National Library of Energy BETA

Sample records for task order number

  1. TASK ORDER

    National Nuclear Security Administration (NNSA)

    NA0000XXX Task Order No: DE-DT000XXXX Statement of Work August 7, 2015 Task Order Title: Design, Integration, Construction, Communications, and Engineering (DICCE) Services for Port of Cat Lai, Vietnam. Scope: The Contractor shall design, construct, and integrate fully functional portal monitor and communications systems at designated sites in Vietnam. * Port of Cat Lai Requirements Documents: The following task order requirements describe key milestones and deliverables. For a more complete

  2. ESPC ENABLE Draft Task Order

    Broader source: Energy.gov [DOE]

    Document provides a draft for an agency to use when forming an ESPC ENABLE contract and making a task order award. This draft task order provides the framework for a contract that agencies and energy service companies can tailor to the particular needs of each site or project.

  3. Competition Advocates and Task-Order and Delivery Order Ombudsman |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Acquisition Management Competition Advocates and Task-Order and Delivery Order Ombudsman There are two senior agency positions dedicated to ensuring full and open competition as a part of the federal contracting process: Competition Advocates and Task-Order and Delivery Order Ombudsman. Competition Advocates are responsible for: Promoting full and open competition; Promoting the acquisition of commercial items; Removing barriers to full and

  4. Task Order Awarded for Environmental Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order for environmental technical services to Professional Project Services, Inc., of Oak Ridge, TN, for support services at the Paducah Gaseous Diffusion Plant located near Paducah, KY.

  5. Task Order Price Evaluation Worksheet for ESPCs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Order Price Evaluation Worksheet for ESPCs Task Order Price Evaluation Worksheet for ESPCs Document lists a series of site-specific proposal data questions to answer for a task order. Download the Task Order Price Evaluation Worksheet. (73 KB) More Documents & Publications Task Order Price Evaluation Worksheet for Super ESPC Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5) ESPC Task Order Financial Schedules (IDIQ Attachment J-6)

  6. Descriptions of ESPC Task Order Schedules and Placement of Pricing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pricing Information (IDIQ Attachment J-5) Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5) Document provides task order ...

  7. Task Order Awarded for Moab Uranium Mill Tailings Remedial Action...

    Office of Environmental Management (EM)

    Task Order Awarded for Moab Uranium Mill Tailings Remedial Action (UMTRA) Follow-On Effort Task Order Awarded for Moab Uranium Mill Tailings Remedial Action (UMTRA) Follow-On ...

  8. DOE Awards Research and Systems Engineering Task Order | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Systems Engineering Task Order DOE Awards Research and Systems Engineering Task Order March 28, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 ...

  9. Attachment J-16 Portfolio Management Task Order 14-001

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mod 323 Attachment J-16 Portfolio Management Task Order 14-001 Statement of Work - 1 - Title: AMRP PBS 41 - Project Management / Project Controls Support Revision Number: 0 Date: September 17, 2013 Start: October 1, 2013 Finish: September 30, 2014 1.0 DESCRIPTION Mission Support Alliance (MSA) Portfolio Management (PFM) will provide the following project management/project controls support services as described below. The services will be performed in accordance with Contract DE-AC06-09RL14728,

  10. Hanford Waste Treatment Plant Support Task Order Modified | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value of the

  11. Energy Department Awards First Major Task Order Under Streamlined

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracting System | Department of Energy First Major Task Order Under Streamlined Contracting System Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up WASHINGTON, DC - The Department of Energy (DOE) has awarded a Task Order for an estimated $19.4 million to LATA-SHARP Remediation Services, LLC for the completion of clean-up activities at the Ashtabula Closure Project (ACP)

  12. Task Order Price Evaluation Worksheet for SUPER ESPC

    Broader source: Energy.gov [DOE]

    Document provides a worksheet for evaluating price for a task order as part of a Super Energy Savings Performance Contract (ESPC).

  13. DOE Awards Research and Systems Engineering Task Order | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research and Systems Engineering Task Order DOE Awards Research and Systems Engineering Task Order April 28, 2016 - 2:00pm Addthis Media Contact: Lynette Chafin (513) 246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to the MITRE Corporation, of McLean Virginia. MITRE will provide research and development in support of DOE's Office of Environmental Management. The task order has an approximate value of $1.176 million,

  14. Energy Department Awards First Major Task Order Under Streamlined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up ...

  15. DOE Awards Task Order for Lexington Project Office Audit

    Broader source: Energy.gov [DOE]

    Cincinnati - The U.S. Department of Energy (DOE) Office of Environmental Management today awarded a task order to KPMG LLP, of McLean, Virginia to perform audit services for the Portsmouth/Paducah Project Office in Lexington, Kentucky. The task order has an approximate value of $2.9 million over a two-year performance period.

  16. DOE Awards Small Business Task Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10:00am Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today announced the award of a Firm-Fixed Unit Rate Task Order to Sage Energy Trading of Jenks, OK. Sage Energy Trading is a Woman Owned Small Business. The Task Order will have a maximum value of $3.5 million over 2 years. Work performed under this Task Order will be performed at the Portsmouth Gaseous Diffusion Plant in Piketon, OH. The contractor will be

  17. DOE Awards Small Business Task Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today announced the award of a Time and Materials Task Order to Industrial Economics, Incorporated, located in Cambridge, MA. Industrial Economics, Incorporated is a Small Business. The Task Order will have a maximum value of $1.77 million over 3 years. Work performed under this Task Order will be performed at the Los Alamos National Laboratory in Los Alamos, NM.

  18. Task Order Awarded for Audit and Review Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services.

  19. DOE Awards Task Order Modification for Support Services to Office...

    Office of Environmental Management (EM)

    Cincinnati - The Department of Energy (DOE) today awarded a modification to Task Order DE-DT0005235 to J.G. Management Systems, Inc. of Grand Junction, CO for administrative and ...

  20. Task Order Awarded for Technical Support Services | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 26, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 ... Services to be performed under the task order include: D&D strategic planning; D&D mission ...

  1. UniTech Task Order Modifications - DT0010421 - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UniTech Task Order Modifications - DT0010421 DOE-RL Contracts/Procurements RL Contracts & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives UniTech Task Order Modifications - DT0010421 Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size 0006 The purpose of this modification is to provide $334,072.91 of incremental funding for the base period, for line item 0002 WRPS Laundry

  2. Task Order Awarded for Audit and Review Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services. These services will include: pricing proposals, requests for equitable adjustment, change order proposals, business systems (accounting, purchasing and billing systems), forward pricing rates, incurred costs audits, and terminations. Individual subtask orders will be placed for each specific assignment as needed from October 1, 2012 through September 30, 2013. The total not-toexceed value of the task order is $2,993,733.00.

  3. DOE Awards Task Order for Litigation Support Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today announced the award of a task order to TLI Solutions, Inc., a large business, from Arvada, CO for Litigation Support Services to support the Environmental Management Consolidated Business Center (EMCBC) Office of Chief Counsel (OCC).

  4. DOE ESPC TASK ORDER REQUEST FOR PROPOSAL (TO RFP) TEMPLATE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ESPC TASK ORDER REQUEST FOR PROPOSAL (TO RFP) TEMPLATE INSTRUCTIONS FOR USING THE TEMPLATE The TO RFP is used to communicate agency- or site-specific terms and conditions for the project to the ESCO. The DOE IDIQ contract permits such revision, per section C.1.3: C.1.3 Unless otherwise stated, all provisions that follow throughout the remaining sections of this master IDIQ contract may be revised within the overall scope of the contract, as necessary (based on the needs and regulations of

  5. Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

  6. STANDING ORDER 1. Standing Order Number: EP-DIV-S0-20222, R.O

    Office of Environmental Management (EM)

    CC;K CLEAR FORM

    STANDING ORDER 1. Standing Order Number: EP-DIV-S0-20222, R.O 2. Standing Order Type: (check one) [8J Division D Facility 3. Applicable Facilities: All EWMO Facilities 4. Standing Order Title: EWMO Legacy TRU Waste Pause 5. Distribution List: (By Functional Title) TA-54 Timely Order Book, Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Timely Order Book, Radioassay and Nondestructive Testing (RANT) Facility Timely Order Book, and Environmental Programs

  7. Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5)

    Broader source: Energy.gov [DOE]

    Document provides task order schedule descriptions and information on the placement of pricing for energy savings performance contracts (ESPCs).

  8. Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 8 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report (359.12 KB) More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 201

  9. Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 9 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report (242.82 KB) More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 200

  10. Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 0 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report (704.34 KB) More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011

  11. Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 1 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report (599.86 KB) More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008

  12. Galaxy number counts to second order and their bispectrum

    SciTech Connect (OSTI)

    Dio, Enea Di; Durrer, Ruth; Marozzi, Giovanni; Montanari, Francesco E-mail: Ruth.Durrer@unige.ch E-mail: Francesco.Montanari@unige.ch

    2014-12-01

    We determine the number counts to second order in cosmological perturbation theory in the Poisson gauge and allowing for anisotropic stress. The calculation is performed using an innovative approach based on the recently proposed ''geodesic light-cone'' gauge. This allows us to determine the number counts in a purely geometric way, without using Einstein's equation. The result is valid for general dark energy models and (most) modified gravity models. We then evaluate numerically some relevant contributions to the number counts bispectrum. In particular we consider the terms involving the density, redshift space distortion and lensing.

  13. DOE Awards Small Business Task Order for Technical Support to the Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management | Department of Energy Task Order for Technical Support to the Office of Environmental Management DOE Awards Small Business Task Order for Technical Support to the Office of Environmental Management June 27, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a task order for technical support services to TerranearPMC, LLC of Exton, Pennsylvania for support services

  14. DOE Awards Task Order to Northern New Mexico Small Business to Develop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documented Safety Analysis and Technical Safety Requirements Procedures | Department of Energy DOE Awards Task Order to Northern New Mexico Small Business to Develop Documented Safety Analysis and Technical Safety Requirements Procedures DOE Awards Task Order to Northern New Mexico Small Business to Develop Documented Safety Analysis and Technical Safety Requirements Procedures May 16, 2016 - 9:00am Addthis DOE Awards Task Order to Northern New Mexico Small Business to Develop Documented

  15. Contract DE-EM0003878 Task Order DE-DT0011253 Sigma Science, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    /16/2016 Contract DE-EM0003878 Task Order DE-DT0011253 Sigma Science, Inc. Page 3 of 17 SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS Section B of the ID/IQ basic contract is incorporated by reference with the exception of clauses applicable to Fixed-Price task orders only, and revised Clauses B.01, B.02, and B.04 as shown below. B.01 TYPE OF TASK ORDER AND SERVICES BEING ACQUIRED This is a Time-and-Materials (T&M) task order in accordance with the terms and conditions set forth in the

  16. Task Order Awarded to Small Business for Natural Gas Services | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Task Order Awarded to Small Business for Natural Gas Services Task Order Awarded to Small Business for Natural Gas Services December 30, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a task order to Sage Energy Trading LLC, of Jenks, Oklahoma for natural gas services. A firm fixed unit rate task order will be issued from the General Services Administration (GSA) Schedule with

  17. DOE Awards Task Order to Northern New Mexico Small Business to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mexico Small Business to Develop Documented Safety Analysis and Technical Safety Requirements Procedures DOE Awards Task Order to Northern New Mexico Small Business to Develop ...

  18. Parameterized reduced-order models using hyper-dual numbers.

    SciTech Connect (OSTI)

    Fike, Jeffrey A.; Brake, Matthew Robert

    2013-10-01

    The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize the effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.

  19. Task Order Awarded to Small Business for Natural Gas Services | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy to Small Business for Natural Gas Services Task Order Awarded to Small Business for Natural Gas Services December 30, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a task order to Pike Natural Gas, located in Hillsboro, Ohio for natural gas services. A firm fixed unit rate task order will be awarded with a not to exceed amount of $5.250 million value and a 10 year period of

  20. DOE Awards Task Order for Disposal of Los Alamos National Lab Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Task Order for Disposal of Los Alamos National Lab Waste DOE Awards Task Order for Disposal of Los Alamos National Lab Waste November 13, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed

  1. TASK ORDER

    National Nuclear Security Administration (NNSA)

    ... Page 4 of 6 U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ... flash cards, or other media storage devices necessary for system operation shall also be provided; ...

  2. DOE Awards Small Business Task Order for Technical Support to the Office of Environmental Management

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order for technical support services to Boston Government Services, LLC of Lenoir City, Tennessee for support services to the DOE Office of Environmental Management.

  3. DOE Awards Task Order Modification for Support Services to Office of Environmental Management

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a modification to Task Order DE-DT0005235 to J.G. Management Systems, Inc. of Grand Junction, CO for administrative and program analytical support for the Office of Environmental Management.

  4. EM Employee Serves Military in Afghanistan, Manages $5.8 Billion Army Task Order

    Office of Energy Efficiency and Renewable Energy (EERE)

    BAGRAM AIRFIELD, Afghanistan – EM employee James Hawkins is currently serving the U.S. military in Afghanistan, where he is administering a $5.8 billion task order for the Army.

  5. Placing UESC Task Orders Under the GSA Areawide Contract | Department of

    Office of Environmental Management (EM)

    Energy Placing UESC Task Orders Under the GSA Areawide Contract Placing UESC Task Orders Under the GSA Areawide Contract March 17, 2016 11:00AM to 1:00PM EDT Webinar provides attendees with an overview of the contracting options and services available from their local utility companies to engineer, finance, and install cost effective energy- and water-savings projects. Participants will be walked through the typical project process, from the audit phase to commissioning the equipment.

  6. DOE ESPC Task Order Request for Proposal (TO-RFP) Template | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ESPC Task Order Request for Proposal (TO-RFP) Template DOE ESPC Task Order Request for Proposal (TO-RFP) Template Template federal agencies may use for communicating specific terms and conditions to an energy services company regarding a U.S. Department of Energy energy savings performance contract (ESPC) project. Download the TO-RFP Template. (277.5 KB) More Documents & Publications Guide to Government Witnessing and Review of Measurement and Verification Activities Guidelines,

  7. Parameterized reduced-order models using hyper-dual numbers....

    Office of Scientific and Technical Information (OSTI)

    This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the ...

