plasma of the Gamma-Ray Bursts fireball through which neutrinos of 5-30 MeV can propagate and depending on the fireball parameters they may oscillate resonantly or non-resonantly from one flavor to another. These MeV neutrinos are produced due to stellar collapse or merger events which trigger the Gamma-Ray Burst. The fireball itself also produces MeV neutrinos due to electron positron annihilation, inverse beta decay and nucleonic bremsstrahlung. Using the three neutrino mixing and considering the best fit values of the neutrino parameters, we found that electron neutrinos are hard to oscillate to another flavors. On the other hand, the muon neutrinos and the tau neutrinos oscillate with equal probability to one another, which depends on the neutrino energy, temperature and size of the fireball. Comparison of oscillation probabilities with and without magnetic field shows that, they depend on the neutrino energy and also on the size of the fireball. By using the resonance condition, we have also estimated the resonance length of the propagating neutrinos as well as the baryon content of the fireball.

  5. High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs

    E-Print Network [OSTI]

    Eli Waxman; John Bahcall

    1997-01-30T23:59:59.000Z

    Observations suggest that $\\gamma$-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a relativistic fireball. We show that a large fraction, $\\ge 10%$, of the fireball energy is expected to be converted by photo-meson production to a burst of $\\sim10^{14} eV$ neutrinos. A km^2 neutrino detector would observe at least several tens of events per year correlated with GRBs, and test for neutrino properties (e.g. flavor oscillations, for which upward moving $\\tau$'s would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

  6. Measurements of the decays tau(-) -> h(-)h(+)h(-)nu(tau) and tau(-) -> h(-)h(+)h(-)pi(0)nu(tau)

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1995-11-01T23:59:59.000Z

    We use a data sample of 2.8 X 10(6) produced tau-pair events, obtained with the CLEO II detector, to measure B(tau(-) --> h(-)h(+)h(-)(pi(0))nu(tau)), where h refers to either a charged pi or K. These branching fractious are measured with samples...

  7. Prospect for measuring the CP phase in the $h\\tau\\tau$ coupling at the LHC

    E-Print Network [OSTI]

    Askew, Andrew; Okui, Takemichi; Prosper, Harrison B; Sato, Nobuo

    2015-01-01T23:59:59.000Z

    The search for a new source of CP violation is one of the most important endeavors in particle physics. A particularly interesting way to perform this search is to probe the CP phase in the $h\\tau\\tau$ coupling, as the phase is currently completely unconstrained by all existing data. Recently, a novel variable $\\Theta$ was proposed for measuring the CP phase in the $h\\tau\\tau$ coupling through the $\\tau^\\pm \\to \\pi^\\pm \\pi^0 \

  8. Study of t anti-t production in tau jets channel at CDFII using neural networks

    SciTech Connect (OSTI)

    Amerio, Silvia; /Trento U.

    2005-12-01T23:59:59.000Z

    CDF (Collider Detector at Fermilab) is a particle detector located at Fermi National Laboratories, near Chicago. it allows to study decay products of p{bar p} collisions at center-of-mass energy of 1.96 TeV. During its first period of data taking (RunI), CDF observed for the first time the top quark (1995). The current period of data taking (RunII) is devoted to precise measurements of top properties and to search for new physics. This thesis work is about the top decay channel named {tau} + jets. A t{bar t} pair decays in two W bosons and two b quarks. In a {tau} + jets event, one out of the two W decays into two jets of hadrons, while the other produces a {tau} lepton and a neutrino; the {tau} decays semileptonically in one or more charged and neutral pions while b quarks hadronize producing two jets of particles. Thus the final state of a {tau} + jets event has this specific signature: five jets, one {tau}-like, i.e. narrow and with low track multiplicity, two from b quarks, two from a W boson and a large amount of missing energy from two {tau} neutrinos. They search for this signal in 311 pb{sup -1} of data collected with TOP{_}MULTIJET trigger. They use neural networks to separate signal from background and on the selected sample they perform a t{bar t} production cross section measurement. The thesis is structured as follows: in Chapter 1 they outline the physics of top and {tau}, concentrating on their discovery, production mechanisms and current physics results involving them. Chapter 2 is devoted to the description of the experimental setup: the accelerator complex first and CDF detector then. The trigger system is described in Chapter 3, while Chapter 4 shows how particles are reconstructed exploiting information from different CDF subdetectors. With Chapter 5 they begin to present their analysis: we use a feed forward neural network based on a minimization algorithm developed in Trento University, called Reactive Taboo Search (RTS), especially designed to rapidly escape from local minima. Using this neural network, they explore two techniques to select t{bar t} {yields} {tau} + jets events, the first based on a single net, the second on two neural networks in cascade; both techniques are described in Chapter 6, together with the variables used as inputs for the nets. Finally, in Chapter 7 they present a method to measure cross section on the sample of events selected by neural networks.

  9. Neutrino Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operators in the Lagrangian (Majorana mass terms), or both. The ongoing neutrinoless double-beta decay searches may be able to shine light on the matter. But the neutrino sector...

  10. On the 17-keV neutrino

    SciTech Connect (OSTI)

    Hime, A.

    1993-04-01T23:59:59.000Z

    A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in {beta} decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

  11. On the 17-keV neutrino

    SciTech Connect (OSTI)

    Hime, A.

    1993-04-01T23:59:59.000Z

    A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in [beta] decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

  12. Neutrinoless Double Beta Decay in Heavy Deformed Nuclei

    E-Print Network [OSTI]

    Jorge G. Hirsch; O. Castańos; P. O. Hess

    1994-07-12T23:59:59.000Z

    The zero neutrino mode of the double beta decay in heavy deformed nuclei is investigated in the framework of the pseudo SU(3) model, which has provided an accurate description of collective nuclear structure and predicted half-lives for the two neutrino mode in good agreement with experiments. In the case of $^{238}U$ the calculated zero neutrino half-life is at least three orders of magnitude greater than the two neutrino one, giving strong support of the identification of the radiochemically determined half-life as being the two neutrino double beta decay. For $^{150}Nd$ the zero neutrino matrix elements are of the order of magnitude of, but lesser than, those evaluated using the QRPA. This result confirms that different nuclear models produce similar zero neutrino matrix elements, contrary to the two neutrino case. Using these pseudo SU(3) results and the upper limit for the neutrino mass we estimate the $\\beta\\beta_{0\

  13. Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube

    E-Print Network [OSTI]

    Kamada, Ayuki

    2015-01-01T23:59:59.000Z

    The energy spectrum of high-energy neutrinos reported by the IceCube collaboration shows a dip between 400 TeV and 1 PeV. One intriguing explanation is that high-energy neutrinos scatter with the cosmic neutrino background through a $\\sim$ MeV mediator. Since the coherence length of PeV neutrinos is much larger than the cosmic distance that they travel from the source to the IceCube detector, the quantum coherent effect in neutrino propagation plays an important role in determining flavor components of the PeV neutrino flux at the IceCube detector. Taking the density matrix approach, we develop a formalism to include the coherent effect in calculating the neutrino flux. If the new interaction is not flavor-blind such as the gauged $L_{\\mu}-L_{\\tau}$ model we consider, the resonant collision may not suppress the PeV neutrino flux completely. The new force mediator may also contribute to the number of effectively massless degrees of freedom in the early universe, and change the diffusion time of neutrinos from ...

  14. Solar Neutrinos and the Decaying Neutrino Hypothesis

    E-Print Network [OSTI]

    Jeffrey M. Berryman; Andre de Gouvea; Daniel Hernandez

    2014-11-02T23:59:59.000Z

    We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a mostly model-independent bound on both the $\

  15. Solar Neutrinos

    E-Print Network [OSTI]

    R. G. H. Robertson

    2006-02-05T23:59:59.000Z

    Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

  16. Colliding neutrino beams

    E-Print Network [OSTI]

    Reinhard Schwienhorst

    2007-11-08T23:59:59.000Z

    From several neutrino oscillation experiments, we understand now that neutrinos have mass. However, we really don't know what mechanism is responsible for producing this neutrino mass. Current or planned neutrino experiments utilize neutrino beams and long-baseline detectors to explore flavor mixing but do not address the question of the origin of neutrino mass. In order to answer that question, neutrino interactions need to be explored at much higher energies. This paper outlines a program to explore neutrinos and their interactions with various particles through a series of experiments involving colliding neutrino beams.

  17. Neutrino mass matrices with M{sub ee}=0

    SciTech Connect (OSTI)

    BenTov, Yoni [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Zee, A. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)

    2011-10-01T23:59:59.000Z

    Motivated by the possibility that the amplitude for neutrinoless double beta decay may be much smaller than the planned sensitivity of future experiments, we study Ansaetze for the neutrino mass matrix with M{sub ee}=0. For the case in which CP is conserved, we consider two classes of real-valued mass matrices: ''Class I'' defined by |M{sub e{mu}|}=|M{sub e{tau}|}, and ''Class II'' defined by |M{sub {mu}{mu}|}=|M{sub {tau}{tau}|}. The important phenomenological distinction between the two is that Class I permits only small values of V{sub e3} up to {approx}0.03, while Class II admits large values of V{sub e3} up to its empirical upper limit of 0.22. Then we introduce CP-violating complex phases into the mass matrix. We show that it is possible to have tribimaximal mixing with M{sub ee}=0 and |M{sub {mu}{tau}|}=|M{sub {mu}{mu}|}=|M{sub {tau}{tau}|} if the Majorana phase angles are {+-}{pi}/4. Alternatively, for smaller values of |M{sub {mu}{tau}|}=|M{sub {mu}{mu}|}=|M{sub {tau}{tau}|} it is possible to obtain |V{sub e3}|{approx}0.2 and generate relatively large CP-violating amplitudes. To eliminate phase redundancy, we emphasize rephasing any mass matrix with M{sub ee}=0 into a standard form with two complex phases. The discussion alternates between analytical and numerical but remains purely phenomenological, without any attempt to derive mass matrices from a fundamental theory.

  18. Study of Top-Quark Production and Decays involving a Tau Lepton at CDF and Limits on a Charged-Higgs Boson Contribution

    E-Print Network [OSTI]

    CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; L. Marchese; M. Deninno; F. Devoto; M. D'Errico; A. Di Canto; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; S. Grinstein; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. K. Kim; Y. J. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; A. Lucŕ; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; P. Marino; M. Martínez; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; F. Prokoshin; A. Pranko; F. Ptohos; G. Punzi; N. Ranjan; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; C. Rizzi; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; V. Sorin; H. Song; M. Stancari; R. St. Denis; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang; Y. C. Yang; W. -M. Yao; G. P. Yeh; K. Yi; J. Yoh; K. Yorita; T. Yoshida

    2014-04-22T23:59:59.000Z

    We present an analysis of top-antitop quark production and decay into a tau lepton, tau neutrino, and bottom quark using data from $9 {\\rm fb}^{-1}$ of integrated luminosity at the Collider Detector at Fermilab. Dilepton events, where one lepton is an energetic electron or muon and the other a hadronically-decaying tau lepton, originating from proton-antiproton collisions at $\\sqrt{s} = 1.96 TeV$ are used. A top-antitop quark production cross section of $8.1 \\pm 2.1 {\\rm pb}$ is measured, assuming standard-model top-quark decays. By separately identifying for the first time the single-tau and the ditau components, we measure the branching fraction of the top quark into tau lepton, tau neutrino, and bottom quark to be $(9.6 \\pm 2.8) %$. The branching fraction of top-quark decays into a charged Higgs boson and a bottom quark, which would imply violation of lepton universality, is limited to be less than $5.9%$ at $95%$ confidence level.

  19. Electromagnetic properties of neutrinos

    E-Print Network [OSTI]

    Carlo Giunti; Alexander Studenikin

    2010-06-08T23:59:59.000Z

    A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

  20. Structure of Cosmological CP Violation via Neutrino Seesaw

    E-Print Network [OSTI]

    V. Barger; Duane A. Dicus; Hong-Jian He; Tianjun Li

    2003-12-16T23:59:59.000Z

    The cosmological matter-antimatter asymmetry can originate from CP-violating interactions of seesaw Majorana neutrinos via leptogenesis in the thermal phase of the early universe. Having the cosmological CP-phase for leptogenesis requires at least two right-handed Majorana neutrinos. Using only the low energy neutrino observables we quantitatively reconstruct a minimal neutrino seesaw. We establish a general criterion for minimal seesaw schemes in which the cosmological CP-phase is {\\it completely} reconstructed from the low energy CP-phases measured by neutrino oscillation and neutrinoless double-beta decay experiments. We reveal and analyze two distinct classes of such minimal schemes that are shown to be highly predictive. Extension of our reconstruction formalism to a three-heavy-neutrino seesaw is discussed.

  1. Neutrino Factory Downstream Systems

    E-Print Network [OSTI]

    Zisman, Michael S.

    2010-01-01T23:59:59.000Z

    Neutrino Factory Downstream Systems Michael S. Zisman*Factory accelerator systems downstream from the target andthe Neutrino Factory systems downstream of the target and

  2. Neutrinos: Theory and Phenomenology

    SciTech Connect (OSTI)

    Parke, Stephen

    2013-10-22T23:59:59.000Z

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  3. Diffractive-Like (or Parametric-Resonance-Like?) Enhancement of the Earth (Day-Night) Effect for Solar Neutrinos Crossing the Earth Core

    E-Print Network [OSTI]

    S. T. Petcov

    2005-04-18T23:59:59.000Z

    It is shown that the strong enhancement of the Earth (day-night) effect for solar neutrinos crossing the Earth core in the case of the small mixing angle MSW electron neutrino to muon (tau) neutrino transition solution of the solar neutrino problem is due to a new resonance effect in the solar neutrino transitions in the Earth and not just to the MSW effect in the core. The effect is in many respects similar to the electron paramagnetic resonance. The conditions for existence of this new resonance effect are discussed. They include specific constraints on the neutrino oscillation lengths in the Earth mantle and in the Earth core, thus the resonance is a ``neutrino oscillation length resonance''. The effect exhibits strong dependence on the neutrino energy. Analytic expression for the probability accounting for the solar neutrino transitions in the Earth, which provides a high precision description of the transitions, including the new resonance effect, is derived. The implications of our results for the searches of the day-night asymmetry in the solar neutrino experiments are briefly discussed. The new resonance effect is operative also in the muon neutrino to electron neutrino (electron neutrino to muon neutrino) transitions of atmospheric neutrinos crossing the Earth core.

  4. The Intermediate Neutrino Program

    E-Print Network [OSTI]

    C. Adams; J. R. Alonso; A. M. Ankowski; J. A. Asaadi; J. Ashenfelter; S. N. Axani; K. Babu; C. Backhouse; H. R. Band; P. S. Barbeau; N. Barros; A. Bernstein; M. Betancourt; M. Bishai; E. Blucher; J. Bouffard; N. Bowden; S. Brice; C. Bryan; L. Camilleri; J. Cao; J. Carlson; R. E. Carr; A. Chatterjee; M. Chen; S. Chen; M. Chiu; E. D. Church; J. I. Collar; G. Collin; J. M. Conrad; M. R. Convery; R. L. Cooper; D. Cowen; H. Davoudiasl; A. De Gouvea; D. J. Dean; G. Deichert; F. Descamps; T. DeYoung; M. V. Diwan; Z. Djurcic; M. J. Dolinski; J. Dolph; B. Donnelly; D. A. Dwyer; S. Dytman; Y. Efremenko; L. L. Everett; A. Fava; E. Figueroa-Feliciano; B. Fleming; A. Friedland; B. K. Fujikawa; T. K. Gaisser; M. Galeazzi; D. C. Galehouse; A. Galindo-Uribarri; G. T. Garvey; S. Gautam; K. E. Gilje; M. Gonzalez-Garcia; M. C. Goodman; H. Gordon; E. Gramellini; M. P. Green; A. Guglielmi; R. W. Hackenburg; A. Hackenburg; F. Halzen; K. Han; S. Hans; D. Harris; K. M. Heeger; M. Herman; R. Hill; A. Holin; P. Huber; D. E. Jaffe; R. A. Johnson; J. Joshi; G. Karagiorgi; L. J. Kaufman; B. Kayser; S. H. Kettell; B. J. Kirby; J. R. Klein; Yu. G. Kolomensky; R. M. Kriske; C. E. Lane; T. J. Langford; A. Lankford; K. Lau; J. G. Learned; J. Ling; J. M. Link; D. Lissauer; L. Littenberg; B. R. Littlejohn; S. Lockwitz; M. Lokajicek; W. C. Louis; K. Luk; J. Lykken; W. J. Marciano; J. Maricic; D. M. Markoff; D. A. Martinez Caicedo; C. Mauger; K. Mavrokoridis; E. McCluskey; D. McKeen; R. McKeown; G. Mills; I. Mocioiu; B. Monreal; M. R. Mooney; J. G. Morfin; P. Mumm; J. Napolitano; R. Neilson; J. K. Nelson; M. Nessi; D. Norcini; F. Nova; D. R. Nygren; G. D. Orebi Gann; O. Palamara; Z. Parsa; R. Patterson; P. Paul; A. Pocar; X. Qian; J. L. Raaf; R. Rameika; G. Ranucci; H. Ray; D. Reyna; G. C. Rich; P. Rodrigues; E. Romero Romero; R. Rosero; S. D. Rountree; B. Rybolt; M. C. Sanchez; G. Santucci; D. Schmitz; K. Scholberg; D. Seckel; M. Shaevitz; R. Shrock; M. B. Smy; M. Soderberg; A. Sonzogni; A. B. Sousa; J. Spitz; J. M. St. John; J. Stewart; J. B. Strait; G. Sullivan; R. Svoboda; A. M. Szelc; R. Tayloe; M. A. Thomson; M. Toups; A. Vacheret; M. Vagins; R. G. Van de Water; R. B. Vogelaar; M. Weber; W. Weng; M. Wetstein; C. White; B. R. White; L. Whitehead; D. W. Whittington; M. J. Wilking; R. J. Wilson; P. Wilson; D. Winklehner; D. R. Winn; E. Worcester; L. Yang; M. Yeh; Z. W. Yokley; J. Yoo; B. Yu; J. Yu; C. Zhang

    2015-04-01T23:59:59.000Z

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  5. The Intermediate Neutrino Program

    E-Print Network [OSTI]

    Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

    2015-01-01T23:59:59.000Z

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  6. Cold plus hot dark matter cosmology in the light of solar and atmospheric neutrino oscillations

    SciTech Connect (OSTI)

    Babu, K.S.; Schaefer, R.K.; Shafi, Q. [Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (United States)] [Bartol Research Institute, University of Delaware, Newark, Delaware 19716 (United States)

    1996-01-01T23:59:59.000Z

    We explore the implications of possible neutrino oscillations, as indicated by the solar and atmospheric neutrino experiments, for the cold plus hot dark matter scenario of large-scale structure formation. We find that there are essentially three distinct schemes that can accommodate the oscillation data and which also allow for dark matter neutrinos. These include (i) three nearly degenerate (in mass) neutrinos, (ii) nondegenerate masses with {nu}{sub {tau}} in the eV range, and (iii) a nearly degenerate {nu}{sub {mu}}-{nu}{sub {tau}} pair (in the eV range), with the additional possibility that the electron neutrino is cosmologically significant. The last two schemes invoke a {open_quote}{open_quote}sterile{close_quote}{close_quote} neutrino which is light ({approx_lt}eV). We discuss the implications of these schemes for {bar {nu}}{sub {mu}}-{bar {nu}}{sub {ital e}} and {nu}{sub {mu}}-{nu}{sub {tau}} oscillation, and find that scheme (ii), in particular, predicts them to be in the observable range. As far as structure formation is concerned we compare the one neutrino flavor case with a variety of other possibilities, including two and three degenerate neutrino flavors. We show, both analytically and numerically, the effects of these neutrino mass scenarios on the amplitude of cosmological density fluctuations. With a Hubble constant of 50 km s{sup {minus}}{sup 1} Mpc{sup {minus}}{sup 1}, a spectral index of unity, and {Omega}{sub b}{sub a}{sub r}{sub y}{sub o}{sub n}=0.05, the two and three flavor scenarios fit the observational data marginally better than the single flavor scheme. However, taking account of the uncertainties in these parameters, we show that it is premature to pick a clear winner. {copyright} {ital 1996 The American Physical Society.}

  7. Light sterile neutrinos, spin flavour precession and the solar neutrino experiments

    E-Print Network [OSTI]

    C. R. Das; Joao Pulido; Marco Picariello

    2009-04-01T23:59:59.000Z

    We generalize to three active flavours a previous two flavour model for the resonant spin flavour conversion of solar neutrinos to sterile ones, a mechanism which is added to the well known LMA one. The transition magnetic moments from the muon and tau neutrinos to the sterile play the dominant role in fixing the amount of active flavour suppression. We also show, through numerical integration of the evolution equations, that the data from all solar neutrino experiments except Borexino exhibit a clear preference for a sizable magnetic field either in the convection zone or in the core and radiation zone. This is possibly related to the fact that the data from the first set are average ones taken during a period of mostly intense solar activity, whereas in contrast Borexino data were taken during a period of quiet sun. We argue that the solar neutrino experiments are capable of tracing the possible modulation of the solar magnetic field. Those monitoring the high energy neutrinos, namely the $^8 B$ flux, appear to be sensitive to a field modulation either in the convection zone or in the core and radiation zone. Those monitoring the low energy fluxes will be sensitive to the second type of solar field profiles only. In this way Borexino alone may play an essential role, since it examines both energy sectors, although experimental redundance from other experiments will be most important.

  8. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    E-Print Network [OSTI]

    Grohs, E; Kishimoto, C T; Paris, M W

    2015-01-01T23:59:59.000Z

    We show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and cosmic microwave background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.

  9. Search for Neutrinoless {tau} Decays Involving {pi}{sup 0} or {eta} Mesons

    SciTech Connect (OSTI)

    Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J. [Wayne State University, Detroit, Michigan 48202 (United States)] [Wayne State University, Detroit, Michigan 48202 (United States); Barish, B.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F. [California Institute of Technology, Pasadena, California 91125 (United States)] [California Institute of Technology, Pasadena, California 91125 (United States); Asner, D.M.; Bliss, D.W.; Brower, W.S.; Masek, G.; Paar, H.P.; Prell, S.; Sharma, V. [University of California, San Diego, La Jolla, California 92093 (United States)] [University of California, San Diego, La Jolla, California 92093 (United States); Gronberg, J.; Hill, T.S.; Kutschke, R.; Lange, D.J.; Menary, S.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Qiao, C.; Richman, J.D.; Roberts, D.; Ryd, A.; Witherell, M.S. [University of California, Santa Barbara, California 93106 (United States)] [University of California, Santa Barbara, California 93106 (United States); Balest, R.; Behrens, B.H.; Cho, K.; Ford, W.T.; Park, H.; Rankin, P.; Roy, J.; Smith, J.G. [University of Colorado, Boulder, Colorado 80309-0390 (United States)] [University of Colorado, Boulder, Colorado 80309-0390 (United States); Alexander, J.P.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Dickson, M.; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Elia, R.; Foland, A.D.; Gaidarev, P.; Galik, R.S.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C. [Cornell University, Ithaca, New York 14853 (United States)] [Cornell University, Ithaca, New York 14853 (United States); Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Yelton, J.; Zheng, J. [University of Florida, Gainesville, Florida 32611 (United States)] [University of Florida, Gainesville, Florida 32611 (United States); Brandenburg, G.; Briere, R.A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H. [Harvard University, Cambridge, Massachusetts 02138 (United States)] [Harvard University, Cambridge, Massachusetts 02138 (United States); Browder, T.E.; Li, F.; Li, Y.; Rodriguez, J.L. [University at Hawaii at Manoa, Honolulu, Hawaii 96822 (United States)] [University at Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; and others

    1997-08-01T23:59:59.000Z

    We have searched for lepton flavor violating decays of the {tau} lepton using final states with an electron or a muon and one or two {pi}{sup 0} or {eta} mesons but no neutrinos. The data used in the search were collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR) and correspond to an integrated luminosity of 4.68 fb{sup {minus}1} . No evidence for signals was found, resulting in much improved limits on the branching fractions for the one-meson modes and the first upper limits for the two-meson modes. {copyright} {ital 1997} {ital The American Physical Society}

  10. Neutrino flavor ratios as diagnostic of solar WIMP annihilation

    E-Print Network [OSTI]

    Ralf Lehnert; Thomas J. Weiler

    2007-08-08T23:59:59.000Z

    We consider the neutrino (and antineutrino) flavors arriving at Earth for neutrinos produced in the annihilation of weakly interacting massive particles (WIMPs) in the Sun's core. Solar-matter effects on the flavor propagation of the resulting $\\agt$ GeV neutrinos are studied analytically within a density-matrix formalism. Matter effects, including mass-state level-crossings, influence the flavor fluxes considerably. The exposition herein is somewhat pedagogical, in that it starts with adiabatic evolution of single flavors from the Sun's center, with $\\theta_{13}$ set to zero, and progresses to fully realistic processing of the flavor ratios expected in WIMP decay, from the Sun's core to the Earth. In the fully realistic calculation, non-adiabatic level-crossing is included, as are possible nonzero values for $\\theta_{13}$ and the CP-violating phase $\\delta$. Due to resonance enhancement in matter, nonzero values of $\\theta_{13}$ even smaller than a degree can noticeably affect flavor propagation. Both normal and inverted neutrino-mass hierarchies are considered. Our main conclusion is that measuring flavor ratios (in addition to energy spectra) of $\\agt$ GeV solar neutrinos can provide discrinination between WIMP models. In particular, we demonstrate the flavor differences at Earth for neutrinos from the two main classes of WIMP final states, namely $W^+ W^-$ and 95% $b \\bar{b}$ + 5% $\\tau^+\\tau^-$. Conversely, if WIMP properties were to be learned from production in future accelerators, then the flavor ratios of $\\agt$ GeV solar neutrinos might be useful for inferring $\\theta_{13}$ and the mass hierarchy.

  11. Neutrino physics at accelerators

    E-Print Network [OSTI]

    Enrique Fernandez

    2006-07-16T23:59:59.000Z

    Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

  12. Muons and Neutrinos 2007

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2008-01-29T23:59:59.000Z

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  13. Vacuum and MSW interpretations of solar neutrino data with the LNW mass matrix

    E-Print Network [OSTI]

    Per Osland; Geir Vigdel

    2000-07-14T23:59:59.000Z

    The Lehmann-Newton-Wu mass matrix, which was recently applied to neutrinos, is further investigated. The analytic results presented earlier are confirmed numerically for the solar density profile of the Standard Solar Model. The combined analysis of atmospheric and solar neutrino data favors the MSW solution over the vacuum-oscillation solution. The total rates from the solar neutrino detectors and spectrum distortion reported by the Super-Kamiokande collaboration for solar neutrinos favors one heavy (m3\\sim 0.05 eV) and two light (m1, m2\\lsim 0.003 eV) neutrinos.

  14. Neutrinos in Nuclear Physics

    E-Print Network [OSTI]

    R. D. McKeown

    2014-12-03T23:59:59.000Z

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  15. Neutrinos in Nuclear Physics

    E-Print Network [OSTI]

    McKeown, R D

    2014-01-01T23:59:59.000Z

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  16. Searches for Lepton Flavor Violation in the Decays tau+- ---> e+- gamma and tau+- ---> mu+- gamma

    SciTech Connect (OSTI)

    Aubert, Bernard; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, David Nathan; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS; /more authors.; ,

    2010-06-11T23:59:59.000Z

    Searches for lepton-flavor-violating decays of a {tau} lepton to a lighter mass lepton and a photon have been performed with the entire dataset of (963 {+-} 7) x 10{sup 6} {tau} decays collected by the BABAR detector near the {Upsilon}(4S), {Upsilon}(3S) and {Upsilon}(2S) resonances. The searches yield no evidence of signals and they set upper limits on the branching fractions of {Beta}({tau}{sup {+-}} {yields} e{sup {+-}}{gamma}) < 3.3 x 10{sup -8} and {Beta}({tau}{sup {+-}} {yields} {mu}{sup {+-}}{gamma}) < 4.4 x 10{sup -8} at 90% confidence level.

  17. Study of the decay tau(-)->2 pi(-)pi(+)3 pi(0)nu(tau)

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1997-11-01T23:59:59.000Z

    (-)pi(+)eta nu(tau), and pi(-)2 pi(0) eta nu(tau). This is the first observation of this omega decay mode and the branching fraction is measured to be (1.89(-0.67)(+0.74) +/- 0.40) x 10(-4)....

  18. Experimental Neutrino Physics: Final Report

    SciTech Connect (OSTI)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05T23:59:59.000Z

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  19. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Niki Saoulidou

    2010-01-08T23:59:59.000Z

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  20. High energy cosmic rays, gamma rays and neutrinos from AGN

    E-Print Network [OSTI]

    Yukio Tomozawa

    2008-02-03T23:59:59.000Z

    The author reviews a model for the emission of high energy cosmic rays, gamma-rays and neutrinos from AGN (Active Galactic Nuclei) that he has proposed since 1985. Further discussion of the knee energy phenomenon of the cosmic ray energy spectrum requires the existence of a heavy particle with mass in the knee energy range. A possible method of detecting such a particle in the Pierre Auger Project is suggested. Also presented is a relation between the spectra of neutrinos and gamma-rays emitted from AGN. This relation can be tested by high energy neutrino detectors such as ICECUBE, the Mediterranean Sea Detector and possibly by the Pierre Auger Project.

  1. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    SciTech Connect (OSTI)

    Reddy, Sanjay

    2013-09-06T23:59:59.000Z

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.

  2. Solar neutrino physics: Sensitivity to light dark matter particles

    E-Print Network [OSTI]

    Ilidio Lopes; Joseph Silk

    2013-09-29T23:59:59.000Z

    Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radius of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely 8B neutrino fluxes, we find that non-annihilating dark matter particles with a mass smaller than 10 GeV and a spin-independent scattering cross-section with heavy baryon-nuclei larger than 3 x 10^{-37} cm^-2 produce a variation in the 8B neutrino fluxes that would be in conflict with current measurements.

  3. Search for Majorana Neutrinos in B[superscript ?] ? ?[superscript +]?[superscript ?]?[superscript ?] Decays

    E-Print Network [OSTI]

    Counts, Ian Thomas Hunt

    A search for heavy Majorana neutrinos produced in the B[superscript ?] ? ?[superscript +]?[superscript ?]?[superscript ?] decay mode is performed using 3??fb[superscript ?1] of integrated luminosity collected with the LHCb ...

  4. Neutrino-electron scattering in a magnetic field with allowance for polarizations of electrons

    SciTech Connect (OSTI)

    Guseinov, V. A. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan); Laboratory of Physical Research, Nakhchivan Division of Azerbaijan National Academy of Sciences, AZ 7000, Nakhchivan (Azerbaijan); Jafarov, I. G. [Department of Theoretical Physics and Astrophysics, Azerbaijan State Pedagogical University, Baku (Azerbaijan); Gasimova, R. E. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan)

    2007-04-01T23:59:59.000Z

    We present an analytic formula for differential cross section (DCS) of neutrino-electron scattering (NES) in a magnetic field (MF) with allowance for longitudinal polarizations of initial and final electrons (IAFE). The DCS of NES in a MF is sensitive to the spin variable of the IAFE and to the direction of the incident and scattered neutrinos (IASN) momenta. Spin asymmetries and field effects in NES in a MF enable us to use initial electrons having a left-hand circular polarization (LHCP) as polarized electron targets in detectors for detection of low-energy neutrinos or relic neutrinos and for distinguishing neutrino flavor (NF). In general, gas consisting of only electrons having a LHCP and gas consisting of only electrons having a right-hand circular polarization (RHCP) are heated by neutrinos asymmetrically. The asymmetry of heating (AH) is sensitive to NF, MF strength, energies (Landau quantum numbers and third components of the momenta) of IAFE, final electron chemical potential, the final temperature of gas consisting of only electrons having a LHCP (RHCP), polar angles of IASN momenta, the difference between the azimuthal angles of IASN momenta, the angle {phi}, and IASN energies. In the heating process of electrons by neutrinos the dominant role belongs to electron neutrinos compared with the contribution of muon (tauon) neutrinos. Electrons having a LHCP in NES in a MF are heated by {nu}{sub e} and {nu}{sub {mu}}({nu}{sub {tau}}) unequally when both the IASN fly along or against the MF direction. For magnetars and neutrinos of 1 MeV energy, within the considered kinematics, the AH in an electron neutrino-electron scattering is 2.23 times that in a muon neutrino-electron scattering or in a tauon neutrino-electron scattering.

