Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Crude Oil Stocks at Tank Farms & Pipelines  

Gasoline and Diesel Fuel Update (EIA)

Stocks at Tank Farms & Pipelines Stocks at Tank Farms & Pipelines (Thousand Barrels) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 263,633 264,749 252,781 242,174 232,837 248,898 1981-2013 East Coast (PADD 1) 2,000 1,635 1,585 1,793 1,507 2,033 1981-2013 Midwest (PADD 2) 100,842 101,525 99,186 89,116 84,420 84,878 1981-2013 Cushing, OK 49,237 50,172 48,671 40,459 34,809 33,017 2004-2013 Gulf Coast (PADD 3) 121,316 121,816 113,846 112,745 112,059 122,497 1981-2013 Rocky Mountain (PADD 4) 12,813 12,512 12,003 12,181 12,858 12,956 1981-2013 West Coast (PADD 5) 26,662 27,261 26,161 26,339 21,993 26,534 1981-2013

2

In-Situ Repairs of Oil Industry Pipelines, Tanks and Vessels by ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Metal arc welding under oil (MAW-UO) is a new, revolutionary process to repair a pipeline, tank or vessel by welding in case of flaws and...

3

An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm  

SciTech Connect

The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and pipeline removal or treatment technologies. The evaluation accounted for the potential high worker risk, high cost, and schedule impacts associated with characterization, removal, or treatment of pipelines within Waste Management Area C for closure. This assessment was compared to the unknown, but estimated low, long-term impacts to groundwater associated with remaining waste residuals should the pipelines be left "as is" and an engineered surface barrier or landfill cap be placed. This study also recommended that no characterization or closure actions be assumed or started for the pipelines within Waste Management Area C, likewise with the premise that a surface barrier or landfill cap be placed over the pipelines.

Badden, Janet W. [Washington River Protection Solutions, LLC, Richland, WA (United States); Connelly, Michael P. [Washington River Protection Solutions, LLC, Richland, WA (United States); Seeley, Paul N. [Cenibark International, Inc., Kennewick (United States); Hendrickson, Michelle L. [Washington State Univ., Richland (United States). Dept. of Ecology

2013-01-10T23:59:59.000Z

4

Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102  

SciTech Connect

The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

Y Onishi; KP Recknagle; BE Wells

2000-08-09T23:59:59.000Z

5

FINAL REPORT FOR THE EROSION AND CORROSION ANALYSIS OF WASTE TRANSFER PRIMARY PIPELINE SECTIONS FROM 241-SY TANK FARM  

Science Conference Proceedings (OSTI)

Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes. The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron, calcium, and chromium. This layer was removed by a cleaning process that left a pipe surface continuous in iron oxide/hydroxide (corrosion) with pockets of aluminum oxide, possibly gibbsite. The corrosion layer was ~ 50 11m (2 mil) thick over non-continuous pits less than ~ 50 11m deep (2 mils). Small particles of aluminum oxide were also detected under the corrosion layer. The ultrasonic transducer analysis of SN-278, like the previous primary pipes, did not reveal any noticeable thinning of the pipe wall. Analysis of the coupon cut from the pipe showed that the inside surface had a layer of tank waste residue that was partially detached from the pipe wall. This layer was easily scraped from the surface and was composed of two separate layers. The underlying layer was ~ 350 11m (14 mils) thick and composed of a cementation of small aluminum oxide (probably gibbsite) particles. A thinner layer on top of the aluminum oxide layer was rich in carbon and chlorine. Scattered pitting was observed on the inside pipe surface with one pit as deep as 200 11m (8 mils).

PAGE JS; WYRWAS RB; COOKE GA

2012-10-04T23:59:59.000Z

6

Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm  

SciTech Connect

Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes. The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron, calcium, and chromium. This layer was removed by a cleaning process that left a pipe surface continuous in iron oxide/hydroxide (corrosion) with pockets of aluminum oxide, possibly gibbsite. The corrosion layer was ~ 50 11m (2 mil) thick over non-continuous pits less than ~ 50 11m deep (2 mils). Small particles of aluminum oxide were also detected under the corrosion layer. The ultrasonic transducer analysis of SN-278, like the previous primary pipes, did not reveal any noticeable thinning of the pipe wall. Analysis of the coupon cut from the pipe showed that the inside surface had a layer of tank waste residue that was partially detached from the pipe wall. This layer was easily scraped from the surface and was composed of two separate layers. The underlying layer was ~ 350 11m (14 mils) thick and composed of a cementation of small aluminum oxide (probably gibbsite) particles. A thinner layer on top of the aluminum oxide layer was rich in carbon and chlorine. Scattered pitting was observed on the inside pipe surface with one pit as deep as 200 11m (8 mils).

Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

2012-10-04T23:59:59.000Z

7

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

8

Pipeline Safety  

Science Conference Proceedings (OSTI)

Pipeline Safety. Summary: Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. ...

2012-11-13T23:59:59.000Z

9

Pipeline Morphing and Virtual Pipelines  

E-Print Network (OSTI)

Pipeline morphing is a simple but effectivetechnique for reconfiguring pipelined FPGA designs at run time. By overlapping computation and reconfiguration, the latency associated with emptying and refilling a pipeline can be avoided. Weshowhow morphing can be applied to linear and mesh pipelines at both word-level and bit-level, and explain how this method can be implemented using Xilinx 6200 FPGAs. We also present an approach using morphing to map a large virtual pipeline onto a small physical pipeline, and the trade-offs involved are discussed.

W. Luk; N. Shirazi; S. R. Guo; P. Y. K. Cheung

1997-01-01T23:59:59.000Z

10

Development of simplified crack arrest measurements and application procedures for gas storage tanks and pipelines. Final report, November 1986-February 1992  

SciTech Connect

There has been concern with regard to the presence of weld-induced fabrication flaws in 9 percent nickel steel LNG storage tanks. Previous studies have shown that structural integrity can be assured if the material has the ability to arrest a running crack with an adequate margin of safety. Current experiment used to demonstrate crack arrest capability requires large specimens and thus is not acceptable for routine industry applications. A simplified test and analysis method to determine crack arrest toughness is of great value to the gas industry.