  8. DOE Awards Small Business Task Order for Technical Support to the Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management | Department of Energy Order for Technical Support to the Office of Environmental Management DOE Awards Small Business Task Order for Technical Support to the Office of Environmental Management July 1, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded a task order for technical support services to TerranearPMC, LLC of Exton, PA to provide Spent Nuclear Fuel and Excess Nuclear

  9. DOE Awards Task Order for Disposal of Los Alamos National Laboratory Waste

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract. The award is a firm, fixed-price task order, based on pre-established rates with a $1.29 million value and has a one-year performance period.

  10. Small Business TerranearPMC Awarded $2 Million Task Order | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy TerranearPMC Awarded $2 Million Task Order Small Business TerranearPMC Awarded $2 Million Task Order July 5, 2013 - 10:45am Addthis TerranearPMC at work on anomaly sampling in the 300 Area of Hanford. TerranearPMC at work on anomaly sampling in the 300 Area of Hanford. TerranearPMC is no stranger to working with the government. These graduates of the Department's Mentor Protégé Program founded their company with eye towards working in federal marketplace, with employees who had

  11. Task Order Awarded for Moab Uranium Mill Tailings Remedial Action (UMTRA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Follow-On Effort | Department of Energy for Moab Uranium Mill Tailings Remedial Action (UMTRA) Follow-On Effort Task Order Awarded for Moab Uranium Mill Tailings Remedial Action (UMTRA) Follow-On Effort April 20, 2016 - 11:30am Addthis Media Contact: Lynette Chafin 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today announced the award of a Fixed Unit Rate and Cost Reimbursement Task Order issued under the Office of Environmental Management Nationwide

  12. DOE Awards Task Order for Disposal of Los Alamos National Laboratory Waste

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract.

  13. DOE Awards Task Order for Disposal of Los Alamos National Lab Waste

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract.

  14. CONTRACTNO.: DE-X13-96GJ87335 TASK ORDER NO.: h

    Office of Legacy Management (LM)

    March 13,2001 CONTRACTNO.: DE-X13-96GJ87335 TASK ORDER NO.: h l K O I - 0 6 CONTROLNO.: 3100-T01-0440 Project Manager Department of Energy Grand Junction Office 2597 B314 Road ...

  15. Practical Guide to Savings and Payments in FEMP ESPC Task Orders

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leading by example, saving energy and taxpayer dollars in federal facilities Practical Guide to Savings and Payments in FEMP ESPC Task Orders Rev. 3 January 2009 Contents Preface ........................................................................................................................................ 1. Purpose and Scope of the Practical Guide.............................................................. 1 2. Legislation and Rules

  16. Attachment J-16 Portfolio Management Task Order 13-002 Title: DOE-HQ Security System Review and Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section J Contract No. DE-AC06-09RL14728 Modification 280 Attachment J-16 Portfolio Management Task Order 13-002 Title: DOE-HQ Security System Review and Assessment Revision Number: 0 Date: 04/11/2013 Start: 05/01/2013 Finish: 07/30/2013 1.0 DESCRIPTION The DOE Office of Environmental Management (EM) Headquarters Security System (HQSS) is installed at the EM Consolidated Business Center (CBC) in Cincinnati, OH and administered from DOE Headquarters in Washington, DC. HQSS has been running as a

  17. DOE Awards Task Order to Northern New Mexico Small Business to Develop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documented Safety Analysis and Technical Safety Requirements Procedures | Department of Energy to Northern New Mexico Small Business to Develop Documented Safety Analysis and Technical Safety Requirements Procedures DOE Awards Task Order to Northern New Mexico Small Business to Develop Documented Safety Analysis and Technical Safety Requirements Procedures May 16, 2016 - 2:00am Addthis Media Contact: Lynette Chafin 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department

  18. Attachment J-16 Portfolio Management Task Order 13-003 Revision 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J-16 Portfolio Management Task Order 13-003 Revision 1 Title: DOE-RL AMB HGET Training Approval Process SIA Date: August 6, 2013 Start: August 6, 2013 Finish: November 30, 2013 1.0 DESCRIPTION Mission Support Alliance (MSA) will provide subject matter experts to provide facilitation and project management support for an Operating Excellence (OE) Structured Improvement Activity (SIA) for the Department of Energy Richland (DOE-RL) Assistant Manager for Business and Financial Operations (AMB)

  19. FEMP Best Practices and Lessons Learned for Federal Agency ESPC Projects: Task Order Request for Proposal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    . TASK ORDER REQUEST FOR PROPOSAL (TO-RFP) The TO incorporates the TO-RFP, the ESCO's IGA/proposal, and the IDIQ (the DOE indefinite- delivery, indefinite-quantity contract) - so the agency needs to know what all of them say. The purpose of the TO-RFP is to incorporate site-specific requirements into the TO by modifying, adding to, or deleting IDIQ contract terms, as long as these changes are within the overall scope of the IDIQ. 6.1 Use the FEMP TO-RFP Template, which lists all the DOE IDIQ

  20. First and second order approximations to stage numbers in multicomponent enrichment cascades

    SciTech Connect (OSTI)

    Scopatz, A.

    2013-07-01

    This paper describes closed form, Taylor series approximations to the number product stages in a multicomponent enrichment cascade. Such closed form approximations are required when a symbolic, rather than a numeric, algorithm is used to compute the optimal cascade state. Both first and second order approximations were implemented. The first order solution was found to be grossly incorrect, having the wrong functional form over the entire domain. On the other hand, the second order solution shows excellent agreement with the 'true' solution over the domain of interest. An implementation of the symbolic, second order solver is available in the free and open source PyNE library. (authors)

  1. Task Cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLICITATION NO. DE-SOL-0003641 Exhibit G The following item(s) are contained in this file: ITEM NAME NO. OF PAGES(S) Sample Task Order 1 Site Support Services 14 Sample Task Order 2 Health Program Services 16 Sample Task Order 3 Janitorial Services (including Child 30 Care Center Cleaning Standards) Task Order Transition 4 DE-SOL-0003641 Sample Task Order 1 (including Exhibit I) SAMPLE TASK ORDER 1 SITE OPERATIONS SUPPORT TASK ORDER REQUEST INFORMATION: a) Task Order Period of Performance -

  2. Observed galaxy number counts on the lightcone up to second order: I. Main result

    SciTech Connect (OSTI)

    Bertacca, Daniele; Maartens, Roy; Clarkson, Chris E-mail: roy.maartens@gmail.com

    2014-09-01

    We present the galaxy number overdensity up to second order in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order that arise from observing on the past light cone, including all redshift effects, lensing distortions from convergence and shear, and contributions from velocities, Sachs-Wolfe, integrated SW and time-delay terms. This result will be important for accurate calculation of the bias on estimates of non-Gaussianity and on precision parameter estimates, introduced by nonlinear projection effects.

  3. Summary report for subcontract No. 0412J0004-3Y, task order 23. Final report

    SciTech Connect (OSTI)

    1997-10-02

    This task covers work performed by Carlton S. Young for various projects in Group P-22, Los Alamos National Lab from September 1996 to September 22, 1997. Projects worked on and charged to contract: (1) rebound, 80%; (2) reports on Nevada events Divider and Victoria, 10%; (3) FORTRAN modifications to a Macintosh version of the ACCEPT code and calculations on GAAs PCDs and Cherenkov detectors, 0%; (4) design of time and space-resolved burn measurements for the National Ignition Facility (NIF) based on a gas Cherenkov gamma-ray detector and proposals for more money to do the same, 10%. A summary of work on each project is included.

  4. Observed galaxy number counts on the lightcone up to second order: II. Derivation

    SciTech Connect (OSTI)

    Bertacca, Daniele; Maartens, Roy; Clarkson, Chris E-mail: roy.maartens@gmail.com

    2014-11-01

    We present a detailed derivation of the observed galaxy number over-density on cosmological scales up to second order in perturbation theory. We include all relativistic effects that arise from observing on the past lightcone. The derivation is in a general gauge, and applies to all dark energy models (including interacting dark energy) and to metric theories of modified gravity. The result will be important for accurate cosmological parameter estimation, including non-Gaussianity, since all projection effects need to be taken into account. It also offers the potential for new probes of General Relativity, dark energy and modified gravity. This paper accompanies Paper I which presents the key results for the concordance model in Poisson gauge.

  5. ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP&L EnergyPlus Company Order No. EA-210 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On May 4, 1999, PP&L EnergyPlus Company (PP&L EnergyPlus) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Canada as a power marketer. PP&L EnergyPlus, a limited

  6. Task Time Tracker

    Energy Science and Technology Software Center (OSTI)

    2013-07-24

    This client-side web app tracks the amount of time spent on arbitrary tasks. It allosw the creation of an unlimited number of arbitrarily named tasks ans via simple interactions, tracks the amount of time spent working on the drfined tasks.

  7. Simplified Predictive Models for CO2 Sequestration Performance Assessment: Research Topical Report on Task #4 - Reduced-Order Method (ROM) Based Models

    SciTech Connect (OSTI)

    Mishra, Srikanta; Jin, Larry; He, Jincong; Durlofsky, Louis

    2015-06-30

    Reduced-order models provide a means for greatly accelerating the detailed simulations that will be required to manage CO2 storage operations. In this work, we investigate the use of one such method, POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems. This method combines trajectory piecewise linearization (TPWL), in which the solution to a new (test) problem is represented through a linearization around the solution to a previously-simulated (training) problem, with proper orthogonal decomposition (POD), which enables solution states to be expressed in terms of a relatively small number of parameters. We describe the application of POD-TPWL for CO2-water systems simulated using a compositional procedure. Stanford’s Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the full-order training simulations and provides the output (derivative matrices and system states) required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure) control. Simulation results are presented for CO2 injection into a synthetic aquifer and into a simplified model of the Mount Simon formation. Test cases involve the use of time-varying well controls that differ from those used in training runs. Results of reasonable accuracy are consistently achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full- order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model construction corresponds to the computational requirements for about 2.3 full-order simulation runs. A preliminary treatment for POD-TPWL modeling in which test cases differ from training runs in terms of geological parameters (rather than well controls) is also presented. Results in this case involve only small differences between

  8. Task Cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The task involves 1) occupational medicine; 2) Wellness; 3) Ergonomics; 4) Industrial Hygiene; 5) Personal Exposure and Workplace Monitoring; 6) Ventilation Program; 7) Radiation; ...

  9. Development of an integrated in-situ remediation technology. Draft topical report for Task {number_sign}7.2 entitled ``Field scale test`` (January 10, 1996--December 31, 1997)

    SciTech Connect (OSTI)

    Athmer, C.; Ho, S.V.; Hughes, B.M.

    1997-11-01

    Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task {number_sign}7.2 summarizes the Field Scale Test conducted by Monsanto Company, DuPont, and General Electric.

  10. Closeout for U.S. Department of Energy Final Technical Report for University of Arizona grant DOE Award Number DE-FG03-95ER40906 From 1 February 1995 to 31 January 2004 Grant title: Theory and Phenomenology of Strong and Weak High Energy Physics (Task A) and Experimental Elementary Particle Physics (Task B)

    SciTech Connect (OSTI)

    Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina

    2005-03-03

    The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).

  11. 1982 Orders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOCKET FE CITE DATE NUMBER APPLICANT NAME ORDER NO. 70116.ERA 121482 82-04-LNG PhillipsMarathon 49 70552.ERA 113082 82-09-NG Northern Natural Gas 48 70541.ERA 110182...

  12. Task Plans

    Office of Environmental Management (EM)

    Active New number is 1 TO-3, Tribal Pre- notification Policy (begun 392) E. Turner 699 ... Closed TO-16, CVSA Inspections (begun 392) E. Turner, J. Holm 799 All activities ...

  13. Climate Change Task Force Webinar Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience. ... Task Force on Climate Preparedness and Resilience, established by an Executive Order in ...

  14. TaskFarmer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TaskFarmer TaskFarmer TaskFarmer is a utility developed in-house at NERSC to farm tasks onto a compute node - these can be single- or multi-core tasks. It tracks which tasks have completed successfully, and allows straightforward re-submission of failed or un-run jobs from a task list. The base functionality is contained within the runcommands.sh script which is provided by Taskfarmer. The script will be added to your path after loading the Taskfarmer module. This script launches a server on the

  15. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  16. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  17. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  18. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  19. San Joaquin River Up-Stream DO TMDL Project Task 4: MonitoringStudy Interim Task Report #3

    SciTech Connect (OSTI)

    Stringfellow, William; Borglin, Sharon; Dahlgren, Randy; Hanlon,Jeremy; Graham, Justin; Burks, Remie; Hutchinson, Kathleen

    2007-03-30

    The purpose of the Dissolved Oxygen Total Maximum Daily LoadProject (DO TMDLProject) is to provide a comprehensive understanding ofthe sources and fate of oxygen consuming materials in the San JoaquinRiver (SJR) watershed between Channel Point and Lander Avenue (upstreamSJR). When completed, this study will provide the stakeholders anunderstanding of the baseline conditions of the basin, provide input foran allocation decision, and provide the stakeholders with a tool formeasuring the impact of any waterquality management program that may beimplemented as part of the DO TMDL process. Previous studies haveidentified algal biomass as the most significant oxygen-demandingsubstance in the DO TMDL Project study-area between of Channel Point andLander Ave onthe SJR. Other oxygen-demanding substances found in theupstream SJR include ammonia and organic carbon from sources other thanalgae. The DO TMDL Project study-area contains municipalities, dairies,wetlands, cattle ranching, irrigated agriculture, and industries thatcould potentially contribute biochemical oxygen demand (BOD) to the SJR.This study is designed to discriminate between algal BOD and othersources of BOD throughout the entire upstream SJR watershed. Algalbiomass is not a conserved substance, but grows and decays in the SJR;hence, characterization of oxygen-demanding substances in the SJR isinherently complicated and requires an integrated effort of extensivemonitoring, scientific study, and modeling. In order to achieve projectobjectives, project activities were divided into a number of Tasks withspecific goals and objectives. In this report, we present the results ofmonitoring and research conducted under Task 4 of the DO TMDL Project.The major objective of Task 4 is to collect sufficient hydrologic (flow)and water quality (WQ) data to characterize the loading of algae, otheroxygen-demanding materials, and nutrients fromindividual tributaries andsub-watersheds of the upstream SJR between Mossdale and

  20. (Document Number)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  1. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  2. CATERING ORDER;SA 4500-CCC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4500-CCC (4-2015) Supersedes (11-2014) issue CATERING ORDER Your Name: ____ I certify that I have Completed and had my Manager complete: FIN100.1.TNT.6 Obtain Business Meeting Meal and Refreshment Approval procedure. Phone: Date of Delivery: Charging Organization # / Purpose: Project: Task: Delivery Location (Building/Room): Number of attendees to be served: A.M. Service Time: P.M. Service Time: Lunch Service Time: * A replacement fee will be charged if equipment is missing or not returned in 24

  3. Thermoacoustic engine simulations with lattice Boltzmann CFD. Tasks 3, 4 and 5 progress report

    SciTech Connect (OSTI)

    1995-02-06

    Advanced Projects Research Incorporated has completed tasks number 3, 4 and 5 of the specified tasks in the LANL subcontract. Task 3 required measurement of the acoustic attenuation for various thermoacoustic conditions and Task 4 involved the analysis of the energy transfer mechanisms for the geometries of Task 3. Finally, Task 5 specified that simulations of thermoacoustic engine configurations used at LANL were to be performed. Discussion of all 3 task results is presented.