  5. Solar neutrinos - Eclipse effect

    E-Print Network [OSTI]

    Mohan Narayan; G. Rajasekaran; Rahul Sinha

    1997-03-12T23:59:59.000Z

    It is pointed out that the enhancement of the solar neutrino rate in a real time detector like Super-Kamioka, SNO or Borexino due to neutrino oscillations in the moon during a partial or total solar eclipse may be observable. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement if seen, can further help to determine the neutrino parameters.

  6. Neutrino Astronomy Scott Wilbur

    E-Print Network [OSTI]

    Golwala, Sunil

    V protons, which should be created with neutrinos, have been seen Can be used to observe possible dark Particle Physics Extremely long baseline for neutrino oscillation studies Dark Matter Searches Many dark Detector Picture from AMANDA II Web Site: http://www.amanda.uci.edu #12;Advantages of Neutrino Astronomy

  7. atlas tau trigger: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beyond the Standard Model, and to get precise measurements of the properties of the Higgs boson decaying to tau-leptons. We present the performance of the hadronic tau trigger...

  8. Constraining Sterile Neutrinos Using Reactor Neutrino Experiments

    E-Print Network [OSTI]

    Ivan Girardi; Davide Meloni; Tommy Ohlsson; He Zhang; Shun Zhou

    2014-08-21T23:59:59.000Z

    Models of neutrino mixing involving one or more sterile neutrinos have resurrected their importance in the light of recent cosmological data. In this case, reactor antineutrino experiments offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino flavor transitions. In this work, we show that the high-precision data of the Daya Bay experi\\-ment constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing angle $\\sin^2 2 \\theta_{14} \\lesssim 0.06$ at 3$\\sigma$ confidence level for the mass-squared difference $\\Delta m^2_{41}$ in the range $(10^{-3},10^{-1}) \\, {\\rm eV^2}$. The latter bound can be improved by six years of running of the JUNO experiment, $\\sin^22\\theta_{14} \\lesssim 0.016$, although in the smaller mass range $ \\Delta m^2_{41} \\in (10^{-4} ,10^{-3}) \\, {\\rm eV}^2$. We have also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters $\\theta_{13}$ and $\\Delta m^2_{31}$ (at Daya Bay and JUNO), $\\theta_{12}$ and $\\Delta m^2_{21}$ (at JUNO), and most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious situation where $\\Delta m^2_{41}\\sim \\Delta m^2_{31}$, sterile states do not affect these measurements substantially.

  9. LSND neutrino oscillation results

    SciTech Connect (OSTI)

    Louis, W.C.

    1996-06-01T23:59:59.000Z

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say {bar {nu}}{sub {mu}}) spontaneously transforms into a neutrino of another type (say {bar {nu}}{sub e}). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with {bar {nu}}{sub {mu}} oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations.

  10. Density of the Values Set of the Tau Function

    E-Print Network [OSTI]

    N. A. Carella

    2014-04-10T23:59:59.000Z

    It is shown that the density of the values set {Tau(n): n > x/log x. The currently known density is #{Tau(n) : n > x^(1/2+o(1)), and the expected density is #{Tau(n) : n 2, which arises as a singular case of this analysis, is discussed within.

  11. New limits for neutrinoless tau decays

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan; Zhou, L.

    1998-05-01T23:59:59.000Z

    Neutrinoless 3-prong tau lepton decays into a charged lepton and either two charged particles or one neutral meson have been searched for using 4.79fb(-1) of data collected with the CLEO II detector at Cornell Electron Storage Ring. This analysis...

  12. Democratic Neutrino Theory

    E-Print Network [OSTI]

    Dmitry Zhuridov

    2014-05-21T23:59:59.000Z

    New theory of neutrino masses and mixing is introduced. This theory is based on a simple S_3 symmetric democratic neutrino mass matrix, and predicts the neutrino mass spectrum of normal ordering. Taking into account the matter effect and proper averaging of the oscillations, this theory agrees with the variety of atmospheric, solar and accelerator neutrino data. Moreover, the absolute scale of the neutrino masses m of 0.03 eV is determined in this theory, using the atmospheric neutrino oscillation data. In case of tiny perturbations in the democratic mass matrix only one this scale parameter m allows to explain the mentioned above neutrino results, and the theory has huge predictive power.

  13. Collective neutrino oscillations in supernovae

    SciTech Connect (OSTI)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24T23:59:59.000Z

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  14. Probing low-x QCD with cosmic neutrinos at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Anchordoqui, Luis A.; /Northeastern U. /Wisconsin U., Milwaukee; Cooper-Sarkar, Amanda M.; /Oxford U.; Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U.

    2006-05-01T23:59:59.000Z

    The sources of the observed ultra-high energy cosmic rays must also generate ultra-high energy neutrinos. Deep inelastic scattering of these neutrinos with nucleons on Earth probe center-of-mass energies {radical}s {approx} 100 TeV, well beyond those attainable at terrestrial colliders. By comparing the rates for two classes of observable events, any departure from the benchmark (unscreened perturbative QCD) neutrino-nucleon cross-section can be constrained. Using the projected sensitivity of the Pierre Auger Observatory to quasi-horizontal showers and Earth-skimming tau neutrinos, we show that a ''Super-Auger'' detector can thus provide an unique probe of strong interaction dynamics.

  15. A Search for New Physics with High Mass Tau Pairs in proton anti-proton collisions at s**(1/2) = 1.96-TeV at CDF

    SciTech Connect (OSTI)

    Wan, Zong-ru; /Rutgers U., Piscataway; ,

    2005-04-01T23:59:59.000Z

    We present the results of a search for new particles decaying to tau pairs using the data corresponding to an integrated luminosity of 195 pb{sup -1} collected from March 2002 to September 2003 with the CDF detector at the Tevatron. Hypothetical particles, such as Z' and MSSM Higgs bosons can potentially produce the tau pair final state. We discuss the method of tau identification, and show the signal acceptance versus new particle mass. The low-mass region, dominated by Z {yields} {tau}{tau}, is used as a control region. In the high-mass region, we expect 2.8 {+-} 0.5 events from known background sources, and observe 4 events in the data sample. Thus no significant excess is observed, and we set upper limits on the cross section times branching ratio as a function of the masses of heavy scalar and vector particles.

  16. The Isospin Model prediction for multi-pion tau decays

    E-Print Network [OSTI]

    Randall J. Sobie

    1998-10-19T23:59:59.000Z

    The predictions of an isospin model are compared with the branching ratios of the 5 and 6 pion decays of the tau lepton. In both cases, the isospin model suggests that the tau favours decays in which there is an omega resonance. Recent measurements of such tau decays confirm this hypothesis. If the decay of the tau to 7 pions also proceeds through an intermediate omega, then the isospin model predicts that the branching ratio of the tau to seven charged pions should be small when compared with other 7 pion decays. New limits on this mode appear to support this argument.

  17. Neutral Current Detectors for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Waltham, Chris

    3 Neutral Current Detectors for the Sudbury Neutrino Observatory Peter Michael Thornewell Lincoln), a 1,000 tonne heavy water Cerenkov detector presently under construction. This detector will measure the 8B e flux and energy spectrum via a pure charge current reaction, and independently the 8B total

  18. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  19. Acquiring information about neutrino parameters by detecting supernova neutrinos

    SciTech Connect (OSTI)

    Huang, Ming-Yang; Guo, Xin-Heng [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Young, Bing-Lin [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 5001 (United States); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-01T23:59:59.000Z

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle {theta}{sub 13}, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about {theta}{sub 13} and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  20. Measurements of top quark pair production cross section in proton anti-proton collisions at s**(1/2) = 1.96 TeV in the tau + jets final state using 1 inv fb of data

    SciTech Connect (OSTI)

    Hossain, Sohrab; /Oklahoma U.

    2009-12-01T23:59:59.000Z

    This dissertation presents a new measurement of p{bar p} {yields} t{bar t}X production at {radical}s = 1.96 TeV using 974.2 pb{sup -1} of data collected with the D0 detector between 2002 and 2006. We focus on the final state where the W boson from one of the top quarks decays into a {tau} lepton and its associated neutrino, while the other W boson decays into a quark-antiquark pair. We aim to select those events in which the {tau} lepton subsequently decays hadronically, meaning to one or three charged hadrons, zero or more neutral hadrons and a tau neutrino (the charge conjugate processes are implied in all of the above). The observable signature thus consists of a narrow calorimeter shower with associated track(s) characteristic of a hadronic tau decay, four or more jets, of which two are initiated by b quarks accompanying the W's in the top quark decays, and a large net missing momentum in the transverse plane due to the energetic neutrino-antineutrino pair that leave no trace in the detector media. The preliminary result for the measured cross section is: {sigma}(t{bar t}) = 6.9{sub -1.2}{sup +1.2}(stat){sub -0.7}{sup +0.8}(syst) {+-} 0.4 (lumi) pb. This indicates that our finding is consistent with the Standard Model prediction.

  1. Neutrinos and Collider Physics

    E-Print Network [OSTI]

    Deppisch, Frank F; Pilaftsis, Apostolos

    2015-01-01T23:59:59.000Z

    We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

  2. Solar neutrino detection

    E-Print Network [OSTI]

    Lino Miramonti

    2009-01-22T23:59:59.000Z

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  3. Massive neutrinos and cosmology

    E-Print Network [OSTI]

    Julien Lesgourgues; Sergio Pastor

    2006-05-29T23:59:59.000Z

    The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.

  4. Physics of Massive Neutrinos

    E-Print Network [OSTI]

    J. W. F. Valle

    2004-10-07T23:59:59.000Z

    I summarize the present status of global analyses of neutrino oscillations, including the most recent KamLAND and K2K data, as well as the latest solar and atmospheric neutrino fluxes. I give the allowed ranges of the three--flavour oscillation parameters from the current worlds' global neutrino data sample, their best fit values and discuss the small parameters DeltaM_solar/DeltaM_atm and sin^2 theta_13, which characterize the strength of CP violation in neutrino oscillations. I briefly discuss neutrinoless double beta decay and the LSND neutrino oscillation hint, as well as the robustness of the neutrino oscillation results in the presence of non-standard physics.

  5. Neutrinos from Gamma Ray Bursts

    E-Print Network [OSTI]

    F. Halzen; G. Jaczko

    1996-02-07T23:59:59.000Z

    We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

  6. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Petr Vogel; Liangjian Wen; Chao Zhang

    2015-03-03T23:59:59.000Z

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  7. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Vogel, Petr; Zhang, Chao

    2015-01-01T23:59:59.000Z

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  8. Neutrinos: Nature's Ghosts?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-12T23:59:59.000Z

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  9. Neutrino Oscillation Physics

    E-Print Network [OSTI]

    Boris Kayser

    2013-12-25T23:59:59.000Z

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  10. Composite Dirac Neutrinos

    E-Print Network [OSTI]

    Yuval Grossman; Dean J Robinson

    2011-01-25T23:59:59.000Z

    We present a mechanism that naturally produces light Dirac neutrinos. The basic idea is that the right-handed neutrinos are composite. Any realistic composite model must involve `hidden flavor' chiral symmetries. In general some of these symmetries may survive confinement, and in particular, one of them manifests itself at low energy as an exact $B-L$ symmetry. Dirac neutrinos are therefore produced. The neutrinos are naturally light due to compositeness. In general, sterile states are present in the model, some of them can naturally be warm dark matter candidates.

  11. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  12. New solar opacities, abundances, helioseismology, and neutrino fluxes

    E-Print Network [OSTI]

    John N. Bahcall; Aldo M. Serenelli; Sarbani Basu

    2005-01-19T23:59:59.000Z

    We construct solar models with the newly calculated radiative opacities from the Opacity Project (OP) and recently determined (lower) heavy element abundances. We compare results from the new models with predictions of a series of models that use OPAL radiative opacities, older determinations of the surface heavy element abundances, and refinements of nuclear reaction rates. For all the variations we consider, solar models that are constructed with the newer and lower heavy element abundances advocated by Asplund et al. (2005) disagree by much more than the estimated measuring errors with helioseismological determinations of the depth of the solar convective zone, the surface helium composition, the internal sound speeds, and the density profile. Using the new OP radiative opacities, the ratio of the 8B neutrino flux calculated with the older and larger heavy element abundances (or with the newer and lower heavy element abundances) to the total neutrino flux measured by the Sudbury Neutrino Observatory is 1.09 (0.87) with a 9% experimental uncertainty and a 16% theoretical uncertainty, 1 sigma errors.

  13. Search for tau- ---> 4pi- 3pi+ (pi0) nu/tau Decays

    SciTech Connect (OSTI)

    Ter-Antonian, R.; Kass, R.; Allmendinger, T.; /Ohio State U.; Hast, C.; /SLAC

    2005-06-21T23:59:59.000Z

    A search for the decay of the {tau} lepton to seven charged pions and at most one {pi}{sup 0} was performed using the BABAR detector at the PEP-II e{sup +}e{sup -} collider. The analysis uses data recorded on and near the {Upsilon}(4S) resonance between 1999 and 2003, a total of 124.3 fb{sup -1}. They observe 7 events with an expected background of 11.9 {+-} 2.2 events and calculate a preliminary upper limit of BR({tau}{sup -} {yields} 4{pi}{sup -} 3{pi}{sup +}({pi}{sup 0}){nu}{sub {tau}}) < 2.7 x 10{sup -7} at 90% CL. This is a significant improvement over the previous limit established by the CLEO Collaboration.

  14. Measuring BR($h \\to \\tau ^+ \\tau ^-$) at the ILC: a full simulation study

    E-Print Network [OSTI]

    Kawada, Shin-ichi; Suehara, Taikan; Takahashi, Tohru; Tanabe, Tomohiko; Yokoyama, Harumichi

    2015-01-01T23:59:59.000Z

    We evaluate the expected measurement accuracy of the branching ratio of the Standard Model Higgs boson decaying into tau pairs at the ILC with a full simulation of the ILD detector concept. We assume a Higgs mass of 125 GeV, a branching ratio of BR($h \\to \\tau ^+ \\tau ^-$) = 6.32%, a beam polarization of electron (positron) of -0.8(+0.3), and an integrated luminosity of 250 fb$^{-1}$. The Higgs-strahlung process $e^+ e^- \\to Zh$ with $Z \\to q\\overline{q}$ is analyzed. We estimate the measurement accuracy of the branching ratio $\\Delta (\\sigma \\times \\mathrm{BR}) / (\\sigma \\times \\mathrm{BR})$ to be 3.4% with using a multivariate analysis technique.

  15. Solar Neutrino Experiments Neutrinos are ghostlike particles that

    E-Print Network [OSTI]

    experiments by sci- entists around the world, all working to con- firm the solar neutrino deficit. First came#12;Solar Neutrino Experiments Neutrinos are ghostlike particles that were postulated by Wolfgang to Davis's major triumph, which came in the early 1970s, when he successfully de- tected solar neutrinos

  16. The Sudbury Neutrino Observatory

    SciTech Connect (OSTI)

    Hime, A.

    1996-09-01T23:59:59.000Z

    A report is given on the status of the Sudbury Neutrino Observatory, presently under construction in the Creighton nickel mine near Sudbury, Ontario in Canada. Focus is upon the technical factors involving a measurement of the charged-current and neutral-current interactions of solar neutrinos on deuterium.

  17. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  18. A Search for Neutrinoless Tau Decays to Three Leptons

    SciTech Connect (OSTI)

    Kolb, Jeffrey A.; /Oregon U. /SLAC

    2008-09-24T23:59:59.000Z

    Using approximately 350 million {tau}{sup +}{tau}{sup -} pair events recorded with the BaBar detector at the Stanford Linear Accelerator Center between 1999 and 2006, a search has been made for neutrinoless, lepton-flavor violating tau decays to three lighter leptons. All six decay modes consistent with conservation of electric charge and energy have been considered. With signal selection efficiencies of 5-12%, we obtain 90% confidence level upper limits on the branching fraction {Beta}({tau} {yields} {ell}{ell}{ell}) in the range (4-8) x 10{sup -8}.

  19. The Final Results from the Sudbury Neutrino Observatory

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  20. Search for the Higgs Boson Produced via Vector-Boson Fusion in the Decay Channel H to Tau Tau.

    E-Print Network [OSTI]

    Berger, Joram

    2014-01-01T23:59:59.000Z

    ??An important channel in the search for the Higgs boson at the LHC is the decay into pairs of tau-leptons. After the discovery of the… (more)

  1. Absolute neutrino mass measurements

    SciTech Connect (OSTI)

    Wolf, Joachim [Karlsruhe Institute of Technology (KIT), IEKP, Postfach 3640, 76021 Karlsruhe (Germany)

    2011-10-06T23:59:59.000Z

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  2. Neutrino observations from the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    Energy of Canada Limited (AECL), Agra-Monenco, Canatom,The heavy water was loaned by AECL with the cooperation of

  3. Solar mass-varying neutrino oscillations

    E-Print Network [OSTI]

    Marfatia, Danny; Huber, P.; Barger, V.

    2005-11-18T23:59:59.000Z

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data...

  4. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Dr. Don Lincoln

    2013-07-22T23:59:59.000Z

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  5. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07T23:59:59.000Z

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  6. Tau-Coupling Revisited 103 When Is Behavioral Data

    E-Print Network [OSTI]

    Jegelka, Stefanie

    and the moving target. In line with the theory, previous research has found a linear relationship between we will discuss this theory and argue that although the presented experimental results are in line variable tau in the context of visually con- trolling the braking of a car. He showed that tau

  7. Measurement of tau-decays involving eta-mesons

    E-Print Network [OSTI]

    Ammar, Raymond G.; Ball, S.; Baringer, Philip S.; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kelly, M.; Kwak, Nowhan; Lam, H.

    1992-12-01T23:59:59.000Z

    The decay tau- --> nu(tau)pi-pi0eta has been observed for the first time using the CLEO-II detector at the Cornell Electron Storage Ring. The measured branching ratio (0.17 +/- 0.02 +/- 0.02)%, agrees with the CVC (conserved ...

  8. Light neutrino mass spectrum with one or two right-handed singlet fermions added

    E-Print Network [OSTI]

    Darius Jurciukonis; Thomas Gajdosik; Andrius Juodagalvis

    2014-10-16T23:59:59.000Z

    We analyse two cases of the minimal extension of the Standard Model when one or two right-handed fields are added to the three left-handed fields. A second Higgs doublet (two Higgs doublet model - 2HDM) is included in our model. We calculate one-loop radiative corrections to the mass parameters which produce mass terms for the neutral leptons. In both cases we numerically analyse light neutrino masses as functions of the heavy neutrino masses. Parameters of the model are varied to find light neutrino masses that are compatible with experimental data of solar and atmospheric neutrino mass differences for normal hierarchy. We choose values for the parameters of the tree-level by numerical scans, where we look for the best agreement between computed and experimental neutrino oscillation angles.

  9. Left-right models with light neutrino mass prediction and dominant neutrinoless double beta decay rate

    E-Print Network [OSTI]

    M. K. Parida; Sudhanwa Patra

    2013-01-14T23:59:59.000Z

    In TeV scale left-right symmetric models, new dominant predictions to neutrinoless double beta decay and light neutrino masses are in mutual contradiction because of large contribution to the latter through popular seesaw mechanisms. We show that in a class of left-right models with high-scale parity restoration, these results coexist without any contravention with neutrino oscillation data and the relevant formula for light neutrino masses is obtained via gauged inverse seesaw mechanism. The most dominant contribution to the double beta decay is shown to be via $W^-_L- W^-_R$ mediation involving both light and heavy neutrino exchanges, and the model predictions are found to discriminate whether the Dirac neutrino mass is of quark-lepton symmetric origin or without it. We also discuss associated lepton flavor violating decays.

  10. Neutrino astrophysics : recent advances and open issues

    E-Print Network [OSTI]

    Volpe, Cristina

    2015-01-01T23:59:59.000Z

    We highlight recent advances in neutrino astrophysics, the open issues and the interplay with neutrino properties. We emphasize the important progress in our understanding of neutrino flavor conversion in media. We discuss the case of solar neutrinos, of core-collapse supernova neutrinos and of SN1987A, and of the recently discovered ultra-high energy neutrinos whose origin is to be determined.

  11. Phenomenology of Neutrino Oscillations

    E-Print Network [OSTI]

    G. Rajasekaran

    2000-04-17T23:59:59.000Z

    The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  12. WMAPping out Neutrino Masses

    E-Print Network [OSTI]

    Aaron Pierce; Hitoshi Murayama

    2003-10-28T23:59:59.000Z

    Recent data from from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND). We also note that the Heidelberg--Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

  13. Radiochemical solar neutrino experiments

    E-Print Network [OSTI]

    V. N. Gavrin; B. T. Cleveland

    2007-03-06T23:59:59.000Z

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p + p --> d + e^+ + nu_e, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE -- the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6 +/- 3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3 ^{+3.9}_{-3.5} SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux at the earth of (3.41 ^{+0.76}_{-0.77}) x 10^{10}/(cm^2-s), which agrees well with the prediction from a detailed solar model of (3.30 ^{+0.13} _{-0.14}) x 10^{10}/(cm^2-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88 +/- 0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

  14. Search for neutral Higgs bosons decaying to tau pairs produced in association with b quarks in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U.; Augustana Coll., Sioux Falls; Alverson, George O [Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Aoki, Masato [Fermilab; Louisiana Tech. U.

    2011-09-12T23:59:59.000Z

    We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb-1. This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanß. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c2. We interpret our result in the MSSM parameter space, excluding tanß values down to 25 for Higgs boson masses below 170 GeV/c2.

  15. Search for neutral Higgs bosons decaying to tau pairs produced in association with b quarks in pp? collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U.; Augustana Coll., Sioux Falls; Alverson, George O [Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Aoki, Masato [Fermilab; Louisiana Tech. U.

    2011-09-12T23:59:59.000Z

    We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb-1. This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanß. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c2. We interpret our result in the MSSM parameter space, excluding tanß values down to 25 for Higgs boson masses below 170 GeV/c2.

  16. Optical calibration hardware for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    B. A. Moffat; R. J. Ford; F. A. Duncan; K. Graham; A. L. Hallin; C. A. W. Hearns; J. Maneira; P. Skensved; D. R. Grant

    2005-07-19T23:59:59.000Z

    The optical properties of the Sudbury Neutrino Observatory (SNO) heavy water Cherenkov neutrino detector are measured in situ using a light diffusing sphere ("laserball"). This diffuser is connected to a pulsed nitrogen/dye laser via specially developed underwater optical fibre umbilical cables. The umbilical cables are designed to have a small bending radius, and can be easily adapted for a variety of calibration sources in SNO. The laserball is remotely manipulated to many positions in the D2O and H2O volumes, where data at six different wavelengths are acquired. These data are analysed to determine the absorption and scattering of light in the heavy water and light water, and the angular dependence of the response of the detector's photomultiplier tubes. This paper gives details of the physical properties, construction, and optical characteristics of the laserball and its associated hardware.

  17. Advanced Neutrino Sources (Neutrino Factories and Beta Beams)

    E-Print Network [OSTI]

    Advanced Neutrino Sources (Neutrino Factories and Beta Beams) · Design · R&D Status · Remaining R Meeting February, 2008 page 1 #12;· The stored beam properties & decay kinematics are well known uncertainties on neutrino flux & spectra are small PRECISION · Initial beams are flavor "pure" (BB) or "tagged

  18. The Neutrino Eye: A Megaton Low Energy Neutrino

    E-Print Network [OSTI]

    Learned, John

    from WIMPS and gamma ray bursts, and upon real time counting of solar neutrinos, are all from sensi­ tivity, and conduct a watch for for neutrino correlates to sporadic phenomenon such as gamma ray bursts. The main thrust would be to detect actual muon neutrino appearance as well as disappearance

  19. Neutrino dispersion in magnetized plasma

    E-Print Network [OSTI]

    N. V. Mikheev; E. N. Narynskaya

    2008-12-02T23:59:59.000Z

    The neutrino dispersion in the charge symmetric magnetized plasma is investigated. We have studied the plasma contribution into the additional energy of neutrino and obtained the simple expression for it. We consider in detail the neutrino self-energy under physical conditions of weak field, moderate field and strong field limits. It is shown that our result for neutrino dispersion in moderate magnetic field differ substantially from the previous one in the literature.

  20. Observation of Disappearance of Muon Neutrinos in the NuMI Beam

    SciTech Connect (OSTI)

    Pavlovic, Zarko; /Texas U.

    2008-05-01T23:59:59.000Z

    The Main Injector Neutrino Oscillation Search (MINOS) is a two detector long-baseline neutrino experiment designed to study the disappearance of muon neutrinos. MINOS will test the {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation hypothesis and measure precisely {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} oscillation parameters. The source of neutrinos for MINOS experiment is Fermilab's Neutrinos at the Main Injector (NuMI) beamline. The energy spectrum and the composition of the beam is measured at two locations, one close to the source and the other 735 km down-stream in the Soudan Mine Underground Laboratory in northern Minnesota. The precision measurement of the oscillation parameters requires an accurate prediction of the neutrino flux at the Far Detector. This thesis discusses the calculation of the neutrino flux at the Far Detector and its uncertainties. A technique that uses the Near Detector data to constrain the uncertainties in the calculation of the flux is described. The data corresponding to an exposure of 2.5 x 10{sup 20} protons on the NuMI target is presented and an energy dependent disappearance pattern predicted by neutrino oscillation hypotheses is observed in the Far Detector data. The fit to MINOS data, for given exposure, yields the best fit values for {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} to be (2.38{sub -0.16}{sup +0.20}) x 10{sup -3} eV{sup 2}/c{sup 4} and 1.00{sub -0.08}, respectively.

  1. Solar Neutrino Matter Effects Redux

    E-Print Network [OSTI]

    A. B. Balantekin; A. Malkus

    2011-12-19T23:59:59.000Z

    Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

  2. Supernova Neutrinos Detection On Earth

    E-Print Network [OSTI]

    Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

    2009-05-12T23:59:59.000Z

    In this paper, we first discuss the detection of supernova neutrino on Earth. Then we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$ by detecting the ratio of the event numbers of different flavor supernova neutrinos. Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.

  3. Neutrino Oscillations Experiments at Fermilab

    E-Print Network [OSTI]

    Adam Para

    2000-05-01T23:59:59.000Z

    Neutrino oscillations provide an unique opportunity to probe physics beyond the Standard Model. Fermilab is constructing two new neutrino beams to provide a decicive test of two of the recent positive indications for neutrino oscillations: MiniBOONE experiment will settle the LSND controversy, MINOS will provide detailed studies of the region indicated by the SuperK results.

  4. Electromagnetic neutrino: a short review

    E-Print Network [OSTI]

    Alexander I. Studenikin

    2014-11-09T23:59:59.000Z

    A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

  5. A Dynamical Framework for KeV Dirac Neutrino Warm Dark Matter

    E-Print Network [OSTI]

    Dean J. Robinson; Yuhsin Tsai

    2014-08-06T23:59:59.000Z

    If the source of the reported $3.5$ keV x-ray line is a sterile neutrino, comprising an $\\mathcal{O}(1)$ fraction of the dark matter (DM), then it exhibits the property that its mass times mixing angle is $\\sim \\mbox{few} \\times 10^{-2}$ eV, a plausible mass scale for the active neutrinos. This property is a common feature of Dirac neutrino mixing. We present a framework that dynamically produces light active and keV sterile Dirac neutrinos, with appropriate mixing angles to be the x-ray line source. The central idea is that the right-handed active neutrino is a composite state, while elementary sterile neutrinos gain keV masses similarly to the quarks in extended Technicolor. The entire framework is fixed by just two dynamical scales and may automatically exhibit a warm dark matter (WDM) production mechanism -- dilution of thermal relics from late decays of a heavy composite neutrino -- such that the keV neutrinos may comprise an $\\mathcal{O}(1)$ fraction of the DM. In this framework, the WDM is typically quite cool and within structure formation bounds, with temperature $\\sim \\mbox{few}\\times 10^{-2}~T_\

  6. Neutrino Masses, Lepton Flavor Mixing and Leptogenesis in the Minimal Seesaw Model

    E-Print Network [OSTI]

    Wan-lei Guo; Zhi-zhong Xing; Shun Zhou

    2006-12-05T23:59:59.000Z

    We present a review of neutrino phenomenology in the minimal seesaw model (MSM), an economical and intriguing extension of the Standard Model with only two heavy right-handed Majorana neutrinos. Given current neutrino oscillation data, the MSM can predict the neutrino mass spectrum and constrain the effective masses of the tritium beta decay and the neutrinoless double-beta decay. We outline five distinct schemes to parameterize the neutrino Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis via leptogenesis are investigated in some detail by taking account of possible texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on the CP-violating asymmetry in the decay of the lighter right-handed Majorana neutrino. The effects of the renormalization-group evolution on the neutrino mixing parameters are analyzed, and the correlation between the CP-violating phenomena at low and high energies is highlighted. We show that the observed matter-antimatter asymmetry of the Universe can naturally be interpreted through the resonant leptogenesis mechanism at the TeV scale. The lepton-flavor-violating rare decays, such as $\\mu \\to e + \\gamma$, are also discussed in the supersymmetric extension of the MSM.

  7. Plasmon decay to a neutrino pair via neutrino electromagnetic moments in a strongly magnetized medium

    E-Print Network [OSTI]

    A. V. Borisov; P. E. Sizin

    2014-06-12T23:59:59.000Z

    We calculate the neutrino luminosity of a degenerate electron gas in a strong magnetic field via plasmon decay to a neutrino pair due to neutrino electromagnetic moments and obtain the relative upper bounds on the effective neutrino magnetic moment.

  8. Study of High-multiplicity 3-prong and 5-prong Tau Decays at BaBar

    SciTech Connect (OSTI)

    Lees, J.P

    2012-06-01T23:59:59.000Z

    We present measurements of the branching fractions of 3-prong and 5-prong {tau} decay modes using a sample of 430 million {tau} lepton pairs, corresponding to an integrated luminosity of 468 fb{sup -1}, collected with the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} storage rings. The {tau}{sup -} {yields} (3{pi}){sup -} {eta}{nu}{sub {tau}}, {tau}{sup -} {yields} (3{pi}){sup -} {yields} {omega}{nu}{sub {tau}} and {tau}{sup -} {yields} {pi}{sup -} f{sub 1}(1285){nu}{sub {tau}} branching fractions are presented as well as a new limit on the branching fraction of the isospin-forbidden, second-class current {tau}{sup -} {yields} {pi}{sup -} {eta}{prime}(958){nu}{sub {tau}} decay. We find no evidence for charged kaons in these decay modes and place the first upper limits on their branching fractions.

  9. Riddle of the Neutrino Mass

    E-Print Network [OSTI]

    Smirnov, A Yu

    2015-01-01T23:59:59.000Z

    We discuss some known approaches and results as well as few new ideas concerning origins and nature of neutrino mass. The key issues include (i) connections of neutrino and charged fermions masses, relation between masses and mixing, energy scale of new physics behind neutrino mass where possibilities spread from the Planck and GUT masses down to a sub-eV scale. The data hint two different new physics involved in generation of neutrino mass. Determination of the CP phase as well as mass hierarchy can play important role in identification of new physics. It may happen that sterile neutrinos provide the key to resolve the riddle.

  10. Are neutrinos their own antiparticles?

    SciTech Connect (OSTI)

    Kayser, Boris; /Fermilab

    2009-03-01T23:59:59.000Z

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  11. Lepton Flavour Violation in Tau Decays at BaBar

    SciTech Connect (OSTI)

    Wilson, F.F.; /Rutherford

    2011-11-07T23:59:59.000Z

    Recent results from {tau} physics studies at BABAR are presented with an emphasis on Lepton Flavour Violation measurements. The results from the current generation of B-meson Factories are already beginning to constrain the parameter space of models that go beyond the Standard Model. By the end of their data-taking, the current generation of B-meson factories will have produced nearly 2 billion {tau} pair decays. The physics potential of this legacy has only just begun to be exploited.