Kanninen, M.F.; Dexter, R.J.; Tweedy, L.K.

1992-02-01T23:59:59.000Z

11

Pipeline ADC Design Methodology  

E-Print Network (OSTI)

Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

Zhao, Hui

2012-01-01T23:59:59.000Z

12

NIST MSQC Pipeline  

Science Conference Proceedings (OSTI)

NIST MSQC Pipeline. Software for Monitoring LC-MS Performance. ... Installation Instructions. 1. Download the latest NIST MSQC Pipeline release. ...

2013-07-17T23:59:59.000Z

13

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topics 3 Overview of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control...

14

Pipeline Safety (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

15

Pipeline Operations Program (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

16

Hydrogen Pipeline Safety  

Science Conference Proceedings (OSTI)

... data, we can model the performance of pipeline materials and make predictions about the safe operating limits of pipelines carrying pressurized ...

2013-01-31T23:59:59.000Z

17

Gas Pipeline Safety (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

18

Pipeline Safety (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

19

Components in the Pipeline  

Science Conference Proceedings (OSTI)

Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

Gorton, Ian; Wynne, Adam S.; Liu, Yan (Jenny); Yin, Jian

2011-02-24T23:59:59.000Z

20

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2  Overview and Status of SRS Tank Closure Program  Issues/Challenges  Communications  Schedule Performance  Ceasing Waste Removal  Compliance with SC Water Protection Standards  Questions? Topics 3 Overview of SRS Tank Closure Program  Two Tank Farms - F Area and H Area  Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act  Three agency Federal Facility Agreement (FFA)  DOE, SCDHEC, and EPA  51 Tanks  24 old style tanks (Types I, II and IV)  Do not have full secondary containment  FFA commitments to close by 2022  2 closed in 1997

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gas Pipelines:- long, thin, bombs?  

Science Conference Proceedings (OSTI)

... Gas Pipelines:- long, thin, bombs? Gas pipelines attract substantial reseach to improve safety and cut costs. They operate ...

22

Keystone XL pipeline update  

Energy.gov (U.S. Department of Energy (DOE))

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

23

Energy-efficient pipelines  

E-Print Network (OSTI)

We discuss the design of energy-efficient pipelines for asynchronous VLSI architectures. To maximize throughput in asynchronous pipelines it is often necessary to insert buffer stages, increasing the energy overhead. Instead of optimizing pipelines for minimum energy or maximum throughput, we consider a joint energy-time metric of the form ? ?,where?is the energy per operation and ? is the time per operation. We show that pipelines optimized for the ? ? energy-time metric may need fewer buffer stages and we give bounds when such stages can be removed. We present several common asynchronous pipeline structures and their energy-time optimized solutions. 1.

John Teifel; David Fang; David Biermann; Clint Kelly; Rajit Manohar

2002-01-01T23:59:59.000Z

24

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

25

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

Gasoline and Diesel Fuel Update (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

26

The Noao Newfirm Pipeline  

E-Print Network (OSTI)

The NOAO NEWFIRM Pipeline produces instrumentally calibrated data products and data quality measurements from all exposures taken with the NOAO Extremely Wide-Field Infrared Imager (NEWFIRM) at the KPNO Mayall 4-meter telescope. We describe the distributed nature of the NEWFIRM Pipeline, the calibration data that are applied, the data quality metadata that are derived, and the data products that are delivered by the NEWFIRM Pipeline.

Swaters, R A; Dickinson, M E

2009-01-01T23:59:59.000Z

27

Product Pipeline Reports Tutorial  

Gasoline and Diesel Fuel Update (EIA)

Home > Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player....

28

Pipeline Construction Guidelines (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has provisions for...

29

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

30

Pipeline under construction Sea Proposed/planned pipeline Possible ...  

U.S. Energy Information Administration (EIA)

Arab Gas Pipeline Maghreb-Europe GME Shah-Deniz Statfjord Ormen Lange TrollTTrollroll ... Greece-Italy Interconnector Turkey-Greece Interconnector South Caucasus Pipeline

31

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

Gasoline and Diesel Fuel Update (EIA)

through 20072008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary...

32

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

33

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

34

Aspen Pipeline | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Aspen Pipeline Jump to: navigation, search Name Aspen Pipeline Place Houston, Texas Zip 77057...

35

Natural Gas Pipeline Safety (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

36

Dual Tank Fuel System  

DOE Patents (OSTI)

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

37

BP and Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

38

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

39

GAS PIPELINE PIGABILITY  

Science Conference Proceedings (OSTI)

In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

Ted Clark; Bruce Nestleroth

2004-04-01T23:59:59.000Z

40

Composites Technology for Hydrogen Pipelines  

E-Print Network (OSTI)

Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group MeetingPipeline Working Group Meeting Aiken;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

42

DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network (OSTI)

DOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects #12;ppt00 3 Hydrogen Pipeline and the customer. #12;ppt00 4 Pipeline Photos #12;ppt00 5 Pipeline Photos #12;ppt00 6 Pipeline Photos #12;ppt00 7

43

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

44

Highly Pipelined Asynchronous FPGAs  

E-Print Network (OSTI)

We present the design of a high-performance, highly pipelined asynchronous FPGA. We describe a very ne-grain pipelined logic block and routing interconnect architecture, and show how asynchronous logic can eciently take advantage of this large amount of pipelining. Our FPGA, which does not use a clock to sequence computations, automatically \\selfpipelines " its logic without the designer needing to be explicitly aware of all pipelining details. This property makes our FPGA ideal for throughput-intensive applications and we require minimal place and route support to achieve good performance. Benchmark circuits taken from both the asynchronous and clocked design communities yield throughputs in the neighborhood of 300-400 MHz in a TSMC 0.25m process and 500-700 MHz in a TSMC 0.18m process.