  4. Placing UESC Task Orders Under the GSA Areawide

    Broader source: Energy.gov [DOE]

    Webinar provides attendees with an overview of the contracting options and services available from their local utility companies to engineer, finance and install cost effective energy and water savings projects.

  5. Task Order Awarded for Technical and Safety Support Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a contract for technical support services to Link Technologies, Inc., of Germantown, MD for support services to the DOE Office of Environmental Management in Washington D.C.

  6. DOE Awards Small Business Task Order for Technical Support to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 27, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 ... Provide technical support for program planning, developing test plans, and ...

  7. DOE Awards Small Business Task Order for Technical Support to...

    Office of Environmental Management (EM)

    to TerranearPMC, LLC of Exton, PA to provide Spent Nuclear Fuel and Excess Nuclear Materials Disposition Planning technical support to the Office of Environmental Management. ...

  8. DE-DT0010454-Task-Order-4.pdf

    Office of Environmental Management (EM)

  9. DE-DT0010459-Task-Order-5.pdf

    Office of Environmental Management (EM)

  10. DOE Awards Small Business Task Order for Technical Support to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Environmental Management July 1, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today...

  11. ESPC Task Order Financial Schedules (IDIQ Attachment J-6)

    Broader source: Energy.gov [DOE]

    Document features worksheets federal agencies can use to determine guaranteed cost savings and contractor payments, energy conservation measure costs and savings, and more in an for an energy savings performance contract (ESPC).

  12. PROJECT TASK STATEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROJECT TASK STATEMENT BETWEEN Sandia Corporation AND British East India Company a corporation of the United Kingdom having a principal office in London, United Kingdom (hereinafter "Participant") Geothermal Dynamics This Project Task Statement (PTS) is under the authority and subject to all terms and conditions of Cooperative Research and Development Agreement (CRADA) No. SC##/####.##.##. A. PURPOSE Sandia National Laboratories (Sandia) and the British East India Company (BEIC) are

  13. Ordering Information

    Gasoline and Diesel Fuel Update (EIA)

    coal industry Natural gas trade (Table 4.3) Ordering Information This publication and other Energy Information Administration (EIA) publications may be purchased from the...

  14. Chizu Task Mapping Tool

    Energy Science and Technology Software Center (OSTI)

    2014-07-01

    Chizu is a tool for Mapping MPI processes or tasks to physical processors or nodes for optimizing communication performance. It takes the communication graph of a High Performance Computing (HPC) application and the interconnection topology of a supercomputer as input. It outputs a new MPI rand to processor mapping, which can be used when launching the HPC application.

  15. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  16. Multiple-Award Contracts and Governmentwide Acquisition Contracts Including Delivery Orders and Task Orders

    Energy Savers [EERE]

    Manufactured Housing - Building America Top Innovation | Department of Energy Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing - Building America Top Innovation Photo of workers on the roof of a home. This Top Innovation profile describes research by Building America Partnership for Improved Residential Construction team to diagnose

  17. Local search to improve coordinate-based task mapping

    SciTech Connect (OSTI)

    Balzuweit, Evan; Bunde, David P.; Leung, Vitus J.; Finley, Austin; Lee, Alan C. S.

    2015-10-31

    We present a local search strategy to improve the coordinate-based mapping of a parallel job’s tasks to the MPI ranks of its parallel allocation in order to reduce network congestion and the job’s communication time. The goal is to reduce the number of network hops between communicating pairs of ranks. Our target is applications with a nearest-neighbor stencil communication pattern running on mesh systems with non-contiguous processor allocation, such as Cray XE and XK Systems. Utilizing the miniGhost mini-app, which models the shock physics application CTH, we demonstrate that our strategy reduces application running time while also reducing the runtime variability. Furthermore, we further show that mapping quality can vary based on the selected allocation algorithm, even between allocation algorithms of similar apparent quality.

  18. Local search to improve coordinate-based task mapping

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balzuweit, Evan; Bunde, David P.; Leung, Vitus J.; Finley, Austin; Lee, Alan C. S.

    2015-10-31

    We present a local search strategy to improve the coordinate-based mapping of a parallel job’s tasks to the MPI ranks of its parallel allocation in order to reduce network congestion and the job’s communication time. The goal is to reduce the number of network hops between communicating pairs of ranks. Our target is applications with a nearest-neighbor stencil communication pattern running on mesh systems with non-contiguous processor allocation, such as Cray XE and XK Systems. Utilizing the miniGhost mini-app, which models the shock physics application CTH, we demonstrate that our strategy reduces application running time while also reducing the runtimemore » variability. Furthermore, we further show that mapping quality can vary based on the selected allocation algorithm, even between allocation algorithms of similar apparent quality.« less

  19. Sandia Energy - IEA PVPS Task 13 Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEA PVPS Task 13 Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis IEA PVPS Task 13 Activities IEA PVPS Task 13...

  20. Army Energy Initiatives Task Force

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Army Energy Initiatives Task Force.

  1. STANDING ORDER 1. Standing Order Number: EP-DIV-S0-20222, R.O

    Office of Environmental Management (EM)

    , ;, . USQ Qualified E1 luator (QEV) JLl. p M r .L .. r- c. 'i:> i" L v....ur- 1 rA .?4-- L1 I 2.t::.c'-- 0- 0 Print name Signa Date ERID-257356 Verified...

  2. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  3. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  4. TASK 2: QUENCH ZONE SIMULATION

    SciTech Connect (OSTI)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  5. Site: Contract Name: Contractor: Contract Number: Contract Type...

    Office of Environmental Management (EM)

    Project Office Paducah Deactivation Task Order Fluor Federal Services 16,661,745 NA 0 Cost Plus Award Fee and FFP 422,000,000 July 22, 2014 - July 21, 2017 Fee Information...

  6. NREL Job Task Analysis: Quality Control Inspector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Task 1: Maintain professional credentials Task 2: Confirm the allocation of ... * Conduct random sampling of worker credentials * Observe the workers * Interview the ...

  7. Nuclear Radiological Threat Task Force Established | National...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Threat Task Force Established Washington, DC NNSA's Administrator Linton Brooks announces the establishment of the Nuclear Radiological Threat Reduction Task ...

  8. First interim report of the Federal Fleet Conversion Task Force

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

  9. Task

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Noise exposure d) Application of cold coal tar coating to asphalt * Dermal contact ... up of high concentrations of carbon monoxide gas CO andor other by-products of combustion. ...

  10. Task

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IH Activity/Hazard Table - Does not include all construction activities. Review the rules of use on Page 1 before determining the applicable controls required for your work. 1/4/2016 REV 10 1 Rules for the use of this table 1. DO NOT just copy from the table without modifying the hazards and control sets to the specific scope of work, means and methods of how work will be performed, applying the requirements of approved CSSPs, and duration, frequency, location, and extent of work to be

  11. Task Group 9 Update (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.

    2014-04-01

    This presentation is a brief update of IEC TC82 QA Task Force, Group 9. Presented is an outline of the recently submitted New Work Item Proposal (NWIP) for a Comparative Thermal Cycling Test for CPV Modules to Differentiate Thermal Fatigue Durability.

  12. FAQS Job Task Analyses- Radiation Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  13. FAQS Job Task Analyses- Environmental Restoration

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Facility Representative

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- Technical Program Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. FAQS Job Task Analyses- General Technical Base

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  18. FAQS Job Task Analyses- Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  19. FAQS Job Task Analyses- Weapons Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  20. FAQS Job Task Analyses- Environmental Compliance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. FAQS Job Task Analyses- Deactivation and Decommissioning

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  2. FAQS Job Task Analyses- Occupational Safety

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  3. FAQS Job Task Analyses- Emergency Management

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  4. FAQS Job Task Analyses- Technical Training

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  5. FAQS Job Task Analyses- DOE Aviation Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  6. Functional Area Qualification Standard Job Task Analyses

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  7. FAQS Job Task Analyses- Safeguards and Security

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  8. FAQS Job Task Analyses- Chemical Processing

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  9. FAQS Job Task Analyses- Construction Management

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  10. FAQS Job Task Analyses- Industrial Hygiene

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  11. FAQS Job Task Analyses- Criticality Safety

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  13. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  14. North Dakota Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  15. Quantum random number generator

    DOE Patents [OSTI]

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  16. Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orders, IDIQ Attachment. J-4) | Department of Energy Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Document offers a post-award deliverables sample for an energy savings performance contract. Download part 2 of the post-award deliverables sample document. (33.67 KB) More Documents & Publications Pre-Award Deliverables Sample (Part 1 of

  17. Task Decomposition in Human Reliability Analysis

    SciTech Connect (OSTI)

    Boring, Ronald Laurids; Joe, Jeffrey Clark

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  18. Fuel oil quality task force

    SciTech Connect (OSTI)

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  19. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  20. Quantum random number generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  1. ALARA notes, Number 8

    SciTech Connect (OSTI)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  2. Polymers with increased order

    DOE Patents [OSTI]

    Sawan, Samuel P.; Talhi, Abdelhafid; Taylor, Craig M.

    1998-08-25

    The invention features polymers with increased order, and methods of making them featuring a dense gas.

  3. Implementing Executive Order 13423

    Broader source: Energy.gov [DOE]

    Guide describes the instructions on the requirements and how fleets should implement the Executive Order 13423.

  4. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  5. Fault-tolerant dynamic task graph scheduling

    SciTech Connect (OSTI)

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  6. Compliance Order on Consent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliance Order on Consent Compliance Order on Consent The Compliance Order on Consent provides the requirements for environmental cleanup of hazardous constituents for LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What is the Compliance Order on Consent? The Compliance Order on Consent between the State of New Mexico Environment Department and the United States Department of Energy and Los Alamos National

  7. Heat transfer modelling of the saltstone pouring and curing process. Task Number: 93-016-0

    SciTech Connect (OSTI)

    Shadday, M.A. Jr.

    1993-11-01

    A byproduct of the in tank precipitation, ITP, process will be 25 million gallons of low-level salt solution. This salt solution will be mixed with cement and a flyash/slag mixture and solidified in surface vaults in the Z-area Saltstone Facility. The curing process of saltstone involves exothermic reactions, and there is a maximum temperature limit of 90{degree}C for the curing saltstone. If this temperature limit is exceeded, the physical properties of the saltstone can be degraded. A heat transfer model of the saltstone pouring and curing process has been developed that predicts transient temperature distributions in the curing saltstone. The purpose of this model is to predict peak temperatures as functions of the several independent variables in this process: pour temperature, the pour schedule, and seasonal variations in the ambient temperature. The peak temperature of the saltstone is very sensitive to the internal heat generation that accompanies the curing process. Most of the energy is released over a short period of several hours, and the balance is released slowly over a period of time that can be in excess of a month. This long term low level internal heat generation is difficult to measure in laboratory calorimetry tests, and it can significantly influence the peak temperature in the saltstone. Due to the low thermal conductivity of the saltstone, the central region of the poured saltstone will essentially heat up adiabatically. The time dependence of the internal heat generation rate was determined from an analysis of the 1991 pilot pour test. With a pour schedule of eight hours a day and five days a week in the summer, the model predicts that the saltstone will have a peak temperature of 98 C with a pour temperature of 45 C, and a peak temperature of 88 C with a pour temperature of 30 C. With a pour schedule of three days a week, the peak temperature will be 88{degree}C with a pour temperature of 45 C, and 80 C with a pour temperature of 30 C.