  12. Neutrino Physics: A Selective Overview

    E-Print Network [OSTI]

    Scott M. Oser

    2006-04-11T23:59:59.000Z

    Neutrinos in the Standard Model of particle physics are massless, neutral fermions that seemingly do little more than conserve 4-momentum, angular momentum, lepton number, and lepton flavour in weak interactions. In the last decade conclusive evidence has demonstrated that the Standard Model's description of neutrinos does not match reality. We now know that neutrinos undergo flavour oscillations, violating lepton flavour conservation and implying that neutrinos have non-zero mass. A rich oscillation phenomenology then becomes possible, including matter-enhanced oscillation and possibly CP violation in the neutrino sector. Extending the Standard Model to include neutrino masses requires the addition of new fields and mass terms, and possibly new methods of mass generation. In this review article I will discuss the evidence that has established the existence of neutrino oscillation, and then highlight unresolved issues in neutrino physics, such as the nature of three-generational mixing (including CP-violating effects), the origins of neutrino mass, the possible existence of light sterile neutrinos, and the difficult question of measuring the absolute mass scale of neutrinos.

  13. Search for neutrinoless decays tau -> lhh and tau -> lV0

    E-Print Network [OSTI]

    Y. Yusa; for the Belle Collaboration

    2006-03-18T23:59:59.000Z

    We have searched for neutrinoless tau lepton decays into l h h or l V0, where l stands for an electron or muon, h for a charged light hadron, pi or K, and V0 for a neutral vector meson, rho, K*(892) and phi, using a 158 /fb data sample collected with the Belle detector at the KEKB e+e- collider. Since the number of events observed are consistent with the expected background, we set upper limits on the branching fractions in the range of 1.6-8.0 x 10-7 for various decay modes at the 90% confidence level.

  14. Lepton flavor violating processes \\tau ->\\mu\\gamma$, $\\tau-> 3\\mu$ and $Z-> \\mu\\tau$ in the Supersymmetric economical 3-3-1 model

    E-Print Network [OSTI]

    Hue, L T; Long, H N

    2013-01-01T23:59:59.000Z

    In this work, we study the charged lepton flavor violating (cLFV) decays $\\tau-> \\mu\\gamma$, $\\tau-> 3\\mu$ and $Z->\\mu\\tau$ in the framework of the Supersymmetric economical 3-3-1 model. Analytic formulas for branching ratios (BR) of these decays are presented. We assume that there exist lepton flavor violation (LFV) sources in both right- and left-handed slepton sectors. This leads to the strong enhancement of cLFV decay rates. We also show that the effects of the LFV source to the cLFV decay rates in the left-handed slepton sector are greater than those in the right- handed slepton sector. By numerical investigation, we show that the model under consideration contains the relative light mass spectrum of sleptons which satisfies the current experimental bounds on LFV processes in the limit of small $\\tan \\gamma$. The interplay between monopole and dipole operators also was studied.

  15. Neutrinoless double beta decay and neutrino physics

    E-Print Network [OSTI]

    Werner Rodejohann

    2012-08-20T23:59:59.000Z

    The connection of neutrino physics with neutrinoless double beta decay is reviewed. After presenting the current status of the PMNS matrix and the theoretical background of neutrino mass and lepton mixing, we will summarize the various implications of neutrino physics for double beta decay. The influence of light sterile neutrinos and other exotic modifications of the three neutrino picture is also discussed.

  16. Nonstandard neutrino interactions and transition magnetic moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Healey, Kristopher J.; Petrov, Alexey A.; Zhuridov, Dmitry

    2013-06-01T23:59:59.000Z

    We constrain generic nonstandard neutrino interactions with existing experimental data on neutrino transition magnetic moments and derive strong bounds on tensorial couplings of neutrinos to charged fermions. We also discuss how some of these tensorial couplings can be constrained by other experiments, e.g., on neutrino-electron and neutrino-nucleus scattering.

  17. Preliminary Measurement of B(tau- ---> K- pi0 nu/tau) Using the BaBar Detector

    SciTech Connect (OSTI)

    Salvatore, F.; /Royal Holloway, U. of London; Lyon, A.J.; /Manchester U.

    2005-07-08T23:59:59.000Z

    A preliminary measurement of the branching fraction {Beta}({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) is made using 124.4 fb{sup -1} of e{sup +}e{sup -} collision data provided by the PEP-II accelerator, operating primarily at {radical}s = 10.58 GeV, and recorded using the BABAR detector. They measure: {Beta}({tau}{sup -} {yields} K{sup -} {pi}{sup 0}{nu}{sub {tau}}) = (0.438 {+-} 0.004(stat) {+-} 0.022(syst))%. This result is the world's most precise measurement of this branching fraction to date and is consistent with the world average.

  18. Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider

    SciTech Connect (OSTI)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2010-06-01T23:59:59.000Z

    We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

  19. New Neutrinos Algal Biofuels

    E-Print Network [OSTI]

    New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE of Los Alamos and its top-secret laboratory was the mailing address--P. O. Box 1663, Santa Fe, New Mexico Seeing Green: Squeezing Power from Pond Scum OVERCOMING OBSTACLES TO IGNITE ALGAL FUELS THE (LIGHTWEIGHT

  20. Neutrino and it's lepton

    E-Print Network [OSTI]

    G. Quznetsov

    2008-11-10T23:59:59.000Z

    In this paper I cite p.p. 100-117 of book G. Quznetsov, Probabilistic Treatment of Gauge Theories, in series Contemporary Fundamental Physics,ed. V. Dvoeglazov, Nova Sci. Publ., NY (2007). There I research a bound between neutrino and it's lepton.

  1. Neutrino Factory Mercury Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Target · Separates functionality, provides double mercury containment, simplifies design and remote handling · Each

  2. Experimental Neutrino Physics

    ScienceCinema (OSTI)

    Chris Walter

    2010-01-08T23:59:59.000Z

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  3. Production and counting of uncontained sources in the Sudbury Neutrino Observatory

    SciTech Connect (OSTI)

    Peeters, Simon J. M. [Pevensey II, Falmer, Brighton, BN1 9QH (United Kingdom)

    2011-04-27T23:59:59.000Z

    I describe production and distribution of uncontained sources of {sup 24}Na and {sup 222}Rn inside the Sudbury Neutrino Observatory (SNO). These unique sources provided a uniquely accurate calibration of the SNO detector of its response to neutrons, produced through photodisintegration of the deuterons in the heavy water target, and to low energy {beta}-{gamma} decays.

  4. Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes

    E-Print Network [OSTI]

    John F. Beacom; Nicole F. Bell; Dan Hooper; John G. Learned; Sandip Pakvasa; Thomas J. Weiler

    2004-01-05T23:59:59.000Z

    Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally-mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are $\\delta m^2 \\alt 10^{-12}$ eV$^2$; in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of $L/E$, mass-squared differences down to $\\delta m^2 \\sim 10^{-18}$ eV$^2$ can be reached. We comment on the possibility of probing cosmological parameters with neutrinos.

  5. Neutrino magnetic moment effects in electron-capture measurements at GSI

    E-Print Network [OSTI]

    Avraham Gal

    2010-06-02T23:59:59.000Z

    I conjecture that the time modulated decay rates reported in single ion measurements of two body electron capture decay of hydrogen like heavy ions at GSI may be related to neutrino spin precession in the static magnetic field of the storage ring. These `GSI Oscillations' arise from interference between amplitudes of decay within and without the magnetic field, a scenario that requires a Dirac neutrino magnetic moment six times lower than the Borexino solar neutrino upper limit of 0.54 x 10E(-10) Bohr magneton. I also show in a way not discussed before that the time modulation associated with interference between massive neutrino amplitudes, if such interference could arise, is of a period at least four orders of magnitude shorter than reported and must average to zero given the time resolution of the GSI measurements.

  6. Wavelet Approach to Search for Sterile Neutrinos in Tritium $?$-Decay Spectra

    E-Print Network [OSTI]

    S. Mertens; K. Dolde; M. Korzeczek; F. Glueck; S. Groh; R. D. Martin; A. W. P. Poon; M. Steidl

    2015-01-08T23:59:59.000Z

    Sterile neutrinos in the mass range of a few keV are candidates for both cold and warm dark matter. An ad-mixture of a heavy neutrino mass eigenstate to the electron neutrino would result in a minuscule distortion - a 'kink' - in a $\\beta$-decay spectrum. In this paper we show that a wavelet transform is a very powerful shape analysis method to detect this signature. For a tritium source strength, similar to what is expected from the KATRIN experiment, a statistical sensitivity to active-to-sterile neutrino mixing down to $\\sin^2 \\theta= 10^{-6}$ ($90\\%$ CL) can be obtained after 3 years of measurement time. It is demonstrated that the wavelet approach is largely insensitive to systematic effects that result in smooth spectral modifications. To make full use of this analysis technique a high resolution measurement (FWHM of $\\sim100$~eV) of the tritium $\\beta$-decay spectrum is required.

  7. Neutrinoless double beta decay and pseudo-Dirac neutrino mass predictions through inverse seesaw mechanism

    E-Print Network [OSTI]

    Ram Lal Awasthi; M. K. Parida; Sudhanwa Patra

    2013-01-21T23:59:59.000Z

    In the inverse seesaw extension of the standard model, supersymmetric or non-supersymmetric, while the light left-handed neutrinos are Majorana, the heavy right-handed neutrinos are pseudo-Dirac fermions. We show how one of these latter category of particles can contribute quite significantly to neutrinoless double beta decay. The neutrino virtuality momentum is found to play a crucial role in the non-standard contributions leading to the prediction of the pseudo-Dirac fermion mass in the range of $120\\, {MeV}-500\\, {MeV}$. When the Dirac neutrino mass matrix in the inverse seesaw formula is similar to the up-quark mass matrix, characteristic of high scale quark-lepton symmetric origin, the predicted branching ratios for lepton flavor violating decays are also found to be closer to the accessible range of ongoing experiments.

  8. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    SciTech Connect (OSTI)

    Bari, Pasquale Di [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Riotto, Antonio, E-mail: P.Di-Bari@soton.ac.uk, E-mail: Antonio.Riotto@cern.ch [INFN, Sezione di Padova, Dipartimento di Fisica Galileo Galilei, Via Marzolo 8, I-35131 Padua (Italy)

    2011-04-01T23:59:59.000Z

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N{sub 2} dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ? 10{sup 10} GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m{sub 1} ? (1?5) × 10{sup ?3} eV and m{sub 1} ? (0.03?0.1) eV. For m{sub 1}?<0.01 eV the allowed region in the plane ?{sub 13}-?{sub 23} is approximately given by ?{sub 23}?<49°+0.65 (?{sub 13}?5°), while the neutrinoless double beta decay effective neutrino mass falls in the range m{sub ee} = (1?3) × 10{sup ?3} eV for ?{sub 13} = (6°?11.5°). For m{sub 1}?>0.01 eV, one has quite sharply m{sub ee} ? m{sub 1} and an upper bound ?{sub 23}?<46°. These constraints will be tested by low energy neutrino experiments during next years. We also find that inverted ordering (IO), though quite strongly constrained, is not completely ruled out. In particular, we find approximately ?{sub 23} ? 43°+12° log (0.2 eV/m{sub 1}), that will be fully tested by future experiments.

  9. Low-energy solar anti-neutrinos

    E-Print Network [OSTI]

    V. B. Semikoz; S. Pastor; J. W. F. Valle

    1998-08-13T23:59:59.000Z

    If neutrino conversions within the Sun result in partial polarization of initial solar neutrino fluxes, then a new opportunity arises to observe the anti-\

  10. Advancements in solar neutrino physics

    E-Print Network [OSTI]

    Vito Antonelli; Lino Miramonti

    2013-04-23T23:59:59.000Z

    We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

  11. Neutrino Masses and Flavor Mixing

    E-Print Network [OSTI]

    Fritzsch, Harald

    2015-01-01T23:59:59.000Z

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

  12. Neutrino Masses and Flavor Mixing

    E-Print Network [OSTI]

    Harald Fritzsch

    2015-03-06T23:59:59.000Z

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

  13. Performance of the Reconstruction and Identification of Hadronic Tau Decays in the ATLAS Experiment

    E-Print Network [OSTI]

    "Scutti, F; The ATLAS collaboration

    2012-01-01T23:59:59.000Z

    Tau leptons play an important role in the physics program of the ATLAS experiment at the LHC. Identification of hadronically decaying taus is achieved by using multi-variate discriminants exploiting information from tracking and calorimeter detector components. The identification efficiencies are measured in W->tau+nu and Z->tau+tau events selected in data, and compared with the prediction of the Monte Carlo simulation. The energy scale uncertainties for taus are determined by investigating single hadron calorimeter response, as well as kinematic distributions in Z->tau+tau events.

  14. New precise determination of the $\\tau$ lepton mass at KEDR detector

    E-Print Network [OSTI]

    Anashin, V V; Baldin, E M; Barladyan, A K; Barnyakov, A Y; Barnyakov, M Y; Baru, S E; Bedny, I V; Beloborodova, O L; Blinov, A E; Blinov, V E; Bobrov, A B; Bobrovnikov, V S; Bogomyagkov, A V; Bondar, A E; Bondarev, D V; Buzykaev, A R; Cherepanov, V P; Eidelman, S I; Glukhovchenko, Yu M; Gulevich, V V; Karnaev, S E; Karpov, G V; Karpov, S V; Kiselev, V A; Kononov, S A; Kotov, K Yu; Kravchenko, E A; Kremyanskaya, E V; Kulikov, V F; Kurkin, G Ya; Kuper, E A; Levichev, E B; Maksimov, D A; Malyshev, V M; Maslennikov, A L; Medvedko, A S; Meshkov, O I; Mishnev, S E; Morozov, I I; Muchnoi, N Yu; Neufeld, V V; Nikitin, S A; Nikolaev, I B; Onuchin, A P; Oreshkin, S B; Orlov, I O; Osipov, A A; Peleganchuk, S V; Petrosyan, S S; Pivovarov, S G; Piminov, P; Petrov, V V; Poluektov, A O; Pospelov, G E; Prisekin, V G; Ruban, A A; Sandyrev, V K; Savinov, G A; Shamov, A G; Shatilov, D N; Shubin, E I; Shwartz, B A; Sidorov, V A; Simonov, E A; Sinyatkin, S V; Skovpen, Y I; Skrinsky, A N; Smaluk, V V; Soukharev, A M; Struchalin, M V; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Y; Tumaikin, G M; Usov, Yu V; Vorobiov, A I; Yushkov, A N; Zhilich, V N; Zhuravlev, A N

    2007-01-01T23:59:59.000Z

    The status of the experiment on the precise $\\tau$ lepton mass measurement running at the VEPP-4M collider with the KEDR detector is reported. The mass value is evaluated from the $\\tau^+\\tau^-$ cross section behaviour around the production threshold. The preliminary result based on 6.7 pb$^{-1}$ of data is $m_{\\tau}=1776.80^{+0.25}_{-0.23} \\pm 0.15$ MeV. Using 0.8 pb$^{-1}$ of data collected at the $\\psi'$ peak the preliminary result is also obtained: $\\Gamma_{ee}B_{\\tau\\tau}(\\psi') = 7.2 \\pm 2.1$ eV.

  15. Phenomenology of Absolute Neutrino Masses

    E-Print Network [OSTI]

    Carlo Giunti

    2004-12-11T23:59:59.000Z

    The phenomenology of absolute neutrino masses is reviewed, focusing on tritium beta decay, cosmological measurements and neutrinoless double-beta decay.

  16. Gravitational Correction in Neutrino Oscillations

    E-Print Network [OSTI]

    Yasufumi Kojima

    1996-12-17T23:59:59.000Z

    We investigate the quantum mechanical oscillations of neutrinos propagating in weak gravitational field. The correction to the result in the flat space-time is derived.

  17. Observables in Neutrino Mass Spectroscopy Using Atoms

    E-Print Network [OSTI]

    D. N. Dinh; S. T. Petcov; N. Sasao; M. Tanaka; M. Yoshimura

    2012-09-21T23:59:59.000Z

    The process of collective de-excitation of atoms in a metastable level into emission mode of a single photon plus a neutrino pair, called radiative emission of neutrino pair (RENP), is sensitive to the absolute neutrino mass scale, to the neutrino mass hierarchy and to the nature (Dirac or Majorana) of massive neutrinos. We investigate how the indicated neutrino mass and mixing observables can be determined from the measurement of the corresponding continuous photon spectrum taking the example of a transition between specific levels of the Yb atom. The possibility of determining the nature of massive neutrinos and, if neutrinos are Majorana fermions, of obtaining information about the Majorana phases in the neutrino mixing matrix, is analyzed in the cases of normal hierarchical, inverted hierarchical and quasi-degenerate types of neutrino mass spectrum. We find, in particular, that the sensitivity to the nature of massive neutrinos depends critically on the atomic level energy difference relevant in the RENP.

  18. Birth of Neutrino Astrophysics

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  19. Neutrinos in the Electron

    E-Print Network [OSTI]

    E. L. Koschmieder

    2006-09-26T23:59:59.000Z

    We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

  20. Measurement of the branching fraction for $\\tau\\to\\eta K\

    SciTech Connect (OSTI)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-12T23:59:59.000Z

    The authors report on analyses of tau lepton decays {tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}} and {tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}, with {eta} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0}, using 470 fb{sup -1} of data from the BABAR experiment at PEP-II, collected at center-of-mass energies at and near the {Upsilon}(4S) resonance. They measure the branching fraction for the {tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}} decay mode, {Beta}({tau}{sup -} {yields} {eta}K{sup -}{nu}{sub {tau}}) = (1.42 {+-} 0.11(stat) {+-} 0.07(syst)) x 10{sup -4}, and report a 95% confidence level upper limit for the second-class current process {tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}, {Beta}({tau}{sup -} {yields} {eta}{pi}{sup -}{nu}{sub {tau}}) < 9.9 x 10{sup -5}.

  1. Studies of the Strange Hadronic Tau Decay Tau- to K0(S) Pi- Nu-Tau Using the BaBar Detector

    SciTech Connect (OSTI)

    Lyon, Andrew J.; /Manchester U. /SLAC

    2006-01-27T23:59:59.000Z

    A study of the decay {tau}{sup -} {yields} K{sub S}{sup 0}{pi}{sup -} {nu}{sub {tau}} (K{sub S}{sup 0} {yields} {pi}{sup +}{pi}{sup -}) using the BABAR detector is presented. Using 124.4 fb{sup -1} of data we measure {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) = (0.830 {+-} 0.005(stat) {+-} 0.042(syst))%, which is the world's most precise measurement to date of this branching ratio, and is consistent with the current world average. This preliminary result, unlike most of the {Beta}({tau}{sup -} {yields} {bar K}{sup 0}{pi}{sup -}{nu}{sub {tau}}) measurements already published, is systematics dominated and so the biggest future improvement to this number should come from reducing the systematic uncertainties in the analysis. A study of the K{pi} mass spectrum, from which the strange (K{pi}) spectral function can be measured, reveals excess contributions above the K*(892) tail at higher K{pi} mass. While in the past this has been thought to be due to K*(892) - K*(1410) interference, we find that the K*(1410), whose branching ratio to K{pi} is approximately 7%, seems insufficient to explain the excess mass observed in the data. Instead, we perform a fit using a K*(892) - K*(1680) interference model and find better agreement. The discrepancy that remains could be due to an s-wave contribution to the interference that is not parameterized in the model used, and/or detector smearing that is not accounted for in our fit. We also attempt to find an s-wave contribution to the K{pi} mass spectrum by searching for an sp-interference effect. While we find a hint that such an effect exists, we have neither the confidence in the statistics nor systematics in the higher K{pi} mass region to announce an observation. We conclude that it would be a worthwhile study to pursue.

  2. Sterile Neutrinos in Neutrinoless Double Beta Decay: An Update

    E-Print Network [OSTI]

    Faessler, Amand; Kovalenko, Sergey; Simkovic, Fedor

    2014-01-01T23:59:59.000Z

    We revisit the mechanism of neutrinoless double beta (NLDBD) decay mediated by the exchange with the heavy Majorana neutrino N of arbitrary mass mN, slightly mixed with the electron neutrino. By assuming the dominance of this mechanism we update the well known NLDBD-decay exclusion plot in the mass-mixing angle plane taking into account recent progress in calculation of nuclear matrix elements within quasiparticle random phase approximation and improved experimental bounds on the NLDBD-decay half-life of Ge-76 and Xe-136. We also consider the known formula approximating the mN dependence of the NLDBD-decay nuclear matrix element in a simple explicit form. We analyze its accuracy and specify the corresponding parameters allowing one to easily calculate the NLDBD-decay half-life for arbitrary mN for all the experimentally interesting isotopes without resorting to real nuclear structure calculations.

  3. Arbitrary mass Majorana neutrinos in neutrinoless double beta decay

    E-Print Network [OSTI]

    Amand Faessler; Marcela Gonzalez; Sergey Kovalenko; Fedor Simkovic

    2014-08-26T23:59:59.000Z

    We revisit the mechanism of neutrinoless double beta (NLDBD) decay mediated by the exchange with the heavy Majorana neutrino N of arbitrary mass mN, slightly mixed with the electron neutrino. By assuming the dominance of this mechanism, we update the well-known NLDBD-decay exclusion plot in the mass-mixing angle plane taking into account recent progress in the calculation of nuclear matrix elements within quasiparticle random phase approximation and improved experimental bounds on the NLDBD-decay half-life of Ge-76 and Xe-136. We also consider the known formula approximating the mN dependence of the NLDBD-decay nuclear matrix element in a simple explicit form. We analyze its accuracy and specify the corresponding parameters, allowing one to easily calculate the NLDBD-decay half-life for arbitrary mN for all the experimentally interesting isotopes without resorting to real nuclear structure calculations.

  4. Lepton textures and neutrino oscillations

    E-Print Network [OSTI]

    Verma, Rohit

    2014-01-01T23:59:59.000Z

    Systematic analyses of the textures arising in lepton mass matrices have been carried out using unitary transformations and condition of naturalness for the Dirac and Majorana neutrino possibilities. It is observed that the recent three neutrino oscillation data together with the effective mass in neutrinoless double beta decay provide vital clues in predicting the general structures of these lepton mass matrices.

  5. Off-shell OPERA neutrinos

    E-Print Network [OSTI]

    Tim R. Morris

    2011-12-11T23:59:59.000Z

    In the OPERA experiment, superluminal propagation of neutrinos can occur if one of the neutrino masses is extremely small. However the effect only has appreciable amplitude at energies of order this mass and thus has negligible overlap with the multi-GeV scale of the experiment.

  6. Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

    E-Print Network [OSTI]

    IceCube Collaboration; M. G. Aartsen; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; M. Ahrens; D. Altmann; T. Anderson; C. Arguelles; T. C. Arlen; J. Auffenberg; X. Bai; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; J. Becker Tjus; K. -H. Becker; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; D. Z. Besson; G. Binder; D. Bindig; M. Bissok; E. Blaufuss; J. Blumenthal; D. J. Boersma; C. Bohm; F. Bos; D. Bose; S. Böser; O. Botner; L. Brayeur; H. -P. Bretz; A. M. Brown; N. Buzinsky; J. Casey; M. Casier; E. Cheung; D. Chirkin; A. Christov; B. Christy; K. Clark; L. Classen; F. Clevermann; S. Coenders; D. F. Cowen; A. H. Cruz Silva; J. Daughhetee; J. C. Davis; M. Day; J. P. A. M. de André; C. De Clercq; H. Dembinski; S. De Ridder; P. Desiati; K. D. de Vries; M. de With; T. DeYoung; J. C. Díaz-Vélez; J. P. Dumm; M. Dunkman; R. Eagan; B. Eberhardt; T. Ehrhardt; B. Eichmann; J. Eisch; S. Euler; P. A. Evenson; O. Fadiran; A. R. Fazely; A. Fedynitch; J. Feintzeig; J. Felde; K. Filimonov; C. Finley; T. Fischer-Wasels; S. Flis; K. Frantzen; T. Fuchs; T. K. Gaisser; R. Gaior; J. Gallagher; L. Gerhardt; D. Gier; L. Gladstone; T. Glüsenkamp; A. Goldschmidt; G. Golup; J. G. Gonzalez; J. A. Goodman; D. Góra; D. Grant; P. Gretskov; J. C. Groh; A. Groß; C. Ha; C. Haack; A. Haj Ismail; P. Hallen; A. Hallgren; F. Halzen; K. Hanson; D. Hebecker; D. Heereman; D. Heinen; K. Helbing; R. Hellauer; D. Hellwig; S. Hickford; G. C. Hill; K. D. Hoffman; R. Hoffmann; A. Homeier; K. Hoshina; F. Huang; W. Huelsnitz; P. O. Hulth; K. Hultqvist; A. Ishihara; E. Jacobi; J. Jacobsen; G. S. Japaridze; K. Jero; M. Jurkovic; B. Kaminsky; A. Kappes; T. Karg; A. Karle; M. Kauer; A. Keivani; J. L. Kelley; A. Kheirandish; J. Kiryluk; J. Kläs; S. R. Klein; J. -H. Köhne; G. Kohnen; H. Kolanoski; A. Koob; L. Köpke; C. Kopper; S. Kopper; D. J. Koskinen; M. Kowalski; A. Kriesten; K. Krings; G. Kroll; M. Kroll; J. Kunnen; N. Kurahashi; T. Kuwabara; M. Labare; J. L. Lanfranchi; D. T. Larsen; M. J. Larson; M. Lesiak-Bzdak; M. Leuermann; J. Lünemann; J. Madsen; G. Maggi; R. Maruyama; K. Mase; H. S. Matis; R. Maunu; F. McNally; K. Meagher; M. Medici; A. Meli; T. Meures; S. Miarecki; E. Middell; E. Middlemas; N. Milke; J. Miller; L. Mohrmann; T. Montaruli; R. Morse; R. Nahnhauer; U. Naumann; H. Niederhausen; S. C. Nowicki; D. R. Nygren; A. Obertacke; A. Olivas; A. Omairat; A. O'Murchadha; T. Palczewski; L. Paul; Ö. Penek; J. A. Pepper; C. Pérez de los Heros; C. Pfendner; D. Pieloth; E. Pinat; J. Posselt; P. B. Price; G. T. Przybylski; J. Pütz; M. Quinnan; L. Rädel; M. Rameez; K. Rawlins; P. Redl; I. Rees; R. Reimann; M. Relich; E. Resconi; W. Rhode; M. Richman; B. Riedel; S. Robertson; J. P. Rodrigues; M. Rongen; C. Rott; T. Ruhe; B. Ruzybayev; D. Ryckbosch; S. M. Saba; H. -G. Sander; J. Sandroos; M. Santander; S. Sarkar; K. Schatto; F. Scheriau; T. Schmidt; M. Schmitz; S. Schoenen; S. Schöneberg; A. Schönwald; A. Schukraft; L. Schulte; O. Schulz; D. Seckel; Y. Sestayo; S. Seunarine; R. Shanidze; M. W. E. Smith; D. Soldin; G. M. Spiczak; C. Spiering; M. Stamatikos; T. Stanev; N. A. Stanisha; A. Stasik; T. Stezelberger; R. G. Stokstad; A. Stößl; E. A. Strahler; R. Ström; N. L. Strotjohann; G. W. Sullivan; M. Sutherland; H. Taavola; I. Taboada; A. Tamburro; S. Ter-Antonyan; A. Terliuk; G. Teši?; S. Tilav; P. A. Toale; M. N. Tobin; D. Tosi; M. Tselengidou; E. Unger; M. Usner; S. Vallecorsa; N. van Eijndhoven; J. Vandenbroucke; J. van Santen; S. Vanheule; M. Vehring; M. Voge; M. Vraeghe; C. Walck; M. Wallraff; Ch. Weaver; M. Wellons; C. Wendt; S. Westerhoff; B. J. Whelan; N. Whitehorn; C. Wichary; K. Wiebe; C. H. Wiebusch; D. R. Williams; H. Wissing; M. Wolf; T. R. Wood; K. Woschnagg; D. L. Xu; X. W. Xu; Y. Xu; J. P. Yanez; G. Yodh; S. Yoshida; P. Zarzhitsky; J. Ziemann; M. Zoll

    2015-02-11T23:59:59.000Z

    A diffuse flux of astrophysical neutrinos above $100\\,\\mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35\\,\\mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{\\mu}:f_\\tau)_\\oplus\\approx(1:1:1)_\\oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of $(0:1:0)_\\oplus$ is excluded at $3.3\\sigma$, and a purely shower-like composition of $(1:0:0)_\\oplus$ is excluded at $2.3\\sigma$.

  7. IceCube: An Instrument for Neutrino Astronomy

    E-Print Network [OSTI]

    Halzen, F.

    2010-01-01T23:59:59.000Z

    An Instrument for Neutrino Astronomy Francis Halzen 1 andAn Instrument for Neutrino Astronomy Francis Halzen 1 and94720 Abstract Neutrino astronomy beyond the Sun was first

  8. Cosmo MSW effect for mass varying neutrinos

    E-Print Network [OSTI]

    Pham Quang Hung; Heinrich Päs

    2005-02-24T23:59:59.000Z

    We consider neutrinos with varying masses which arise in scenarios relating neutrino masses to the dark energy density in the universe. We point out that the neutrino mass variation can lead to level crossing and thus a cosmo MSW effect, having dramatic consequences for the flavor ratio of astrophysical neutrinos.

  9. Solar Neutrinos and the Eclipse Effect

    E-Print Network [OSTI]

    Mohan Narayan; G. Rajasekaran; Rahul Sinha; C. P. Burgess

    1999-09-01T23:59:59.000Z

    The solar neutrino counting rate in a real time detector like Super--Kamiokanda, SNO, or Borexino is enhanced due to neutrino oscillations in the Moon during a partial or total solar eclipse. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement, if seen, can further help to determine the neutrino parameters.

  10. Small entries of neutrino mass matrices

    E-Print Network [OSTI]

    E. Kh. Akhmedov

    1999-09-15T23:59:59.000Z

    We consider phenomenologically allowed structures of the neutrino mass matrix in the case of three light neutrino species. Constraints from the solar, atmospheric and reactor neutrino experiments as well as those from the neutrinoless double beta decay are taken into account. Both hierarchical and quasi-degenerate neutrino mass cases are studied. Assuming maximal $\

  11. Geo-neutrinos: recent developments

    E-Print Network [OSTI]

    Dye, Steve

    2014-01-01T23:59:59.000Z

    Radiogenic heating is a key component of the energy balance and thermal evolution of the Earth. It contributes to mantle convection, plate tectonics, volcanoes, and mountain building. Geo-neutrino observations estimate the present radiogenic power of our planet. This estimate depends on the quantity and distribution of heat-producing elements in various Earth reservoirs. Of particular geological importance is radiogenic heating in the mantle. This quantity informs the origin and thermal evolution of our planet. Here we present: currently reported geo-neutrino observations; estimates of the mantle geo-neutrino signal, mantle radiogenic heating, and mantle cooling; a comparison of chemical Earth model predictions of the mantle geo-neutrino signal and mantle radiogenic heating; a brief discussion of radiogenic heating in the core, including calculations of geo-neutrino signals per pW/kg; and finally a discussion of observational strategy.

  12. Constraints on Neutrino Velocities Revisited

    E-Print Network [OSTI]

    Yunjie Huo; Tianjun Li; Yi Liao; Dimitri V. Nanopoulos; Yonghui Qi

    2012-01-27T23:59:59.000Z

    With a minimally modified dispersion relation for neutrinos, we reconsider the constraints on superluminal neutrino velocities from bremsstrahlung effects in the laboratory frame. Employing both the direct calculation approach and the virtual Z-boson approach, we obtain the generic decay width and energy loss rate of a superluminal neutrino with general energy. The Cohen-Glashow's analytical results for neutrinos with a relatively low energy are confirmed in both approaches. We employ the survival probability instead of the terminal energy to assess whether a neutrino with a given energy is observable or not in the OPERA experiment. Moreover, using our general results we perform systematical analyses on the constraints arising from the Super-Kamiokande and IceCube experiments.