John Teifel; Rajit Manohar

2004-01-01T23:59:59.000Z

45

Synchronous interlocked pipelines  

E-Print Network (OSTI)

In a circuit environment that is becoming increasingly sensitive to dynamic power dissipation and noise, and where cycle time available for control decisions continues to decrease, locality principles are becoming paramount in controlling advancement of data through pipelined systems. Achieving fine grained power down and progressive pipeline stalls at the local stage level is therefore becoming increasingly important to enable lower dynamic power consumption while keeping introduced switching noise under control as well as avoiding global distribution of timing critical stall signals. It has long been known that the interlocking properties of asynchronous pipelined systems have a potential to provide such benefits. However, it has not been understood how such interlocking can be achieved in synchronous pipelines. This paper

Hans M. Jacobson; Prabhakar N. Kudva; Pradip Bose; Peter W. Cook; Stanley E. Schuster

2002-01-01T23:59:59.000Z

46

Synchronous Interlocked Pipelines  

E-Print Network (OSTI)

In a circuit environment that is becoming increasingly sensitive to dynamic power dissipation and noise, and where cycle time available for control decisions continues to decrease, locality principles are becoming paramount in controlling advancement of data through pipelined systems. Achieving fine grained power down and progressive pipeline stalls at the local stage level is therefore becoming increasingly important to enable lower dynamic power consumption while keeping introduced switching noise under control as well as avoiding global distribution of timing critical stall signals.

Hans Jacobson Prabhakar; Hans M. Jacobson; Prabhakar N. Kudva; Pradip Bose; Peter W. Cook; Stanley E. Schuster; Eric G. Mercer; Chris J. Myers

2001-01-01T23:59:59.000Z

47

Capturing Latino Students in the Academic Pipeline  

E-Print Network (OSTI)

The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

Gndara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

1998-01-01T23:59:59.000Z

48

FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD  

SciTech Connect

The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

Servin, M. A. [Washington River Protection Solutions, LLC, Richland, WA (United States); Garfield, J. S. [AEM Consulting, LLC (United States); Golcar, G. R. [AEM Consulting, LLC (United States)

2012-12-20T23:59:59.000Z

49

Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101  

SciTech Connect

The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus, natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.

Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.; Mahoney, Lenna A.

2003-10-01T23:59:59.000Z

50

Type I Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

51

Pipeline Setback Ordinance (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings Pipeline Setback Ordinance (Minnesota) Pipeline Setback Ordinance (Minnesota) Eligibility...

52

Dataplot Commands for Alaska Pipeline Case Study  

Science Conference Proceedings (OSTI)

Dataplot Commands for Alaska Pipeline Case Study. Set Software Options and Get Started, . . Starting Alaska Pipeline Calibration Case Study . . ...

2012-03-31T23:59:59.000Z

53

Collaborative Visualization and the Analysis Pipeline | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science & Engineering Applications Collaborative Visualization and the Analysis Pipeline Collaborative Visualization and the Analysis Pipeline Integration of Access Grid and...

54

AX Tank Farm tank removal study  

Science Conference Proceedings (OSTI)

This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1999-02-24T23:59:59.000Z

55

Operation chaining asynchronous pipelined circuits  

Science Conference Proceedings (OSTI)

We define operation chaining (op-chaining) as an optimization problem to determine the optimal pipeline depth for balancing performance against energy demands in pipelined asynchronous designs. Since there are no clock period requirements, asynchronous ...

Girish Venkataramani; Seth C. Goldstein

2007-11-01T23:59:59.000Z

56

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

57

Causes of Pipeline Failures  

Science Conference Proceedings (OSTI)

Table 1   Types of defects that can cause pipeline failures...pipe body Mechanical damage Environmental causes Corrosion (external or internal) Hydrogen-stress cracking External stress corrosion cracking Internal sulfide-stress cracking Hydrogen blistering Fatigue Miscellaneous causes Secondary loads Weldments to pipe surface Wrinkle bends Internal combustion...

58

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

59

AX Tank Farm tank removal study  

SciTech Connect

This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1998-10-14T23:59:59.000Z

60

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

cost dependent on pipeline length and diameter against thedescribe with only the pipeline length and diameter. Labordescribed by the pipeline diameter and length alone. In some

Parker, Nathan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The SINFONI pipeline  

E-Print Network (OSTI)

The SINFONI data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Flow Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. For Data Flow Operations, it fulfills several functions: creating master calibrations; monitoring instrument health and data quality; and reducing science data for delivery to service mode users. The pipeline is available to the science community for reprocessing data with personalised reduction strategies and parameters. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared (1.1-2.45 um) at the ESO-VLT. SINFONI was developed and build by ESO and MPE in collaboration with NOVA. It consists of the SPIFFI integral field spectrograph and an adaptive optics module which allows diffraction limited and seeing limited observations. The image slicer of SPIFFI chops the SINFONI field of view on the sky in 32 slices which are re-arranged to a pseudo slit. The latter is dispersed by one of the four possible gratings (J, H, K, H+K). The detector thus sees a spatial dimension (along the pseudo-slit) and a spectral dimension. We describe in this paper the main data reduction procedures of the SINFONI pipeline, which is based on SPRED - the SPIFFI data reduction software developed by MPE, and the most recent developments after more than a year of SINFONI operations.

Andrea Modigliani; Wolfgang Hummel; Roberto Abuter; Paola Amico; Pascal Ballester; Richard Davies; Christophe Dumas; Mattew Horrobin; Mark Neeser; Markus Kissler-Patig; Michele Peron; Juha Rehunanen; Juergen Schreiber; Thomas Szeifert

2007-01-10T23:59:59.000Z

62

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network (OSTI)

Advanced pipeline monitoringDesign of mobile pipeline floating sensor SewerSnortIllustration of mobile pipeline floating sensor monitoring

Lim, Jungsoo

2012-01-01T23:59:59.000Z

63

Crude Oil Tank Farms and Pipelines Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

64

HANFORD TANK CLEANUP UPDATE  

SciTech Connect

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

65

Enhancing protection for unusually sensitive ecological areas from pipeline releases  

E-Print Network (OSTI)

ECOLOGICAL AREAS FROM PIPELINE RELEASES Christina Sames;Administration, Office of Pipeline Safety, DPS-10/ 400 7thof a hazardous liquid pipeline accident. Pipeline operators

Sames, Christina; Fink, Dennis

2001-01-01T23:59:59.000Z

66

Tank 241-AW-101 tank characterization plan  

DOE Green Energy (OSTI)

The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists.