  8. Consent Order public meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consent Order public meeting Consent Order public meeting WHEN: Apr 28, 2016 5:00 PM - 7:00 PM WHERE: Los Alamos County Council Chambers CATEGORY: Community TYPE: Meeting INTERNAL: Calendar Login Event Description On March 1, 2005, NMED, the Department of Energy (DOE) and the Regents of the University of California entered into the 2005 Consent Order that prescribed fence-to-fence cleanup requirements for the Laboratory. The public comment period on the Consent Order closes May 16, 2016

  9. Modular redundant number systems

    SciTech Connect (OSTI)

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  10. FAQS Job Task Analyses Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Form FAQS Job Task Analyses Form Step 1, Identify and evaluate tasks; Step 2, Identify and evaluate competencies; and Step 3, Evaluate linkage between tasks and competencies. FAQS Job Task Analyses Form (18.57 KB) More Documents & Publications FAQS Job Task Analyses - Emergency Management FAQS Job Task Analyses - Environmental Compliance FAQS Job Task Analyses - Chemical Processing

  11. President Issues Executive Order Aimed at Preparing for the Impacts of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change; Tribal Leaders to Serve on Task Force | Department of Energy Issues Executive Order Aimed at Preparing for the Impacts of Climate Change; Tribal Leaders to Serve on Task Force President Issues Executive Order Aimed at Preparing for the Impacts of Climate Change; Tribal Leaders to Serve on Task Force November 1, 2013 - 2:52pm Addthis In light of the Intergovernmental Panel on Climate Change's forthcoming 2013 report detailing the latest scientific findings and projections

  12. Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  14. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  15. Virginia Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Vermont Natural Gas Number of Residential Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  19. Virginia Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. West Virginia Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. Wisconsin Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Vermont Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. West Virginia Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  4. Washington Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. Washington Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. Washington Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Vermont Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. West Virginia Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  11. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  16. New Mexico Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. North Carolina Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. North Carolina Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  20. North Dakota Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. North Carolina Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  2. HSI Tape Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tape Ordering HSI Tape Ordering General Procedure If you are retrieving multiple files from HPSS, it is best to order your retrieval requests in a way that makes sense for the HPSS system. In HPSS, files initially go onto a disk cache and migrate to tape as time passes. This means that files that were put into HPSS at the same time could end up spread across multiple tapes. Since each tape must by loaded into the reader, it will be fastest if you order your requests so that you are pulling all

  3. Joint Outreach Task Group Calendar: September 2013

    Broader source: Energy.gov [DOE]

    Joint Outreach Task Group (JOTG)has created a monthly calendar of community events to facilitate interagency and community involvement in these events. September 2013

  4. NREL Job Task Analysis: Quality Control Inspector

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2011-05-01

    A summary of job task analyses for the position of quality control inspector when evaluating weatherization work that has been done on a residence.

  5. Weardale Task Force | Open Energy Information

    Open Energy Info (EERE)

    that is developing a sustainable community in the East gate area which will be run on wind, solar, biomass, geothermal and hydro power. References: Weardale Task Force1...

  6. NREL Job Task Analysis: Energy Auditor

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2011-05-01

    A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work.

  7. Interagency Energy Management Task Force Members

    Broader source: Energy.gov [DOE]

    The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies.

  8. Directives System Order

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16

    The order prescribes the process for development of Policy Statements, Orders, Notices, Manuals and Guides, which are intended to guide, inform, and instruct employees in the performance of their jobs, and enable them to work effectively within the Department and with agencies, contractors, and the public.

  9. Muon Collider Task Force Report

    SciTech Connect (OSTI)

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  10. JV Task 120 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special

  11. Portsmouth Integration Director's Final Findings and Order | Department of

    Energy Savers [EERE]

    Energy Integration Director's Final Findings and Order Portsmouth Integration Director's Final Findings and Order Portsmouth Integration Director's Final Findings and Order purpose is to: integrate the on-site work required for specific units to avoid duplication of effort, and efficiently perform sitewide ground water monitoring and surveillance and maintenance activities; recognize that a substantial portion of the tasks required under existing approved closure plans for certain units have

  12. LMS/RBL/S11219 Task Order LM00-502

    Office of Legacy Management (LM)

    Samples were collected from a total of two onsite wells, four private wells from nearby ... well) 05142013 ND 2.04 ND RB-D-03 (private well) 05142013 ND 0.637 ND RB-W-01 ...

  13. LMS/RUL/S11973 Task Order LM00-502

    Office of Legacy Management (LM)

    ... Analysis: Radiochemistry and Wet Chemistry Validator: Stephen Donivan Review Date: ... left blank Page 25 Gas Matrix Chemistry Data by Location (USEE510) FOR SITE ...

  14. Practical Guide to Savings and Payments in FEMP ESPC Task Orders

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document conveys to Federal agencies how to interpret and apply the statutes and rules governing cost savings and payments for energy savings performance contracts (ESPCs) under the Federal Energy Management Program (FEMP).

  15. Consent Order Update

    Broader source: Energy.gov [DOE]

    At the September 24, 2014 Board meeting Pete Maggiore DOE, Provided Information on the Consent Order Work that Needs to be Completed. Information on the Fiscal Year Work Plan was also Provided.

  16. URS Consent Order

    Office of Environmental Management (EM)

    ... requires the written consent of both Parties. 10. URS waives any and all rights to appeal or otherwise seek judicial or administrative review of the terms of this Consent Order. ...

  17. Determining Reduced Order Models for Optimal Stochastic Reduced Order Models

    SciTech Connect (OSTI)

    Bonney, Matthew S.; Brake, Matthew R.W.

    2015-08-01

    The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.

  18. Task mapping for non-contiguous allocations.

    SciTech Connect (OSTI)

    Leung, Vitus Joseph; Bunde, David P.; Ebbers, Johnathan; Price, Nicholas W.; Swank, Matthew; Feer, Stefan P.; Rhodes, Zachary D.

    2013-02-01

    This paper examines task mapping algorithms for non-contiguously allocated parallel jobs. Several studies have shown that task placement affects job running time for both contiguously and non-contiguously allocated jobs. Traditionally, work on task mapping either uses a very general model where the job has an arbitrary communication pattern or assumes that jobs are allocated contiguously, making them completely isolated from each other. A middle ground between these two cases is the mapping problem for non-contiguous jobs having a specific communication pattern. We propose several task mapping algorithms for jobs with a stencil communication pattern and evaluate them using experiments and simulations. Our strategies improve the running time of a MiniApp by as much as 30% over a baseline strategy. Furthermore, this improvement increases markedly with the job size, demonstrating the importance of task mapping as systems grow toward exascale.

  19. DOE Celebrates 20-Year Anniversary of Executive Order 12898 on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Justice | Department of Energy Celebrates 20-Year Anniversary of Executive Order 12898 on Environmental Justice DOE Celebrates 20-Year Anniversary of Executive Order 12898 on Environmental Justice April 8, 2014 - 6:05pm Addthis What does this project do? Goal 1. Protect human health and the environment KSA2316_ Sec Moniz with members of DOE EJ Task Force.jpg DOE Secretary Moniz (fifth from left) and members of the DOE EJ Task Force celebrate E0 12898 20-year anniversary.

  20. Number

    Office of Legacy Management (LM)

    engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. ...

  1. Order 13287, Preserve America

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 In response to requirements of Executive Order 13287, Preserve America Office of History and Heritage Resources Office of the Executive Secretariat U.S. Department of Energy September 2014 An Assessment of Historic Properties and Preservation Activities at the U.S. Department of Energy Table of Contents Introduction ............................................................................................................................................ 3 Part I. Background and Overview

  2. Engineering task plan for the annual revision of the rotary mode core sampling system safety equipment list

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-13

    This Engineering Task Plan addresses an effort to provide an update to the RMCS Systems 3 and 4 SEL and DCM in order to incorporate the changes to the authorization basis implemented by HNF-SD-WM-BIO-001, Rev. 0 (Draft), Addendum 5 , Safety Analysis for Rotary Mode Core Sampling. Responsibilities, task description, cost estimate, and schedule are presented.

  3. Clinch River MRS Task Force Recommendations

    Broader source: Energy.gov [DOE]

    The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the...

  4. Departmental Response: SEAB Task Force Recommendations on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Departmental Response: SEAB Task Force Recommendations on Technology Development for Environmental Management Introduction In May 2014, Energy Secretary Ernest Moniz charged the Secretary of Energy Advisory Board (SEAB) to provide advice as to how the United States (U.S.) Department of Energy (DOE) could more effectively ensure the development of technology necessary for the Office of Environmental Management (EM) to complete its mission, cleanup of legacy waste sites. The SEAB formed a Task

  5. NMED Consent Order

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begins environmental sampling in townsite September 25, 2008 Vicinity of Upper LA Canyon Investigated as Part of NMED Consent Order LOS ALAMOS, New Mexico, September 25, 2008-Environmental sampling, conducted on behalf of Los Alamos National Laboratory in the town of Los Alamos near upper Los Alamos Canyon, has begun. Known as the Upper Los Alamos Canyon Project, this effort is an environmental assessment of areas that have been or could have been affected by Laboratory operations from the days

  6. High Order Seismic Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Order Seismic Simulations on the Intel Xeon Phi Processor (Knights Landing) Alexander Heinecke 1 , Alexander Breuer 2 , Michael Bader 3 , and Pradeep Dubey 1 1 Intel Corporation, 2200 Mission College Blvd., Santa Clara 95054, CA, USA 2 University of California, San Diego, 9500 Gilman Dr., La Jolla 92093, CA, USA 3 Technische Universit¨ at M¨ unchen, Boltzmannstr. 3, D-85748 Garching, Germany Abstract. We present a holistic optimization of the ADER-DG finite element software SeisSol targeting

  7. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural

  8. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural Gas Industrial

  9. ARM - Measurement - Particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  10. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  11. ARM - Engineering Change Request & Engineering Change Order Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change Request & Engineering Change Order Guidelines Page Contents: Guideline for Starting a Request for a New ARM Product, Capability, or Functionality Engineering Task Tracking Tool Tracking Capabilities Getting Closure, the Baseline Change Request Glossary Engineering Change Request & Engineering Change Order Guidelines Requesting Engineered Products and Services in ARM Guideline for Starting a Request for a New ARM Product, Capability, or Functionality The purpose of this guideline

  12. Higher order matrix differential equations with singular coefficient matrices

    SciTech Connect (OSTI)

    Fragkoulis, V. C.; Kougioumtzoglou, I. A.; Pantelous, A. A.; Pirrotta, A.

    2015-03-10

    In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.

  13. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  14. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  15. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring

  16. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  17. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  18. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  19. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  20. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  1. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  2. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  3. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  4. NREL Job Task Analysis: Retrofit Installer Technician | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NREL Job Task Analysis: Retrofit Installer Technician NREL Job Task Analysis: Retrofit Installer Technician A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence. 51671.pdf (341.28 KB) More Documents & Publications NREL Job Task Analysis: Retrofit Installer Technician (Revised) NREL Job Task Analysis: Energy Auditor NREL Job Task Analysis: Quality Control Inspector

  5. FAQS Job Task Analyses - Safeguards and Security General Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Security General Technical Base FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a...

  6. H2FIRST Hydrogen Contaminant Detector Task: Requirements Document...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Contaminant Detector Task Requirements Document and Market Survey Danny Terlip, ... California 94550 www.sandia.gov H2FIRST Hydrogen Contaminant Detector Task Requirements ...

  7. Task Force on Climate Preparedness and Resilience Announces Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience ...

  8. Linkage to Previous International PV Module QA Task Force Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Linkage to Previous International PV Module QA Task Force Workshops: Proposal for ...

  9. Collaborative Utility Task Force Partners with DOE to Develop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure Collaborative Utility Task Force Partners with DOE to ...

  10. Federal Task Force Sends Recommendations to President on Fostering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology ...

  11. FAQS Job Task Analyses - Fire Protection Engineering | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Protection Engineering FAQS Job Task Analyses - Fire Protection Engineering FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job ...

  12. U.S. Support Program tasks

    SciTech Connect (OSTI)

    Langner, D.G.

    1998-09-01

    In the fall of 1993, President Clinton announced before the United Nations General Assembly, that the US would voluntarily offer excess fissile material of weapons origin to International Atomic Energy Agency (IAEA) safeguards. There are presently five US Support Program tasks at work. Three are complete, and two are underway. Reports are available from two of the completed SP-1s; a draft is in preparation for the third. These tasks are: (1) plutonium scrap multiplicity counter at Hanford; (2) calorimeter authentication at Hanford; (3) large neutron multiplicity counter at Rocky Flats; (4) calorimeter authentication at Rocky Flats; and (5) safeguards approach support at the APSF, SRS. The status of the first four tasks above is described here. Information on the work at Savannah River is contained in a separate paper.

  13. Using Hyper-Dual Numbers To Construct Parameterized Reduced-Order...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the ASME 2014 International Mechanical Engineering Congress & Exposition held November 14-20, ...

  14. Unsymmetric ordering using a constrained Markowitz scheme

    SciTech Connect (OSTI)

    Amestoy, Patrick R.; Xiaoye S.; Pralet, Stephane

    2005-01-18

    We present a family of ordering algorithms that can be used as a preprocessing step prior to performing sparse LU factorization. The ordering algorithms simultaneously achieve the objectives of selecting numerically good pivots and preserving the sparsity. We describe the algorithmic properties and challenges in their implementation. By mixing the two objectives we show that we can reduce the amount of fill-in in the factors and reduce the number of numerical problems during factorization. On a set of large unsymmetric real problems, we obtained the median reductions of 12% in the factorization time, of 13% in the size of the LU factors, of 20% in the number of operations performed during the factorization phase, and of 11% in the memory needed by the multifrontal solver MA41-UNS. A byproduct of this ordering strategy is an incomplete LU-factored matrix that can be used as a preconditioner in an iterative solver.

  15. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  16. A Reduced-Order Model of Transport Phenomena for Power Plant Simulation

    SciTech Connect (OSTI)

    Paul Cizmas; Brian Richardson; Thomas Brenner; Raymond Fontenot

    2009-09-30

    A reduced-order model based on proper orthogonal decomposition (POD) has been developed to simulate transient two- and three-dimensional isothermal and non-isothermal flows in a fluidized bed. Reduced-order models of void fraction, gas and solids temperatures, granular energy, and z-direction gas and solids velocity have been added to the previous version of the code. These algorithms are presented and their implementation is discussed. Verification studies are presented for each algorithm. A number of methods to accelerate the computations performed by the reduced-order model are presented. The errors associated with each acceleration method are computed and discussed. Using a combination of acceleration methods, a two-dimensional isothermal simulation using the reduced-order model is shown to be 114 times faster than using the full-order model. In the pursue of achieving the objectives of the project and completing the tasks planned for this program, several unplanned and unforeseen results, methods and studies have been generated. These additional accomplishments are also presented and they include: (1) a study of the effect of snapshot sampling time on the computation of the POD basis functions, (2) an investigation of different strategies for generating the autocorrelation matrix used to find the POD basis functions, (3) the development and implementation of a bubble detection and tracking algorithm based on mathematical morphology, (4) a method for augmenting the proper orthogonal decomposition to better capture flows with discontinuities, such as bubbles, and (5) a mixed reduced-order/full-order model, called point-mode proper orthogonal decomposition, designed to avoid unphysical due to approximation errors. The limitations of the proper orthogonal decomposition method in simulating transient flows with moving discontinuities, such as bubbling flows, are discussed and several methods are proposed to adapt the method for future use.