  13. ANTARES deep sea neutrino telescope results

    SciTech Connect (OSTI)

    Mangano, Salvatore [IFIC - Instituto de Física Corpuscular, Edificio Institutos de Investigatión, 46071 Valencia (Spain); Collaboration: ANTARES Collaboration

    2014-06-24T23:59:59.000Z

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  14. Pair Production of Tau Sneutrinos at Linear Colliders

    E-Print Network [OSTI]

    V. Ari; O. Cakir

    2010-07-15T23:59:59.000Z

    The pair production of tau sneutrinos in $e^{+}e^{-}$ collisions and their subsequent decays are studied in a framework of the supersymmetric extension of the standard model. We present an analysis for the parameter space (BR vs. mass) which could be explored at the future high energy $e^{+}e^{-}$ colliders.

  15. First search for CP violation in tau lepton decay

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan; Zhou, L.

    1998-11-01T23:59:59.000Z

    We have performed the first search for CP violation in tau lepton decay. CP violation in lepton decay does not occur in the minimal standard model but can occur in extensions such as the multi-Higgs doublet model. It appears as a characteristic...

  16. Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle

    E-Print Network [OSTI]

    Leonard S. Kisslinger

    2014-10-10T23:59:59.000Z

    This brief report is an extension of a prediction of neutrino oscillation with a sterile neutrino using parameters of the sterile neutrino mass and mixing angle recently extracted from experiment.

  17. Energy Dependence of Solar Neutrino Suppression and Bounds on the Neutrino Magnetic Moment

    E-Print Network [OSTI]

    Joao Pulido; Ana M. Mourao

    1998-03-02T23:59:59.000Z

    An analysis of neutrino electron scattering as applied to the SuperKamiokande solar neutrino experiment with the data from the Homestake experiment leads to an upper bound on the neutrino magnetic moment in the range $\\mu_{\

  18. Small scales structures and neutrino masses

    E-Print Network [OSTI]

    Villaescusa-Navarro, Francisco

    2015-01-01T23:59:59.000Z

    We review the impact of massive neutrinos on cosmological observables at the linear order. By means of N-body simulations we investigate the signatures left by neutrinos on the fully non-linear regime. We present the effects induced by massive neutrinos on the matter power spectrum, the halo mass function and on the halo-matter bias in massive neutrino cosmologies. We also investigate the clustering of cosmic neutrinos within galaxy clusters.

  19. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    V. I. Lyashuk; Yu. S Lutostansky

    2015-03-04T23:59:59.000Z

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neutron flux (i.e., powerful neutron source) is requested for realization of considered neutrino sources (neutrino factories). Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7Li isotope) are discussed: static regime (i.e., without transport of 8Li isotope to the neutrino detector); dynamic regime (transport of 8Li isotope to the remote detector in a closed cycle); an operation of lithium converter in tandem of accelerator with a neutron-producing target on the base of tungsten, lead or bismuth. Different chemical compounds of lithium (as the substance of the converter) are considered. Heavy water solution of LiOD is proposed as a serious alternative to high-pure 7Li in a metallic state.

  20. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    V. I. Lyashuk; Yu. S Lutostansky

    2015-04-13T23:59:59.000Z

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neutron flux (i.e., powerful neutron source) is requested for realization of considered neutrino sources (neutrino factories). Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7Li isotope) are discussed: static regime (i.e., without transport of 8Li isotope to the neutrino detector); dynamic regime (transport of 8Li isotope to the remote detector in a closed cycle); an operation of lithium converter in tandem of accelerator with a neutron-producing target on the base of tungsten, lead or bismuth. Different chemical compounds of lithium (as the substance of the converter) are considered. Heavy water solution of LiOD is proposed as a serious alternative to high-pure 7Li in a metallic state.

  1. Neutrino Nucleon Elastic Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamN u F a c tNeutrino

  2. Sterile Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American Physical SocietySterile Neutrino

  3. MSW mediated neutrino decay and the solar neutrino problem

    E-Print Network [OSTI]

    Abhijit Bandyopadhyay; Sandhya Choubey; Srubabati Goswami

    2001-03-30T23:59:59.000Z

    We investigate the solar neutrino problem assuming simultaneous presence of MSW transitions in the sun and neutrino decay on the way from sun to earth. We do a global $\\chi^2$-analysis of the data on total rates in Cl, Ga and Superkamiokande (SK) experiments and the SK day-night spectrum data and determine the changes in the allowed region in the $\\dm - \\tan^2\\theta$ plane in presence of decay. We also discuss the implications for unstable neutrinos in the SNO experiment.

  4. VARIATIONS OF THE 10 mum SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    SciTech Connect (OSTI)

    Bary, Jeffrey S. [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States); Leisenring, Jarron M.; Skrutskie, Michael F., E-mail: jbary@colgate.ed, E-mail: jml2u@virginia.ed, E-mail: mfs4n@virginia.ed [Department of Astronomy, University of Virginia, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States)

    2009-11-20T23:59:59.000Z

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 mum silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolution coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.

  5. Current Direct Neutrino Mass Experiments

    E-Print Network [OSTI]

    Drexlin, G; Mertens, S; Weinheimer, C

    2013-01-01T23:59:59.000Z

    In this contribution we review the status and perspectives of direct neutrino mass experiments. These experiments investigate the kinematics of $\\beta$-decays of specific isotopes ($^3$H, $^{187}$Re, $^{163}$Ho) to derive model-independent information on the averaged electron (anti-) neutrino mass, which is formed by the incoherent sum of the neutrino mass eigenstates contributing to the electron neutrino. We first review the kinematics of $\\beta$-decay and the determination of the neutrino mass, before giving a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for $^3$H, cryo-bolometers for $^{187}$Re). We then describe the Karlsruhe Tritium Neutrino (KATRIN) experiment which is currently under construction at Karlsruhe Institute of Technology. The large-scale setup will use the MAC-E-Filter principle pioneered earlier to push the sensitivity down to a value of 200 meV(90% C.L.). KATRIN faces many technological challenges that have to be resolved with regar...

  6. Phenomenology Of Sterile Neutrinos At Different Mass Scales: Neutrinoless Double Beta Decay And Neutrino Oscillations.

    E-Print Network [OSTI]

    WONG, CHAN,FAI

    2012-01-01T23:59:59.000Z

    ??The existence of neutrino oscillation is the first evidence of physics beyond the Standard Model. It proves that neutrinos are massive and motivates the study… (more)

  7. Hybrid MSW + VO Solution of the Solar Neutrino Problem in String-Motivated Unified Theories

    E-Print Network [OSTI]

    B. C. Allanach; G. K. Leontaris; S. T. Petcov

    1997-12-19T23:59:59.000Z

    It is shown that the hybrid MSW + VO solution of the solar neutrino problem, according to which the solar nu_e undergo matter-enhanced transitions into nu_mu, nu_tau in the Sun followed by long wave length (about 1.5 10^8 km) nu_e -> nu_mu, nu_tau oscillations in vacuum between the Sun and the Earth, can occur naturally in string-motivated grand unified theories. We consider the supersymmetric version of a string-type SU(4)xSU(2)_LxSU(2)_R theory with U(1)_X family symmetry, which was shown to successfully describe the charged fermion masses and the quark mixing, and extend the earlier fermion mass analysis to the neutrino sector. We show that the four oscillation parameters Delta m_31^2, Delta m_21^2 and sin^2 2 theta_12, sin^2 2 theta_13, characterising the combined matter-enhanced transitions and vacuum oscillations of the solar nu_e, naturally get values in the ranges of the hybrid MSW + VO solutions found recently.

  8. LSND neutrino oscillation results

    SciTech Connect (OSTI)

    Louis, W.C.; LSND Collaboration

    1996-10-01T23:59:59.000Z

    The LSND (Liquid Scintillator Neutrino Detector) experiment at Los Alamos has conducted a search for muon antineutrino {r_arrow} electron antineutrino oscillations using muon neutrinos from antimuon decay at rest. The electron antineutrinos are detected via the reaction electron antineutrino + proton {r_arrow} positron + neutron, correlated with the 2.2-MeV gamma from neutron + proton {r_arrow} deuteron + gamma. The use of tight cuts to identify positron events with correlated gamma rays yields 22 events with positron energy between 36 and 60 MeV and only 4.6 {+-} 0.6 background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1 {times} 10{sup -8}. A chi-squared fit to the entire positron sample results in a total excess of 51.8 {sup +18.7}{sub -16.9} {+-} 8.0 events with positron energy between 20 and 60 MeV. If attributed to muon antineutrino {r_arrow} electron antineutrino oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of (0.31 {+-} 0.12 {+-} 0.05){percent}. 10 refs., 7 figs., 1 tab.

  9. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09T23:59:59.000Z

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  10. Little Flavor: Heavy Leptons, Z' and Higgs Phenomenology

    E-Print Network [OSTI]

    Sichun Sun

    2014-12-01T23:59:59.000Z

    The Little Flavor model is a close cousin of the Little Higgs theory which aims to generate flavor structure around TeV scale. While the original Little Flavor only included the quark sector, here we build the lepton part of the Little Flavor model and explore its phenomenology. The model produces the neutrino mixing matrix and Majorana masses of the Standard Model neutrinos through coupling to heavy lepton partners and Little Higgses. We combine the usual right-handed seesaw mechanism with global symmetry protection to suppress the Standard Model neutrino masses, and identify the TeV partners of leptons as right-handed Majorana neutrinos. The lepton masses and mixing matrix are calculated perturbatively in the theory. The TeV new gauge bosons have suppressed decay width in dilepton channels. Even assuming the Standard Model couplings, the branching ratios to normal dilepton channels are largely reduced in the model, to evade the bound from current $Z'$ search. It also opens up the new search channels for exotic gauge bosons, especially Z' -> E_{t missing} + multi L. The multiple lepton partners will create new chain decay signals in flavor related processes in colliders, which also give rise to flavor anomalies. The lepton flavor violation process can be highly suppressed in charged lepton sector and happens only through neutrinos.

  11. The Neutrinoless Double Beta Decay, Physics beyond the Standard Model and the Neutrino Mass

    E-Print Network [OSTI]

    Amand Faessler

    2012-03-16T23:59:59.000Z

    The Neutrinoless double beta Decay allows to determine the effectice Majorana electron neutrino mass. For this the following conditions have to be satisfied: (i) The neutrino must be a Majorana particle, i. e. identical to the antiparticle. (ii) The half life has to be measured. (iii)The transition matrix element must be reliably calculated. (iv) The leading mechanism must be the light Majorana neutrino exchange. The present contribution studies the accuracy with which one can calculate by different methods: (1) Quasi-Particle Random Phase Approach (QRPA), (2) the Shell Model (SM), (3) the (before the variation) angular momentum projected Hartree-Fock-Bogoliubov method (PHFB)and the (4) Interacting Boson Approach (IBA). In the second part we investigate how to determine experimentally the leading mechanism for the Neutrinoless Double Beta Decay. Is it (a) the light Majorana neutrino exchange as one assumes to determine the effective Majorana neutrino mass, ist it the heavy left (b) or right handed (c) Majorana neutrino exchange allowed by left-right symmetric Grand Unified Theories (GUT's). Is it a mechanism due to Supersymmetry e.g. with gluino exchange and R-parity and lepton number violating terms. At the end we assume, that Klapdor et al. have indeed measured the Neutrinoless Double Beta Decay(, although contested,)and that the light Majorana neutrino exchange is the leading mechanism. With our matrix elements we obtain then an effective Majorana neutrino mass of: = 0.24 [eV], exp (pm) 0.02; theor. (pm) 0.01 [eV

  12. Neutrino mass hierarchy extraction using atmospheric neutrinos in ice

    E-Print Network [OSTI]

    Olga Mena; Irina Mocioiu; Soebur Razzaque

    2008-10-21T23:59:59.000Z

    We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin^2(2theta13) close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.

  13. Heavy metal biosensor

    SciTech Connect (OSTI)

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15T23:59:59.000Z

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  14. Neutrino oscillation studies and the neutrino cross section

    E-Print Network [OSTI]

    Paolo Lipari

    2002-07-14T23:59:59.000Z

    The present uncertainties in the knowledge of the neutrino cross sections for E_nu \\sim 1 GeV, that is in the energy range most important for atmospheric and long baseline accelerator neutrinos, are large. These uncertainties do not play a significant role in the interpretation of existing data, however they could become a limiting factor in future studies that aim at a complete and accurate determination of the neutrino oscillation parameters. New data and theoretical understanding on nuclear effects and on the electromagnetic structure functions at low Q^2 and in the resonance production region are available, and can be valuable in reducing the present systematic uncertainties. The collaboration of physicists working in different subfields will be important to obtain the most from this available information. It is now also possible, with the facilities developed for long baseline beams, to produce high intensity and well controlled neutrino beams to measure the neutrino interaction properties with much better precision that what was done in the past. Several projects and ideas to fully exploit these possibilities are under active investigation. These topics have been the object of the first neutrino interaction (NUINT01) workshop.

  15. High-Energy Neutrino Astronomy

    E-Print Network [OSTI]

    F. Halzen

    2004-02-03T23:59:59.000Z

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of $10^{20}$ and $10^{13}$ eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.

  16. High-Energy Neutrino Astronomy

    E-Print Network [OSTI]

    F. Halzen

    2005-01-26T23:59:59.000Z

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by neutrinos with energies similar to those of the highest energy cosmic rays.

  17. Neutrino capital of the world

    E-Print Network [OSTI]

    Johnson, Carolyn Y., 1980-

    2004-01-01T23:59:59.000Z

    Neutrinos are ubiquitous particles, but they don't like to mingle. Each second, billions of them pass through our bodies, slicing imperceptibly through our delicate internal organs. They can barrel through the sun, stars, ...

  18. Neutrino Factories and Beta Beams

    E-Print Network [OSTI]

    Zisman, Michael S.

    2006-01-01T23:59:59.000Z

    a Neutrino Factory Based on Muon Beams,” Proc. 2001 ParticleMD. [19] C. Rubbia et al. , “Beam Cooling with Ionisationthe required unstable ion beams has recently been suggested

  19. Research in Neutrino Physics

    SciTech Connect (OSTI)

    Busenitz, Jerome [The University of Alabama

    2014-09-30T23:59:59.000Z

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

  20. Standard and non-standard primordial neutrinos

    E-Print Network [OSTI]

    P. D. Serpico

    2006-08-14T23:59:59.000Z

    The standard cosmological model predicts the existence of a cosmic neutrino background with a present density of about 110 cm^{-3} per flavour, which affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and the evolution of large scale structures. We report on a precision calculation of the cosmic neutrino background properties including the modification introduced by neutrino oscillations. The role of a possible neutrino-antineutrino asymmetry and the impact of non-standard neutrino-electron interactions on the relic neutrinos are also briefly discussed.

  1. Search for third generation scalar leptoquarks decaying into tau b

    E-Print Network [OSTI]

    D0 Collaboration; V. M. Abazov

    2008-06-21T23:59:59.000Z

    We have searched for third generation leptoquarks (LQ3) using 1.05 inverse femtobarns of data collected with the D0 detector at the Fermilab Tevatron Collider operating at sqrt(s)=1.96 TeV. We set a 95% C.L. lower limit of 210 GeV on the mass of a scalar LQ3 state decaying solely to a b quark and a tau lepton.

  2. High Energy Neutrino Telescopes

    E-Print Network [OSTI]

    K. D. Hoffman

    2008-12-18T23:59:59.000Z

    This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

  3. Majorana neutrino masses and the neutrinoless double-beta decay

    SciTech Connect (OSTI)

    Faessler, A. [University of Tuebingen, Institute of Theoretical Physics (Germany)], E-mail: amand.faessler@uni-tuebingen.de

    2006-12-15T23:59:59.000Z

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in {sup 76}Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.

  4. Neutrino factories: realization and physics potential

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab; Zisman, M.S.; /LBL, Berkeley

    2006-12-01T23:59:59.000Z

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  5. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect (OSTI)

    Cooper, N.G. [ed.] [ed.

    1997-12-31T23:59:59.000Z

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  6. Solar Neutrinos: Models, Observations, and New Opportunities

    E-Print Network [OSTI]

    W. C. Haxton

    2007-10-11T23:59:59.000Z

    I discuss the development and resolution of the solar neutrino problem, as well as opportunities now open to us to extend our knowledge of main-sequence stellar evolution and neutrino astrophysics.

  7. Neutrino mixing, flavor states and dark energy

    E-Print Network [OSTI]

    M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

    2007-11-06T23:59:59.000Z

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

  8. How Uncertain Are Solar Neutrino Predictions?

    E-Print Network [OSTI]

    John N. Bahcall; Sarbani Basu; M. H. Pinsonneault

    1998-05-24T23:59:59.000Z

    Solar neutrino fluxes and sound speeds are calculated using a systematic reevaluation of nuclear fusion rates. The largest uncertainties are identified and their effects on the solar neutrino fluxes are estimated.

  9. $N_{\\rm eff}$ in low-scale seesaw models versus the lightest neutrino mass

    E-Print Network [OSTI]

    Hernandez, P; Lopez-Pavon, J

    2014-01-01T23:59:59.000Z

    We evaluate the contribution to $N_{\\rm eff}$ of the extra sterile states in low-scale Type I seesaw models (with three extra sterile states). We explore the full parameter space and find that at least two of the heavy states always reach thermalisation in the Early Universe, while the third one might not thermalise provided the lightest neutrino mass is below ${\\mathcal O}(10^{-3}$eV). Constraints from cosmology therefore severely restrict the spectra of heavy states in the range 1eV- 100 MeV. The implications for neutrinoless double beta decay are also discussed.

  10. Earth Matter Effect on Democratic Neutrinos

    E-Print Network [OSTI]

    Dmitry Zhuridov

    2014-08-30T23:59:59.000Z

    The neutrino propagation through the Earth is investigated in the framework of the democratic neutrino theory. In this theory the neutrino mixing angle theta-1-3 is approximately determined, which allows one to make a well defined neutrino oscillogram driven by the 1-3 mixing in the matter of the Earth. Significant differences in this oscillogram from the case of models with relatively small theta-1-3 are discussed.

  11. European Strategy for Future Neutrino Physics

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    A workshop to discuss the possibilities for future neutrino investigations in Europe and the links to CERN.

  12. Dark energy induced by neutrino mixing

    E-Print Network [OSTI]

    Antonio Capolupo; Salvatore Capozziello; Giuseppe Vitiello

    2006-12-11T23:59:59.000Z

    The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

  13. Neutrino mass limit from tritium beta decay

    E-Print Network [OSTI]

    E. W. Otten; C. Weinheimer

    2009-09-11T23:59:59.000Z

    The paper reviews recent experiments on tritium beta spectroscopy searching for the absolute value of the electron neutrino mass $m(\

  14. Do the Kamiokande results need neutrino oscillations?

    E-Print Network [OSTI]

    Baillon, Paul

    1999-01-01T23:59:59.000Z

    Neutrino oscillations are a delicate and important subject. One needs to be sure that every aspect of it is well understood. The recent results of the Kamiokande experiment [1], indicate the possibility of -- neutrino oscillations. The period of oscillation observed by Kamiokande is not compatible with what one may deduce from the solar neutrino experiments [2]. In this letter, we examine if another mechanism could fake neutrino oscillations and could be measurement dependent

  15. Neutrino magnetic moment in a magnetized plasma

    E-Print Network [OSTI]

    N. V. Mikheev; E. N. Narynskaya

    2010-11-08T23:59:59.000Z

    The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

  16. Phase Space Constraints on Neutrino Luminosities

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun; Samartha C A

    2007-06-29T23:59:59.000Z

    While the importance of phase space constraints for gravitational clustering of neutrinos (which are fermions) is well recognized, the explicit use of such constraints to limit neutrino emission from ultra energetic sources has not been stressed. Special and general relativistic phase space constraints are shown to limit neutrino luminosities in compact sources in various situations.

  17. Lectures on Neutrino Astronomy: Theory and Experiment

    E-Print Network [OSTI]

    F. Halzen

    1998-10-22T23:59:59.000Z

    1. Overview of neutrino astronomy: multidisciplinary science. 2. Cosmic accelerators: the highest energy cosmic rays. 3. Neutrino beam dumps: supermassive black holes and gamma ray bursts. 4. Neutrino telescopes: water and ice. 5. Indirect dark matter detection. 6. Towards kilometer-scale detectors.

  18. Improved Theory of Neutrino Oscillations in Matter

    E-Print Network [OSTI]

    Leonard S. Kisslinger

    2014-11-19T23:59:59.000Z

    This is revision of the S-Matrix theory of neutrino oscillations used for many years. We evaluate the transition probability of a $\\mu$ to $e$ neutrino without an approximation used for many theoretical studies, and find important differences which could improve the extraction of neutrino parameters from experimental data in the future.

  19. GSK-3? phosphorylation of functionally distinct tau isoforms has differential, but mild effects

    E-Print Network [OSTI]

    Voss, Kellen; Gamblin, Truman Chris

    2009-05-02T23:59:59.000Z

    with AD-tau, as determined by mass spectrometry, and phos- phorylation site-specific antibodies [11-14]. In vivo, treat- ment of transgenic mouse models of tau-induced neurodegeneration with lithium chloride, an inhibitor of GSK-3?, reduces both tau... (Perkin-Elmer, Boston, MA). Sam- ples were filtered and washed to remove unincorporated ?-32P, then counted in a liquid scintillation counter (Pack- ard 1600TR) [19]. Assay Kit (Cytoskeleton, Inc., Denver, CO) using the man- ufacturer's protocol. Varying...

  20. Tau phosphorylation by GSK-3? promotes tangle-like filament morphology

    E-Print Network [OSTI]

    Rankin, Carolyn A.; Sun, Qian; Gamblin, Truman Chris

    2007-06-28T23:59:59.000Z

    in tau observed in Alzheimer's disease, such as phosphorylation, truncation, ubiquitination, glycosylation or nitration, may play a role. Results: We have investigated the effects of tau phosphorylation by glycogen synthase kinase-3? (GSK-3?) on tau... regulating kinase have similar properties to induce the formation of NFT-like fil- ament bundles. Likewise, other modifications found in association with AD NFTs, such as truncation, ubiquitina- tion, nitration and glycation (reviewed in [1,10]) could also...

  1. Neutrinos from Gamma Ray Bursts

    E-Print Network [OSTI]

    Karl Mannheim

    2000-10-18T23:59:59.000Z

    The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector, (ii) GRB redshifts from HETE-2 follow-up studies, and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

  2. Muon neutrino disappearance at MINOS

    SciTech Connect (OSTI)

    Armstrong, R.; /Indiana U.

    2009-08-01T23:59:59.000Z

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be {Delta}m{sub 32}{sup 2} = 2.45{sub +0.12}{sup -0.12} x 10{sub -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 32}) = 1.00{sub -0.04}{sup +0.00} (> 0.90 at 90% confidence level).

  3. Inhibition of Tau Aggregation by Three Aspergillus nidulans Secondary Metabolites: 2,?-Dihydroxyemodin, Asperthecin, and Asperbenzaldehyde

    E-Print Network [OSTI]

    Paranjape, Smita Ramesh; Chiang, Yi-Ming; Sanchez, James F.; Entwistle, Ruth; Wang, Clay C. C.; Oakley, Berl R.; Gamblin, Truman Christopher

    2014-01-10T23:59:59.000Z

    acid. Values are the average of three trials ± SD. * P ? 0.05; ** p ? 0.01; *** p ? 0.001.cence in the presence of tau with and without a compound (l" Fig. 6). Although 2,?-dihydroxyemodin, asperthecin, and as- perbenzaldehyde showed a dose...]. The previous emo- din study also used 0N3R and 0N4R isoforms of tau [16], while our current study uses 2N4R tau. Our previous studies show that in the presence of arachidonic acid, 2N4R tau is muchmore prone to aggregation than the 0N3R and 0N4R isoforms [43...

  4. Evidence for a Higgs boson in tau decays with the CMS detector .

    E-Print Network [OSTI]

    Dutta, Valentina

    2014-01-01T23:59:59.000Z

    ??In this thesis, I describe the search for a Higgs boson through its decay to a pair of tan leptons with the tau-pair subsequently decaying… (more)

  5. Stimulated Neutrino Transformation Through Turbulence

    E-Print Network [OSTI]

    Kelly M. Patton; James P. Kneller; Gail C. McLaughlin

    2014-04-15T23:59:59.000Z

    We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Transitions are strongly enhanced by those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. We also find a suppression of transitions due to the long wavelength modes when the ratio of their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function $J_0$.

  6. Neutrino Physics at DPF 2013

    E-Print Network [OSTI]

    Deborah A. Harris

    2013-10-25T23:59:59.000Z

    The field of neutrino physics was covered at DPF 2013 in 32 talks, including three on theoretical advances and the remainder on experiments that spanned at least 17 different detectors. This summary of those talks cannot do justice to the wealth of information presented, but will provide links to other material where possible. There were allso two plenary session contributions on neutrino physics at this meeting: the current status of what we know about neutrino (oscillation) physics was outlined by Huber, and the next steps in long baseline oscillation expeirments were described by Fleming. This article covers a subset of the topics discussed at the meeting, with emphasis given to those talks that showed data or new results.

  7. On solar neutrino fluxes in radiochemical experiments

    E-Print Network [OSTI]

    R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

    2005-12-08T23:59:59.000Z

    We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

  8. NEUTRINO OSCILLATION RESULTS FROM LSND

    SciTech Connect (OSTI)

    Mills, G.B.

    2000-10-01T23:59:59.000Z

    The Liquid Scintillator Neutrino Detector took data during the years 1993 through 1998. The results of a final analysis of the data are reported here. In summary, the analysis resulted in a cleaner sample of decay-at-rest oscillation candidates and provided a strong constraint on beam related backgrounds. The oscillation probability is fitted to the correlated photon parameter in the inclusive electron sample. The fit yields an excess of 83.3 {+-} 21.2 events attributable to neutrino oscillations. This corresponds to an oscillation probability of (0.25 {+-} 0.06 {+-} 0.04)% for that detector and beam configuration.

  9. Solar neutrinos and the sun

    E-Print Network [OSTI]

    Aldo Serenelli

    2011-09-12T23:59:59.000Z

    We present updated standard solar models (SSMs) that incorporate the latest results for nuclear fusion rates, recently published. We show helioseismic results for high and low metallicity compositions and also for an alternative set of solar abundance, derived from 3D model atmospheres, which give intermediate results. For the high and low metallicity models, we show that current solar neutrino data can not differentiate between models and that a measurement of the CNO fluxes is necessary to achieve that goal. A few additional implications of a hypothetical measurement of CNO neutrinos, both in terms of solar and stellar physics, are discussed.

  10. Probing Neutrino Hierarchy and Chirality via Wakes

    E-Print Network [OSTI]

    Hong-Ming Zhu; Ue-Li Pen; Xuelei Chen; Derek Inman

    2014-12-04T23:59:59.000Z

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and downstream of dark matter halos neutrino wakes are expected to develop. We propose a method of measuring the neutrino mass based on this mechanism. The neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys, e.g. the LSST and Euclid surveys with a low redshift galaxy survey or a 21cm intensity mapping survey which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make positive detection if the three neutrino masses are Quasi-Degenerate, and a future high precision 21cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right handed Dirac neutrinos may be detectable.

  11. Searching for sterile neutrinos in ice

    E-Print Network [OSTI]

    Soebur Razzaque; A. Yu. Smirnov

    2011-07-04T23:59:59.000Z

    Oscillation interpretation of the results from the LSND, MiniBooNE and some other experiments requires existence of sterile neutrino with mass $\\sim 1$ eV and mixing with the active neutrinos $|U_{\\mu 0}|^2 \\sim (0.02 - 0.04)$. It has been realized some time ago that existence of such a neutrino affects significantly the fluxes of atmospheric neutrinos in the TeV range which can be tested by the IceCube Neutrino Observatory. In view of the first IceCube data release we have revisited the oscillations of high energy atmospheric neutrinos in the presence of one sterile neutrino. Properties of the oscillation probabilities are studied in details for various mixing schemes both analytically and numerically. The energy spectra and angular distributions of the $\

  12. Progress in the physics of massive neutrinos

    E-Print Network [OSTI]

    V. Barger; D. Marfatia; K. Whisnant

    2003-09-16T23:59:59.000Z

    The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of \

  13. Neutrino Majorana Mass from Black Hole

    E-Print Network [OSTI]

    Yosuke Uehara

    2002-05-25T23:59:59.000Z

    We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

  14. Commissioning of the ATLAS Electron, Photon and Tau Trigger Selection

    E-Print Network [OSTI]

    Mora Herrera, C; The ATLAS collaboration

    2010-01-01T23:59:59.000Z

    Since March 2010, the ATLAS experiment has been recording collisions of the Large Hadron Collider (LHC) at a center of mass energy of 7 TeV. At low instantaneous luminosity, data were selected by the hardware based Level-1 trigger and processed by the software based High Level Trigger (HLT) without active rejection; as the luminosity increased, the HLT rejection has been gradually activated. Since then, electrons from J/$psi$, bottom, charm, W and Z decays, prompt photons and a first sample of tau hadronic decays from W have been efficiently selected. This paper gives an overview of the implementation of the electron, photon and tau trigger trigger selection algorithms and of the first experience running these triggers online. The performance of the three trigger levels is discussed and a set of comparisons of the online discriminating variables with offline reconstruction is shown, as well as the comparison of data with the Monte Carlo simulation on which the current selection was tuned.

  15. Time dependent solution for acceleration of tau-leaping

    SciTech Connect (OSTI)

    Fu, Jin, E-mail: iamfujin@hotmail.com [Department of Computer Science, University of California, Santa Barbara (United States)] [Department of Computer Science, University of California, Santa Barbara (United States); Wu, Sheng, E-mail: sheng@cs.ucsb.edu [Department of Computer Science, University of California, Santa Barbara (United States)] [Department of Computer Science, University of California, Santa Barbara (United States); Petzold, Linda R., E-mail: petzold@cs.ucsb.edu [Department of Computer Science, University of California, Santa Barbara (United States)

    2013-02-15T23:59:59.000Z

    The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.

  16. Neutrino-2008: Where are we? Where are we going?

    E-Print Network [OSTI]

    Smirnov, Alexei Yu

    2008-01-01T23:59:59.000Z

    Our present knowledge of neutrinos can be summarized in terms of the "standard neutrino scenario". Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

  17. Neutrino-2008: Where are we? Where are we going?

    E-Print Network [OSTI]

    Alexei Yu. Smirnov

    2008-10-15T23:59:59.000Z

    Our present knowledge of neutrinos can be summarized in terms of the "standard neutrino scenario". Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

  18. Cross section dependence of event rates at neutrino telescopes

    E-Print Network [OSTI]

    Marfatia, Danny; Seckel, D.; McKay, D. W.; Hussain, S.

    2006-10-20T23:59:59.000Z

    We examine the dependence of event rates at neutrino telescopes on the neutrino-nucleon cross section for neutrinos with energy above 1 PeV, and contrast the results with those for cosmic ray experiments. Scaling of the ...

  19. Discovering Long Wavelength Neutrino Oscillations in the Distorted Neutrino Spectrum of Galactic Supernova Remnants

    E-Print Network [OSTI]

    Roland M. Crocker; Fulvio Melia; Raymond R. Volkas

    2001-06-06T23:59:59.000Z

    We investigate the muon neutrino event rate in km$^3$ neutrino telescopes due to a number of galactic supernova remnants expected on the basis of these objects' known $\\gamma$-ray signals. We evaluate the potential of these neutrino signals to exhibit evidence of the sub-dominant neutrino oscillations expected in various neutrino mixing schemes including pseudo-Dirac scenarios and the Exact Parity Model. With ten years' data, neutrino signals from Sgr A East should either discover or exclude neutrino oscillations governed by a $\\delta m^2$ parameter in the range $10^{-12}$ to $10^{-15}$ eV$^2$. Such a capability is not available to terrestrial or solar system neutrino experiments.

  20. Effective Mass Matrix for Light Neutrinos Consistent with Solar and Atmospheric Neutrino Experiments

    E-Print Network [OSTI]

    S. P. Rosen; Waikwok Kwong

    1995-01-20T23:59:59.000Z

    We propose an effective mass matrix for light neutrinos which is consistent with the mixing pattern indicated by solar and atmospheric neutrino experiments. Two scenarios for the mass eigenvalues are discussed and the connection with double beta decay is noted.