Sathyanarayana, P.

1994-11-22T23:59:59.000Z

67

Multiphase flow reconstruction in oil pipelines by capacitance tomography using simulated annealing  

E-Print Network (OSTI)

simulated annealing (SA) algorithm is applied to reconstruct permittivity images of real two-phase gas- oil such as mixing or stirring vessels, fluidized bed reactors, separator tanks and pipelines carrying multiphase in a cylindrical configuration close to the electrodes in order to improve resolution in the calculation

Martin, Roland

68

EIS-0303: Savannah River Site High-Level Waste Tank Closure | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03: Savannah River Site High-Level Waste Tank Closure 03: Savannah River Site High-Level Waste Tank Closure EIS-0303: Savannah River Site High-Level Waste Tank Closure SUMMARY This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE selected the preferred alternative identified in the Final EIS, Stabilize Tanks-Fill with Grout, to guide development and implementation of closure of the high-level waste tanks and associated equipment at the Savannah River Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 5, 2012 EIS-0303: Supplement Analysis Savannah River Site High-Level Waste Tank Closure, SC July 8, 2011 EIS-0303: Notice of Intent to Prepare an Environmental Impact Statement

69

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

70

Instrumented Pipeline Initiative  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

Thomas Piro; Michael Ream

2010-07-31T23:59:59.000Z

71

Pipeline corridors through wetlands  

SciTech Connect

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

1992-12-01T23:59:59.000Z

72

Pipeline corridors through wetlands  

Science Conference Proceedings (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

1992-01-01T23:59:59.000Z

73

Spill, RFG rules promise trouble for U. S. pipelines. [ReFormulated Gasoline  

Science Conference Proceedings (OSTI)

The effects of current and impending governmental regulations on US pipeline operations occupied much of April's API Pipeline Conference in Houston. Entire sessions were devoted to ramifications of the Oil Pollution Act of 1990 and governmentally mandated rules for reformulated gasoline. Other papers discussed how the US Federal Energy Regulatory Commission may regulate oil-pipeline rates in the future and what issues individual state legislatures may be examining. If pipeline operators weren't hearing what governments planned, they were hearing what their own industry wanted them to do, mostly in the form of standards, such as API 2610 for terminal and tank facilities, or recommended practices, as for ensuring crude oil quality at terminal and tank sites. The paper discusses the Oil Pollution Act rules; contingency plans proposed by the EPA; NOAA proposals for natural-resource damage assessments; major regulatory issues that will affect pipelines in the future; liabilities and documentation associated with RFG in pipelines; product codes; transfer documentation; operation; oversight programs; and unanswered questions.

True, W.R.

1994-06-06T23:59:59.000Z

74

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > U.S ... The EIA has determined that the informational map displays here do not raise security ...

75

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

76

Pipelines (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Minnesota) Pipelines (Minnesota) Pipelines (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal. Special rules apply to pipelines used to carry natural gas at a pressure of more than 125

77

Tank 241-S-107 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues (Conway 1993). The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process``. This document satisfies that requirement for tank 241-S-107 (S-107) sampling activities. The report gives a summary of descriptive information available on Tank S-107. Included are the present status and physical description of the tank, its age, process history, and expected tank contents from previous sampling and analytical data. The different types of waste, by layer, for Tank S-107 will also be discussed. As of December 1994, Tank S-107 has been categorized as sound and was partially isolated in December 1982. It is a low-heat load tank and is awaiting stabilization. Tank S-107 is expected to contain two primary layers of waste. The bottom layer should contain a mixture of REDOX waste and REDOX cladding waste. The second layer contains S1 saltcake (waste generated from the 242-S evaporator/crystallizer from 1973 until 1976), and S2 salt slurry (waste generated from the 242-S evaporator-crystallizer from 1977 until 1980).

Jo, J.

1995-04-06T23:59:59.000Z

78

Natural Gas Pipeline & Distribution Use  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Data Series: Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential...

79

ORNL Genome Analysis Pipeline - Eukaryotic  

NLE Websites -- All DOE Office Websites (Extended Search)

Grail (Microbial Gene Prediction System Internet Link) GrailEXP Genome Analysis Pipeline DomainParser PROSPECT (PROtein Structure Prediction and Evaluation Computer...

80

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

FINAL REPORT Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Septic Tanks (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

82

Leaking Pipelines: Doctoral Student Family Formation  

E-Print Network (OSTI)

Sari M. Why the Academic Pipeline Leaks: Fewer Men thanone reason the academic pipeline leaks. 31 Blair-Loy, Mary.to leak out of the academic pipeline. The term academic

Serrano, Christyna M.

2008-01-01T23:59:59.000Z

83

Tank 241-U-111 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-111.

Carpenter, B.C.

1995-01-24T23:59:59.000Z

84

Tank 241-B-112 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.`` This document satisfies that requirement for tank 241-B-112 (B-112). Tank B-112 is currently a non-Watch List tank; therefore, the only applicable DQO as of January 1995 is the Tank Safety Screening Data Quality Objective, which is described below. Tank B-112 is expected to have three primary layers. A bottom layer of sludge consisting of second-cycle waste, followed by a layer of BY saltcake and a top layer of supernate.

Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-06T23:59:59.000Z

85

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

86

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

2005-07-20T23:59:59.000Z

87

Tank 241-AZ-102 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

88

Tank 241-AZ-101 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

89

Gas Pipelines (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Texas) Gas Pipelines (Texas) Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government...