  17. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  19. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  5. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  10. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  12. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  14. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  20. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  16. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  17. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  18. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  19. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  20. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  3. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  4. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  6. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  8. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  9. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  12. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  20. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  3. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  4. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  6. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  9. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Connecticut Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 411,349 417,831 424,036 1990's 428,912 430,078 432,244 427,761 428,157 431,909 433,778 436,119 438,716 442,457 2000's 458,388 458,404 462,574 466,913 469,332 475,221 478,849 482,902 487,320 489,349 2010's 490,185 494,970 504,138 513,492 522,658 - = No Data Reported; -- = Not

  12. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  19. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  6. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  8. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  9. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  11. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  13. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  14. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  16. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 317,217 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 -

  19. U.S. Transport Task Force 2010

    SciTech Connect (OSTI)

    Diamond, P.H.

    2011-09-21

    The Transport Task Force (TTF) Meeting is a venue for vigorous scientific discourse and discussion on topics in transport and turbulence in fusion plasmas. Its participation is international. The 2010 meeting was highly effective, with 139 registered participants and 131 presentations. This is remarkable for an even year (IAEA year) meeting. The meeting clearly fostered progress in understanding and control of turbulent transport.

  20. Paperclips Etc. Special Order Form

    Energy Savers [EERE]

    ...... Date: ... ALL SPECIAL ORDERS ARE SUBJECT TO FULL PAYMENT OR A RESTOCKING FEE WHEN ITEMS ORDERED ARE RETURNED TO THE SUPPLIER DUE TO THE ...

  1. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  2. NREL Job Task Analysis: Crew Leader | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crew Leader NREL Job Task Analysis: Crew Leader A summary of job task analyses for the position of crew leader when conducting weatherization work on a residence. NREL Job Task Analysis: Crew Leader (284.29 KB) More Documents & Publications Training Self-Assessment NREL Job Task Analysis: Quality Control Inspector

  3. NREL Job Task Analysis: Energy Auditor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Auditor NREL Job Task Analysis: Energy Auditor A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work. NREL Job Task Analysis: Energy Auditor (352.27 KB) More Documents & Publications NREL Job Task Analysis: Quality Control Inspector Training Self-Assessment

  4. FAQS Job Task Analyses- NNSA Package Certification Engineer

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  5. FAQS Job Task Analyses- Electrical Systems and Safety Oversight

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  6. FAQS Job Task Analyses- Confinement Ventilation and Process Gas Treatment

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  7. FAQS Job Task Analyses- DOE Aviation Safety Officer

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  8. FAQS Job Task Analyses- Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  9. FAQS Job Task Analyses- Civil/Structural Engineering

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  10. FAQS Job Task Analyses- Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  11. FAQS Job Task Analyses- Safeguards and Security General Technical Base

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. June 11, 2009, HSS/Union Task Meeting on 2009 HSS/Union Task Progress - Task Leads Schedule

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    05-09 TASK PLAN/SCHEDULE I. TRAINING REQUIREMENTS A. Identify basic DOE site access requirements [Leads: NTC/SMWIA/HS-10] What are the common general training requirements necessary to work at DOE sites. Jul 09 - Oct 09 1. Collect data from existing resources; research successful models, determine application to DOE 2. Compare NTC site visit results 3. Develop general requirements findings proposal and a matrix of recommended coursework Dec 09 4. Identify process for

  13. FAQS Job Task Analyses - Instrument and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instrument and Controls FAQS Job Task Analyses - Instrument and Controls FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Instrument and

  14. Federal Smart Grid Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Federal Smart Grid Task Force Task Force Background The Federal Smart Grid Task Force was established under Title XIII of the Energy Independence and Security Act of 2007 (EISA) and includes experts from eleven Federal agencies. The Department of Energy is represented by the Office of Electricity Delivery and Energy Reliability which is the Task Force lead, as well as the Office of Energy Efficiency and Renewable Energy and the National Energy Technology Laboratory.

  15. Interagency Energy Management Task Force Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Energy Management Task Force Members Interagency Energy Management Task Force Members The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies. Task Force Executive Director Dr. Timothy Unruh U.S. Department of Energy 202-586-5772 Task Force Members Organization Primary Contact Alternate Contact General Services Administration Mark Ewing Karren Curran National

  16. Executive Order 13423 Implementing Instructions

    Broader source: Energy.gov [DOE]

    INSTRUCTIONS FOR IMPLEMENTING EXECUTIVE ORDER 13423“Strengthening Federal Environmental, Energy, and Transportation Management”

  17. Toxic Substances Control Act (TSCA) chemical substances inventory: PMN number to EPA accession number link (for microcomputers). Data file

    SciTech Connect (OSTI)

    1995-11-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the TSCA Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, and EPA special flags. The sequence of the file is in ascending PMN Case Number order with `P` case numbers sorted first, followed by `Y` case numbers. For more detailed information on the confidential portion of the TSCA Inventory, including generic names, users can consult the introductory material of the printed TSCA Inventory: 1985 Edition and its 1990 Supplement. New versions of this file may be issued in the future. No search software is provided with this DOS formatted diskette.

  18. Genetic algorithm based task reordering to improve the performance of batch scheduled massively parallel scientific applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael

    2015-04-08

    The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on themore » performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.« less

  19. Genetic algorithm based task reordering to improve the performance of batch scheduled massively parallel scientific applications

    SciTech Connect (OSTI)

    Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael

    2015-04-08

    The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on the performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.

  20. Illinois task force on global climate change

    SciTech Connect (OSTI)

    Griffin, B.S.

    1996-12-31

    The purpose of this report is to document progress in the areas of national policy development, emissions reduction, research and education, and adaptation, and to identify specific actions that will be undertaken to implement the Illinois state action plan. The task force has been tracking national and international climate change policy, and helping shape national policy agenda. Identification and implementation of cost-effective mitigation measures has been performed for emissions reduction. In the area of research and education, the task force is developing the capacity to measure climate change indicators, maintaining and enhancing Illinois relevant research, and strengthening climate change education. Activities relevant to adaptation to new policy include strengthening water laws and planning for adaptation. 6 figs., 4 tabs.

  1. NREL Job Task Analysis: Energy Auditor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: orders@ntis.fedworld.gov online ordering: http:...

  2. Final report on the Pathway Analysis Task

    SciTech Connect (OSTI)

    Whicker, F.W.; Kirchner, T.B.

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University`s Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere.

  3. Task automation in a successful industrial telerobot

    SciTech Connect (OSTI)

    Spelt, P.F.; Jones, S.L.

    1994-01-01

    In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec{trademark}, Inc., to automate components of the operator`s workload using Remotec`s Andros telerobot, thereby providing an enhanced user interface which can be retroll to existing fielded units as well as being incorporated into now production units. Remotec`s Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot`s position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performances in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.

  4. Acciona Solar Technology Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-10-384

    SciTech Connect (OSTI)

    Mehos, M. S.

    2014-01-01

    Under this agreement, NREL will work with Acciona to conduct joint testing, evaluation, and data collection related to Acciona's solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, and analysis. This work will be conducted at Acciona's Nevada Solar One (NSO) power plant and NREL test facilities. Specific projects will be developed on a task order basis. Each task order will identify the name of the project and deliverables to be produced under the task order. Each task order will delineate an estimated completion date based on a project's schedule. Any reports developed under this CRADA must be reviewed by both NREL and Acciona and approved by each organization prior to publication of results or documents.

  5. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  6. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  7. Paperclips Etc. Special Order Form

    Broader source: Energy.gov (indexed) [DOE]

    PSS-02.2 (March 7, 2011) Replaces PSS-02.1 PAPERCLIPS Etc. SPECIAL Orders Form This form is used to order supplies that are not readily available in the DOE HQ self-service supply...

  8. Price Quotes and Isotope Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordering Price Quotes and Isotope Ordering Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Isotope...

  9. DOE - Fossil Energy: Orders-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Order Granting Blanket Authority to Export Natural Gas to Mexico 3366 13-146-NG 121213 Iberdrola Energy Services, LLC Order Granting Blanket Authority to ImportExport Natural ...

  10. ORDER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rack or container with the firing chamber empty. During normal operations, long guns (e.g., rifles, shotguns, submachine guns) must not be carried with a round in the...

  11. Site: Contract Name: Contractor: Contract Number: Contract Type:

    Office of Environmental Management (EM)

    Fee Maximum Fee Performance Period Fee Available Fee Earned FY2015 $6,170,759 $4,257,824 FY2016 $5,553,915 $0 FY2017 $5,553,915 0 Cumulative Fee $17,278,589 $4,257,824 DE-EM0001131-DE-DT0007774 EM Contractor Fee June 2016 Portsmouth Paducah Project Office Paducah Deactivation Task Order Fluor Federal Services $17,278,589 N/A $0 Cost Plus Award Fee and FFP $422,000,000 July 22, 2014 - July 21, 2017 Fee Information

  12. NREL Job Task Analysis: Crew Leader

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crew Leader Chuck Kurnik National Renewable Energy Laboratory Cynthia Woodley Professional Testing Inc. Technical Report NREL/TP-7A20-51673 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 NREL Job Task Analysis: Crew Leader Chuck

  13. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Energy Savers [EERE]

    Reference Station Design Task: Project Deliverable 2-2 H2FIRST Reference Station Design Task: Project Deliverable 2-2 This H2FIRST project report, published in April 2015, presents ...

  14. Transport Task Force (TTF) 2011 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 6, 2011, 9:00am to April 9, 2011, 5:00pm Conference Bahia Resort Hotel San Diego, CA USA Transport Task Force (TTF) 2011 The ultimate goal of the work of the Transport Task...

  15. Utilization Assessment of Target Electrification Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect (OSTI)

    Schey, Steve

    2015-05-01

    Several U.S. Department of Defense based studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report.

  16. Assessment of Fleet Inventory for Naval Air Station Whidbey Island. Task 1

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Task 1includes a survey of the inventory of non-tactical fleet vehicles at Naval Air Station Whidbey Island (NASWI) to characterize the fleet. This information and characterization are used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the assessments and observations of the current non-tactical fleet, fulfilling the Task 1 requirements.

  17. Toxic Substances Control Act (TSCA)-PMN file: ASCII text data. TSCA chemical substances inventory: PMN number to EPA accession number link, August 1996 (for microcomputers). Data file

    SciTech Connect (OSTI)

    1996-08-01

    The PMN Number to EPA Accession Number Link Diskette provides a cross-reference of these numbers for commenced PMNs on the confidential portion of the TSCA Master Inventory File. Neither this cross-reference nor the additional information included is TSCA Confidential Business Information. Provided on the diskette for each confidential commenced PMN are the PMN Case Number, EPA Accession Number, Generic Name, and EPA special flags. The sequence of the file is in ascending PMN case Number order with `P` case numbers sorted first, followed by `Y` case numbers.

  18. 2013-07 "Realign Remaining Milestones in the Consent Order" | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 7 "Realign Remaining Milestones in the Consent Order" 2013-07 "Realign Remaining Milestones in the Consent Order" It is the intent of this NNMCAB recommendation to encourage LANL to review all remaining tasks of the Consent Order and formulate a "Path Forward" for completion of these tasks in a manner which is both timely and most protective of human health and environment. This Path Forward shall be presented to the NNMCAB, NMED and public for comment,

  19. NREL Job Task Analysis: Quality Control Inspector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Control Inspector NREL Job Task Analysis: Quality Control Inspector A summary of job task analyses for the position of quality control inspector when evaluating weatherization work that has been done on a residence. NREL Job Task Analysis: Quality Control Inspector (332.56 KB) More Documents & Publications Training Self-Assessment Preparing for the Quality Control Inspector Certification Exam NREL Job Task Analysis: Energy Auditor

  20. NREL Job Task Analysis: Retrofit Installer Technician (Revised) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Retrofit Installer Technician (Revised) NREL Job Task Analysis: Retrofit Installer Technician (Revised) A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence. retrofit_installer_jta_04112012.pdf (518.38 KB) More Documents & Publications NREL Job Task Analysis: Retrofit Installer Technician NREL Job Task Analysis: Energy Auditor Training Self-Assessment

  1. Interagency Energy Management Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Task Force Interagency Energy Management Task Force The Federal Interagency Energy Management Task Force was created by the Federal Energy Management Improvement Act of 1988 to coordinate federal government activities that encourage energy conservation and energy efficiency. Led by the Federal Energy Management Program director and composed of federal energy managers, this task force serves as a forum for: Sharing lessons learned across agencies Providing analysis on technical

  2. V.P. Biden Hosts the Middle Class Task Force

    Broader source: Energy.gov [DOE]

    Secretary Chu will join Vice President Biden at the White House as he hosts a Middle Class Task Force event.

  3. Draft Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  4. NREL Job Task Analysis: Retrofit Installer Technician (Revised)

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2012-04-01

    A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence.

  5. GeoVision Study Task Forces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study Task Forces GeoVision Study Task Forces The Energy Department's GeoVision Study is undertaking rigorous analysis in seven specific topic areas that are led by team members from our national labs. Each task force will produce a deliverable required by the scope of the project. Task forces will be coordinated by the National Renewable Energy Laboratory. I. Exploration: Lab Lead - Lawrence Berkeley National Laboratory How geothermal resources are identified today Exploration costs and risks

  6. Employee Job Task Analysis (EJTA) PIA, Richland Operations Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office (58.17 KB) More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PIA - GovTrip (DOE data)

  7. Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  8. Interagency Energy Management Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Federal Energy Management Program » Interagency Energy Management Task Force Interagency Energy Management Task Force The Federal Interagency Energy Management Task Force was created by the Federal Energy Management Improvement Act of 1988 to coordinate federal government activities that encourage energy conservation and energy efficiency. Led by the Federal Energy Management Program director and composed of federal energy managers, this task force serves as a forum for: Sharing

  9. Savannah River reactor process water heat exchanger tube structural integrity margin Task Number 92-005-1

    SciTech Connect (OSTI)

    Mertz, G.E.; Barnes, D.M.; Sindelar, R.L.