  1. Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Formaggio, Joseph A.

    We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory (SNO). By exploiting particle identification information obtained from the proportional counters installed ...

  2. MEASUREMENT OF THE 8 B SOLAR NEUTRINO ENERGY SPECTRUM AT THE SUDBURY NEUTRINO OBSERVATORY

    E-Print Network [OSTI]

    Waltham, Chris

    MEASUREMENT OF THE 8 B SOLAR NEUTRINO ENERGY SPECTRUM AT THE SUDBURY NEUTRINO OBSERVATORY Monica me everything from the fine details of signal extraction, iii #12; Fortran and C++ to bird watching

  3. Emission angle distribution and flavor transformation of supernova neutrinos

    E-Print Network [OSTI]

    Wei Liao

    2009-06-28T23:59:59.000Z

    Using moment equations we analyze collective flavor transformation of supernova neutrinos. We study the convergence of moment equations and find that numerical results using a few moment converge quite fast. We study effects of emission angle distribution of neutrinos on neutrino sphere. We study scaling law of the amplitude of neutrino self-interaction Hamiltonian and find that it depends on model of emission angle distribution of neutrinos. Dependence of neutrino oscillation on different models of emission angle distribution is studied.

  4. The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    E-Print Network [OSTI]

    LBNE Collaboration; Corey Adams; David Adams; Tarek Akiri; Tyler Alion; Kris Anderson; Costas Andreopoulos; Mike Andrews; Ioana Anghel; Joăo Carlos Costa dos Anjos; Maddalena Antonello; Enrique Arrieta-Diaz; Marina Artuso; Jonathan Asaadi; Xinhua Bai; Bagdat Baibussinov; Michael Baird; Baha Balantekin; Bruce Baller; Brian Baptista; D'Ann Barker; Gary Barker; William A. Barletta; Giles Barr; Larry Bartoszek; Amit Bashyal; Matt Bass; Vincenzo Bellini; Pietro Angelo Benetti; Bruce E. Berger; Marc Bergevin; Eileen Berman; Hans-Gerd Berns; Adam Bernstein; Robert Bernstein; Babu Bhandari; Vipin Bhatnagar; Bipul Bhuyan; Jianming Bian; Mary Bishai; Andrew Blake; Flor Blaszczyk; Erik Blaufuss; Bruce Bleakley; Edward Blucher; Steve Blusk; Virgil Bocean; F. Boffelli; Jan Boissevain; Timothy Bolton; Maurizio Bonesini; Steve Boyd; Andrew Brandt; Richard Breedon; Carl Bromberg; Ralph Brown; Giullia Brunetti; Norman Buchanan; Bill Bugg; Jerome Busenitz; E. Calligarich; Leslie Camilleri; Giada Carminati; Rachel Carr; Cesar Castromonte; Flavio Cavanna; Sandro Centro; Alex Chen; Hucheng Chen; Kai Chen; Daniel Cherdack; Cheng-Yi Chi; Sam Childress; Brajesh Chandra Choudhary; Georgios Christodoulou; Cabot-Ann Christofferson; Eric Church; David Cline; Thomas Coan; Alfredo Cocco; Joao Coelho; Stephen Coleman; Janet M. Conrad; Mark Convery; Robert Corey; Luke Corwin; Jack Cranshaw; Daniel Cronin-Hennessy; A. Curioni; Helio da Motta; Tristan Davenne; Gavin S. Davies; Steven Dazeley; Kaushik De; Andre de Gouvea; Jeffrey K. de Jong; David Demuth; Chris Densham; Milind Diwan; Zelimir Djurcic; R. Dolfini; Jeffrey Dolph; Gary Drake; Stephen Dye; Hongue Dyuang; Daniel Edmunds; Steven Elliott; Muhammad Elnimr; Sarah Eno; Sanshiro Enomoto; Carlos O. Escobar; Justin Evans; A. Falcone; Lisa Falk; Amir Farbin; Christian Farnese; Angela Fava; John Felde; S. Fernandes; Fernando Ferroni; Farshid Feyzi; Laura Fields; Alex Finch; Mike Fitton; Bonnie Fleming; Jack Fowler; Walt Fox; Alex Friedland; Stu Fuess; Brian Fujikawa; Hugh Gallagher; Raj Gandhi; Gerald Garvey; Victor M. Gehman; Gianluigi de Geronimo; Daniele Gibin; Ronald Gill; Ricardo A. Gomes; Maury C. Goodman; Jason Goon; Nicholas Graf; Mathew Graham; Rik Gran; Christopher Grant; Nick Grant; Herbert Greenlee; Leland Greenler; Sean Grullon; Elena Guardincerri; Victor Guarino; Evan Guarnaccia; Germano Guedes; Roxanne Guenette; Alberto Guglielmi; Marcelo M. Guzzo; Alec T. Habig; Robert W. Hackenburg; Haleh Hadavand; Alan Hahn; Martin Haigh; Todd Haines; Thomas Handler; Sunej Hans; Jeff Hartnell; John Harton; Robert Hatcher; Athans Hatzikoutelis; Steven Hays; Eric Hazen; Mike Headley; Anne Heavey; Karsten Heeger; Jaret Heise; Robert Hellauer; Jeremy Hewes; Alexander Himmel; Matthew Hogan; Pedro Holanda; Anna Holin; Glenn Horton-Smith; Joe Howell; Patrick Hurh; Joey Huston; James Hylen; Richard Imlay; Jonathan Insler; G. Introzzi; Zeynep Isvan; Chris Jackson; John Jacobsen; David E. Jaffe; Cat James; Chun-Min Jen; Marvin Johnson; Randy Johnson; Robert Johnson; Scott Johnson; William Johnston; John Johnstone; Ben J. P. Jones; H. Jostlein; Thomas Junk; Richard Kadel; Karl Kaess; Georgia Karagiorgi; Jarek Kaspar; Teppei Katori; Boris Kayser; Edward Kearns; Paul Keener; Ernesto Kemp; Steve H. Kettell; Mike Kirby; Joshua Klein; Gordon Koizumi; Sacha Kopp; Laura Kormos; William Kropp; Vitaly A. Kudryavtsev; Ashok Kumar; Jason Kumar; Thomas Kutter; Franco La Zia; Kenneth Lande; Charles Lane; Karol Lang; Francesco Lanni; Richard Lanza; Tony Latorre; John Learned; David Lee; Kevin Lee; Qizhong Li; Shaorui Li; Yichen Li; Zepeng Li; Jiang Libo; Steve Linden; Jiajie Ling; Jonathan Link; Laurence Littenberg; Hu Liu; Qiuguang Liu; Tiankuan Liu; John Losecco; William Louis; Byron Lundberg; Tracy Lundin; Jay Lundy; Ana Amelia Machado; Cara Maesano; Steve Magill; George Mahler; David Malon; Stephen Malys; Francesco Mammoliti; Samit Kumar Mandal; Anthony Mann; Paul Mantsch; Alberto Marchionni; William Marciano; Camillo Mariani; Jelena Maricic; Alysia Marino; Marvin Marshak; John Marshall; Shiegenobu Matsuno; Christopher Mauger; Konstantinos Mavrokoridis; Nate Mayer; Neil McCauley; Elaine McCluskey; Kirk McDonald; Kevin McFarland; David McKee; Robert McKeown; Robert McTaggart; Rashid Mehdiyev; Dongming Mei; A. Menegolli; Guang Meng; Yixiong Meng; David Mertins; Mark Messier; William Metcalf; Radovan Milincic; William Miller; Geoff Mills; Sanjib R. Mishra; Nikolai Mokhov; Claudio Montanari; David Montanari; Craig Moore; Jorge Morfin; Ben Morgan; William Morse; Zander Moss; Célio A. Moura; Stuart Mufson; David Muller; Jim Musser; Donna Naples; Jim Napolitano; Mitch Newcomer; Ryan Nichol; Tim Nicholls; Evan Niner; Barry Norris

    2014-04-22T23:59:59.000Z

    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.

  5. Towards the detection of cosmological relic neutrino with neutrino capture on a beta decaying nuclei

    E-Print Network [OSTI]

    Messina, M; Mangano, G

    2010-01-01T23:59:59.000Z

    In this paper we report on recent results in the Ţeld of the phenomenology of very low energy neutrino interactions. We brießy describe the cross section calculation for Neutrino Capture on Beta decay nuclei (NCB). We show that the resulting cross section open the possibility to detect the cosmological relic neutrinos. With this achievement, the relic neutrino detection has been downscaled from a principle problem to a technological challenge. We also summarise the state of the art about possible detection techniques.

  6. Looking for matter enhanced neutrino oscillations via day v. night asymmetries in the NCD phase of the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Ott, Richard Anthony, III

    2011-01-01T23:59:59.000Z

    To measure the regeneration of electron neutrinos during passage through the Earth via the MSW effect, the difference in electron neutrino flux between day and night is measured at the Sudbury Neutrino Observatory (SNO). ...

  7. Neutrino-electron scattering and the choice between different MSW solutions of the solar neutrino problem

    SciTech Connect (OSTI)

    Rosen, S.P.; Gelb, J.M.

    1987-01-01T23:59:59.000Z

    We consider the scattering of solar neutrinos by electrons as a means for distinguishing between MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, we find that some correlation between the value R and the appropriate solution. 9 refs., 3 figs.

  8. Exotic Solutions to the Solar Neutrino Problem and Some Implications for Low Energy Solar Neutrino Experiments

    E-Print Network [OSTI]

    H. Nunokawa

    2001-05-03T23:59:59.000Z

    In this talk, I review, from the phenomenological point of view, solutions to the solar neutrino problem, which are not provided by the conventional neutrino oscillation induced by mass and flavor mixing, and show that they can provide a good fit to the observed data. I also consider some simple implications for low energy solar neutrino experiments.

  9. FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY NEUTRINO OBSERVATORY

    E-Print Network [OSTI]

    Waltham, Chris

    FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY NEUTRINO OBSERVATORY for approaching problems that I found to be more generally useful. Godwin Mayers, Chuck Alexander, Jim Cook and with me. v #12; ABSTRACT FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY

  10. EA-1943: Proposed Long Baseline Neutrino Experiment (LBNE) at...

    Broader source: Energy.gov (indexed) [DOE]

    43: Proposed Long Baseline Neutrino Experiment (LBNE) at Fermilab, Batavia, Illinois EA-1943: Proposed Long Baseline Neutrino Experiment (LBNE) at Fermilab, Batavia, Illinois...

  11. amanda neutrino telescope: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrino flux, permanent and transient point source analyses, and indirect dark matter searches. A brief outlook on the IceCube neutrino telescope currently under...

  12. amanda neutrino telescopes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrino flux, permanent and transient point source analyses, and indirect dark matter searches. A brief outlook on the IceCube neutrino telescope currently under...

  13. Majorana Neutrino Masses from Neutrinoless Double Beta Decay and Cosmology

    E-Print Network [OSTI]

    V. Barger; K. Whisnant

    1999-04-08T23:59:59.000Z

    When three Majorana neutrinos describe the solar and atmospheric neutrino data via oscillations, a nonzero measurement of neutrinoless double beta ($0\

  14. Bioconversion of Heavy oil.

    E-Print Network [OSTI]

    Steinbakk, Sandra

    2011-01-01T23:59:59.000Z

    ??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

  15. Double Beta Decay, Majorana Neutrinos, and Neutrino Mass

    E-Print Network [OSTI]

    Frank T. Avignone III; Steven R. Elliott; Jonathan Engel

    2007-11-26T23:59:59.000Z

    The theoretical and experimental issues relevant to neutrinoless double-beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the non-observation of neutrinoless double-beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

  16. Double beta decay, Majorana neutrinos, and neutrino mass

    SciTech Connect (OSTI)

    Avignone, Frank T. III; Elliott, Steven R.; Engel, Jonathan [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 (United States)

    2008-04-15T23:59:59.000Z

    The theoretical and experimental issues relevant to neutrinoless double beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics, and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the nonobservation of neutrinoless double beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

  17. On the Electric Charge of the Neutrino

    E-Print Network [OSTI]

    Rasulkhozha S. Sarafiddinov

    2010-12-09T23:59:59.000Z

    Exact expression is obtained for the differential cross section of elastic electroweak scattering of longitudinal polarized massive Dirac neutrinos with the electric charge and anomalous magnetic moment on a spinless nucleus. This formula contains all necessary information about the nature of the neutrino mass, charge and magnetic moment. Some of them state that between the mass of the neutrino its electric charge there exists an interconnection.

  18. Nuclear correction factors from neutrino DIS

    E-Print Network [OSTI]

    K. Kovarik

    2011-07-15T23:59:59.000Z

    Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions and we use this framework to analyze the consistency of neutrino DIS data with other nuclear data.

  19. Pion condensation in a dense neutrino gas

    E-Print Network [OSTI]

    Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa

    2009-08-26T23:59:59.000Z

    We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.

  20. Measuring neutrino oscillation parameters using $\

    SciTech Connect (OSTI)

    Backhouse, Christopher James; /Oxford U.

    2011-02-01T23:59:59.000Z

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the {nu}{sub {mu}}-disappearance analysis, incorporating this new estimator were: {Delta}m{sup 2} = 2.32{sub -0.08}{sup +0.12} x 10{sup -3} eV{sup 2}, sin {sup 2} 2{theta} > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly {bar {nu}}{sub {mu}} beam, yielded somewhat different best-fit parameters {Delta}{bar m}{sup 2} = (3.36{sub -0.40}{sup +0.46}(stat.) {+-} 0.06(syst.)) x 10{sup -3}eV{sup 2}, sin{sup 2} 2{bar {theta}} = 0.86{sub -0.12}{sup _0.11}(stat.) {+-} 0.01(syst.). The tension between these results is intriguing, and additional antineutrino data is currently being taken in order to further investigate this apparent discrepancy.

  1. Solar neutrino with Borexino: results and perspectives

    E-Print Network [OSTI]

    O. Smirnov; G. Bellini; J. Benziger; D. Bick; G. Bonfini; D. Bravo; B. Caccianiga; F. Calaprice; A. Caminata; P. Cavalcante; A. Chavarria; A. Chepurnov; D. D'Angelo; S. Davini; A. Derbin; A. Empl; A. Etenko; K. Fomenko; D. Franco; G. Fiorentini; C. Galbiati; S. Gazzana; C. Ghiano; M. Giammarchi; M. Goeger-Neff; A. Goretti; C. Hagner; E. Hungerford; Aldo Ianni; Andrea Ianni; V. Kobychev; D. Korablev; G. Korga; D. Kryn; M. Laubenstein; B. Lehnert; T. Lewke; E. Litvinovich; F. Lombardi; P. Lombardi; L. Ludhova; G. Lukyanchenko; I. Machulin; S. Manecki; W. Maneschg; F. Mantovani; S. Marcocci; Q. Meindl; E. Meroni; M. Meyer; L. Miramonti; M. Misiaszek; P. Mosteiro; V. Muratova; L. Oberauer; M. Obolensky; F. Ortica; K. Otis; M. Pallavicini; L. Papp; L. Perasso; A. Pocar; G. Ranucci; A. Razeto; A. Re; B. Ricci; A. Romani; N. Rossi; R. Saldanha; C. Salvo; S. Schoenert; H. Simgen; M. Skorokhvatov; A. Sotnikov; S. Sukhotin; Y. Suvorov; R. Tartaglia; G. Testera; D. Vignaud; R. B. Vogelaar; F. von Feilitzsch; H. Wang; J. Winter; M. Wojcik; A. Wright; M. Wurm; O. Zaimidoroga; S. Zavatarelli; K. Zuber; G. Zuzel

    2014-10-03T23:59:59.000Z

    Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.

  2. Non-standard Neutrino Oscillations at Icecube

    E-Print Network [OSTI]

    M. C. Gonzalez-Garcia

    2006-12-19T23:59:59.000Z

    In this talk I review the potential of Icecube for revealing physics beyond the standard model in the oscillation of atmospheric neutrinos.

  3. Testing nuclear models via neutrino scattering

    E-Print Network [OSTI]

    Barbaro, M B; Amaro, J E; Antonov, A N; Caballero, J A; Donnelly, T W; Gonzalez-Jimenez, R; Ivanov, M V; de Guerra, E Moya; Megias, G D; Simo, I Ruiz; Udias, J M

    2014-01-01T23:59:59.000Z

    Recent progresses on the relativistic modeling of neutrino-nucleus reactions are presented and the results are compared with high precision experimental data in a wide energy range.

  4. Testing nuclear models via neutrino scattering

    E-Print Network [OSTI]

    M. B. Barbaro; C. Albertus; J. E. Amaro; A. N. Antonov; J. A. Caballero; T. W. Donnelly; R. Gonzalez-Jimenez; M. V. Ivanov; E. Moya de Guerra; G. D. Megias; I. Ruiz Simo; J. M. Udias

    2014-11-21T23:59:59.000Z

    Recent progresses on the relativistic modeling of neutrino-nucleus reactions are presented and the results are compared with high precision experimental data in a wide energy range.

  5. Non-Oscillation Probes of Neutrino Masses

    SciTech Connect (OSTI)

    Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster Institut fuer Kernphysik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

    2010-03-30T23:59:59.000Z

    The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of O(100) meV are being set up or commissioned.

  6. Non-oscillation probes of neutrino masses

    E-Print Network [OSTI]

    C. Weinheimer

    2009-12-23T23:59:59.000Z

    The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of order 100 meV are being set up or commissioned.

  7. Gamma Ray Burst Neutrinos Probing Quantum Gravity

    E-Print Network [OSTI]

    M. C. Gonzalez-Garcia; F. Halzen

    2006-11-28T23:59:59.000Z

    Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

  8. Scintillator yields glimpse of elusive solar neutrinos

    SciTech Connect (OSTI)

    Smart, Ashley G.

    2014-11-01T23:59:59.000Z

    The low-energy neutrinos are byproducts of the first reaction in a chain that generates 99% of the Sun’s energy.

  9. On the keV sterile neutrino search in electron capture

    E-Print Network [OSTI]

    P. E. Filianin; K. Blaum; S. A. Eliseev; L. Gastaldo; Yu. N. Novikov; V. M. Shabaev; I. I. Tupitsyn; J. Vergados

    2014-02-18T23:59:59.000Z

    A joint effort of cryogenic microcalorimetry (CM) and high-precision Penning-trap mass spectrometry (PT-MS) in investigating atomic orbital electron capture (EC) can shed light on the possible existence of heavy sterile neutrinos with masses from 0.5 to 100 keV. Sterile neutrinos are expected to perturb the shape of the atomic de-excitation spectrum measured by CM after a capture of the atomic orbital electrons by a nucleus. This effect should be observable in the ratios of the capture probabilities from different orbits. The sensitivity of the ratio values to the contribution of sterile neutrinos strongly depends on how accurately the mass difference between the parent and the daughter nuclides of EC-transitions can be measured by, e.g., PT-MS. A comparison of such probability ratios in different isotopes of a certain chemical element allows one to exclude many systematic uncertainties and thus could make feasible a determination of the contribution of sterile neutrinos on a level below 1%. Several electron capture transitions suitable for such measurements are discussed.

  10. Neutrino physics with an intense \

    E-Print Network [OSTI]

    R. Henning

    2010-11-16T23:59:59.000Z

    We study some of the physics potential of an intense $1\\,\\mathrm{MCi}$ $^{51}\\mathrm{Cr}$ source combined with the {\\sc Majorana Demonstrator} enriched germanium detector array. The {\\sc Demonstrator} will consist of detectors with ultra-low radioactive backgrounds and extremely low energy thresholds of~$\\sim 400\\,\\mathrm{eV}$. We show that it can improve the current limit on the neutrino magnetic dipole moment. We briefly discuss physics applications of the charged-current reaction of the $^{51}\\mathrm{Cr} neutrino with the $^{73}\\mathrm{Ge} isotope. Finally, we argue that the rate from a realistic, intense tritium source is below the detectable limit of even a tonne-scale HPGe experiment

  11. Constraints on the Sum of Neutrino Masses from Cosmology and their impact on world neutrino data

    E-Print Network [OSTI]

    A. Melchiorri; G. L. Fogli; E. Lisi; A. Marrone; A. Palazzo; P. Serra; J. I. Silk

    2005-01-25T23:59:59.000Z

    We derive upper limits on the sum of neutrino masses from an updated combination of data from Cosmic Microwave Background experiments and Galaxy Redshifts Surveys. The results are discussed in the context of three-flavor neutrino mixing and compared with neutrino oscillation data, with upper limits on the effective neutrino mass in Tritium beta decay from the Mainz and Troitsk experiments and with the claimed lower bound on the effective Majorana neutrino mass in neutrinoless double beta decay from the Heidelberg-Moscow experiment.

  12. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    SciTech Connect (OSTI)

    NONE

    2013-03-01T23:59:59.000Z

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  13. Non-standard Neutrino Interactions

    E-Print Network [OSTI]

    D. Hernandez

    2009-11-25T23:59:59.000Z

    Theories beyond the Standard Model must respect its gauge symmetry. This implies strict constraints on the possible models of Non-Standard Neutrino Interactions (NSIs). We review here the present status of NSIs from the point of view of effective field theory. Our recent work on the restrictions implied by Standard Model gauge invariance is provided along with some examples of possible gauge invariant models featuring non-standard interactions.

  14. Neutrino Factory Mercury Flow Loop

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Mercury Flow Loop V. GravesV. Graves C. Caldwell IDS-NF Videoconference March 9, 2010 #12;Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94 2 liter/min 24 9 gpm)mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment showed that a pump

  15. Graphene, neutrino mass and oscillation

    E-Print Network [OSTI]

    Z. Y. Wang

    2011-03-28T23:59:59.000Z

    A resolution of the Abraham-Minkowski dilemma is presented that other constant velocities can play the role of c in the theory of relativity. For example, in 2005 electrons of graphene were discovered to behave as if the coefficient is a Fermi velocity. Then we propose a conjecture for neutrinos to avoid the contradiction among two-component theory, negative rest mass-square and oscillation.

  16. Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    E-Print Network [OSTI]

    Aad, Georges; ATLAS Collaboration; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Ĺkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; ?lvarez Piqueras, Damián; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ĺsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarăes da Costa, Joăo; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien

    2015-01-01T23:59:59.000Z

    Results of a search for $H \\to \\tau \\tau$ decays are presented, based on the full set of proton--proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 $\\rm{fb}^{-1}$ and 20.3 $\\rm{fb}^{-1}$ at centre-of-mass energies of $\\sqrt{s}$ = 7 TeV and $\\sqrt{s}$ = 8 TeV respectively. All combinations of leptonic ($\\tau \\to \\ell \

  17. Neutrino telescopes in the World

    SciTech Connect (OSTI)

    Ernenwein, J.-P. [GRPHE, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse cedex (France)

    2007-01-12T23:59:59.000Z

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its stag phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations.

  18. Firewall Phenomenology with Astrophysical Neutrinos

    E-Print Network [OSTI]

    Afshordi, Niayesh

    2015-01-01T23:59:59.000Z

    One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, firewalls have been proposed as an alternative to black hole event horizons. In this letter, we explore the phenomenological implications of black holes possessing a surface or firewall. We predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. We further show that, independent of the generation mechanism, IceCube data can be explained (at $1\\sigma$ confidence level) by conversion of accretion on...

  19. Probing thermonuclear supernova explosions with neutrinos

    E-Print Network [OSTI]

    A. Odrzywolek; T. Plewa

    2011-03-27T23:59:59.000Z

    Aims: We present neutrino light curves and energy spectra for two representative type Ia supernova explosion models: a pure deflagration and a delayed detonation. Methods: We calculate the neutrino flux from $\\beta$ processes using nuclear statistical equilibrium abundances convoluted with approximate neutrino spectra of the individual nuclei and the thermal neutrino spectrum (pair+plasma). Results: Although the two considered thermonuclear supernova explosion scenarios are expected to produce almost identical electromagnetic output, their neutrino signatures appear vastly different, which allow an unambiguous identification of the explosion mechanism: a pure deflagration produces a single peak in the neutrino light curve, while the addition of the second maximum characterizes a delayed-detonation. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on the protons Co55 and Ni56) and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trigger about 14 events in the future 50 kt liquid scintillator detector and some 19 events in a 0.5 Mt water Cherenkov-type detector. Conclusions: While in contrast to core-collapse supernovae neutrinos carry only a very small fraction of the energy produced in the thermonuclear supernova explosion, the SN Ia neutrino signal provides information that allows us to unambiguously distinguish between different possible explosion scenarios. These studies will become feasible with the next generation of proposed neutrino observatories.

  20. Nucleosynthesis of heavy elements in gamma ray bursts

    E-Print Network [OSTI]

    ,

    2015-01-01T23:59:59.000Z

    The ultrarelativistic jets responsible for prompt and afterglow emission in gamma ray bursts are presumably driven by a central engine that consists of a dense accretion disk around a spinning black hole. We consider such engine, composed of free nucleons, electron-positron pairs, Helium nuclei, and cooled by neutrino emission. A significant number density of neutrons in the disk provide conditions for neutron rich plasma in the outflows and jets. Heavy nuclei are also formed in the accretion flow, at the distances 150-250 gravitational radii from the black hole. We study the process of nucleosynthesis in the GRB engine, depending on its physical properties. Our results may have important observational implications for the jet deceleration process and heavy elements observed in the spectra of GRB afterglows.

  1. Direct x-ray constraints on sterile neutrino warm dark matter

    SciTech Connect (OSTI)

    Watson, Casey R.; Yueksel, Hasan [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Beacom, John F.; Walker, Terry P. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Astronomy, Ohio State University, Columbus, Ohio 43210 (United States)

    2006-08-01T23:59:59.000Z

    Warm dark matter might more easily account for small scale clustering measurements than the heavier particles typically invoked in {lambda} cold dark matter ({lambda}CDM) cosmologies. In this paper, we consider a {lambda}WDM cosmology in which sterile neutrinos {nu}{sub s}, with a mass m{sub s} of roughly 1-100 keV, are the dark matter. We use the diffuse x-ray spectrum (total minus resolved point source emission) of the Andromeda galaxy to constrain the rate of sterile neutrino radiative decay: {nu}{sub s}{yields}{nu}{sub e,{mu}}{sub ,{tau}}+{gamma}. Our findings demand that m{sub s}<3.5 keV (95% C.L.) which is a significant improvement over the previous (95% C.L.) limits inferred from the x-ray emission of nearby clusters, m{sub s}<8.2 keV (Virgo A) and m{sub s}<6.3 keV (Virgo A+Coma)

  2. Dark energy, cosmological constant and neutrino mixing

    E-Print Network [OSTI]

    A. Capolupo; S. Capozziello; G. Vitiello

    2007-05-02T23:59:59.000Z

    The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Contributions to dark energy from auxiliary fields or mechanisms are not necessary in this approach.

  3. MSW Implications of Solar Neutrino Experiments

    E-Print Network [OSTI]

    S. P. Rosen

    1992-10-01T23:59:59.000Z

    I discuss the implications for future solar neutrino experiments of the most recent gallium data in the context of the MSW mechanism. At the low energy end of the solar neutrino spectrum we need to measure the $^7$Be component directly; and at the high energy end, we need precise measurements of the shape of the spectrum.

  4. Neutrino oscillations and neutrinoless double beta decay

    E-Print Network [OSTI]

    D. Falcone; F. Tramontano

    2001-03-16T23:59:59.000Z

    The relation between neutrino oscillation parameters and neutrinoless double beta decay is studied, assuming normal and inverse hierarchies for Majorana neutrino masses. For normal hierarchy the crucial dependence on U_{e3} is explored. The link with tritium beta decay is also briefly discussed.

  5. Neutrino optics and oscillations in gravitational fields

    E-Print Network [OSTI]

    G. Lambiase; G. Papini; R. Punzi; G. Scarpetta

    2005-03-07T23:59:59.000Z

    We study the propagation of neutrinos in gravitational fields using wave functions that are exact to first order in the metric deviation. For illustrative purposes, the geometrical background is represented by the Lense-Thirring metric. We derive explicit expressions for neutrino deflection, helicity transitions, flavor oscillations and oscillation Hamiltonian.

  6. Solar opacity, neutrino signals and helioseismology

    E-Print Network [OSTI]

    B. Ricci

    1996-05-24T23:59:59.000Z

    In connection with the recent suggestion by Tsytovich et al. that opacity in the solar core could be overestimated, we consider the following questions: i) What would a 10\\% opacity reduction imply for the solar neutrino puzzle? ii) Is there any hope of solving the solar neutrino puzzle by changing opacity? iii) Is a 10\\% opacity reduction testable with helioseismological data?

  7. Neutrino SuperBeams at Fermilab

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2011-08-23T23:59:59.000Z

    In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

  8. Consistency of 8B neutrino spectra

    E-Print Network [OSTI]

    Oliver S. Kirsebom; Hans O. U. Fynbo; Riccardo Raabe; Karsten Riisager; Thomas Roger

    2014-08-05T23:59:59.000Z

    We identify and quantify systematic effects not accounted for in two previous measurements of the alpha-alpha relative-energy distribution in the beta decay of 8B, which can explain the apparent disagreement with respect to two newer measurements. This settles a current dispute concerning the shape of the 8B neutrino spectrum of importance to solar-neutrino studies.

  9. Neutrino Balls and Gamma-Ray Bursts

    E-Print Network [OSTI]

    B. Holdom; R. A. Malaney

    1993-06-17T23:59:59.000Z

    We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

  10. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect (OSTI)

    Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

    2014-05-02T23:59:59.000Z

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  11. Search for Neutral Heavy Leptons in the NuTeV Experiment at Fermilab

    E-Print Network [OSTI]

    NuTeV Collaboration; R. B. Drucker

    1998-11-23T23:59:59.000Z

    Preliminary results from a search for neutral heavy leptons in the NuTeV experiment at Fermilab. The upgraded NuTeV neutrino detector for the 1996-1997 run included an instrumented decay region for the NHL search which, combined with the NuTeV calorimeter, allows detection in several decay modes (mu-mu-nu, mu-e-nu, mu-pi, e-pi, and e-e-nu). We see no evidence for neutral heavy leptons in our current search in the mass range from 0.3 GeV to 2.0 GeV decaying into final states containing a muon.

  12. Lepton Flavor Violation in tau and B decays at BaBar

    SciTech Connect (OSTI)

    Manoni, Elisa; /Perugia U. /INFN, Perugia

    2008-07-11T23:59:59.000Z

    This article summarizes the search for lepton flavor violating {tau} and B decays, using data collected by the BABAR detector at the PEP-II asymmetric-energy B factory.

  13. A Search for the Decay Modes B +/- to h +/- tau l

    SciTech Connect (OSTI)

    Lees, J.P.

    2012-07-20T23:59:59.000Z

    We present a search for the lepton flavor violating decay modes B{sup {+-}} {yields} h{sup {+-}} {tau}{ell} (h = K, {pi}; {ell} = e, {mu}) using the BABAR data sample, which corresponds to 472 million B{bar B} pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and {ell} candidates, we are able to fully determine the {tau} four-momentum. The resulting {tau} candidate mass is our main discriminant against combinatorial background. We see no evidence for B{sup {+-}} {yields} h{sup {+-}} {tau}{ell} decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10{sup -5}.

  14. Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions

    E-Print Network [OSTI]

    CMS Collaboration

    A search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC. The ...

  15. CP violation and electric-dipole-moment at low energy tau-pair production

    E-Print Network [OSTI]

    J. Bernabeu; G. A. Gonzalez-Sprinberg; J. Vidal

    2004-10-11T23:59:59.000Z

    CP violation at low energy is investigated at the tau electromagnetic vertex. High statistics at B factories, and on top of the Upsilon resonances, allows a detailed investigation of CP-odd observables related to the tau-pair production. The contribution of the tau electric dipole moment is considered in detail. We perform an analysis independent from the high energy data by means of correlation and linear spin observables at low energy. We show that different CP-odd asymmetries, associated to the normal-transverse and normal-longitudinal correlation terms can be measured at low energy accelerators, both at resonant and non resonant energies. These observables allow to put stringent and independent bounds to the tau electric dipole moment that are competitive with other high or low energy results.