90

Pipeline Safety Rule (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings Pipeline Safety Rule (Tennessee) Pipeline Safety Rule (Tennessee) Eligibility Commercial...

91

NIST Building Facility for Hydrogen Pipeline Testing  

Science Conference Proceedings (OSTI)

... long-term exposure to hydrogen can embrittle existing pipelines, increasing the ... term service tests and apply them to study pipeline materials and ...

2012-10-02T23:59:59.000Z

92

EIA - Natural Gas Pipeline System - Midwest Region  

U.S. Energy Information Administration (EIA)

Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links. Overview Twenty-six interstate and at ...

93

Gas Pipeline Securities (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Securities (Indiana) Gas Pipeline Securities (Indiana) Eligibility Utility Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative Fuel...

94

Natural Gas Pipeline Projects Completed in 2003  

U.S. Energy Information Administration (EIA)

Table 2. Natural Gas Pipeline Projects Completed in 2003; Ending Region & State: Begins in State - Region: Pipeline/Project Name: FERC Docket ...

95

Machinist Pipeline/Apprentice Program Program Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

96

Three dimensional scour along offshore pipelines.  

E-Print Network (OSTI)

??Three-dimensional scour propagation along offshore pipelines is a major reason to pipeline failures in an offshore environment. Although the research on scour in both numerical (more)

Yeow, Kervin

2007-01-01T23:59:59.000Z

97

Time-Constrained Loop Pipelining  

Science Conference Proceedings (OSTI)

This paper addresses the problem of Time-Constrained Loop Pipelining, i.e. given a fixed throughput, finding a schedule of a loop which minimizes resource requirements. This paper proposes a methodology, called TCLP, based on dividing the problem into ... Keywords: loop pipelining, scheduling, timing and resource contraints, register optimization

Fermin Sanchez

1995-12-01T23:59:59.000Z

98

Composites Technology for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Composites Technology Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group Meeting Pipeline Working Group Meeting Aiken, South Carolina Aiken, South Carolina September 25-26, 2007 September 25-26, 2007 Managed by UT-Battelle for the Department of Energy 2 Managed by UT Battelle for the Department of Energy Presentation name - _ Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate application of has excellent burst and collapse composite, fiber-reinforced polymer pipeline pressure ratings, large tensile technology for hydrogen transmission and and compression strengths, and distribution. superior chemical and corrosion resistance. Long lengths can be

99

Tank Waste Corporate Board Meeting 11/06/08 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11/06/08 11/06/08 Tank Waste Corporate Board Meeting 11/06/08 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 6th, 2008. Note: (Please contact Steven Ross at steven.ross@em.doe.gov for a HLW Glass Waste Loadings version with animations on slide 6). Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop The Way Ahead - West Valley Demonstration Project High-Level Liquid Waste Tank Integrity Workshop - 2008 Savannah River Tank Waste Residuals Hanford Tank Waste Residuals HLW Glass Waste Loadings High-Level Waste Corporate Board Performance Assessment Subcommittee More Documents & Publications Tank Waste Corporate Board Meeting 11/18/10 System Planning for Low-Activity Waste at Hanford Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

100

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-12-31T23:59:59.000Z

102

Pipeline Safety Program he Oak Ridge National  

E-Print Network (OSTI)

miles of natural gas and hazardous liquid pipelines. To assist PHMSA accomplish this mission, ORNL Analysis Transportation Decision Support Systems Transportation Network Routing Models Natural gas pipeline operators in accordance with the following Federal pipeline safety regulations 49 CFR 192 - Gas Pipelines

103

Natural gas pipeline technology overview.  

Science Conference Proceedings (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

104

DOE Hydrogen Pipeline Working Group Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Pipeline Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen Pipeline - Scope of Presentation Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority. Cross property of third party and/or public properties for delivery to customers. Does not include in-plant or in-house hydrogen piping. Does not include piping (aboveground or underground) that delivers to a customer if all property is owned and controlled by Air Products and the customer. ppt00 4 Pipeline Photos ppt00 5 Pipeline Photos ppt00 6 Pipeline Photos ppt00 7 Pipeline Photos ppt00 8 Pipeline Photos ppt00 9 Overview of North American

105

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

Information Center

2007-06-01T23:59:59.000Z

106

Tank 48 Treatment Process  

-Reduce elutriation of particulates containing coal System planning: Sludge batch planning/DWPF WAC-Evaluate Tank Farm and DWPF coal capability

107

VNG's Hampton Roads Pipeline Crossing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VNG's Hampton Roads Pipeline Crossing VNG's Hampton Roads Pipeline Crossing FUPWG Conference Fall 2008 Williamsburg, Virginia Connection to DTI at Quantico Columbia Limitations South Hampton Roads served by a single pipeline Southside dependent on back up systems LNG Propane/air Two supply sources to VNG What if we connected pipelines? It would take Two Water Crossings Two Compressor Stations Construction in densely populated cities It could Deliver over 200,000 Dth of incremental supply Serve VNG, Columbia and Dominion customers ...we would get... Hampton Roads Crossing - HRX Hampton / Newport News Craney Island Norfolk 21 miles of 24" pipe 7 miles in Hampton/Newport News 4 miles in Norfolk 10 miles of water and island crossing 4 mile harbor crossing 4.5 miles on Craney

108

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

109

Common Pipeline Carriers (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

110

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Barbara Frame, Mike Simonson, Cliff Eberle, Jim Blencoe, and Tim Armstrong Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Oak Ridge National Laboratory 2 OAK...

111

Interstate Natural Gas Pipelines (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute confers upon the Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries of...

112

PIPELINES AS COMMUNICATION NETWORK LINKS  

SciTech Connect

This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

2005-03-14T23:59:59.000Z

113

Pipeline Processing of VLBI Data  

E-Print Network (OSTI)

As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.