    1992-02-01

    Twelve process water heat exchangers are designed to remove heat generated in the reactor tank. Each heat exchanger has approximately 9000, 1/2 inch diameter {times} 0.049 inches thick tubes. Minimum structural tubing requirements and the leak rate through postulated tubing defects are developed in this report A comparison of the structural requirements and the defect size calculated to produce leak rates of 0.5 lbs./day demonstrate adequate structural margins against gross tube rupture. Commercial nuclear experience with pressurized water reactor (PWR) steam generator plugging criteria are used for guidance in performing this analysis. It is important to note that the SRS reactors are low energy systems with normal operating pressures of 203 psig at 130{degree}F while the PWR is a high energy system with operating pressures near 2200 psig at 600{degree}F. Clearly the PVM steam generator has loadings which are more severe than the SRS heat exchangers. Consistent with the Regulatory Guide 1.121 criteria both wastage (wall thinning) and cracking are addressed. Structural limits on wall thinning and crack size are developed to preclude gross rupture. ASME Section XI criteria, with the factors of safety recommended by Regulatory Guide 1.121 are used to develop the allowable crack size criteria. Normal operating conditions (pressure, dead weight, and hydraulic drag) are considered with seismic and water hammer accident conditions. Both the wall thinning and crack size criteria are developed for the end-of-evaluation period. Allowances for corrosion, wear, or crack growth have not been included in this analysis Structurally, the tubing is over designed and can tolerate large defects with adequate margins against gross rupture. The structural margins of heat exchanger tubing are evident by contrasting the tubing`s structural capacity, per the ASME Code, with its operating conditions/configuration.

  10. Savannah River reactor process water heat exchanger tube structural integrity margin Task Number 92-005-1

    SciTech Connect (OSTI)

    Mertz, G.E.; Barnes, D.M.; Sindelar, R.L.

    1992-02-01

    Twelve process water heat exchangers are designed to remove heat generated in the reactor tank. Each heat exchanger has approximately 9000, 1/2 inch diameter {times} 0.049 inches thick tubes. Minimum structural tubing requirements and the leak rate through postulated tubing defects are developed in this report A comparison of the structural requirements and the defect size calculated to produce leak rates of 0.5 lbs./day demonstrate adequate structural margins against gross tube rupture. Commercial nuclear experience with pressurized water reactor (PWR) steam generator plugging criteria are used for guidance in performing this analysis. It is important to note that the SRS reactors are low energy systems with normal operating pressures of 203 psig at 130{degree}F while the PWR is a high energy system with operating pressures near 2200 psig at 600{degree}F. Clearly the PVM steam generator has loadings which are more severe than the SRS heat exchangers. Consistent with the Regulatory Guide 1.121 criteria both wastage (wall thinning) and cracking are addressed. Structural limits on wall thinning and crack size are developed to preclude gross rupture. ASME Section XI criteria, with the factors of safety recommended by Regulatory Guide 1.121 are used to develop the allowable crack size criteria. Normal operating conditions (pressure, dead weight, and hydraulic drag) are considered with seismic and water hammer accident conditions. Both the wall thinning and crack size criteria are developed for the end-of-evaluation period. Allowances for corrosion, wear, or crack growth have not been included in this analysis Structurally, the tubing is over designed and can tolerate large defects with adequate margins against gross rupture. The structural margins of heat exchanger tubing are evident by contrasting the tubing's structural capacity, per the ASME Code, with its operating conditions/configuration.

  11. Sustainable Energy Solutions Task 5.1: Expand the Number of Faculty Working in Wind Energy: Wind Energy Storage

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Energy storage to reduce peak-load demands on utilities is emerging as an important way to address the intermittency of renewable energy resources. Wind energy produced in the middle of the night may be wasted unless it can be stored, and conversely, solar energy production could be used after the sun goes down if we had an efficient way to store it. It is uses an electrochemical process to convert hydrogen gas into electricity. The role of fuel cells in energy storage is a very important criteria and it is compared with regular batteries for the advantages of fuel cells over the latter. For this reason fuel cells can be employed. PEM fuel cells can be effectively used for this reason. But the performance and durability of PEM fuel cells are significantly affected by the various components used in a PEM cell. Several parameters affect the performance and durability of fuel cells. They are water management, degradation of components, cell contamination, reactant starvation and thermal management. Water management is the parameter which plays a major role in the performance of a fuel cell. Based on the reviews, improvement of condensation on the cathode side of a fuel cell is expected to improve the performance of the fuel cell by reducing cathode flooding. Microchannels and minichannels can enhance condensation on the cathode side of a fuel cell. Computational fluid dynamics (CFD) analysis was performed to evaluate and compare the condensation of steam in mini and microchannels with hydraulic diameter of 2mm, 2.66mm, 200µm and 266µm respectively. The simulation was run at various mass flux values ranging from 0.5 kg/m2s and 4 kg/m2s. The length of the mini and microchannels were in the range of 20 mm to 100 mm. CFD software’s GAMBIT and FLUENT were used for simulating the condensation process through the mini and microchannels. Steam flowed through the channels, whose walls were cooled by natural convection of air at room temperature. The outlet temperature of the condensate was in the range of 25oC to 90oC. The condensation process in minichannels was observed to be different from that in microchannels. It was found that the outlet temperature of the condensate decreased as the diameter of the channel decreased. It was also evident that the increase in length of the channel further decreased the outlet temperature of the condensate and subsequently the condensation heat flux. The investigation also showed that the pressure drop along the channel length increased with decreasing hydraulic diameter and length of the mini and micro channel. Conversely, the pressure drop along the channel increased with increasing inlet velocity of the stream. It was then suggested to use microchannels on the cathode section of a fuel cell for improved condensation.

  12. Nuclear Radiological Threat Task Force Established | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Radiological Threat Task Force Established Nuclear Radiological Threat Task Force Established Washington, DC NNSA's Administrator Linton Brooks announces the establishment of the Nuclear Radiological Threat Reduction Task Force (NRTRTF) to combat the threats posed by radiological dispersion devices or "dirty bombs."

  13. Employee Job Task Analysis (EJTA) - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Occupational Health Services > Employee Job Task Analysis (EJTA) Occupational Health Services Behavioral Health Services Beryllium Beryllium-Associated Worker Registry Employee Job Task Analysis (EJTA) Environmental Management System (EMS) Industrial Rehabilitation & Ergonomics Infection Control & Immunizations Influenza Immunization Program Medical Exam Scheduling Return to Work Risk Communication Employee Job Task Analysis (EJTA) Email Email Page | Print Print Page | Text Increase

  14. CCS Task Force - Executive Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CCS Task Force - Executive Summary CCS Task Force - Executive Summary CCS Task Force - Executive Summary (90.47 KB) More Documents & Publications CCSTF - Final Report Before the Senate Energy and Natural Resources Committee Before the House Science, Space, and Technology Subcommittee on Energy and Environment

  15. Public Order and Safety Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    | Activity Subcategories | Energy Use Public Order and Safety Buildings... Volunteer fire stations tend not to be government owned, which probably explains why 33 percent of...

  16. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  17. High-Order/Low-Order methods for ocean modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; Knoll, Dana A.

    2015-06-01

    We examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We demonstrate how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  18. Task 3 - RMC method validation project report

    SciTech Connect (OSTI)

    Sarkinen, R.A.

    1996-08-01

    The EPRI Substation Reliability Centered Maintenance Project Task 3 uses utility data to validate the RCM process for maintenance in substations. At BPA, this project was used to validate the RCM method for a preventive maintenance program for substations. This project was performed by an RCM technical team and all maintenance personnel at the Chemawa Maintenance District Headquarters. The system chosen for, this project involved four transmission lines that feeds 230 kV Santiam Substation. This report explains the process for the system approach-used for the Santiam project and a summary of the results. The current preventive maintenance program is primarily based on time. The RCM approach for a preventive maintenance program realized significant savings.

  19. ORDER FOR SUPPLIES OR SERVICES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SH P VIA 8. TYPE OF ORDER b. COMPANY NAME c. STREET ADDRESS d. CITY e. STATE f. Z P CODE 9. ACCOUNTING AND APPROPRIATION DATA a. PURCHASE b. DELIVERY REFERENCE YOUR: Please furnish the following on the terms and conditions specified on both sides of this order and on the attached sheet, if any including delivery as indicated. Except for billing instructions on the reverse, this delivery order is subject to instructions contained on this side only of this form and is issued subject to the terms

  20. TMP: Order (2013-CE-5334)

    Broader source: Energy.gov [DOE]

    DOE ordered TMP Manufacturing Company, Inc. to pay a $8,000 civil penalty after finding TMP had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  1. Sylvane: Order (2013-CE-36005)

    Broader source: Energy.gov [DOE]

    DOE ordered Sylvane, Inc. to pay a $4,000 civil penalty after finding Sylvane had failed to certify that certain models of dehumidifiers comply with the applicable energy conservation standards.

  2. Morris: Order (2013-SE-5403)

    Broader source: Energy.gov [DOE]

    DOE ordered Morris Products, Inc. to pay a $170,720 civil penalty after finding Morris had manufactured and distributed in commerce in the U.S. a large quantity of noncompliant metal halide lamp fixtures.

  3. Trastar: Order (2013-CE-49003)

    Broader source: Energy.gov [DOE]

    DOE ordered Trastar Inc. to pay a $8,000 civil penalty after finding Trastar had failed to certify that certain basic models of traffic signal modules and pedestrian modules comply with the applicable energy conservation standards.

  4. Emerson: Order (2014-CE-54001)

    Broader source: Energy.gov [DOE]

    DOE ordered Emerson Electric Co. to pay a $8,000 civil penalty after finding Emerson had failed to certify that certain models of metal halide lamp fixtures comply with the applicable energy conservation standards.

  5. Sunpentown: Order (2012-CE-1505)

    Broader source: Energy.gov [DOE]

    DOE ordered Sunpentown International Inc. to pay a $12,160 civil penalty after finding Sunpentown had failed to certify that certain models of room air conditioners comply with the applicable energy conservation standards.

  6. Daewoo: Order (2010-CE-0410)

    Broader source: Energy.gov [DOE]

    DOE ordered Daewoo International, Inc. to pay a $5,000 civil penalty after finding Daewoo had failed to certify that certain models of residential clothes dryers comply with the applicable energy conservation standards.

  7. Simkar: Order (2012-SE-5408)

    Broader source: Energy.gov [DOE]

    DOE ordered Simkar Corporation to pay a $28,193 civil penalty after finding Simkar had manufactured and distributed in commerce in the U.S. 326 units of a variety of noncompliant metal halide lamp fixtures basic models.

  8. Sears: Order (2012-CE-3606)

    Broader source: Energy.gov [DOE]

    DOE ordered Sears, Roebuck & Co. to pay an $8,000 civil penalty after finding Sears had failed to certify that Sears dehumidifiers comply with the applicable energy conservation standard.

  9. Quorum: Order (2014-CE-32013)

    Broader source: Energy.gov [DOE]

    DOE ordered Davoil, Inc. d/b/a Quorum International, Inc. to pay a $8,000 civil penalty after finding Quorum had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  10. Electrolux: Order (2014-CE-23015)

    Broader source: Energy.gov [DOE]

    DOE ordered Electrolux North America, Inc. to pay a $16,000 civil penalty after finding Electrolux had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  11. Electrolux: Order (2012-CE-1901)

    Broader source: Energy.gov [DOE]

    DOE ordered Electrolux North America to pay a $6,500 civil penalty after finding Electrolux had failed to certify that certain dishwashers comply with the applicable energy conservation standard.

  12. Aircooler: Order (2013-CE-5338)

    Broader source: Energy.gov [DOE]

    DOE ordered Aircooler Corporation to pay a $8,000 civil penalty after finding Aircooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  13. Litex: Order (2014-CE-32011)

    Broader source: Energy.gov [DOE]

    DOE ordered Litex Industries, Limited to pay a $8,000 civil penalty after finding Litex had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  14. Hydac: Order (2012-SE-4107)

    Broader source: Energy.gov [DOE]

    DOE ordered Hydac Technology Corporation to pay a $29,000 civil penalty after finding Hydac had manufactured and distributed in commerce in the U.S. noncompliant electric motors.

  15. TCP: Order (2011-CE-3501)

    Broader source: Energy.gov [DOE]

    DOE ordered Technical Consumer Products, Inc. to pay a $3,000 civil penalty after finding TCP had failed to certify that a certain model of medium base compact fluorescent lamp (CFL) complies with the applicable energy conservation standards.

  16. LG: Order (2015-CE-14022)

    Broader source: Energy.gov [DOE]

    DOE ordered LG Electronics USA, Inc. to pay a $8,000 civil penalty after finding LG had failed to certify that various refrigerator-freezer basic models comply with the applicable energy conservation standards.

  17. Maxlite: Order (2015-CE-27018)

    Broader source: Energy.gov [DOE]

    DOE ordered Maxlite, Inc. to pay a $8,000 civil penalty after finding Maxlite had failed to certify that certain models of general service fluorescent lamps comply with the applicable energy conservation standards.

  18. Electrolux: Order (2015-CE-14020)

    Broader source: Energy.gov [DOE]

    DOE ordered Electrolux North America, Inc. to pay a $20,000 civil penalty after finding Electrolux had failed to certify that certain models of refrigerator-freezers comply with the applicable energy conservation standards.

  19. Eurodib: Order (2014-CE-45001)

    Broader source: Energy.gov [DOE]

    DOE ordered Eurodib Inc. to pay a $8,000 civil penalty after finding Eurodib had failed to certify that certain models of automatic commercial ice makers comply with the applicable energy conservation standards.

  20. Barron: Order (2013-CE-48004)

    Broader source: Energy.gov [DOE]

    DOE ordered Barron Lighting Group, Inc. to pay a $8,000 civil penalty after finding Barron had failed to certify that certain models of illuminated exit signs comply with the applicable energy conservation standards.

  1. Keystone: Order (2013-CE-2601)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Keystone Technologies, LLC to pay a $8,000 civil penalty after finding Keystone had failed to certify that certain models of fluorescent lamp ballasts comply with the applicable energy conservation standards.