  16. E-Print Network 3.0 - aav-tau mediates pyramidal Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explorit Topic List Advanced Search Sample search results for: aav-tau mediates pyramidal Page: << < 1 2 3 4 5 > >> 1 Journal of Computational Neuroscience 19, 263289, 2005 c 2005...

  17. Search for the Higgs boson in lepton, tau and jets final states

    E-Print Network [OSTI]

    D0 Collaboration

    2012-11-29T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb^{-1} of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H -> tau tau decays or H -> WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively.

  18. E-Print Network 3.0 - approximative neutrino transport Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrino transport Page: << < 1 2 3 4 5 > >> 1 Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall Summary: neutrino emission by its approximate dependence upon the...

  19. The Effect of Sterile States on the Magnetic Moments of Neutrinos

    E-Print Network [OSTI]

    A. B. Balantekin; N. Vassh

    2014-04-04T23:59:59.000Z

    We briefly review recent work exploring the effect of light sterile neutrino states on the neutrino magnetic moment as explored by the reactor and solar neutrino experiments.

  20. Measurement of the Branching Fraction for D8+ rarr tau+nu_tau and Extraction of the Decay Constant f_D_s

    SciTech Connect (OSTI)

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley; Hawkes, C.M.; /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-06-04T23:59:59.000Z

    The branching fraction for the decay D{sub s}{sup +} {yields} {tau}{sup +}{nu}{sub {tau}} with {tau}{sup +} {yields} e{sup +}{bar {nu}}{sub {tau}}, is measured using a data sample corresponding to an integrated luminosity of 427 fb{sup -1} collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. In the process e{sup +}e{sup -} {yields} c{bar c} {yields} D*{sub s}{sup +} {bar D}{sub TAG}{bar K}X, the D*{sub s}{sup +} meson is reconstructed as a missing particle, and the subsequent decay D*{sub s}{sup +} {yields} D{sub s}{sup +}{gamma} yields an inclusive D{sub s}{sup +} data sample. Here {bar D}{sub TAG} refers to a fully reconstructed hadronic {bar D} decay, {bar K} is a K{sup -} or {bar K}{sup 0}, and X stands for any number of charged or neutral pions. The decay D{sub s}{sup +} {yields} K{sub S}{sup 0}K{sup +} is isolated also, and from ratio of event yields and known branching fractions, {Beta}(D{sub s}{sup +} {yields} {tau}{sup +}{nu}{sub {tau}}) = (4.5 {+-} 0.5 {+-} 0.4 {+-} 0.3)% is determined. The pseudoscalar decay constant is extracted to be f{sub D{sub s}} = (233 {+-} 13 {+-} 10 {+-} 7) MeV, where the first uncertainty is statistical, the second is systematic, and the third results from the uncertainties on the external measurements used as input to the calculation.

  1. Solar neutrino measurements in Super-Kamiokande-I

    E-Print Network [OSTI]

    Super-Kamiokande Collaboration

    2005-09-26T23:59:59.000Z

    The details of Super--Kamiokande--I's solar neutrino analysis are given. Solar neutrino measurement in Super--Kamiokande is a high statistics collection of $^8$B solar neutrinos via neutrino-electron scattering. The analysis method and results of the 1496 day data sample are presented. The final oscillation results for the data are also presented.

  2. Mixed MSW and Vacuum Solutions of Solar Neutrino Problem

    E-Print Network [OSTI]

    Qiu-Yu Liu

    1997-08-11T23:59:59.000Z

    Assuming three flavour neutrino mixing takes place in vacuum, we investigate the possibility that the solar $\

  3. Detectors for Neutrino Physics at the First Muon Collider

    E-Print Network [OSTI]

    Deborah A. Harris; Kevin S. McFarland

    1998-04-20T23:59:59.000Z

    We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop'' scale is also discussed.

  4. Double Beta Decay and the Absolute Neutrino Mass Scale

    E-Print Network [OSTI]

    Carlo Giunti

    2003-08-20T23:59:59.000Z

    After a short review of the current status of three-neutrino mixing, the implications for the values of neutrino masses are discussed. The bounds on the absolute scale of neutrino masses from Tritium beta-decay and cosmological data are reviewed. Finally, we discuss the implications of three-neutrino mixing for neutrinoless double-beta decay.

  5. Solar neutrinos and the solar composition problem

    E-Print Network [OSTI]

    Carlos Pena-Garay; Aldo Serenelli

    2008-11-16T23:59:59.000Z

    Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

  6. Low-energy neutrino factory design

    SciTech Connect (OSTI)

    Ankenbrandt, C.; /Fermilab /MUONS Inc., Batavia; Bogacz, S.A.; /Jefferson Lab; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01T23:59:59.000Z

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  7. The MSW effect and Solar Neutrinos

    E-Print Network [OSTI]

    A. Yu. Smirnov

    2003-05-09T23:59:59.000Z

    The MSW (Mikheyev-Smirnov-Wolfenstein) effect is the effect of transformation of one neutrino species (flavor) into another one in a medium with varying density. Three basic elements of the effect include: the refraction of neutrinos in matter, the resonance (level crossing) and the adiabaticity. The key notion is {\\it the neutrino eigenstates} in matter. Physical picture of the effect is described in terms of the flavors and the relative phases of eigenstates and the transitions between eigenstates. Features of the large mixing realization of the MSW effect are discussed. The large mixing MSW effect (LMA) provides the solution of the solar neutrino problem. We show in details how this mechanism works. Physics beyond the LMA solution is discussed. The lower $Ar$-production rate (in comparison with the LMA prediction) and absence of significant "turn up" of the spectrum at low energies can be due to an additional effect of the light sterile neutrino with very small mixing.

  8. Tutorial guide to the tau lepton and close-mass lepton pairs

    SciTech Connect (OSTI)

    Perl, M.L.

    1988-10-01T23:59:59.000Z

    This is a tutorial guide to present knowledge of the tau lepton, to the tau decay mode puzzle, and to present searches for close-mass lepton pairs. The test is minimal; the emphasis is on figures, tables and literature references. It is based on a lecture given at the 1988 International School of Subnuclear Physics: The Super World III. 54 refs., 9 figs., 7 tabs.

  9. Neutrinoless double beta decay in four-neutrino models

    E-Print Network [OSTI]

    Anna Kalliomaki; Jukka Maalampi

    2000-03-29T23:59:59.000Z

    The most stringent constraint on the so-called effective electron neutrino mass from the present neutrinoless double beta decay experiments is |M_{ee}| < 0.2 eV, while the planned next generation experiment GENIUS is anticipated to reach a considerably more stringent limit |M_{ee}|< 0.001 eV. We investigate the constraints these bounds set on the neutrino masses and mixings of neutrinos in four-neutrino models where there exists a sterile neutrino along with the three ordinary neutrinos. We find that the GENIUS experiment would be sensitive to the electron neutrino masses down to the limit m_{\

  10. Neutrinos: in and out of the standard model

    SciTech Connect (OSTI)

    Parke, Stephen; /Fermilab

    2006-07-01T23:59:59.000Z

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  11. La Thuile 2014: Theoretical premises to neutrino round table

    E-Print Network [OSTI]

    Francesco Vissani

    2014-05-25T23:59:59.000Z

    This talk, dedicated to the memory of G. Giacomelli, introduced the round table on neutrinos held in February 2014. The topics selected for the discussion are: 1) the neutrinoless double beta decay rate (interpretation in terms of light neutrinos, nuclear uncertainties); 2) the physics in the gigantic water Cherenkov detectors (proton decay, atmospheric neutrinos); 3) the study of neutrino oscillations (mass hierarchy and CP violation; other neutrino states); 4) the neutrino astronomy at low and high energies (solar, supernova, cosmic neutrinos). The importance of an active interplay between theory and experiment is highlighted.

  12. La Thuile 2014: Theoretical premises to neutrino round table

    E-Print Network [OSTI]

    Vissani, Francesco

    2014-01-01T23:59:59.000Z

    This talk, dedicated to the memory of G. Giacomelli, introduced the round table on neutrinos held in February 2014. The topics selected for the discussion are: 1) the neutrinoless double beta decay rate (interpretation in terms of light neutrinos, nuclear uncertainties); 2) the physics in the gigantic water Cherenkov detectors (proton decay, atmospheric neutrinos); 3) the study of neutrino oscillations (mass hierarchy and CP violation; other neutrino states); 4) the neutrino astronomy at low and high energies (solar, supernova, cosmic neutrinos). The importance of an active interplay between theory and experiment is highlighted.

  13. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  14. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes

    SciTech Connect (OSTI)

    Miklossy, J.; Miller, L.; Qing, H.; Radenovic, A.; Kis, A.; Vileno, B.; Laszlo, F.; Martins, R.N.; Waeber, G.; Mooser, V.; Bosman, F.; Khalili, K.; Darbinian, N.; McGeer, P.L.

    2008-08-25T23:59:59.000Z

    Strong epidemiologic evidence suggests an association between Alzheimer disease (AD) and type 2 diabetes. To determine if amyloid beta (A{beta}) and hyperphosphorylated tau occurs in type 2 diabetes, pancreas tissues from 21 autopsy cases (10 type 2 diabetes and 11 controls) were analyzed. APP and tau mRNAs were identified in human pancreas and in cultured insulinoma beta cells (INS-1) by RT-PCR. Prominent APP and tau bands were detected by Western blotting in pancreatic extracts. Aggregated A{beta}, hyperphosphorylated tau, ubiquitin, apolipoprotein E, apolipoprotein(a), IB1/JIP-1 and JNK1 were detected in Langerhans islets in type 2 diabetic patients. A{beta} was co-localized with amylin in islet amyloid deposits. In situ beta sheet formation of islet amyloid deposits was shown by infrared microspectroscopy (SIRMS). LPS increased APP in non-neuronal cells as well. We conclude that A{beta} deposits and hyperphosphorylated tau are also associated with type 2 diabetes, highlighting common pathogenetic features in neurodegenerative disorders, including AD and type 2 diabetes and suggesting that A{beta} deposits and hyperphosphorylated tau may also occur in other organs than the brain.

  15. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    SciTech Connect (OSTI)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01T23:59:59.000Z

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  16. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

    1991-01-01T23:59:59.000Z

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  17. Influence of flavor oscillations on neutrino beam instabilities

    SciTech Connect (OSTI)

    Mendonça, J. T., E-mail: titomend@ist.utl.pt [Instituto de Física, Universidade de Săo Paulo, 05508-090 Săo Paulo SP (Brazil); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS (Brazil); Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2014-09-15T23:59:59.000Z

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  18. Heavy Hybrid mesons Masses

    E-Print Network [OSTI]

    F. Iddir; L. Semlala

    2006-11-13T23:59:59.000Z

    We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

  19. Neutrino oscillation studies at LAMPF

    SciTech Connect (OSTI)

    Louis, W.C.; LSND Collaboration

    1994-09-01T23:59:59.000Z

    A search for {anti v}{sub {mu}} {yields} {anti v}{sub e} oscillations has been made by the Liquid Scintillator Neutrino Detector experiment at LAMPF after an initial month and a half run. The experiment observes eight events consistent with the reaction {anti v}{sub e}p {yields} e{sup +}n followed by np {yields} d{gamma} (2.2 MeV). The total estimated background is 0.9{plus_minus}0.2 events.

  20. Hydro-kinetic approach to relativistic heavy ion collisions

    E-Print Network [OSTI]

    S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

    2008-08-28T23:59:59.000Z

    We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

  1. A Toroidal Magnetised Iron Neutrino Detector (MIND) for a Neutrino Factory

    E-Print Network [OSTI]

    A. Bross; R. Wands; R. Bayes; A. Laing; F. J. P. Soler; A. Cervera Villanueva; T. Ghosh; J. J. Gómez Cadenas; P. Hernández; J. Martín-Albo; J. Burguet-Castell

    2013-08-06T23:59:59.000Z

    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.

  2. Solar Neutrino Results from Super-Kamiokande

    E-Print Network [OSTI]

    Andrew Renshaw

    2014-03-18T23:59:59.000Z

    Super-Kamiokande-IV (SK-IV) data taking began in September of 2008, after upgrading the electronics and data acquisition system. Due to these upgrades and improvements to water system dynamics, calibration and analysis techniques, a solar neutrino signal could be extracted at recoil electron kinetic energies as low as 3.5 MeV. When the SK-IV data is combined with the previous three SK phases, the SK extracted solar neutrino flux is found to be $[2.37\\pm0.015\\mbox{(stat.)}\\pm0.04\\mbox{(syst.)}]\\times10^6$/(cm$^{2}$sec). The combination of the SK recoil electron energy spectra slightly favors distortions due to a changing electron flavor content. Such distortions are predicted when assuming standard solar neutrino oscillation solutions. An extended maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the neutrino-electron elastic scattering rate results in a day-night asymmetry of $[-3.2\\pm1.1$(stat.)$\\pm0.5$(syst.)]$\\%$. A solar neutrino global oscillation analysis including all current solar neutrino data, as well as KamLAND reactor antineutrino data, measures the solar mixing angle as $\\sin^2\\theta_{12}=0.305\\pm0.013$, the solar neutrino mass squared splitting as $\\Delta m^2_{21}=7.49^{+0.19}_{-0.17}\\times10^{-5}$eV$^2$ and $\\sin^2\\theta_{13}=0.026^{+0.017}_{-0.012}$.

  3. Mass Varying Neutrinos in the Sun

    E-Print Network [OSTI]

    Marco Cirelli; M. C. Gonzalez-Garcia; Carlos Pena-Garay

    2005-07-08T23:59:59.000Z

    In this work we study the phenomenological consequences of the dependence of mass varying neutrinos on the neutrino density in the Sun, which we precisely compute in each point along the neutrino trajectory. We find that a generic characteristic of these scenarios is that they establish a connection between the effective Delta m^2 in the Sun and the absolute neutrino mass scale. This does not lead to any new allowed region in the oscillation parameter space. On the contrary, due to this effect, the description of solar neutrino data worsens for large absolute mass. As a consequence a lower bound on the level of degeneracy can be derived from the combined analysis of the solar and KamLAND data. In particular this implies that the analysis favours normal over inverted mass orderings. These results, in combination with a positive independent determination of the absolute neutrino mass, can be used as a test of these scenarios together with a precise determination of the energy dependence of the survival probability of solar neutrinos, in particular for low energies.

  4. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01T23:59:59.000Z

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  5. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect (OSTI)

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03T23:59:59.000Z

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  6. Fourth generation neutrinos and neutrino induced hadron production in the resonance region.

    E-Print Network [OSTI]

    Schalla, Dario

    2013-01-01T23:59:59.000Z

    ??We investigate two aspects in neutrino physics. First, we consider the extension of the standard model by a fourth fermion generation. Allowing finite mixing of… (more)

  7. Search for charged Higgs bosons decaying via H+ -> tau nu in top quark pair events using pp collision data at sqrt(s) = 7 TeV with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; /SUNY, Albany /Alberta U. /Ankara U. /Dumlupinar U. /Gazi U. /TOBB ETU, Ankara /TAEK, Ankara /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington

    2012-04-01T23:59:59.000Z

    The results of a search for charged Higgs bosons are presented. The analysis is based on 4.6 fb{sup -1} of proton-proton collision data at {radical}s = 7 TeV collected by the ATLAS experiment at the Large Hadron Collider, using top quark pair events with a {tau} lepton in the final state. The data are consistent with the expected background from Standard Model processes. Assuming that the branching ratio of the charged Higgs boson to a {tau} lepton and a neutrino is 100%, this leads to upper limits on the branching ratio of top quark decays to a b quark and a charged Higgs boson between 5% and 1% for charged Higgs boson masses ranging from 90 GeV to 160 GeV, respectively. In the context of the m{sub h}{sup max} scenario of the MSSM, tan {beta} above 12-26, as well as between 1 and 2-6, can be excluded for charged Higgs boson masses between 90 GeV and 150 GeV.

  8. On the MSW $?_e \\to ?_s$ transition solution of the solar neutrino problem

    E-Print Network [OSTI]

    P. I. Krastev; S. T. Petcov; L. Qiuyu

    1996-02-16T23:59:59.000Z

    We study the stability of the two--neutrino MSW solution of the solar neutrino problem, corresponding to solar $\

  9. Light Dark Matter Detection Prospects at Neutrino Experiments

    E-Print Network [OSTI]

    Kumar, Jason; Smith, Stefanie

    2009-01-01T23:59:59.000Z

    We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find in particular that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus anti-neutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or anti-neutrinos ($R_{\\mu}$ and $R_{\\bar \\mu}$) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to n...

  10. The LMA MSW Solution of the Solar Neutrino Problem, Inverted Neutrino Mass Hierarchy and Reactor Neutrino Experiments

    E-Print Network [OSTI]

    S. T. Petcov; M. Piai

    2002-03-18T23:59:59.000Z

    In the context of three-neutrino oscillations, we study the possibility of using antineutrinos from nuclear reactors to explore the 10^{-4} {\\rm eV^2} MSW solution of the solar neutrino problem and measure $\\ms$ with high precision. The KamLAND experiment is not expected to determine $\\ms$ if the latter happens to lie in the indicated region. By analysing both the total event rate suppression and the energy spectrum distortion caused by \\bar{\

  11. Neutrinos from Hell: the Dawn of Neutrino Geophysics

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Seismic waves have been for long time the only messenger reporting on the conditions deep inside the Earth. While global seismology provides amazing details about the structure of our planet, it is only sensitive to the mechanical properties of rocks and not to their chemical composition. In the last 5 years KamLAND and Borexino have started measuring anti-neutrinos produced by Uranium and Thorium inside the Earth. Such "Geoneutrinos" double the number of tools available to study the Earth's interior, enabling a sort of global chemical analysis of the planet, albeit for two elements only.I will discuss the results of these new measurements and put them in the context of the Earth Sciences."

  12. Neutrino Oscillation Experiments at Nuclear Reactors

    E-Print Network [OSTI]

    Giorgio Gratta

    1999-05-06T23:59:59.000Z

    In this paper I give an overview of the status of neutrino oscillation experiments performed using nuclear reactors as sources of neutrinos. I review the present generation of experiments (Chooz and Palo Verde) with baselines of about 1 km as well as the next generation that will search for oscillations with a baseline of about 100 km. While the present detectors provide essential input towards the understanding of the atmospheric neutrino anomaly, in the future, the KamLAND reactor experiment represents our best opportunity to study very small mass neutrino mixing in laboratory conditions. In addition KamLAND with its very large fiducial mass and low energy threshold, will also be sensitive to a broad range of different physics.

  13. Helioseismology, MSW and the Solar Neutrino Problem

    E-Print Network [OSTI]

    P. Bamert

    1997-08-03T23:59:59.000Z

    In this talk I summarize recent work done in collaboration with Cliff Burgess and Denis Michaud, in which we performed a detailed investigation of how solar neutrinos propagate through helioseismic waves. We find that the MSW solar neutrino spectrum is not modified at all in the presence of seismic waves. This finding differs from earlier estimates mainly because most helioseismic waves are too weak in the vicinity of the MSW resonance to be of relevance for neutrino propagation. A special class of waves may however by subject to an instability and potentially have very large amplitudes. These waves do have long wavelengths, a situation for which the formalism employed in earlier analyses does not apply. Our numerical simulation significantly reduces their influence on neutrino propagation.

  14. Coherent neutrino scattering in dark matter detectors

    E-Print Network [OSTI]

    Anderson, Alexander John

    Coherent elastic neutrino-nucleus and weakly interacting massive particle-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next-generation ton-scale dark matter detector could ...

  15. Geo-neutrinos and Earth's interior

    E-Print Network [OSTI]

    Gianni Fiorentini; Marcello Lissia; Fabio Mantovani

    2007-08-18T23:59:59.000Z

    The deepest hole that has ever been dug is about 12 km deep. Geochemists analyze samples from the Earth's crust and from the top of the mantle. Seismology can reconstruct the density profile throughout all Earth, but not its composition. In this respect, our planet is mainly unexplored. Geo-neutrinos, the antineutrinos from the progenies of U, Th and K40 decays in the Earth, bring to the surface information from the whole planet, concerning its content of natural radioactive elements. Their detection can shed light on the sources of the terrestrial heat flow, on the present composition, and on the origins of the Earth. Geo-neutrinos represent a new probe of our planet, which can be exploited as a consequence of two fundamental advances that occurred in the last few years: the development of extremely low background neutrino detectors and the progress on understanding neutrino propagation. We review the status and the prospects of the field.

  16. Spectrometry of the Earth using Neutrino Oscillations

    E-Print Network [OSTI]

    Rott, Carsten; Bose, Debanjan

    2015-01-01T23:59:59.000Z

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth's inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth's electron density. The Earth's chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth's matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject outer core models with large hydrogen content and thereby demonstrate the potential of this novel method. In the future, dedicated instruments could be capable of distin...

  17. The Superluminal Neutrinos from Deformed Lorentz Invariance

    E-Print Network [OSTI]

    Yunjie Huo; Tianjun Li; Yi Liao; Dimitri V. Nanopoulos; Yonghui Qi; Fei Wang

    2012-11-14T23:59:59.000Z

    We study two superluminal neutrino scenarios where \\delta v\\equiv (v-c)/c is a constant. To be consistent with the OPERA, Borexino, and ICARUS experiments and with the SN1987a observations, we assume that \\delta v_{\

  18. Magnetic cycles of the planet-hosting star tauBootis

    E-Print Network [OSTI]

    Donati, J F; Fares, R; Bohlender, D; Catala, C; Deleuil, M; Shkolnik, E; Cameron, A C; Jardine, M M; Walker, G A H

    2008-01-01T23:59:59.000Z

    We have obtained new spectropolarimetric observations of the planet-hosting star tauBootis, using the ESPaDOnS and NARVAL spectropolarimeters at the Canada-France-Hawaii Telescope and Telescope Bernard-Lyot. With this data set, we are able to confirm the presence of a magnetic field at the surface of tauBoo and map its large-scale structure over the whole star. The overall polarity of the magnetic field has reversed with respect to our previous observation (obtained a year before), strongly suggesting that tauBoo is undergoing magnetic cycles similar to those of the Sun. This is the first time that a global magnetic polarity switch is observed in a star other than the Sun; we speculate that the magnetic cycle period of tauBoo is much shorter than that of the Sun. Our new data also allow us to confirm the presence of differential rotation from the latitudinal shearing that the magnetic structure is undergoing. The differential rotation surface shear that tauBoo experiences is found to be 6 to 10 times larger t...

  19. Constraints on Energy Independent Solutions of the Solar Neutrino Problem

    E-Print Network [OSTI]

    P. I. Krastev; S. T. Petcov

    1996-12-04T23:59:59.000Z

    We analyze the latest published solar neutrino data assuming an arbitrary neutrino oscillation/conversion mechanism suppresses the electron neutrino flux from the Sun independent of energy. For oscillations/transitions into active (sterile) neutrinos such mechanisms are ruled out at 99.96 (99.9997) % C.L. assuming the standard solar model by Bahcall and Pinnsoneault '95 correctly predicts all solar neutrino fluxes within their estimated uncertainties. Even if one allows for $^8{\\rm B}$ and $^7{\\rm Be}$ solar neutrino fluxes that are vastly different from the ones in contemporary standard solar models these mechanisms are strongly disfavored by the data.

  20. KeV Warm Dark Matter and Composite Neutrinos

    E-Print Network [OSTI]

    Dean J Robinson; Yuhsin Tsai

    2012-09-25T23:59:59.000Z

    Elementary keV sterile Dirac neutrinos can be a natural ingredient of the composite neutrino scenario. For a certain class of composite neutrino theories, these sterile neutrinos naturally have the appropriate mixing angles to be resonantly produced warm dark matter (WDM). Alternatively, we show these sterile neutrinos can be WDM produced by an entropy-diluted thermal freeze-out, with the necessary entropy production arising not from an out-of-equilibrium decay, but rather from the confinement of the composite neutrino sector, provided there is sufficient supercooling.

  1. Combining CPT-conjugate Neutrino channels at Fermilab

    E-Print Network [OSTI]

    Andreas Jansson; Olga Mena; Stephen Parke; Niki Saoulidou

    2007-11-07T23:59:59.000Z

    We explore an alternative strategy to determine the neutrino mass hierarchy by making use of possible future neutrino facilities at Fermilab. Here, we use CPT-conjugate neutrino channels, exploiting a nu_mu beam from the NuMI beamline and a barnu_e beam from a betabeam experimental setup. Both experiments are performed at approximately the same E/L. We present different possible accelerator scenarios for the betabeam neutrino setup and fluxes. This CPT-conjugate neutrino channel scenario can extract the neutrino mass hierarchy down to sin^2 (2 theta_13) \\approx 0.02.

  2. Megaton Water Cerenkov Detectors and Astrophysical Neutrinos

    E-Print Network [OSTI]

    Maury Goodman

    2005-01-21T23:59:59.000Z

    Although formal proposals have not yet been made, the UNO and Hyper-Kamiokande projects are being developed to follow-up the tremendously successful program at Super-Kamiokande using a detector that is 20-50 times larger. The potential of such a detector to continue the study of astrophysical neutrinos is considered and contrasted with the program for cubic kilometer neutrino observatories.

  3. Alternative Detection Methods for Highest Energy Neutrinos

    E-Print Network [OSTI]

    Rolf Nahnhauer

    2004-11-26T23:59:59.000Z

    Several experimental techniques are currently under development, to measure the expected tiny fluxes of highest energy neutrinos above 10**18 eV. Projects in different stages of realisation are discussed here, which are based on optical and radio as well as acoustic detectors. For the detection of neutrino events in this energy range a combination of different detector concepts in one experiment seems to be most promising.

  4. Multibunch Instability Investigations for a Tau-Charm Factory

    SciTech Connect (OSTI)

    Zisman, Michael S.

    1989-05-01T23:59:59.000Z

    In the design of high-luminosity colliders for high-energy physics, it has become clear that multibunch instabilities will be one of the primary effects that limit beam intensity, and hence luminosity. This paper reports on a series of calculations of multibunch growth rates, using the LBL accelerator physics code ZAP, that illustrate the seriousness of the effect for typical design parameters of a Tau-Charm Factory. A common feature of high-luminosity machines is the requirement of a small beta function at the interaction point. To maintain the advantages of a low beta function, however, requires that the rms bunch length, {sigma}{sub {ell}}, be smaller than {beta}*. This leads, in general, to several inconvenient aspects: (1) The requirement for short bunches leads to the need for a substantial amount of RF hardware-introducing just the narrow-band (high-Q) impedance that generates multibunch instabilities in the first place. (2) The need for short bunches means that bunch lengthening from the longitudinal microwave instability must be avoided. Since the longitudinal impedance Z{sub {parallel}}/n cannot be reduced indefinitely, there is a clear benefit to using many bunches, with lower current per bunch. (3) The short bunches have a Fourier spectrum extending up to very high frequencies, thus effectively sampling impedances in this regime that would be essentially invisible to longer bunches. This aspect can be seen in the exponential cutoff factor, proportional to ({sigma}{sub {ell}/R}){sup 2}, in the expressions for the effective impedance given. In practice, it is difficult to achieve a high luminosity without having a high average beam current in the rings. Because the multibunch growth rates scale linearly with average current, the resulting-rates tend to be very high. It might be imagined that, for sufficient bunch separation and low enough Q values for the higher-order cavity modes, the wake fields have time to die away between successive bunches, thus reducing the bunch-to-bunch coupling. For most cases of interest, however, it is hard to reduce the Q values sufficiently to achieve this condition. Because the details of higher-order modes of the RF cavities are only a guess at present, the results contained herein should not be interpreted quantitatively. However, experience has shown that the magnitudes of multibunch growth rates estimated as is done here are in reasonable agreement with observed growth rates under comparable conditions. Thus, although the particular modes that grow will depend on details of the impedance that are not well known at this time, the predicted growth rates are expected to reflect the requirements of a feedback system with good accuracy.

  5. Theory of Neutrinos: a White Paper

    SciTech Connect (OSTI)

    Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, Mu-Chun; Davidson, S.; de Gouvea, A.; de Holanda, P.; Dutta, Bhaskar; Grossman, Y.; Joshipura, A.; Kayser,; Kersten, J.; Keum, Y.Y.; King, S.F.; Langacker, P.; Lindner, M.; Loinaz, W.; Masina, I.; Mocioiu, I.; Mohanty, S.; /Maryland U. /Madrid, Autonoma U. /Southampton U. /Oklahoma

    2006-01-11T23:59:59.000Z

    During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ''The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report [1] provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

  6. Theory of neutrinos: A White paper

    SciTech Connect (OSTI)

    Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, Mu-Chun; Davidson, S.; de Gouvea, A.; de Holanda, P.; Dutta, Bhaskar; Grossman, Y.; Joshipura, A.; Kayser,; Kersten, J.; Keum, Y.Y.; King, S.F.; Langacker, P.; Lindner, M.; Loinaz, W.; Masina, I.; Mocioiu, I.; Mohanty, S.; /Maryland U. /Madrid, Autonoma U. /Southampton U. /Oklahoma

    2005-10-01T23:59:59.000Z

    During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ''The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report [1] provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

  7. Solar neutrino analysis of Super-Kamiokande

    E-Print Network [OSTI]

    Hiroyuki Sekiya; for the Super-Kamiokande Collaboration

    2013-07-14T23:59:59.000Z

    Super-Kamiokande-IV data taking began in September of 2008, and with upgraded electronics and improvements to water system dynamics, calibration and analysis techniques, a clear solar neutrino signal could be extracted at recoil electron kinetic energies as low as 3.5 MeV. The SK-IV extracted solar neutrino flux between 3.5 and 19.5 MeV is found to be (2.36$\\pm$0.02(stat.)$\\pm$0.04(syst.))$\\times 10^6$ /(cm$^2$sec). The SK combined recoil electron energy spectrum favors distortions predicted by standard neutrino flavour oscillation parameters over a flat suppression at 1$\\sigma$ level. A maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the elastic neutrino-electron scattering rate in SK, results in a day/night asymmetry of $-3.2\\pm1.1$(stat.)$\\pm$0.5(syst.)$%$. The 2.7 $\\sigma$ significance of non-zero asymmetry is the first indication of the regeneration of electron type solar neutrinos as they travel through Earth's matter. A fit to all solar neutrino data and KamLAND yields $\\sin^2 \\theta_{12} = 0.304 \\pm 0.013$, $\\sin^2 \\theta_{13} = 0.031^{+0.017}_{-0.015}$ and $\\Delta m^2_{21} = 7.45^{+0.20}_{-0.19} \\times 10^{-5} {\\rm eV}^2$.

  8. Current status of the LBNE neutrino beam

    E-Print Network [OSTI]

    Moore, Craig Damon; Crowley, Cory Francis; Hurh, Patrick; Hylen, James; Lundberg, Byron; Marchionni, Alberto; McGee, Mike; Mokhov, Nikolai V; Papadimitriou, Vaia; Plunkett, Rob; Reitzner, Sarah Diane; Stefanik, Andrew M; Velev, Gueorgui; Williams, Karlton; Zwaska, Robert Miles

    2015-01-01T23:59:59.000Z

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined by an amalgam of the physics goals, the Monte Carlo modeling of the facility, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. The LBNE Neutrino Beam has made significant changes to the initial design through consideration of numerous Value Engineering proposals and the current design is described.