C. Reynolds; Z. Paragi; M. Garrett

2002-05-08T23:59:59.000Z

114

Decoupled Sampling for Graphics Pipelines  

E-Print Network (OSTI)

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

115

Magnetic Resonance Connectome Automated Pipeline  

E-Print Network (OSTI)

This manuscript presents a novel, tightly integrated pipeline for estimating a connectome, which is a comprehensive description of the neural circuits in the brain. The pipeline utilizes magnetic resonance imaging (MRI) data to produce a high-level estimate of the structural connectivity in the human brain. The Magnetic Resonance Connectome Automated Pipeline (MRCAP) is efficient and its modular construction allows researchers to modify algorithms to meet their specific requirements. The pipeline has been validated and over 200 connectomes have been processed and analyzed to date. This tool enables the prediction and assessment of various cognitive covariates, and this research is applicable to a variety of domains and applications. MRCAP will enable MR connectomes to be rapidly generated to ultimately help spur discoveries about the structure and function of the human brain.

Gray, William R; Vogelstein, Joshua T; Landman, Bennett A; Prince, Jerry L; Vogelstein, R Jacob

2011-01-01T23:59:59.000Z

116

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Warren R. U.S. interstate pipelines begin 1993 on upbeat. 66. ? True, Warren R. Current pipeline costs. Oil & GasWarren R. U.S. interstate pipelines ran more efficiently in

Parker, Nathan

2004-01-01T23:59:59.000Z

117

Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington  

SciTech Connect

This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

Freeman-Pollard, J.R.

1994-03-02T23:59:59.000Z

118

The pipeline and future of drug development in schizophrenia  

E-Print Network (OSTI)

The Pipeline and Future of Drug Development in SchizophreniaThe Drug Discovery Pipeline in Schizophrenia Keywords:discuss the current pipeline of drugs for schizophrenia,

Gray, J A; Roth, B L

2007-01-01T23:59:59.000Z

119

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

120

Near Tank Treatment System  

Hanford High Level Waste: S/SX Tanks TEM Images of Actual Waste Boehmite 7 (a) 0.2 m (b) 0.2 m (c) 0.5 m (d) 0.2 m U and Mn particles . Near Tank Treatment System

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SRS Tank Closure Regulatory Developments  

Order 435.1 and State-required documents are prepared and in review Tank-specific documents for Tanks 18, 19, 5 and ... Solids Volume (gal) Solids ...

122

Tank characterization reference guide  

Science Conference Proceedings (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

123

Pipeline Safety (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Public Utilities Commission The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities engaged in the transportation of natural gas and other gas by pipeline. The Commission is authorized to enforce federal safety standards as an agent for the U.S. Department of Transportation's Office of Pipeline Safety. The safety standards apply to the design, installation, operation,

124

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

125

Tank 241-U-202 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-U-202.

Schreiber, R.D.

1995-02-21T23:59:59.000Z

126

Tank 241-BY-106 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-106.

Schreiber, R.D.

1995-01-24T23:59:59.000Z

127

Tank 241-C-102 tank characterization plan  

SciTech Connect

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-102.

Schreiber, R.D.

1995-01-01T23:59:59.000Z

128

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

Baker, T.H.; Ott, H.L.

1994-01-11T23:59:59.000Z

129

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

Baker, Tod H. (O' Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

1994-01-01T23:59:59.000Z

130

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

131

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

132

TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward  

E-Print Network (OSTI)

1 TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell..............................................................................................................................................................2 Appendix A: MLM Pipeline Diagrams..........................................................................................................3 Appendix B: GLM Pipeline Diagrams

Buckler, Edward S.

133

Application Filing Requirements for Natural Gas Pipeline Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas Pipeline Construction Projects...

134

Standard guide for sampling radioactive tank waste  

E-Print Network (OSTI)

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

135

Method and system for pipeline communication  

DOE Patents (OSTI)

A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

Richardson; John G. (Idaho Falls, ID)

2008-01-29T23:59:59.000Z

136

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

137

Maurer computers for pipelined instruction processing  

Science Conference Proceedings (OSTI)

We model micro-architectures with non-pipelined instruction processing and pipelined instruction processing using Maurer machines, basic thread algebra and program algebra. We show that stored programs are executed as intended with these micro-architectures. ...

J. a. Bergstra; C. a. Middelburg

2008-04-01T23:59:59.000Z

138

Co-scheduling hardware and software pipelines  

E-Print Network (OSTI)

In this paper we propose CO-Scheduling, a framework for simultaneous design of hardware pipelines struc-tures and software-pipelined schedules. Two important components of the Co-Scheduling framework are: (1) An extension to the analysis of hardware pipeline design that meets the needs of periodic (or software pipelined) schedules. Reservation tables, forbidden la-tencies, collision vectors, and state diagrams from classical pipeline theory are revisited and extended to solve the new problems. (2) An efficient method, based on the above extension of pipeline analysis, to perform (a) software pipeline scheduling and (b) hardware pipeline reconfiguration which are mutually compatible . The proposed method has been implemented and pre-liminary experimental results for 1008 kernel loops are reported. Co-scheduling successfully obtains a sched-ule for 95 % of these loops. The median time to obtain these schedules is 0.25 seconds on a Sparc-20. Keywords:

R. Govindarajan; Erik R. Altman; Guang R. Gao

1996-01-01T23:59:59.000Z

139

Department of Transportation Pipeline and Hazardous Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation...

140

Computer Science and Information Technology Student Pipeline  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pipeline Rupture: Review of Common Metallurgical Failure ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Failure Analysis and Prevention. Presentation Title, Pipeline Rupture: Review...

142

EIA - Natural Gas Pipeline Network - Depleted Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

143

Regional Profiles: Pipeline Capacity and Service  

U.S. Energy Information Administration (EIA)

Regional Profiles: Pipeline Capacity ... large petrochemical and electric utility industries drawn there ... accounts for large electricity load ...