  2. Smeg: Order (2014-CE-23003)

    Broader source: Energy.gov [DOE]

    DOE ordered Smeg USA, Inc. to pay a $16,000 civil penalty after finding Smeg had failed to certify that certain models of refrigerators/refrigerator-freezers/freezers, dishwashers, and cooking products comply with the applicable energy conservation standards.

  3. Leer: Order (2013-CE-5325)

    Broader source: Energy.gov [DOE]

    DOE ordered Leer, Inc. to pay a $8,000 civil penalty after finding Leer had failed to certify that certain models of walk-in cooler and freezer (WICF) components comply with the applicable energy conservation standards.

  4. Dacor: Order (2014-CE-23010)

    Broader source: Energy.gov [DOE]

    DOE ordered Dacor to pay a $8,000 civil penalty after finding Dacor had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  5. Whirlpool: Order (2014-CE-21010)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Whirlpool Corporation to pay a $8,000 civil penalty after finding Whirlpool had failed to certify that certain models of residential clothes dryers comply with the applicable energy conservation standards.

  6. DHI: Order (2014-CE-32004)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered DHI Corp. to pay a $8,000 civil penalty after finding DHI had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  7. Vaxcel: Order (2014-CE-32006)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Vaxcel International Co., Ltd. to pay a $8,000 civil penalty after finding Vaxcel had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  8. ETL: Order (2015-CW-29003)

    Broader source: Energy.gov [DOE]

    DOE ordered ETL, LLC to pay a $8,000 civil penalty after finding ETL had failed to certify that certain models of showerheads comply with the applicable water conservation standards.

  9. Winix: Order (2012-CE-3607)

    Broader source: Energy.gov [DOE]

    DOE ordered Cloud 9 Marketing, Inc. d/b/a Winix, Inc., to pay a $8,000 civil penalty after finding Winix had failed to certify that certain models of dehumidifiers comply with the applicable energy conservation standards.

  10. BSH: Order (2013-CE-2001)

    Broader source: Energy.gov [DOE]

    DOE ordered BSH Home Appliances Corp. to pay a $8,000 civil penalty after finding BSH had failed to certify that certain models of residential clothes washers comply with the applicable energy/water conservation standards.

  11. Almo: Order (2012-CE-1416)

    Broader source: Energy.gov [DOE]

    DOE ordered Almo Corporation to pay a $6,500 civil penalty after finding Almo had failed to certify that certain models of residential refrigerators comply with the applicable energy conservation standards.

  12. Averen: Order (2010-CW-0711)

    Broader source: Energy.gov [DOE]

    DOE ordered Averen, Inc. to pay a $5,000 civil penalty after finding Averen had failed to certify that certain models of faucets comply with the applicable water conservation standards.

  13. Danco: Order (2015-CW-28006)

    Broader source: Energy.gov [DOE]

    DOE ordered Danco, Inc. to pay a $8,000 civil penalty after finding Danco had failed to certify that certain models of faucets comply with the applicable water conservation standards.

  14. Kohler: Order (2014-CW-30003)

    Broader source: Energy.gov [DOE]

    DOE ordered Kohler Co. to pay a $8,000 civil penalty after finding Kohler had failed to certify that certain models of water closets comply with the applicable water conservation standards.

  15. Perlick: Order (2013-SE-14001)

    Broader source: Energy.gov [DOE]

    DOE ordered Perlick Corporation to pay a $168,200 civil penalty after finding Perlick had manufactured and distributed in commerce in the U.S. 841 units of basic model HP24F, a noncompliant freezer.

  16. Northland: Order (2014-CE-23002)

    Broader source: Energy.gov [DOE]

    DOE ordered Northland Corporation d/b/a AGA Marvel to pay a $16,000 civil penalty after finding Northland had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  17. Curtis: Order (2015-CE-14021)

    Broader source: Energy.gov [DOE]

    DOE ordered Curtis International, Ltd. to pay a $5,800 civil penalty after finding Curtis had failed to certify that refrigerator-freezer basic model FR9211 complies with the applicable energy conservation standards.

  18. Harrington: Order (2014-SW-28011)

    Broader source: Energy.gov [DOE]

    DOE ordered Harrington Brass Works to pay a $10,000 civil penalty after finding Harrington had manufactured and distributed in commerce in the U.S. 832 units of individual model 20-210-026, a noncompliant faucet.

  19. Nicor: Order (2014-CE-32016)

    Broader source: Energy.gov [DOE]

    DOE ordered Nicor, Inc. to pay a $8,000 civil penalty after finding Nicor had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  20. Acuity: Order (2013-CE-4802)

    Broader source: Energy.gov [DOE]

    DOE ordered Acuity Brands Lighting to pay a $8,000 civil penalty after finding Acuity had failed to certify that certain models of illuminated exit signs comply with the applicable energy conservation standards.

  1. Satco: Order (2013-CE-2702)

    Broader source: Energy.gov [DOE]

    DOE ordered Satco Products, Inc. to pay a $8,000 civil penalty after finding Satco had failed to certify that certain models of general service fluorescent lamps comply with the applicable energy conservation standards.

  2. Avanti: Order (2013-CE-2105)

    Broader source: Energy.gov [DOE]

    DOE ordered Avanti Products, LLC to pay a $8,000 civil penalty after finding Avanti had failed to certify that certain models of residential clothes dryers comply with the applicable energy conservation standards.

  3. Dialight: Order (2013-CE-4902)

    Broader source: Energy.gov [DOE]

    DOE ordered Dialight Corporation to pay a $8,000 civil penalty after finding Dialight had failed to certify that certain models of traffic signal modules and pedestrian modules comply with the applicable energy conservation standards.

  4. Perlick: Order (2011-SE-1401)

    Broader source: Energy.gov [DOE]

    DOE ordered Perlick Corporation to pay a $400 civil penalty after finding Perlick had manufactured and distributed in commerce in the U.S. at least two noncompliant model HP48RO, electric refrigerators.

  5. Perlick: Order (2013-SE-14002)

    Broader source: Energy.gov [DOE]

    DOE ordered Perlick Corporation to pay a $60,725 civil penalty after finding Perlick had manufactured and distributed in commerce in the U.S. 347 units of basic model HP48RR, a noncompliant refrigerator.

  6. Haier: Order (2011-CE-2104)

    Broader source: Energy.gov [DOE]

    DOE ordered Haier to pay an $20,000 civil penalty after finding Haier had failed to certify that Haier residential clothes dryers comply with the applicable energy conservation standard.

  7. Amerisink: Order (2010-CW-0710)

    Broader source: Energy.gov [DOE]

    DOE ordered Amerisink, Inc. to pay a $5,000 civil penalty after finding Amerisink had failed to certify that certain models of faucets comply with the applicable water conservation standards.

  8. Leotek: Order (2013-CE-4903)

    Broader source: Energy.gov [DOE]

    DOE ordered Leotek Electronics USA Corp. to pay a $8,000 civil penalty after finding Leotek had failed to certify that certain models of traffic signal modules and pedestrian modules comply with the applicable energy conservation standards.

  9. Amerikooler: Order (2013-CE-5307)

    Broader source: Energy.gov [DOE]

    DOE ordered Amerikooler, Inc. to pay a $8,000 civil penalty after finding Amerikooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  10. Legacy: Order (2015-CE-14025)

    Broader source: Energy.gov [DOE]

    DOE ordered The Legacy Companies to pay a $8,000 civil penalty after finding Legacy had failed to certify that refrigerator Maxx-Ice brand basic model MCR3U complies with the applicable energy conservation standards.

  11. U.S. - Canada Power System Outage Task Force: Final Report on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Canada Power System Outage Task Force: Final Report on the Implementation of Task Force Recommendations U.S. - Canada Power System Outage Task Force: Final Report on the ...

  12. Developing and Enhancing Workforce Training Programs: Number...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the ...

  13. DOE Order on Quality Assurance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AVAILABLE ONLINE AT: INITIATED BY: www.directives.doe.gov Office of Health, Safety and Security U.S. Department of Energy ORDER Washington, D.C. Approved: 4-25-2011 SUBJECT: QUALITY ASSURANCE 1. PURPOSE. a. To ensure that Department of Energy (DOE), including National Nuclear Security Administration (NNSA), products and services meet or exceed customers' requirements and expectations. b. To achieve quality for all work based upon the following principles: (1) All work, as defined in this Order,

  14. June 11, 2009, HSS/Union Task Meeting on 2009 HSS/Union Task Progress - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    06-05-09 HSS/Union Working Group Meeting June 11, 2009 1:00 - 2:30 pm EST FORS 7E-069 Call-in: 301-903-0688 SUBJECT: 2009 HSS/Union Task Progress Union Working Group Participants: 2008 Topical Union Leads Ron Ault/Tom Schaffer..................AFL-CIO Metal Trades Department Pete Stafford...................................... Building and Construction Trades Department Center for Construction Research & Training (BCTD CPWR) Chico McGill/Dennis Phelps............International Brotherhood of

  15. June 11, 2009, HSS/Union Task Meeting on 2009 HSS/Union Task Progress - Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    23-09 HSS/Union Working Group Meeting 2009 HSS/Union Task Progress and Next Steps June 11, 2009 In introductory remarks, Glenn Podonsky, Chief Health, Safety and Security Officer, underscored HSS's commitment to engage in this collective effort with the Unions and stakeholders to improve worker health, safety and security across the DOE Complex. He provided an overview of the past several years of the HSS Focus Group effort in which the worker, through Union representatives and stakeholders,

  16. Engineering task plan for five portable exhausters

    SciTech Connect (OSTI)

    Rensink, G.E.

    1997-10-01

    Exhausters will be employed to ventilate certain single-shell tanks (SSTs) during salt well pumping campaigns. Active ventilation is necessary to reduce the potential flammable gas inventory (LANL 1996a) in the dome space that may accumulate during steady-state conditions or during/after postulated episodic gas release events. The tanks described in this plan support the activities required to fabricate and test three 500 cfm portable exhausters in the 200 W area shops, and to procure, design, fabricate and test two 1000 cfm units. Appropriate Notice of Construction (NOC) radiological and toxic air pollutant permits will be obtained for the portable exhausters. The portable exhauster design media to be employed to support this task was previously developed for the 241-A-101 exhauster. The same design as A101 will be fabricated with only minor improvements to the design based upon operator input/lessons learned. The safety authorization basis for this program effort will follow SAD 36 (LANL 1996b), and each tank will be reviewed against this SAD for changes or updates. The 1000 cfm units will be designed by the selected offsite contractor according to the specification requirements in KHC-S-O490. The offsite units have been specified to utilize as many of the same components as the 500 cfm units to ensure a more cost effective operation and maintenance through the reduction of spare parts and additional procedures.

  17. Task Force on Biofuels Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force on Biofuels Infrastructure Task Force on Biofuels Infrastructure Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation's

  18. Federal Task Force Sends Recommendations to President on Fostering Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Technology | Department of Energy Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12, 2010 - 12:00am Addthis WASHINGTON - President Obama's Interagency Task Force on Carbon Capture and Storage (CCS), co-chaired by the U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE), delivered a series of recommendations to the president today on

  19. Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    [Final].docx | Department of Energy Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx (221.19 KB) More Documents & Publications Sonoma County Solar Implementation Plan Final Report - Grow Solar Wisconsin Team Energy Industry Days Additional Information

  20. University Research Reactor Task Force to the Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advisory Committee | Department of Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel,"

  1. Collaborative Utility Task Force Partners with DOE to Develop Cyber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security Requirements for Advanced Metering Infrastructure | Department of Energy Collaborative Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure Collaborative Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure The Advanced Metering Infrastructure Security (AMI-SEC) Task Force announces the release of the AMI System Security Requirements, a first-of-its-kind for the

  2. DOE Announces Webinars on Building Energy Optimization Tool Training, Placing Utility Energy Service Contract Task Orders, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. View this week's webinars.

  3. Hydropower Vision Task Force Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Hydropower Vision Task Force Charter.pdf More Documents & Publications State Energy Advisory Board November 2011 Meeting Guide to Community Energy Strategic Planning State ...

  4. Interagency Task Force Report on Agency Recommendations, Conditions...

    Open Energy Info (EERE)

    Agriculture, Environmental Protection Agency, Advisory Council on Historic Preservation (Work Group on the Coordination of Federal Mandates). 2001. Interagency Task Force Report...

  5. Sandia Energy - New Mexico Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Storage Task Force Home Infrastructure Security Renewable Energy Energy Partnership News News & Events Energy Storage Systems Energy Storage New Mexico Renewable...

  6. Transmission Services WIST Task Force Dynamic Transfer Capability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ("WIST"), a Task Force of technical staff primarily from Northwest and California transmission providers and sub-regional entities, completed a report documenting Phase 1 of its...

  7. Clean Air Task Force CATF | Open Energy Information

    Open Energy Info (EERE)

    Force (CATF) Place: Boston, Massachusetts Zip: 2108 Product: Massachusetts-based scientific research and legal advocacy center. References: Clean Air Task Force (CATF)1 This...

  8. Report of the Task Force on Statewide Transmission Siting and...

    Open Energy Info (EERE)

    the Task Force on Statewide Transmission Siting and Permitting (Colorado). NA: Colorado Public Utilities Commission. Retrieved from "http:en.openei.orgwindex.php?titleReport...

  9. Design issues in the semantics and scheduling of asynchronous tasks.

    SciTech Connect (OSTI)

    Olivier, Stephen L.

    2013-07-01

    The asynchronous task model serves as a useful vehicle for shared memory parallel programming, particularly on multicore and manycore processors. As adoption of model among programmers has increased, support has emerged for the integration of task parallel language constructs into mainstream programming languages, e.g., C and C++. This paper examines some of the design decisions in Cilk and OpenMP concerning semantics and scheduling of asynchronous tasks with the aim of informing the efforts of committees considering language integration, as well as developers of new task parallel languages and libraries.