  9. Theory of Neutrinos: A White Paper

    E-Print Network [OSTI]

    R. N. Mohapatra; S. Antusch; K. S. Babu; G. Barenboim; M. -C. Chen; S. Davidson; A. de Gouvea; P. de Holanda; B. Dutta; Y. Grossman; A. Joshipura; B. Kayser; J. Kersten; Y. Y. Keum; S. F. King; P. Langacker; M. Lindner; W. Loinaz; I. Masina; I. Mocioiu; S. Mohanty; H. Murayama; S. Pascoli; S. T. Petcov; A. Pilaftsis; P. Ramond; M. Ratz; W. Rodejohann; R. Shrock; T. Takeuchi; T. Underwood; L. Wolfenstein

    2005-12-02T23:59:59.000Z

    During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ``The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

  10. Is Cosmology Compatible with Sterile Neutrinos?

    SciTech Connect (OSTI)

    Dodelson, Scott; Melchiorri, Alessandro; Slosar, Anze [Particle Astrophysics Center, FERMILAB, Batavia, Illinois 60510-0500 (United States); Physics Department and Sezione INFN, University of Rome 'La Sapienza', Ple Aldo Moro 2, 00185 Rome (Italy); Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana (Slovenia)

    2006-07-28T23:59:59.000Z

    By combining data from cosmic microwave background experiments (including the recent WMAP third year results), large scale structure, and Lyman-{alpha} forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless+1 massive neutrino case, we bound the mass of the sterile neutrino to m{sub s}<0.26 eV (0.44 eV) at 95% (99.9%) C.L., which excludes at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We generalize the analysis to account for active neutrino masses and the possibility that the sterile abundance is not thermal. In the latter case, the contraints in the (mass,density) plane are nontrivial. For a mass of >1 or <0.05 eV, the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub {nu}}<0.003 at 95% C.L., but for a mass of {approx}0.25 eV, {omega}{sub {nu}} can be as large as 0.01.

  11. Accelerator-based neutrino oscillation experiments

    SciTech Connect (OSTI)

    Harris, Deborah A.; /Fermilab

    2007-12-01T23:59:59.000Z

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  12. Neutrino induced events in the MINOS detectors

    SciTech Connect (OSTI)

    Litchfield, Reuben Phillip; /Oxford U.

    2008-03-01T23:59:59.000Z

    The MINOS experiment is designed to study neutrino oscillations. It uses an accelerator generated beam of neutrinos and two detectors, the smaller at a distance of 1km and the larger at 735 km. By comparing the spectrum and flavour composition of the beam at the two detectors precise determinations of the oscillation parameters are possible. This thesis concentrates on the analysis of data from the larger Far Detector. By studying the spectrum of neutral current events it is possible to look for evidence of non-interacting 'sterile' neutrinos. The thesis describes how events are selected for this analysis, and a method for discriminating between charged current and neutral current events. The systematic uncertainties resulting from these cuts are evaluated. Several techniques for using Near Detector data to eliminate systematic uncertainties in the predicted Far Detector spectrum are compared. An oscillation analysis, based on the first year of MINOS data, uses the selected events to make a measurement of f{sub s}, the fraction of unseen neutrinos that are sterile. The measured value is f{sub s} = 0.07{sup +0.32} at 68%C.L., and is consistent with the standard three-neutrino picture, which has no sterile neutrino.

  13. High intensity neutrino oscillation facilities in Europe

    E-Print Network [OSTI]

    Edgecock, T R; Davenne, T; Densham, C; Fitton, M; Kelliher, D; Loveridge, P; Machida, S; Prior, C; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Wildner, E; Efthymiopoulos, I; Garoby, R; Gilardoni, S; Hansen, C; Benedetto, E; Jensen, E; Kosmicki, A; Martini, M; Osborne, J; Prior, G; Stora, T; Melo-Mendonca, T; Vlachoudis, V; Waaijer, C; Cupial, P; Chancé, A; Longhin, A; Payet, J; Zito, M; Baussan, E; Bobeth, C; Bouquerel, E; Dracos, M; Gaudiot, G; Lepers, B; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V; Bielski, J; Kozien, M; Lacny, L; Skoczen, B; Szybinski, B; Ustrycka, A; Wroblewski, A; Marie-Jeanne, M; Balint, P; Fourel, C; Giraud, J; Jacob, J; Lamy, T; Latrasse, L; Sortais, P; Thuillier, T; Mitrofanov, S; Loiselet, M; Keutgen, Th; Delbar, Th; Debray, F; Trophine, C; Veys, S; Daversin, C; Zorin, V; Izotov, I; Skalyga, V; Burt, G; Dexter, A C; Kravchuk, V L; Marchi, T; Cinausero, M; Gramegna, F; De Angelis, G; Prete, G; Collazuol, G; Laveder, M; Mazzocco, M; Mezzetto, M; Signorini, C; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Migliozzi, P; Moro, R; Palladino, V; Gelli, N; Berkovits, D; Hass, M; Hirsh, T Y; Schaumann, M; Stahl, A; Wehner, J; Bross, A; Kopp, J; Neuffer, D; Wands, R; Bayes, R; Laing, A; Soler, P; Agarwalla, S K; Villanueva, A Cervera; Donini, A; Ghosh, T; Cadenas, J J Gómez; Hernández, P; Martín-Albo, J; Mena, O; Burguet-Castell, J; Agostino, L; Buizza-Avanzini, M; Marafini, M; Patzak, T; Tonazzo, A; Duchesneau, D; Mosca, L; Bogomilov, M; Karadzhov, Y; Matev, R; Tsenov, R; Akhmedov, E; Blennow, M; Lindner, M; Schwetz, T; Martinez, E Fernández; Maltoni, M; Menéndez, J; Giunti, C; García, M C González; Salvado, J; Coloma, P; Huber, P; Li, T; López-Pavón, J; Orme, C; Pascoli, S; Meloni, D; Tang, J; Winter, W; Ohlsson, T; Zhang, H; Scotto-Lavina, L; Terranova, F; Bonesini, M; Tortora, L; Alekou, A; Aslaninejad, M; Bontoiu, C; Kurup, A; Jenner, L J; Long, K; Pasternak, J; Pozimski, J; Back, J J; Harrison, P; Beard, K; Bogacz, A; Berg, J S; Stratakis, D; Witte, H; Snopok, P; Bliss, N; Cordwell, M; Moss, A; Pattalwar, S; Apollonio, M

    2013-01-01T23:59:59.000Z

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  14. Earthquake Forecast via Neutrino Tomography

    E-Print Network [OSTI]

    Bin Wang; Ya-Zheng Chen; Xue-Qian Li

    2011-03-29T23:59:59.000Z

    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \

  15. Spectroscopy of low energy solar neutrinos by MOON -Mo Observatory Of Neutrinos-

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Spectroscopy of low energy solar neutrinos by MOON -Mo Observatory Of Neutrinos- R. Hazamaa , P Be solar 's. The present status of MOON for the low energy solar experiment is briefly discussed the pp solar flux with good accuracy. 1. INTRODUCTION Realtime studies of the high-energy component of 8

  16. Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor

    E-Print Network [OSTI]

    Jonathan H. Davis

    2014-12-03T23:59:59.000Z

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments will run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions the neutrino floor can still be surpassed using timing information, though certain velocity streams may prove problematic.

  17. I. Introduction A. Neutrino oscillation results from solar and atmospheric neutrino data.

    E-Print Network [OSTI]

    McDonald, Kirk

    V. This scenario is motivated in part by the need for an admixture (20{40%) of hot dark matter|roughly 7 eV worth oscillations in the matter of the Sun, and that the e and the neutrino type into which it oscillates, possibly and IMB imaging water Cherenkov detectors suggest that the observed disappearance of muon type neutrinos

  18. Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor

    E-Print Network [OSTI]

    Jonathan H. Davis

    2015-03-09T23:59:59.000Z

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments will run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions the neutrino floor can still be surpassed using timing information, though certain velocity streams may prove problematic.

  19. The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad

    E-Print Network [OSTI]

    McDonald, Kirk

    The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad BNL FNAL KEK CERN Carlsbad Kirk T. McDonald Princeton U. mcdonald@puphep.princeton.edu Workshop on the Next Generation U.S. Underground Science Facility Carlsbad, NM, June 13, 2000 http://puhep1.princeton

  20. Gallium solar neutrino experiments: Absorption cross sections, neutrino spectra, and predicted event rates

    E-Print Network [OSTI]

    Bahcall, John

    solar neutrino sources with standard energy spectra, and for laboratory sources of 51 Cr and 37 Ar; the calculations include, where appropriate, the thermal energy of fusing solar ions and use improved nuclear the energy spectrum of solar neutrinos. Theoretical uncertainties are estimated for cross sections

  1. Science and Technology of BOREXINO: A Real Time Detector for Low Energy Solar Neutrinos SOLAR NEUTRINOS

    E-Print Network [OSTI]

    Borexino Collaboration; G. Alimonti

    2000-12-11T23:59:59.000Z

    BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.

  2. Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamN u F

  3. Exploiting heavy oil reserves

    E-Print Network [OSTI]

    Levi, Ran

    North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen.hamptonassociates.com pRINTED BY nB GroUP Paper sourced from sustainable forests CONTENTS 3/5 does the north Sea still industry partnership drives research into sensor systems 11 Beneath the waves in 3d 12/13 does

  4. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    ) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

  5. Search for Lepton-Flavor and Lepton-Number Violation in the Decay tau to lhh'

    SciTech Connect (OSTI)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San

    2005-06-29T23:59:59.000Z

    A search for lepton-flavor and lepton-number violation in the decay of the tau lepton into one charged lepton and two charged hadrons is performed using 221.4 fb{sup -1} of data collected at an e{sup +}e{sup -} center-of-mass energy of 10.58 GeV with the BABAR detector at the PEP-II storage ring. In all 14 decay modes considered, the observed data are compatible with background expectations, and upper limits are set in the range {Beta}({tau} {yields} {ell}hh') < (0.7-4.8) x 10{sup -7} at 90% confidence level.

  6. Effect of interaction with neutrons in matter on flavor conversion of super-light sterile neutrino with active neutrino

    E-Print Network [OSTI]

    Wei Liao; Yuchen Luo; Xiao-Hong Wu

    2014-03-11T23:59:59.000Z

    A super-light sterile neutrino was proposed to explain the absence of the expected upturn of the survival probability of low energy solar boron neutrinos. This is because this super-light sterile neutrino can oscillate efficiently with electron neutrino through a MSW resonance happened in Sun. One may naturally expect that a similar resonance should happen for neutrinos propagating in Earth matter. We study the flavor conversion of this super-light sterile neutrino with active neutrinos in Earth matter. We find that the scenario of the super-light sterile neutrino can easily pass through possible constraints from experiments which can test the Earth matter effect in oscillation of neutrinos. Interestinlgy, we find that this is because the naively expected resonant conversion disappears or is significantly suppressed due to the presence of a potential $V_n$ which arises from neutral current interaction of neutrino with neutrons in matter. In contrast, the neutron number density in the Sun is negligible and the effect of $V_n$ is effectively switched off. This enables the MSW resonance in Sun needed in oscillation of the super-light sterile neutrino with solar electron neutrinos. It's interesting to note that it is the different situation in the Sun and in the Earth that makes $V_n$ effectively turned off and turned on respectively. This observation makes the scenario of the super-light sterile neutrino quite interesting.

  7. argon based neutrino: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the relevant energy range from 8B and hep solar neutrinos as well as from low energy atmospheric neutrino fluxes. Depending on the theoretical prediction for the SRN flux...

  8. Analytical Theory of Neutrino Oscillations in Matter with CP violation

    E-Print Network [OSTI]

    Johnson, Mikkel B; Kisslinger, Leonard S

    2015-01-01T23:59:59.000Z

    We develop an exact analytical formulation of neutrino oscillations in matter within the framework of the Standard Neutrino Model assuming 3 Dirac Neutrinos. Our Hamiltonian formulation, which includes CP violation, leads to expressions for the partial oscillation probabilities that are linear combinations of spherical Bessel functions in the eigenvalue differences. The coefficients of these Bessel functions are polynomials in the neutrino CKM matrix elements, the neutrino mass differences squared, the strength of the neutrino interaction with matter, and the neutrino mass eigenvalues in matter. We give exact closed-form expressions for all partial oscillation probabilities in terms of these basic quantities. Adopting the Standard Neutrino Model, we then examine how the exact expressions for the partial oscillation probabilities might simplify by expanding in one of the small parameters {\\alpha} and sin{\\theta}13 of this model. We show explicitly that for small {\\alpha} and sin{\\theta}13 there are branch poin...

  9. Neutrinoless double beta decay, solar neutrinos and mass scales

    E-Print Network [OSTI]

    Per Osland; Geir Vigdel

    2001-09-13T23:59:59.000Z

    We obtain bounds for the neutrino masses by combining atmospheric and solar neutrino data with the phenomenology of neutrinoless double beta decay where hypothetical values of || are envisaged from future 0\

  10. Light right-handed neutrinos: + an incursion in cosmology

    E-Print Network [OSTI]

    Abbondandolo, Alberto

    Light right-handed neutrinos: why not? + an incursion in cosmology R. Barbieri "Neutrinos in Venice? " The typical lifetime of a new trend in high energy physics and cosmology nowadays is about 5 to 10 years

  11. Improving constraints on the neutrino mass using sufficient statistics

    E-Print Network [OSTI]

    Wolk, M; Bel, J; Carbone, C; Carron, J

    2015-01-01T23:59:59.000Z

    We use the "Dark Energy and Massive Neutrino Universe" (DEMNUni) simulations to compare the constraining power of "sufficient statistics" with the standard matter power spectrum on the sum of neutrino masses, $M_\

  12. Problems at the interface between heavy flavor physics, QCD and hadron spectroscopy.

    SciTech Connect (OSTI)

    Lipkin, H. J.

    1997-12-12T23:59:59.000Z

    The following subjects are discussed in this report: (1) Pentaquark--why it is important and how new technologies (vertex detectors) suggest drastically different approaches form the search used by Ashery et al.; (2) problems in B decays with implications for heavy quark decays to excited light quark states like the Al; (3) problems in B and D decays to final states including {eta} and {eta}{prime} indicating that standard quark mixing might not hold; (4) possible contributions of hybrid quarkonium states to B decays; (5) heavy flavor decays to {omega}{tau} which disagree with conventional expectations; and (6) possible new spin effects in {Lambda}{sub b} decay and the effect on the lifetime difference between the {Lambda}{sub b} and B mesons.

  13. Supernova Bounds on keV-mass Sterile Neutrinos

    E-Print Network [OSTI]

    Zhou, Shun

    2015-01-01T23:59:59.000Z

    Sterile neutrinos of keV masses are one of the most promising candidates for the warm dark matter, which could solve the small-scale problems encountered in the scenario of cold dark matter. We present a detailed study of the production of such sterile neutrinos in a supernova core, and derive stringent bounds on the active-sterile neutrino mixing angles and sterile neutrino masses based on the standard energy-loss argument.

  14. W&M, JLab Host International Neutrino Workshop (William & Mary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wm.edunewsstories2012william--mary-hosts-international-neutrino-workshop123.php Submitted: Wednesday, July 18...

  15. Physics Reach of Electron-Capture Neutrino Beams

    E-Print Network [OSTI]

    J. Bernabeu; J. Burguet-Castell; C. Espinoza; M. Lindroos

    2005-10-21T23:59:59.000Z

    To complete the picture of neutrino oscillations two fundamental parameters need to be measured, theta13 and delta. The next generation of long baseline neutrino oscillation experiments -superbeams, betabeams and neutrino factories- indeed take aim at measuring them. Here we explore the physics reach of a new candidate: an electron-capture neutrino beam. Emphasis is made on its feasibility thanks to the recent discovery of nuclei that decay fast through electron capture, and on the interplay with a betabeam (its closest relative).

  16. Neutrino mass matrix solutions and neutrinoless double beta decay

    E-Print Network [OSTI]

    Thomas Hambye

    2002-01-31T23:59:59.000Z

    We present a determination of the neutrino mass matrix which holds for values of the neutrinoless double beta decay effective mass m_{ee} larger than the neutrino mass differences. We find eight possible solutions and discuss for each one the corresponding neutrino mass eigenvalues and zero texture. A minimal structure of the perturbations to add to these zero textures to recover the full mass matrix is also determined. Implications for neutrino hot dark matter are discussed for each solution.

  17. A Sterile Neutrino Search with Kaon Decay-at-rest

    E-Print Network [OSTI]

    Spitz, J

    2012-01-01T23:59:59.000Z

    Monoenergetic muon neutrinos (235.5 MeV) from positive kaon decay-at-rest are considered as a source for an electron neutrino appearance search. In combination with a liquid argon time projection chamber based detector, such a source could provide discovery-level sensitivity to the neutrino oscillation parameter space indicative of a sterile neutrino. Current and future intense >3 GeV kinetic energy proton facilities around the world can be employed for this experimental concept.

  18. A Sterile Neutrino Search with Kaon Decay-at-rest

    E-Print Network [OSTI]

    J. Spitz

    2012-05-16T23:59:59.000Z

    Monoenergetic muon neutrinos (235.5 MeV) from positive kaon decay-at-rest are considered as a source for an electron neutrino appearance search. In combination with a liquid argon time projection chamber based detector, such a source could provide discovery-level sensitivity to the neutrino oscillation parameter space indicative of a sterile neutrino. Current and future intense >3 GeV kinetic energy proton facilities around the world can be employed for this experimental concept.

  19. Sterile Neutrino Search Using China Advanced Research Reactor

    E-Print Network [OSTI]

    Gang Guo; Fang Han; Xiangdong Ji; Jianglai Liu; Zhaoxu Xi; Huanqiao Zhang

    2013-06-18T23:59:59.000Z

    We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $\\bar {\

  20. Neutrinoless double beta decay and direct searches for neutrino mass

    E-Print Network [OSTI]

    Craig Aalseth; Henning Back; Loretta Dauwe; David Dean; Guido Drexlin; Yuri Efremenko; Hiro Ejiri; Steven Elliott; Jon Engel; Brian Fujikawa; Reyco Henning; G. W. Hoffmann; Karol Lang; Kevin Lesko; Tadafumi Kishimoto; Harry Miley; Rick Norman; Silvia Pascoli; Serguey Petcov; Andreas Piepke; Werner Rodejohann; David Saltzberg; Sean Sutton; Petr Vogel; Ray Warner; John Wilkerson; Lincoln Wolfenstein

    2004-12-21T23:59:59.000Z

    Study of the neutrinoless double beta decay and searches for the manifestation of the neutrino mass in ordinary beta decay are the main sources of information about the absolute neutrino mass scale, and the only practical source of information about the charge conjugation properties of the neutrinos. Thus, these studies have a unique role in the plans for better understanding of the whole fast expanding field of neutrino physics.

  1. Everything Under the Sun: A Review of Solar Neutrino

    E-Print Network [OSTI]

    Gann, G D Orebi

    2015-01-01T23:59:59.000Z

    Solar neutrinos offer a unique opportunity to study the interaction of neutrinos with matter, a sensitive search for potential new physics effects, and a probe of solar structure and solar system formation. This paper describes the broad physics program addressed by solar neutrino studies, presents the current suite of experiments programs, and describes several potential future detectors that could address the open questions in this field. This paper is a summary of a talk presented at the Neutrino 2014 conference in Boston.

  2. Discovering the New Standard Model: Fundamental Symmetries and Neutrinos

    E-Print Network [OSTI]

    V. Cianciolo; A. B. Balantekin; A. Bernstein; V. Cirigliano; M. D. Cooper; D. J. Dean; S. R. Elliott; B. W. Filippone; S. J. Freedman; G. L. Greene; K. M. Heeger; D. W. Hertzog; B. R. Holstein; P. Huffman; T. Ito; K. Kumar; Z. -T. Lu; J. S. Nico; G. D. Orebi Gann; K. Paschke; A. Piepke; B. Plaster; D. Pocanic; A. W. P. Poon; D. C. Radford; M. J. Ramsey-Musolf; R. G. H. Robertson; G. Savard; K. Scholberg; Y. Semertzidis; J. F. Wilkerson

    2012-12-20T23:59:59.000Z

    This White Paper describes recent progress and future opportunities in the area of fundamental symmetries and neutrinos.

  3. Discovering the New Standard Model: Fundamental Symmetries and Neutrinos

    E-Print Network [OSTI]

    Cianciolo, V; Bernstein, A; Cirigliano, V; Cooper, M D; Dean, D J; Elliott, S R; Filippone, B W; Freedman, S J; Greene, G L; Heeger, K M; Hertzog, D W; Holstein, B R; Huffman, P; Ito, T; Kumar, K; Lu, Z -T; Nico, J S; Gann, G D Orebi; Paschke, K; Piepke, A; Plaster, B; Pocanic, D; Poon, A W P; Radford, D C; Ramsey-Musolf, M J; Robertson, R G H; Savard, G; Scholberg, K; Semertzidis, Y; Wilkerson, J F

    2012-01-01T23:59:59.000Z

    This White Paper describes recent progress and future opportunities in the area of fundamental symmetries and neutrinos.

  4. Search for the Higgs Boson Decaying to Two Tau Leptons in Proton-Antiproton Collisions at a Center of Mass Energy of 1.96 TeV.

    E-Print Network [OSTI]

    Elagin, Andrey

    2012-01-01T23:59:59.000Z

    ??A search for the Higgs boson decaying to tau tau using 7.8 fb-1 of pp collisions at 1.96 TeV collected with CDF II detector is… (more)

  5. Search for neutrinoless tau decays ! 3` and ! `K 0 Y. Yusa a , H. Hayashii b , T. Nagamine a , A. Yamaguchi a for the Belle collaboration

    E-Print Network [OSTI]

    1 Search for neutrinoless tau decays #28; ! 3` and #28; ! `K 0 S Y. Yusa a , H. Hayashii b , T-machi, Nara 630-8506, Japan. Neutrinoless tau-lepton decays into either three leptons (#28; ! ` 1 `2 `3

  6. Search for New Heavy Higgs Boson in B-L model at the LHC using Monte Carlo Simulation

    E-Print Network [OSTI]

    Hesham Mansour; Nady Bakhet

    2013-04-24T23:59:59.000Z

    The aim of this work is to search for a new heavy Higgs boson in the B-L extension of the Standard Model at LHC using the data produced from simulated collisions between two protons at different center of mass energies by Monte Carlo event generator programs to find new Higgs boson signatures at the LHC. Also we study the production and decay channels for Higgs boson in this model and its interactions with the other new particles of this model namely the new neutral gauge massive boson and the new fermionic right-handed heavy neutrinos .

  7. Standard and non-standard neutrino-nucleus reactions cross sections and event rates to neutrino detection experiments

    E-Print Network [OSTI]

    Papoulias, D K

    2015-01-01T23:59:59.000Z

    Open neutrino physics issues require precision studies, both theoretical and experimental ones, and towards this aim coherent neutral current neutrino-nucleus scattering events are expected to be observed soon. In this work, we explore $\

  8. Standard and non-standard neutrino-nucleus reactions cross sections and event rates to neutrino detection experiments

    E-Print Network [OSTI]

    D. K. Papoulias; T. S. Kosmas

    2015-02-10T23:59:59.000Z

    Open neutrino physics issues require precision studies, both theoretical and experimental ones, and towards this aim coherent neutral current neutrino-nucleus scattering events are expected to be observed soon. In this work, we explore $\

  9. \\EVIDENCE FOR ELECTRON NEUTRINO FLAVOR CHANGE THROUGH MEASUREMENT OF THE 8 B SOLAR NEUTRINO FLUX AT THE SUDBURY

    E-Print Network [OSTI]

    \\EVIDENCE FOR ELECTRON NEUTRINO FLAVOR CHANGE THROUGH MEASUREMENT OF THE 8 B SOLAR NEUTRINO FLUX have had in Sudbury. Godwin Mayers, Ron Pearce, and Jim Cook for the wonderful job they have done

  10. Challenges in explosive nucleosynthesis of heavy elements

    SciTech Connect (OSTI)

    Pinedo, Gabriel Martinez; Fischer, T.; Lohs, A.; Huther, L. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 2, 64289 Darmstadt, Germany and GSI Helmholtzzentrum fuer Schwerioneneforschung, Planckstrasse 1, 64291 Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerioneneforschung, Planckstrasse 1, 64291 Darmstadt, Germany and Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 2, 64289 Darmstadt (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstrasse 2, 64289 Darmstadt (Germany)

    2012-10-20T23:59:59.000Z

    We show that a treatment of charged-current neutrino interactions in hot and dense matter that is consistent with the nuclear equation of state has a strong impact on the spectra of the neutrinos emitted during the deleptonization period of a protoneutron star formed in a core-collapse supernova. We compare results of simulations including and neglecting mean field effects on the neutrino opacities. Their inclusion reduces the luminosities of all neutrino flavors and enhances the spectral differences between electron neutrino and antineutrino. The magnitude of the difference depends on the equation of state and in particular on the symmetry energy at sub-nuclear densities. These modifications reduce the proton-to-nucleon ratio of the neutrino-driven outflow, increasing slightly their entropy. They are expected to have a substantial impact on the nucleosynthesis in neutrino-driven winds, even though they do not result in conditions that favor an r-process. Contrarily to previous findings, our simulations show that the spectra of electron neutrinos remain substantially different from those of other (anti)neutrino flavors during the entire deleptonization phase of the protoneutron star. The obtained luminosity and spectral changes are also expected to have important consequences for neutrino flavor oscillations and neutrino detection on Earth.

  11. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

    2008-08-06T23:59:59.000Z

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  12. A New Lorentz-Violating Model of Neutrino Oscillations

    E-Print Network [OSTI]

    Kevin Labe

    2010-07-31T23:59:59.000Z

    A new model for neutrino oscillations is introduced, in which mass-like behavior is seen at high energies, but various behavior can be predicted at low energies. The model employs no neutrino masses, but instead relies on the Lorentz-violating parameters a and c. Oscillations into antineutrinos and sterile neutrinos are also considered.

  13. Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall

    E-Print Network [OSTI]

    Bahcall, John

    ? What have we learned in the first 30 years of solar neutrino research? For the next decade, whatChapter 10 Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall Institute for Advanced study solar neutrinos? What does the combined standard model (solar plus electroweak) predict for solar

  14. Indirect Search for Dark Matter with the ANTARES Neutrino Telescope

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    significant high energy neutrino fluxes. Indirect search for Dark Matter looking at such neutrino fluxes for the Cherenkov light induced by high energy muons during their travel in the sea water throughout the detectorIndirect Search for Dark Matter with the ANTARES Neutrino Telescope V. Bertin1 on behalf

  15. Calibration of SNO for the Detection of 8 B Neutrinos

    E-Print Network [OSTI]

    Calibration of SNO for the Detection of 8 B Neutrinos by Richard James Ford A thesis submitted and energy spectrum of solar electron neutrinos, and will measure the avour-blind ux of neutrinos. i #12; Co-authorship The work, results and conclusions presented in this thesis are original except

  16. Last CPT-Invariant Hope for LSND Neutrino Oscillations

    E-Print Network [OSTI]

    C. Giunti

    2003-02-21T23:59:59.000Z

    It is shown that the 99% confidence limits from the analyses of the data of cosmological and neutrino experiments imply a small marginally allowed region in the space of the neutrino oscillation parameters of 3+1 four-neutrino mixing schemes. This region can be confirmed or falsified by experiments in the near future.

  17. Minimal Schemes for Large Neutrino Mixings with Inverted Hierarchy

    E-Print Network [OSTI]

    Duane A. Dicus; Hong-Jian He; John N. Ng

    2002-05-17T23:59:59.000Z

    Existing oscillation data point to nonzero neutrino masses with large mixings. We analyze the generic features of the neutrino Majorana mass matrix with inverted hierarchy and construct realistic {\\it minimal schemes} for the neutrino mass matrix that can explain the large (but not maximal) \

  18. Neutrino Properties Before and After KamLAND

    E-Print Network [OSTI]

    S. Pakvasa; J. W. F. Valle

    2003-02-05T23:59:59.000Z

    We review neutrino oscillation physics, including the determination of mass splittings and mixings from current solar, atmospheric, reactor and accelerator neutrino data. A brief discussion is given of cosmological and astrophysical implications. Non-oscillation phenomena such as neutrinoless double beta decay would, if discovered, probe the absolute scale of neutrino mass and also reveal their Majorana nature. Non-oscillation descriptions in terms of spin-flavor precession (SFP) and non-standard neutrino interactions (NSI) currently provide an excellent fit of the solar data. However they are at odds with the first results from the KamLAND experiment which imply that, despite their theoretical interest, non-standard mechanisms can only play a sub-leading role in the solar neutrino anomaly. Accepting the LMA-MSW solution, one can use the current solar neutrino data to place important restrictions on non-standard neutrino properties, such as neutrino magnetic moments. Both solar and atmospheric neutrino data can also be used to place constraints on neutrino instability as well as the more exotic possibility of $CPT$ and Lorentz Violation. Weillustrate the potential of future data from experiments such as KamLAND, Borexino and the upcoming neutrino factories in constraining non-standard neutrino properties.

  19. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Murata, Tomoya

    2015-01-01T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  20. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Tomoya Murata; Toru Sato

    2015-01-23T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  1. Vertical Structure of Neutrino Dominated Accretion Disks and Neutrino Transport in the disks

    E-Print Network [OSTI]

    Zhen Pan; Ye-Fei Yuan

    2012-09-06T23:59:59.000Z

    We investigate the vertical structure of neutrino dominated accretion disks by self-consistently considering the detailed microphysics, such as the neutrino transport, vertical hydrostatic equilibrium, the conservation of lepton number, as well as the balance between neutrino cooling, advection cooling and viscosity heating. After obtaining the emitting spectra of neutrinos and antineutrinos by solving the one dimensional Boltzmann equation of neutrino and antineutrino transport in the disk, we calculate the neutrino/antineutrino luminosity and their annihilation luminosity. We find that the total neutrino and antineutrino luminosity is about $10^{54}$ ergs/s and their annihilation luminosity is about $5\\times10^{51}$ ergs/s with an extreme accretion rate $10 M_{\\rm {sun}}$/s and an alpha viscosity $\\alpha=0.1$. In addition, we find that the annihilation luminosity is sensitive to the accretion rate and will not exceed $10^{50}$ ergs/s which is not sufficient to power the most fireball of GRBs, if the accretion rate is lower than $1 M_{\\rm {sun}}$/s. Therefore, the effects of the spin of black hole or/and the magnetic field in the accretion flow might be introduced to power the central engine of GRBs.

  2. High-Energy Neutrinos from Cosmic Rays

    E-Print Network [OSTI]

    F. Halzen

    2002-06-17T23:59:59.000Z

    We introduce neutrino astronomy from the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. We review the facts as well as the speculations about the sources. Among these gamma ray bursts and active galaxies represent well-motivated speculations because these are also the sources of the highest energy gamma rays, with emission observed up to 20 TeV, possibly higher. We discuss why cosmic accelerators are also expected to be cosmic beam dumps producing high-energy neutrino beams associated with the highest energy cosmic rays. Cosmic ray sources may produce neutrinos from MeV to EeV energy by a variety of mechanisms. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. The technology for commissioning such instruments exists.

  3. PHENIX recent heavy flavor results

    E-Print Network [OSTI]

    Sanghoon Lim for the PHENIX collaboration

    2014-02-28T23:59:59.000Z

    Cold nuclear matter (CNM) effects provide an important baseline for the interpretation of data in heavy ion collisions. Such effects include nuclear shadowing, Cronin effect, and initial patron energy loss, and it is interesting to study the dependence on impact parameter and kinematic region. Heavy quark production is a good measurement to probe the CNM effects particularly on gluons, since heavy quarks are mainly produced via gluon fusions at RHIC energy. The PHENIX experiment has experiment has ability to study the CNM effects by measuring heavy quark production in $d$$+$Au collisions at variety of kinematic ranges. Comparisons of heavy quark production at different rapidities allow us to study modification of gluon density function in the Au nucleus depending on momentum fraction. Furthermore, comparisons to the results from heavy ion collisions (Au$+$Au and Cu$+$Cu) measured by PHENIX provide insight into the role of CNM effects in such collisions. Recent PHENIX results on heavy quark production are discussed.

  4. Tau decays with one charged particle plus multiple pi(0)'s

    E-Print Network [OSTI]

    Ammar, Raymond G.; Ball, S.; Baringer, Philip S.; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kelly, M.; Kwak, Nowhan; Lam, H.

    1993-03-01T23:59:59.000Z

    With the CLEO-II detector at the Cornell Electron Storage Ring, we have measured branching fractions for tau lepton decay into one-prong final states with multiple pi0's, B(hnpi)0, normalized to the branching fraction for ...

  5. Leading-order hadronic contributions to the electron and tau anomalous magnetic moments

    E-Print Network [OSTI]

    Florian Burger; Grit Hotzel; Karl Jansen; Marcus Petschlies

    2015-01-21T23:59:59.000Z

    The leading hadronic contributions to the anomalous magnetic moments of the electron and the $\\tau$-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found.