144

Liquefaction and Pipeline Costs Bruce Kelly  

E-Print Network (OSTI)

1 Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8 total installed cost #12;6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and downtown data Verified that historical natural gas pipeline cost data

145

Pipeline Safety Program Oak Ridge National Laboratory  

E-Print Network (OSTI)

Pipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U support to the U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA). As a federal regulatory authority with jurisdiction over pipeline safety, PHMSA is responsible

146

Tassel Pipeline Tutorial (Command Line Interface)  

E-Print Network (OSTI)

Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

Buckler, Edward S.

147

Energy Reduction in California Pipeline Operations  

E-Print Network (OSTI)

Energy Reduction in California Pipeline Operations Industrial/Agriculture/Water End-Use PIER The Issue Fluid pipelines operating in California transport gasoline, fuel oil, jet fuel, crude, other hydrocarbons, and water, all vital to the wellbeing of Californias economy. These pipelines are also

148

California Energy Commission Pipeline Integrity Technology  

E-Print Network (OSTI)

California Energy Commission Pipeline Integrity Technology Demonstration Grant California Energy Solicitation Scope · The purpose of this solicitation is to demonstrate natural gas pipeline inspection using low cost/low power sensors ­ Improvement of existing pipeline inspection technology to identify

149

PIPENETa wireless sensor network for pipeline monitoring  

Science Conference Proceedings (OSTI)

US water utilities are faced with mounting operational and maintenance costs as a result of aging pipeline infrastructures. Leaks and ruptures in water supply pipelines and blockages and overflow events in sewer collectors cost millions of dollars a ... Keywords: Intel mote platforms, pipeline monitoring, water supply systems, wireless sensor networks

Ivan Stoianov; Lama Nachman; Sam Madden; Timur Tokmouline

2007-04-01T23:59:59.000Z

150

Tank 48 - Chemical Destruction  

SciTech Connect

Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

2013-01-09T23:59:59.000Z

151

Cryogenic Fuel Tank Draining  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

Analysis Model Donald; Donald Greer

1999-01-01T23:59:59.000Z

152

Intrastate Pipeline Safety (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the commissioner of public safety the

153

Clean Development Mechanism Pipeline | Open Energy Information  

Open Energy Info (EERE)

Clean Development Mechanism Pipeline Clean Development Mechanism Pipeline Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Development Mechanism Pipeline Agency/Company /Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation, Background analysis Resource Type: Dataset Website: www.cdmpipeline.org/overview.htm Clean Development Mechanism Pipeline Screenshot References: CDM Pipeline[1] Overview "The CDM/JI Pipeline Analysis and Database contains all CDM/JI projects that have been sent for validation/determination. It also contains the baseline & monitoring methodologies, a list of DOEs and several analyses. This monthly newsletter shows a sample of the analysis in the Pipeline. If you want more information, then look into the left column and click on the

154

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

155

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

156

Tank characterization for Double-Shell Tank 241-AP-102  

SciTech Connect

This document provides the characterization information and interprets the data for Double-Shell Tank AP-102.

DeLorenzo, D.S.; DiCenso, A.T.; Amato, L.C.; Weyns-Rollosson, M.I.; Smith, D.J. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Simpson, B.C.; Welsh, T.L. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

157

Workforce Pipeline | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Diversity Message from the Lab Director Diversity & Inclusion Advisory Council Workforce Pipeline Mentoring Leadership Development Policies & Practices Business Diversity Outreach & Education In the News High school workshop invites girls to explore STEM possibilities Daily Herald EcoCAR 2 competition drives auto engineers to excel Yuma (Ariz.) Sun Mississippi universities collaborate with national labs Mississippi Public Radio Workforce Pipeline Argonne seeks to attract, hire and retain a diverse set of talent in order to meet the laboratory's mission of excellence in science, engineering and technology. In order for Argonne to continue to carry out world-class science, the lab needs to seek out the best talent. Today, that talent is increasingly diverse. Argonne fosters an environment that welcomes and values a diverse

158

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

159

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Jaoude, Abdo Abou; El-Tawil, Khaled; Noura, Hassan; Ouladsine, Mustapha

2012-01-01T23:59:59.000Z

160

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) September 2004 Final Report on Benchmarking Emerging Pipeline Inspection Technologies Cofunded by Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) by Stephanie A. Flamberg and Robert C. Gertler September 2004 BATTELLE 505 King Avenue Columbus, Ohio 43201-2693 Neither Battelle, nor any person acting on their behalf: (1) Makes any warranty or representation, expressed or implied, with respect to the

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Time-Constrained Loop Pipelining  

E-Print Network (OSTI)

This paper addresses the problem of Time-Constrained Loop Pipelining, i.e. given a fixed throughput, finding a schedule of a loop which minimizes resource requirements. We propose a methodology, called TCLP, based on dividing the problem into two simpler and independent tasks: retiming and scheduling. TCLP explores different sets of resources, searchingfor a maximum resource utilization. This reduces area requirements. After a minimum set of resourceshas been found, the execution throughput is increased and the number of registers required by the loop schedule is reduced. TCLP attempts to generate a schedule which minimizes cost in time and area (resources and registers). The results show that TCLP obtains optimal schedules in most cases. 1 Introduction This paper presents TCLP, a methodology to solve TimeConstrained Loop Pipelining. TCLP is NP-complete [3]. Two types of timing constraints (TCs) have been considered in the literature: local TCs to specify minimum and/or maximum TCs ...

Fermn Sanchez; Jordi Cortadella

1995-01-01T23:59:59.000Z

162

Pipeline-Centric Provenance Model  

E-Print Network (OSTI)

In this paper we propose a new provenance model which is tailored to a class of workflow-based applications. We motivate the approach with use cases from the astronomy community. We generalize the class of applications the approach is relevant to and propose a pipeline-centric provenance model. Finally, we evaluate the benefits in terms of storage needed by the approach when applied to an astronomy application.