  10. Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology

    SciTech Connect (OSTI)

    PI: Lily Y. Young Co-PI: Gerben J. Zylstra

    2009-06-04

    Since 1990, the EC-US Task Force on Biotechnology Research has been coordinating transatlantic efforts to guide and exploit the ongoing revolution in biotechnology and the life sciences. The Task Force was established in June 1990 by the European Commission and the White House Office of Science and Technology Policy. The Task Force has acted as an effective forum for discussion, coordination, and development of new ideas for the last 18 years. Task Force members are European Commission and US Government science and technology administrators who meet annually to enhance communication across the Atlantic, and to encourage collaborative research. Through sponsoring workshops, and other activities, the Task Force also brings together scientific leaders and early career researchers from both sides of the Atlantic to forecast research challenges and opportunities and to promote better links between researchers. Over the years, by keeping a focus on the future of science, the Task Force has played a key role in establishing a diverse range of emerging scientific fields, including biodiversity research, neuroinformatics, genomics, nanobiotechnology, neonatal immunology, transkingdom molecular biology, biologically-based fuels, and environmental biotechnology. The EC-US Task Force has sponsored a number of Working Groups on topics of mutual transatlantic interest. The idea to create a Working Group on Environmental Biotechnology research was discussed in the Task Force meeting of October 1993. The EC-US Working Group on Environmental Biotechnology set as its mission 'To train the next generation of leaders in environmental biotechnology in the United States and the European Union to work collaboratively across the Atlantic.' Since 1995, the Working Group supported three kinds of activities, all of which focus one early career scientists: (1) Workshops on the use of molecular methods and genomics in environmental biotechnology; (2) Short courses with theoretical, laboratory

  11. Maxlite: Order (2010-CE-2701) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maxlite: Order (2010-CE-2701) Maxlite: Order (2010-CE-2701) In the Matter of Maxlite, SK America, Inc. (general service flourescent lamps), DOE Case Number 2010-CE-2701, Adopting Order and Compromise Agreement. Order adopting accompanying Compromise Agreement. DOE found that Maxlite failed to submit compliance certifications for its products under 10 C.F.R. Section 430.62, and here assesses a civil penalty of $5,000 (if paid within 30 days) or of $10,000 (if paid between 31-60 days). Maxlite

  12. Gasification Studies Task 4 Topical Report

    SciTech Connect (OSTI)

    Whitty, Kevin; Fletcher, Thomas; Pugmire, Ronald; Smith, Philip; Sutherland, James; Thornock, Jeremy; Boshayeshi, Babak; Hunsacker, Isaac; Lewis, Aaron; Waind, Travis; Kelly, Kerry

    2014-02-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical processes (Subtask 4.4) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation. Highlights of this work include: • Verification and validation activities performed with the Arches coal gasification simulation tool on experimental data from the CANMET gasifier (Subtask 4.1). • The simulation of multiphase reacting flows with coal particles including detailed gas-phase chemistry calculations using an extension of the one-dimensional turbulence model’s capability (Subtask 4.2). • The demonstration and implementation of the Reverse Monte Carlo ray tracing (RMCRT) radiation algorithm in the ARCHES code (Subtask 4.3). • Determination of steam and CO{sub 2} gasification kinetics of bituminous coal chars at high temperature and elevated pressure under entrained-flow conditions (Subtask 4.4). In addition, attempts were made to gain insight into the chemical structure differences between young and mature coal soot, but both NMR and TEM characterization efforts were hampered by the highly reacted nature of the soot. • The development, operation, and demonstration of in-situ gas phase measurements from the University of Utah’s pilot-scale entrained-flow coal gasifier (EFG) (Subtask 4.6). This subtask aimed at acquiring predictable, consistent performance and characterizing the

  13. Hicon: Order (2013-SE-1426)

    Broader source: Energy.gov [DOE]

    DOE ordered Ningbo Hicon International Industry Company, Ltd. to pay a $1,912,714 civil penalty after finding Hicon had manufactured and distributed in commerce in the U.S. 115,126 units of basic model BD-200, a noncompliant freezer.

  14. Teddico: Order (2012-SE-5409)

    Broader source: Energy.gov [DOE]

    DOE ordered The Electrical Design, Development and Implementation Company d/b/a Teddico to pay a $18,994 civil penalty after finding Teddico had manufactured and distributed in commerce in the U.S. 218 units of a variety of noncompliant metal halide lamp fixtures basic models.

  15. Topaz: Order (2014-CE-35005)

    Broader source: Energy.gov [DOE]

    DOE ordered Topaz Lighting Corp. to pay a $8,000 civil penalty after finding Topaz had failed to certify that certain basic models of medium base compact fluorescent lamps, general service fluorescent lamps, and illuminated exit signs comply with the applicable energy conservation standards.

  16. PQL: Order (2013-CE-27001)

    Broader source: Energy.gov [DOE]

    DOE ordered P.Q.L., Inc. to pay a $8,000 civil penalty after finding PQL had failed to certify that various basic models of medium base compact fluorescent lamps, general service fluorescent lamps, fluorescent lamp ballasts, and illuminated exit signs comply with the applicable energy conservation standards.

  17. Philips: Order (2012-SE-2605)

    Broader source: Energy.gov [DOE]

    DOE ordered Philips Lighting Electronics N. A. to pay a $82,478 civil penalty after finding Philips had manufactured and distributed in commerce in the U.S. 7,498 units of basic model VEL-1S40-SC, noncompliant fluorescent lamp ballasts.

  18. ELCO: Order (2014-SE-54005)

    Broader source: Energy.gov [DOE]

    DOE ordered ELCO Lighting to pay a $14,000 civil penalty after finding ELCO had failed to certify that certain models of illuminated exit signs and metal halide lamp fixtures comply with the applicable energy conservation standards and had failed to provide requested test data.

  19. Midea: Order (2013-SE-1505)

    Broader source: Energy.gov [DOE]

    DOE ordered GD Midea Air-Conditioning Equipment Co. Ltd. to pay a $416,800 civil penalty after finding Midea had manufactured and distributed in commerce in the U.S. atleast 14,968 units of basic model MWJ1-08ERN1-BI8, a noncompliant room air conditioner.

  20. Philips: Order (2014-SE-48006)

    Broader source: Energy.gov [DOE]

    DOE ordered Philips Lighting North America Corp. to pay a $75,000 civil penalty after finding Philips had manufactured and distributed in commerce in the U.S. at least 12,275 units of a variety of illuminated exit sign models.

  1. Order 430.1D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 In response to requirements of Executive Order 13287, Preserve America Office of History and Heritage Resources Office of the Executive Secretariat U.S. Department of Energy September 2014 An Assessment of Historic Properties and Preservation Activities at the U.S. Department of Energy Table of Contents Introduction ............................................................................................................................................ 3 Part I. Background and Overview

  2. Order 580.1D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    580.1D Title: PERSONAL PROPERTY MANAGEMENT Owner: Thomas Wilson, Jr., Office of Institutional Operations Approving Official: Bradley J. Tomer, Chief Operating Officer, Office of the Director {signature} /s/ Bradley J. Tomer Approval Date: 8/3/12 Last Reviewed Date: 8/3/12 Cancellation: Order 580.1C, Personal Property Management TABLE OF CONTENTS 1. PURPOSE ..................................................................................................................................... 2 2.

  3. Versonel: Order (2014-CE-21009)

    Broader source: Energy.gov [DOE]

    DOE ordered Smart Surplus, Inc. d/b/a Versonel to pay a $8,000 civil penalty after finding Versonel had failed to certify that certain models of refrigerators and residential clothes dryers comply with the applicable energy conservation standards.

  4. Whirlpool: Order (2013-SE-1420)

    Broader source: Energy.gov [DOE]

    DOE ordered Whirlpool Corporation to pay a $5,329,800 civil penalty after finding Whirlpool had manufactured and distributed in commerce in the U.S. at least 26,649 units of basic model 8TAR81 noncompliant refrigerator-freezer.

  5. LG: Order (2014-SE-15011)

    Broader source: Energy.gov [DOE]

    DOE ordered LG Electronics USA, Inc. to pay a $1,479,860 civil penalty after finding LG had manufactured and distributed in commerce in the U.S. at least 7,438 units of basic model LT143CNR, a noncompliant room air conditioner.

  6. Watermark: Order (2011-SW-2908)

    Broader source: Energy.gov [DOE]

    DOE ordered Watermark Designs, Ltd. to pay a $4,200 civil penalty after finding Watermark Designs, Ltd. had manufactured and distributed in commerce in the U.S. sixty-three units of basic model SH-FAL90, a noncompliant showerhead.

  7. Kichler: Order (2014-CE-32007)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered The L.D. Kichler Co. d/b/a Kichler Lighting to pay a $8,000 civil penalty after finding Kichler had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  8. Yosemite: Order (2014-CE-32015)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Northern Central Distributing, Inc. d/b/a Yosemite Home Dcor to pay a $8,000 civil penalty after finding Yosemite had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  9. Traulsen: Order (2015-SE-42002)

    Broader source: Energy.gov [DOE]

    DOE ordered Traulsen – ITW Food Group LLC to pay a $52,600 civil penalty after finding Traulsen had manufactured and distributed in commerce in the U.S. at least 284 units of commercial refrigerator-freezer basic model RDT132DUT-HHS, a noncompliant product.

  10. Bigwall: Order (2014-SE-15006)

    Broader source: Energy.gov [DOE]

    DOE ordered Bigwall Enterprises, Inc. to abide by the terms of the Notice of Noncompliance Determination, issued on February 11, 2014, after finding Bigwall Enterprises, Inc. had privately labeled and distributed in commerce in the U.S. at least 600 units of PerfectAire brand room air conditioner model PACH8000.

  11. Midea: Order (2014-SW-20001)

    Broader source: Energy.gov [DOE]

    DOE ordered Hefei Rongshida Washing Equipment Manufacturing Co., Ltd. ("Hefei Rongshida"), a subsidiary of Midea Group, to pay a $64,780 civil penalty after finding Hefei Rongshida had manufactured and distributed in commerce in the U.S. 324 units of MAE80-S1702GPS, a noncompliant residential clothes washer.

  12. Universal: Order (2013-SE-26004)

    Broader source: Energy.gov [DOE]

    DOE ordered Universal Lighting Technologies, Inc. to pay a $7,264 civil penalty after finding Universal had manufactured and distributed in commerce in the U.S. 454 units of model B140R277HP, a noncompliant fluorescent lamp ballast.

  13. Task 8 -- Design and test of critical components

    SciTech Connect (OSTI)

    Chance, T.F.

    1996-11-01

    This report covers tasks 8.1, 8.1.1, and 8.2. The primary objective of Task 8.1, Particulates Flow Deposition, is to characterize the particulate generated in an operating gas turbine combined cycle (GTCC) power plant whose configuration approximates that proposed for an ATS power plant. In addition, the task is to evaluate the use of full-flow filtering to reduce the steam particulate loads. Before the start of this task, GE had already negotiated an agreement with the candidate power plant, piping and a filter unit had already been installed at the power plant site, and major elements of the data acquisition system had been purchased. The objective of Task 8.1.1, Coolant Purity, is to expose typical ATS gas turbine airfoil cooling channel geometries to real steam flow to determine whether there are any unexpected deposit formations. The task is a static analog of the centrifugal deposition rig trials of Task 8.2, in which a bucket channel return bend is exposed to steam flow. Two cooling channel geometries are of primary interest in this static exposure. The primary objective of Task 8.2, Particle Centrifugal Sedimentation, is to determine the settling characteristics of particles in a cooling stream from an operating gas turbine combined cycle (GTCC) power plant when that stream is ducted through a passage experiencing the G-loads expected in a simulated bucket channel specimen representative of designs proposed for an ATS gas turbine.

  14. Characterizing and Mitigating Work Time Inflation in Task Parallel Programs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olivier, Stephen L.; de Supinski, Bronis R.; Schulz, Martin; Prins, Jan F.

    2013-01-01

    Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling overheads, and work time inflation – additional time spent by threads in a multithreaded computation beyond the time required to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various task parallel OpenMP applications and diagnose the causes of work time inflation in those applications. Increased data access latency can cause significant work time inflation in NUMAmore » systems. Our locality framework for task parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler.« less

  15. Theory of Electron Nematic Order in LaOFeAs (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Theory of Electron Nematic Order in LaOFeAs Citation Details ... OSTI Identifier: 975035 Report Number(s): SLAC-PUB-13975 ... Language: English Subject: 72 PHYSICS OF ELEMENTARY ...

  16. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  17. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume...

  18. YMGI: Order (2011-SCE-1605)

    Broader source: Energy.gov [DOE]

    DOE ordered YMGI Group LLC to pay a $31,400 civil penalty after finding (1) YMGI had failed to certify that certain models of residential central air conditioners comply with the applicable energy conservation standards and (2) YMGI had distributed in commerce model TTWC-18K-31B, a through-the-wall air conditioner that does not meet the applicable energy conservation standard.

  19. Cooper: Order (2012-SE-4701)

    Broader source: Energy.gov [DOE]

    DOE ordered Cooper Power Systems, LLC to abide by the Compromise Agreement, which waived the civil penalty after finding Cooper had inadvertently distributed in commerce in the U.S. three models (total of five units) of distribution transformers. Cooper agrees to abide by the terms of a Notice of Noncompliance Determination to be issued pursuant to 10 C.F.R. § 429.114.

  20. Direct space-charge effects on the ILC damping rings: Task ForceReport

    SciTech Connect (OSTI)

    Venturini, Marco; Oide, Katsunobu

    2006-02-28

    In 2005 a global effort was initiated to conduct studies for a baseline recommendation for the various components of the International Linear Collider (ILC). Work for the damping rings was subdivided in a number of tasks. This Report contains the contribution to this effort by the Authors as Coordinators of the Task Force on space charge. (A slightly reduced version of this document can also be found as part of the ''Configuration Studies and Recommendations for the ILC Damping Rings'', Edts. A. Wolski, et al., LBNL-59449.) The studies documented in this Report were carried out for several of the reference lattices considered for the baseline recommendation. Space charge effects were found to be quite noticeable in the lattices with the longest circumference. Although it does not appear that they could prevent operation of any machine having such lattices they do favor a choice of a ring design with shorter ({approx}6km) circumference at 5 GeV.