  6. The TauPToo~kit:Flexib/e Seismic Travel-time and Ray-path Utilities

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    The TauPToo~kit:Flexib/e Seismic Travel-time and Ray-path Utilities H. Philip Crotwell, Thomas studies. These factors highlight the need for versatile utilities that allow the calculation of travel to implement this approach. We used Maple (Heal etal., 1996), a symbolic mathematics utility, to help convert

  7. Leading-order hadronic contributions to the electron and tau anomalous magnetic moments

    E-Print Network [OSTI]

    Burger, Florian; Jansen, Karl; Petschlies, Marcus

    2015-01-01T23:59:59.000Z

    The leading hadronic contributions to the anomalous magnetic moments of the electron and the $\\tau$-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found.

  8. Study of tau decays to four-hadron final states with kaons

    E-Print Network [OSTI]

    Besson, David Zeke

    2005-06-01T23:59:59.000Z

    The rare tau lepton decays to four explicitly identified hadrons have been studied with the CLEO detector at the Cornell Electron Storage Ring using (7.56 +/- 0.15) fb(-1) of data collected near root s=10.58 GeV. The first statistically significant...

  9. Search for tau -> gamma mu: A test of lepton number conservation

    E-Print Network [OSTI]

    Ammar, Raymond G.; Ball, S.; Baringer, Philip S.; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kelly, M.; Kwak, Nowhan; Lam, H.

    1993-01-01T23:59:59.000Z

    A search for the lepton number violating decay of the tau lepton to the gammamu final state has been performed with the CLEO II detector at the Cornell e+e- storage ring CESR. In a data sample that corresponds to an ...

  10. If sterile neutrinos exist, how can one determine the total solar neutrino fluxes? John N. Bahcall,1,

    E-Print Network [OSTI]

    Bahcall, John

    the center of the Sun. This flavor change was seen directly by the comparison of the Sudbury Neutrino measurements made with the KamLAND reactor experiment and with the SNO CC solar neutrino experiment, provided determine the total solar neutrino fluxes (8 B,7 Be, and pp) for comparison with solar model predic- tions

  11. Nuclear Instruments and Methods in Physics Research A 503 (2003) 276278 Neutrino studies in nuclei and intense neutrino sources

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Nuclear Instruments and Methods in Physics Research A 503 (2003) 276­278 Neutrino studies in nuclei interactions. Nuclear responses for neutrinos are crucial for neutrino studies in nuclei. The responses, which are mainly nuclear spin isospin responses, are studied indirectly by charge exchange hadronic reactions

  12. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  13. Solar Neutrino Measurement at SK-III

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; :; B. S. Yang

    2009-10-17T23:59:59.000Z

    The full Super-Kamiokande-III data-taking period, which ran from August of 2006 through August of 2008, yielded 298 live days worth of solar neutrino data with a lower total energy threshold of 4.5 MeV. During this period we made many improvements to the experiment's hardware and software, with particular emphasis on its water purification system and Monte Carlo simulations. As a result of these efforts, we have significantly reduced the low energy backgrounds as compared to earlier periods of detector operation, cut the systematic errors by nearly a factor of two, and achieved a 4.5 MeV energy threshold for the solar neutrino analysis. In this presentation, I will present the preliminary SK-III solar neutrino measurement results.

  14. Optimizing Medium Baseline Reactor Neutrino Experiments

    E-Print Network [OSTI]

    Ciuffoli, Emilio; Zhang, Xinmin

    2013-01-01T23:59:59.000Z

    10 years from now medium baseline reactor neutrino experiments will attempt to determine the neutrino mass hierarchy from the observed antineutrino spectra. In this letter we present the results of more than four million detailed simulations of such experiments, studying the dependence of the probability of successfully determining the hierarchy upon the analysis method, the neutrino mass matrix parameters, reactor flux models and, in particular, combinations of baselines. We show that the strong dependence of the hierarchy determination upon mass differences and flux models found by Qian et al. results from a spurious dependence of the Fourier analysis upon the high energy tail of the reactor spectrum which can be removed by using a weighted Fourier transform. Such experiments necessarily use flux from multiple reactors at distinct baselines, smearing the oscillation signal and thus impeding the determination of the hierarchy. Using the results of our simulations, we determine the optimal baselines and corre...

  15. Earth Matter Effects in Detection of Supernova Neutrinos

    E-Print Network [OSTI]

    X. -H. Guo; Bing-Lin Young

    2006-05-11T23:59:59.000Z

    We calculated the matter effect, including both the Earth and supernova, on the detection of neutrinos from type II supernovae at the proposed Daya Bay reactor neutrino experiment. It is found that apart from the dependence on the flip probability P_H inside the supernova and the mass hierarchy of neutrinos, the amount of the Earth matter effect depends on the direction of the incoming supernova neutrinos, and reaches the biggest value when the incident angle of neutrinos is around 93^\\circ. In the reaction channel \\bar{\

  16. Weak interaction processes in nuclei involving neutrinos and CDM candidates

    SciTech Connect (OSTI)

    Kosmas, T. S.; Tsakstara, V. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece); Divari, P. C. [Department of Physical Sciences, Hellenic Army Academy, Vari 16673, Attica (Greece); Sinatkas, J. [Department of Informatics and Computer Technology, TEI of Western Macedonia, GR-52100 Kastoria (Greece)

    2009-11-09T23:59:59.000Z

    In this work, we concentrate on the nuclear physics aspects of low-energy neutrinos and in particular on problems related to neutrino detection by terrestrial experiments, neutrino astrophysics and neutrino-nucleus interactions. The detection of low-flux neutrinos, feasible by measuring the energy recoil of the recoiling nucleus with gaseous-detectors having very-low threshold-energy, is carried out in conjunction with direct-detection of cold dark matter events and nonstandard physics searches like the neutrinoless double beta decay.

  17. Report of the Solar and Atmospheric Neutrino Working Group

    SciTech Connect (OSTI)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-10-22T23:59:59.000Z

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy {sup 8}B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure {nu}{sub e}, which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of {theta}{sub 12} and, together with other solar neutrino measurements, either a measurement of {theta}{sub 13} or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the {sup 7}Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and {sup 7}Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very large scale water Cerenkov detector, or a magnetized detector with flavor and antiflavor sensitivity. Additional priorities are nuclear physics measurements which will reduce the uncertainties in the predictions of the Standard Solar Model, and similar supporting measurements for atmospheric neutrinos (cosmic ray fluxes, magnetic fields, etc.). We note as well that the detectors for both solar and atmospheric neutrino measurements can serve as multipurpose detectors, with capabilities of discovering dark matter, relic supernova neutrinos, proton decay, or as targets for long baseline accelerator neutrino experiments.

  18. IceCube: An Instrument for Neutrino Astronomy

    E-Print Network [OSTI]

    Francis Halzen; Spencer R. Klein

    2010-07-07T23:59:59.000Z

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: Neutrino Astronomy and Kilometer-Scale Detectors. High-Energy Neutrino Telescopes: Methodologies of Neutrino Detection. IceCube Hardware. High-Energy Neutrino Telescopes: Beyond Astronomy. Future Projects

  19. Absolute Values of Neutrino Masses: Status and Prospects

    E-Print Network [OSTI]

    S. M. Bilenky; C. Giunti; J. A. Grifols; E. Masso

    2003-03-27T23:59:59.000Z

    Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of beta-decay neutrino mass measurements and neutrinoless double-beta decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-beta decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection.

  20. Neutrinoless Double Beta Decay and Neutrino Masses

    E-Print Network [OSTI]

    Michael Duerr

    2012-06-04T23:59:59.000Z

    Neutrinoless double beta decay is a promising test for lepton number violating physics beyond the standard model of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between neutrinoless double beta decay and Majorana neutrino masses provided by the so-called Schechter--Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate neutrinoless double beta decay from unknown nuclear background using only one isotope, i.e., within one experiment.

  1. Neutrinoless double beta decay and neutrino masses

    SciTech Connect (OSTI)

    Duerr, Michael [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2012-07-27T23:59:59.000Z

    Neutrinoless double beta decay (0{nu}{beta}{beta}) is a promising test for lepton number violating physics beyond the standard model (SM) of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between 0{nu}{beta}{beta} and Majorana neutrino masses provided by the so-called Schechter-Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate 0{nu}{beta}{beta} from unknown nuclear background using only one isotope, i.e., within one experiment.

  2. Neutrino Masses in Flipped SU(5)

    E-Print Network [OSTI]

    Leontaris, George K

    1993-01-01T23:59:59.000Z

    We analyse the fermion masses and mixings in the flipped SU(5) model. The fermion mass matrices are evolved from the GUT scale down to $m_W$ by solving the renormalization group equations for the Yukawa couplings. The constraints imposed by the charged fermion data are then utilised to make predictions about the neutrino properties . It is found that the {\\it generalized } see-saw mechanism which occurs naturally in this model can provide {\\it i})a solution to the solar neutrino problem via the MSW mechanism and {\\it ii})a sufficiently large $\

  3. Neutrino Event Rates from Gamma Ray Bursts

    E-Print Network [OSTI]

    F. Halzen; D. W. Hooper

    1999-10-08T23:59:59.000Z

    We recalculate the diffuse flux of high energy neutrinos produced by Gamma Ray Bursts (GRB) in the relativistic fireball model. Although we confirm that the average single burst produces only ~10^{-2} high energy neutrino events in a detector with 1 km^2 effective area, i.e. about 10 events per year, we show that the observed rate is dominated by burst-to-burst fluctuations which are very large. We find event rates that are expected to be larger by one order of magnitude, likely more, which are dominated by a few very bright bursts. This greatly simplifies their detection.

  4. Neutrino oscillations: Quantum mechanics vs. quantum field theory

    SciTech Connect (OSTI)

    Akhmedov, Evgeny Kh.; Kopp, Joachim; ,

    2010-01-01T23:59:59.000Z

    A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

  5. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30T23:59:59.000Z

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  6. A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    E-Print Network [OSTI]

    Hyper-Kamiokande Working Group; :; K. Abe; H. Aihara; C. Andreopoulos; I. Anghel; A. Ariga; T. Ariga; R. Asfandiyarov; M. Askins; J. J. Back; P. Ballett; M. Barbi; G. J. Barker; G. Barr; F. Bay; P. Beltrame; V. Berardi; M. Bergevin; S. Berkman; T. Berry; S. Bhadra; F. d. M. Blaszczyk; A. Blondel; S. Bolognesi; S. B. Boyd; A. Bravar; C. Bronner; F. S. Cafagna; G. Carminati; S. L. Cartwright; M. G. Catanesi; K. Choi; J. H. Choi; G. Collazuol; G. Cowan; L. Cremonesi; G. Davies; G. De Rosa; C. Densham; J. Detwiler; D. Dewhurst; F. Di Lodovico; S. Di Luise; O. Drapier; S. Emery; A. Ereditato; P. Fernandez; T. Feusels; A. Finch; M. Fitton; M. Friend; Y. Fujii; Y. Fukuda; D. Fukuda; V. Galymov; K. Ganezer; M. Gonin; P. Gumplinger; D. R. Hadley; L. Haegel; A. Haesler; Y. Haga; B. Hartfiel; M. Hartz; Y. Hayato; M. Hierholzer; J. Hill; A. Himmel; S. Hirota; S. Horiuchi; K. Huang; A. K. Ichikawa; T. Iijima; M. Ikeda; J. Imber; K. Inoue; J. Insler; R. A. Intonti; T. Irvine; T. Ishida; H. Ishino; M. Ishitsuka; Y. Itow; A. Izmaylov; B. Jamieson; H. I. Jang; M. Jiang; K. K. Joo; C. K. Jung; A. Kaboth; T. Kajita; J. Kameda; Y. Karadhzov; T. Katori; E. Kearns; M. Khabibullin; A. Khotjantsev; J. Y. Kim; S. B. Kim; Y. Kishimoto; T. Kobayashi; M. Koga; A. Konaka; L. L. Kormos; A. Korzenev; Y. Koshio; W. R. Kropp; Y. Kudenko; T. Kutter; M. Kuze; L. Labarga; J. Lagoda; M. Laveder; M. Lawe; J. G. Learned; I. T. Lim; T. Lindner; A. Longhin; L. Ludovici; W. Ma; L. Magaletti; K. Mahn; M. Malek; C. Mariani; L. Marti; J. F. Martin; C. Martin; P. P. J. Martins; E. Mazzucato; N. McCauley; K. S. McFarland; C. McGrew; M. Mezzetto; H. Minakata; A. Minamino; S. Mine; O. Mineev; M. Miura; J. Monroe; T. Mori; S. Moriyama; T. Mueller; F. Muheim; M. Nakahata; K. Nakamura; T. Nakaya; S. Nakayama; M. Needham; T. Nicholls; M. Nirkko; Y. Nishimura; E. Noah; J. Nowak; H. Nunokawa; H. M. O'Keeffe; Y. Okajima; K. Okumura; S. M. Oser; E. O'Sullivan; R. A. Owen; Y. Oyama; J. Perez; M. Y. Pac; V. Palladino; J. L. Palomino; V. Paolone; D. Payne; O. Perevozchikov; J. D. Perkin; C. Pistillo; S. Playfer; M. Posiadala-Zezula; J. -M. Poutissou; B. Quilain; M. Quinto; E. Radicioni; P. N. Ratoff; M. Ravonel; M. Rayner; A. Redij; F. Retiere; C. Riccio; E. Richard; E. Rondio; H. J. Rose; M. Ross-Lonergan; C. Rott; S. D. Rountree; A. Rubbia; R. Sacco; M. Sakuda; M. C. Sanchez; E. Scantamburlo; K. Scholberg; M. Scott; Y. Seiya; T. Sekiguchi; H. Sekiya; A. Shaikhiev; I. Shimizu; M. Shiozawa; S. Short; G. Sinnis; M. B. Smy; J. Sobczyk; H. W. Sobel; T. Stewart; J. L. Stone; Y. Suda; Y. Suzuki; A. T. Suzuki; R. Svoboda; R. Tacik; A. Takeda; A. Taketa; Y. Takeuchi; H. A. Tanaka; H. K. M. Tanaka; H. Tanaka; R. Terri; L. F. Thompson; M. Thorpe; S. Tobayama; N. Tolich; T. Tomura; C. Touramanis; T. Tsukamoto; M. Tzanov; Y. Uchida; M. R. Vagins; G. Vasseur; R. B. Vogelaar; C. W. Walter; D. Wark; M. O. Wascko; A. Weber; R. Wendell; R. J. Wilkes; M. J. Wilking; J. R. Wilson; T. Xin; K. Yamamoto; C. Yanagisawa; T. Yano; S. Yen; N. Yershov; M. Yokoyama; M. Zito

    2015-01-18T23:59:59.000Z

    Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex

  7. Neutrino masses and the number of neutrino species from WMAP and 2dFGRS

    E-Print Network [OSTI]

    Steen Hannestad

    2003-03-04T23:59:59.000Z

    We have performed a thorough analysis of the constraints which can be put on neutrino parameters from cosmological observations, most notably those from the WMAP satellite and the 2dF galaxy survey. For this data we find an upper limit on the sum of active neutrino mass eigenstates of \\sum m_nu neutrinoless double beta decay reported by the Heidelberg-Moscow experiment. In terms of the relativistic energy density in neutrinos or other weakly interacting species we find, in units of the equivalent number of neutrino species, N_nu, that N_nu = 4.0+3.0-2.1 (95% conf.). When BBN constraints are added, the bound on N_\

  8. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    E-Print Network [OSTI]

    Abbasi, R.

    2010-01-01T23:59:59.000Z

    2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

  9. Neutrino condensates at center of galaxies as background for the MSW mechanism

    E-Print Network [OSTI]

    S. Capozziello; G. Iovane; G. Lambiase

    2003-04-01T23:59:59.000Z

    The possibility is explored that neutrino condensates, possible candidates for the explanation of very massive objects in galactic centers, could act as background for the Mikheyev-Smirnov-Wolfeinstein mechanism responsible of neutrino oscillations. Assuming a simple neutrino star model with constant density, the lower limit of the mass squared difference of neutrino oscillations is inferred. Consequences on neutrino asymmetry are discussed.

  10. Observations of high energy neutrinos with water/ice neutrino telescopes

    E-Print Network [OSTI]

    Karle, A

    2006-01-01T23:59:59.000Z

    The search for high energy neutrinos of astrophysical origin is being conducted today with two water/ice Cherenkov experiments. New instruments of higher performance are now in construction and more are in the R&D phase. No sources have been found to date. Upper limits on neutrino fluxes are approaching model predictions. Results are reported on the search for point sources, diffuse fluxes, gamma ray bursts, dark matter and other sources.

  11. Observations of high energy neutrinos with water/ice neutrino telescopes

    E-Print Network [OSTI]

    Albrecht Karle

    2006-02-01T23:59:59.000Z

    The search for high energy neutrinos of astrophysical origin is being conducted today with two water/ice Cherenkov experiments. New instruments of higher performance are now in construction and more are in the R&D phase. No sources have been found to date. Upper limits on neutrino fluxes are approaching model predictions. Results are reported on the search for point sources, diffuse fluxes, gamma ray bursts, dark matter and other sources.

  12. Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Marrone; A. Melchiorri; A. Palazzo; P. Serra; J. Silk

    2004-11-17T23:59:59.000Z

    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m_beta by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m_2beta from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on Sigma from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the 2 degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-alpha forest data from the Sloan Digital Sky Survey (SDSS), in models with a non-zero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m_beta,m_2beta,Sigma) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between Sigma and m_2beta constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and non-oscillatory) can further probe the currently allowed regions.

  13. Majorana Neutrinos, Neutrino Mass Spectrum and the || ~ 0.001 eV Frontier in Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    S. Pascoli; S. T. Petcov

    2007-11-30T23:59:59.000Z

    If future neutrino oscillation experiments show that the neutrino mass spectrum is with normal ordering, m1 | > 0.01 eV give negative results, the next frontier in the quest for neutrinoless double beta-decay will correspond to || ~ 0.001 eV. Assuming that massive neutrinos are Majorana particles and their exchange is the dominant mechanism generating neutrinoless double beta-decay, we analise the conditions under which ||, in the case of three neutrino mixing and neutrino mass spectrum with normal ordering, would satisfy || > 0.001 eV. We consider the specific cases of i) normal hierarchical neutrino mass spectrum, ii) of relatively small value of the CHOOZ angle theta13 as well as iii) the general case of spectrum with normal ordering, partial hierarchy and a value of theta13 close to the existing upper limit. We study the ranges of the lightest neutrino mass m1 and/or of sin^2 theta13, for which ||> 0.001 eV and discuss the phenomenological implications of such scenarios. We provide also an estimate of || when the three neutrino masses and the neutrino mixing originate from neutrino mass term of Majorana type for the (left-handed) flavour neutrinos and m1 Ue1^2 + m2 U_e2^2 + m3 Ue3^2 =0, but there does not exist a symmetry which forbids the neutrinoless double beta-decay.

  14. Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor

    E-Print Network [OSTI]

    Davis, Jonathan H

    2014-01-01T23:59:59.000Z

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments will run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder ...

  15. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08T23:59:59.000Z

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

  16. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28T23:59:59.000Z

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  17. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

  18. OXFORD BIBLIOGRAPHIES IN ECOLOGY "HEAVY METAL TOLERANCE"

    E-Print Network [OSTI]

    Rajakaruna, Nishanta

    cellular mechanisms affected by heavy metals is Bánfalvi 2011. Pollution by heavy metals is an important environmental problem, and sources that focus on heavy metal pollution often contain information about heavyOXFORD BIBLIOGRAPHIES IN ECOLOGY "HEAVY METAL TOLERANCE" By Nishanta Rajakaruna and Robert S. Boyd

  19. Search for a low mass Standard Model Higgs boson in the $\\tau-\\tau$ decay channel in $p\\bar{p}$ collisions at $\\sqrt{s}$ = 1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Apresyan, A.; /Purdue U.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2012-01-01T23:59:59.000Z

    We report on a search for the standard model Higgs boson decaying into pairs of {tau} leptons in p{bar p} collisions produced by the Tevatron at {radical}s = 1.96 TeV. The analyzed data sample was recorded by the CDFII detector and corresponds to an integrated luminosity of 6.0 fb{sup -1}. The search is performed in the final state with one {tau} decaying leptonically and the second one identified through its semi-hadronic decay. Since no significant excess is observed, a 95% credibility level upper limit on the production cross section times branching ratio to the {tau}{tau} final state is set for hypothetical Higgs boson masses between 100 and 150 GeV/c{sup 2}. For a Higgs boson of 120 GeV/c{sup 2} the observed (expected) limit is 14.6 (15.3) the predicted value.

  20. Radiatively broken symmetries of nonhierarchical neutrinos

    E-Print Network [OSTI]

    Dighe, Amol; Roy, Probir

    2007-01-01T23:59:59.000Z

    Symmetry-based ideas, such as the quark-lepton complementarity (QLC) principle and the tri-bimaximal mixing (TBM) scheme, have been proposed to explain the observed mixing pattern of neutrinos. We argue that such symmetry relations need to be imposed at a high scale $\\Lambda \\sim 10^{12}$ GeV characterizing the large masses of right-handed neutrinos required to implement the seesaw mechanism. For nonhierarchical neutrinos, renormalisation group evolution down to a laboratory energy scale $\\lambda \\sim 10^3$ GeV tends to radiatively break these symmetries at a significant level and spoil the mixing pattern predicted by them. However, for Majorana neutrinos, suitable constraints on the extra phases $\\alpha_{2,3}$ enable the retention of those high scale mixing patterns at laboratory energies. We examine this issue within the Minimal Supersymmetric Standard Model (MSSM) and demonstrate the fact posited above for two versions of QLC and two versions of TBM. The appropriate constraints are worked out for all these...

  1. A select overview of neutrino experiments

    SciTech Connect (OSTI)

    Stefanski, Raymond J.

    2004-11-01T23:59:59.000Z

    The relationship between the lepton sector and the quark sector is an interesting source of discourse in the current theoretical climate. Models that might someday supersede the Standard Model typically require quark structure, with implications for the lepton sector. This talk will explore some of the consequences of newer models, in the context of certain neutrino experiments.

  2. NOvA: Exploring Neutrino Mysteries

    ScienceCinema (OSTI)

    Vahle, Tricia; Messier, Mark

    2014-08-12T23:59:59.000Z

    Neutrinos are a mystery to physicists. They exist in three different flavors and mass states and may be able to give hints about the origins of the matter-dominated universe. A new long-baseline experiment led by Fermilab called NOvA may provide some answers.

  3. Quasi-energy-independent solar neutrino transitions

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Palazzo

    2002-02-06T23:59:59.000Z

    Current solar, atmospheric, and reactor neutrino data still allow oscillation scenarios where the squared mass differences are all close to 10^-3 eV^2, rather than being hierarchically separated. For solar neutrinos, this situation (realized in the upper part of the so-called large-mixing angle solution) implies adiabatic transitions which depend weakly on the neutrino energy and on the matter density, as well as on the ``atmospheric'' squared mass difference. In such a regime of ``quasi-energy-independent'' (QEI) transitions, intermediate between the more familiar ``Mikheyev-Smirnov-Wolfenstein'' (MSW) and energy-independent (EI) regimes, we first perform analytical calculations of the solar nu_e survival probability at first order in the matter density, beyond the usual hierarchical approximations. We then provide accurate, generalized expressions for the solar neutrino mixing angles in matter, which reduce to those valid in the MSW, QEI and EI regimes in appropriate limits. Finally, a representative QEI scenario is discussed in some detail.

  4. Determination of neutrino masses, present and future

    E-Print Network [OSTI]

    Jean-Luc Vuilleumier

    2003-06-04T23:59:59.000Z

    Oscillation experiments show that neutrinos have masses. They however only determine the neutrinop mass differences. Information on the absolute masses can be obtained by studying the kinematics in weak decays, or by searching for neutrinoless double beta decay. Recent results are reviewed, as well as future projects.

  5. Reactor monitoring with Neutrinos Michel Cribier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable, but also book keeping of the fuel element composition before and after their use in the nuclear powerReactor monitoring with Neutrinos Michel Cribier Astroparticule & Cosmologie 10, rue Alice Domon et

  6. Absorption of solar radiation by solar neutrinos

    E-Print Network [OSTI]

    G. Duplancic; P. Minkowski; J. Trampetic

    2004-03-22T23:59:59.000Z

    We calculate the absorption probability of photons radiated from the surface of the Sun by a left-handed neutrino with definite mass and a typical momentum for which we choose |p_1|=0.2 MeV, producing a heavier right-handed antineutrino. Considering two transitions the \

  7. Target Options for a Neutrino Factory

    E-Print Network [OSTI]

    McDonald, Kirk

    ;Fluidised tungsten powder: broadly compatible with baseline 1 2 3 4 · Rig contains 100 kg Tungsten IncreasingDriverPressure #12;Schematic of implementation as a Neutrino Factory target Tungsten powder hopper configurations possible #12;Pion+muon production for variable length 50% material fraction W vs 100% Hg rbeam

  8. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect (OSTI)

    Adams, C.; et al.,

    2013-07-28T23:59:59.000Z

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  9. Light Dark Matter Detection Prospects at Neutrino Experiments

    E-Print Network [OSTI]

    Jason Kumar; John G. Learned; Stefanie Smith

    2010-04-13T23:59:59.000Z

    We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find in particular that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus anti-neutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or anti-neutrinos ($R_{\\mu}$ and $R_{\\bar \\mu}$) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to neutrinos from secondary and tertiary decays as well, but will suffer from decreased detectability.

  10. Introduction to direct neutrino mass measurements and KATRIN

    E-Print Network [OSTI]

    Thomas Thümmler; for the KATRIN Collaboration

    2010-12-10T23:59:59.000Z

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of beta-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow beta spectroscopy close to the tritium endpoint at 18.6 keV with unprecedented precision.

  11. Geometric gravitational origin of neutrino oscillations and mass-energy

    E-Print Network [OSTI]

    Gustavo R. Gonzalez-Martin

    2014-05-21T23:59:59.000Z

    A mass-energy scale for neutrinos was calculated from the null cone curvature using geometric concepts. The scale is variable depending on the gravitational potential and the trajectory inclination with respect to the field direction. The proposed neutrino covariant equation provides the adequate curvature. The mass-energy at the Earth surface varies from a horizontal value 0.402 eV to a vertical value 0.569 eV. Earth spinor waves with winding numbers n show squared energy differences within ranges from 2.05 x 10*(-3) to 4.10 x 10*(-3) eV*2 for n=0,1 neutrinos and from 3.89 x 10*(-5) to 7.79 x 10*(-5) eV*2 for n=1,2 neutrinos. These waves interfere and the different phase velocities produce neutrino-like oscillations. The experimental results for atmospheric and solar neutrino oscillation mass parameters respectivelly fall within these theoretical ranges. Neutrinos in outer space, where interactions may be neglected, appear as particles travelling with zero mass on null geodesics. These gravitational curvature energies are consistent with neutrino oscillations, zero neutrino rest masses and Einstein's General Relativity and energy mass equivalence principle. When analyzing or averaging experimental neutrino mass-energy results of different experiments on the Earth it is of interest to consider the possible influence of the trajectory inclination angle.

  12. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    E-Print Network [OSTI]

    Conrad, Janet

    We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction ...

  13. Sterile neutrino searches in MiniBooNE and MicroBooNE

    E-Print Network [OSTI]

    Ignarra, Christina M

    2014-01-01T23:59:59.000Z

    Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This ...

  14. Search for the Higgs boson in lepton, tau, and jets final states

    SciTech Connect (OSTI)

    Abazov, V.M.; et al.

    2013-09-01T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb?1 of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H ? ? ? decays or H ? WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively.

  15. Search for the standard model Higgs boson in tau lepton final states

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; et al.

    2012-08-01T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with zero, one, or two or more jets using data corresponding to an integrated luminosity of up to 7.3 fb{sup -1} collected with the D0 detector at the Fermilab Tevatron collider. The analysis is sensitive to Higgs boson production via gluon gluon fusion, associated vector boson production, and vector boson fusion, and to Higgs boson decays to tau lepton pairs or W boson pairs. Observed (expected) limits are set on the ratio of 95% C.L. upper limits on the cross section times branching ratio, relative to those predicted by the Standard Model, of 14 (22) at a Higgs boson mass of 115 GeV and 7.7 (6.8) at 165 GeV.

  16. Search for the standard model Higgs boson in tau lepton pair final states

    E-Print Network [OSTI]

    D0 Collaboration

    2012-05-16T23:59:59.000Z

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with zero, one, or two or more jets using data corresponding to an integrated luminosity of up to 7.3 fb^{-1} collected with the D0 detector at the Fermilab Tevatron collider. The analysis is sensitive to Higgs boson production via gluon gluon fusion, associated vector boson production, and vector boson fusion, and to Higgs boson decays to tau lepton pairs or W boson pairs. Observed (expected) limits are set on the ratio of 95% C.L. upper limits on the cross section times branching ratio, relative to those predicted by the Standard Model, of 14 (22) at a Higgs boson mass of 115 GeV and 7.7 (6.8) at 165 GeV.

  17. QCD condensates of dimension D=6 and D=8 from hadronic tau-decays

    E-Print Network [OSTI]

    A. A. Almasy; K. Schilcher; H. Spiesberger

    2006-12-22T23:59:59.000Z

    The high-precision data from hadronic tau decays allows one to extract information on QCD condensates. Using the finalized ALEPH data, we obtain a more rigorous determination of the dimension 6 and 8 condensates for the V-A correlator. In particular, we find that the recent data fix a certain linear combination of these QCD condensates to a precision at the level of O(2%). Our approach relies on more general assumptions than alternative approaches based on finite energy sum rules.

  18. The origin and nature of spurious eigenvalues in the spectral tau method

    SciTech Connect (OSTI)

    Dawkins, P.T. [Lamar Univ., Beaumont, TX (United States). Dept. of Mathematics] [Lamar Univ., Beaumont, TX (United States). Dept. of Mathematics; Dunbar, S.R. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Mathematics and Statistics] [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Mathematics and Statistics; Douglass, R.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1998-12-10T23:59:59.000Z

    The Chebyshev-tau spectral method for approximating eigenvalues of boundary value problems may produce spurious eigenvalues with large positive real parts, even when all true eigenvalues of the problem are known to have negative real parts. The authors explain the origin and nature of the spurious eigenvalues in an example problem. The explanation will demonstrate that the large positive eigenvalues are an approximation of infinite eigenvalues in a nearby generalized eigenvalue problem.

  19. Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova

    E-Print Network [OSTI]

    Else Pllumbi; Irene Tamborra; Shinya Wanajo; H. -Thomas Janka; Lorenz Huedepohl

    2014-06-11T23:59:59.000Z

    Neutrino oscillations, especially to light sterile states, can affect the nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 Msun electron-capture supernova, whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations both between active and active-sterile flavors. We also take into account the alpha-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution which depend in a subtle way on the relative radial positions of the sterile MSW resonances, of collective flavor transformations, and on the formation of alpha-particles. For the adopted supernova progenitor, we find that neutrino oscillations, also to a sterile state with eV-mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, four cases with reduced Ye in the wind are considered. In these cases, despite the conversion of neutrinos to sterile neutrinos, Ye increases compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, alpha-effect.

  20. Ultrahigh-energy neutrino flux as a probe of large extra-dimensions

    SciTech Connect (OSTI)

    Lykken, Joseph; /Fermilab; Mena, Olga; /Rome U. /INFN, Rome; Razzaque, Soebur; /Penn State U., Astron. Astrophys. /Penn State U.

    2007-05-01T23:59:59.000Z

    A suppression in the spectrum of ultrahigh-energy (UHE, {ge} 10{sup 18} eV) neutrinos will be present in extra-dimensional scenarios, due to enhanced neutrino-antineutrino annihilation processes with the supernova relic neutrinos. In this scenario, neutrinos can not be responsible for the highest energy events observed in the UHE cosmic ray spectrum. A direct implication of these extra-dimensional interactions would be the absence of UHE neutrinos in ongoing and future neutrino telescopes.