Groth, Paul; Juve, Gideon; Mehta, Gaurang; Berriman, Bruce

2010-01-01T23:59:59.000Z

163

An Oil Pipeline Design Problem  

Science Conference Proceedings (OSTI)

We consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points ... Keywords: Algorithms: interactive branch-and-bound with valid inequalities. industries, Applications: design problem-formulation and analysis. programming, Integer, Networks/graphs, Petroleum/natural gas: oil pipeline network design

Jack Brimberg; Pierre Hansen; Keh-Wei Lin; Nenad Mladenovic; Michle Breton

2003-03-01T23:59:59.000Z

164

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents (OSTI)

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

165

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736

166

Kinder Morgan Central Florida Pipeline Ethanol Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol shipments which involved chemically cleaning the pipeline, replacing pipeline equipment that was incompatible with ethanol and expanding storage capacity at its Orlando terminal to handle ethanol shipments.  Kinder Morgan is responding to customer interest in ethanol blending. Our Florida

167

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

168

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

169

Detection and Location of Damage on Pipelines  

SciTech Connect

The INEEL has developed and successfully tested a real-time pipeline damage detection and location system. This system uses porous metal resistive traces applied to the pipe to detect and locate damage. The porous metal resistive traces are sprayed along the length of a pipeline. The unique nature and arrangement of the traces allows locating the damage in real time along miles of pipe. This system allows pipeline operators to detect damage when and where it is occurring, and the decision to shut down a transmission pipeline can be made with actual real-time data, instead of conservative estimates from visual inspection above the area.

Karen A. Moore; Robert Carrington; John Richardson

2003-11-01T23:59:59.000Z

170

GLAST (FERMI) Data-Processing Pipeline  

Science Conference Proceedings (OSTI)

The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

2011-08-12T23:59:59.000Z

171

Natural Gas Pipeline and System Expansions  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1997 vii This special report examines recent expansions to the North American natural gas pipeline network

172

ORNL Genome Analysis Pipeline - Yeast (Saccharomyces cerevisiae...  

NLE Websites -- All DOE Office Websites (Extended Search)

Grail (Microbial Gene Prediction System Internet Link) GrailEXP Genome Analysis Pipeline DomainParser PROSPECT (PROtein Structure Prediction and Evaluation Computer Toolkit)...

173

Why improve the pipeline for comparative transcriptomics?  

NLE Websites -- All DOE Office Websites (Extended Search)

Plans Educational Resources MyJGI: Information for Collaborators Why improve the pipeline for comparative transcriptomics? The genomes of several brown rot and white rot fungi...

174

Acoustic system for communication in pipelines  

DOE Patents (OSTI)

A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

Martin, II, Louis Peter (San Ramon, CA); Cooper, John F. (Oakland, CA)

2008-09-09T23:59:59.000Z

175

4.6.2. Alaska Pipeline  

Science Conference Proceedings (OSTI)

4. Process Modeling 4.6. Case Studies in Process Modeling 4.6.2. Alaska Pipeline. Non-Homogeneous Variances, This ...

2012-03-31T23:59:59.000Z

176

Materials Solutions for Hydrogen Delivery in Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

welding filler wires and processes that would be suitable for construction of new pipeline infrastructure - To develop barrier coatings for minimizing hydrogen permeation in...

177

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

178

Ultrasonic Computerized Tomography of Pipelines for Continuous ...  

Science Conference Proceedings (OSTI)

Commercial handheld thickness gauging devices require direct access to pipelines and find limited applications due to the presence of physical obstacles or the...

179

Measuring wall forces in a slurry pipeline.  

E-Print Network (OSTI)

??Slurry transport is a key material handling technology in a number of industries. In oilsands ore transport, slurry pipelining also promotes conditioning to release and (more)

El-Sayed, Suheil

2010-01-01T23:59:59.000Z

180

Pipeline constraints in wholesale natural gas markets.  

E-Print Network (OSTI)

??Natural gas markets in the United States depend on an extensive network of pipelines to transport gas from production fields to end users. While these (more)

Avalos, Roger George.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA-802 WEEKLY PRODUCT PIPELINE REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-802, Weekly Product Pipeline Report Page 3 PART 4. DIESEL FUEL DOWNGRADED ULSD-- EIA Product Code 465, distillate fuel oil 15 ppm sulfur

182

Exploring Pipeline Dynamics to Connect New Markets  

U.S. Energy Information Administration (EIA)

Gas Shales in the United States. 8. Cumulative Unconventional Production, 2007-2030 (trillion cubic feet) 9. Rockies Express Pipeline (REX) 10.

183

Pipeline and Gas Journal`s 1998 annual pipeline directory and equipment guide  

Science Conference Proceedings (OSTI)

The tables provide information on line pipe sizes, walls, grades, and manufacturing processes. Data are presented by manufacturer within each country. Also tabulated are engineering and construction service companies, crude oil pipeline companies, products pipeline companies, natural gas pipeline companies, gas distribution companies, and municipal gas systems in the US. There is also a Canadian and an international directory.

NONE

1998-09-01T23:59:59.000Z

184

Structural Genomics of Minimal Organisms: Pipeline and Results  

E-Print Network (OSTI)

of Minimal Organisms: Pipeline and Results Sung-Hou Kim*,~500 genes, respectively). Pipeline: To achieve our mission,determination. Over all pipeline schemes for the single-path

Kim, Sung-Hou

2008-01-01T23:59:59.000Z

185

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network (OSTI)

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research pipelines from outofstate supply basins located in the southwestern United States, the Rocky Mountains, and Canada. These pipelines run throughout the state, including underneath high population areas

186

Optimization of energy and throughput for pipelined VLSI interconnect  

E-Print Network (OSTI)

given a wire length, optimized pipeline energy decreases asFigure 7 shows pipeline energy per bit versus wire length asOptimal pipeline depth is proportional to wire length, and

Hamilton, Kevin Clark

2010-01-01T23:59:59.000Z

187

Tank characterization data report: Tank 241-C-112  

Science Conference Proceedings (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-04-01T23:59:59.000Z

188

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network (OSTI)

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

189

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Hydrogen Pipeline 2005 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

190

Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Hydrogen Pipeline 2007 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

191

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

192

Penitas, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico...

193

Efficient Compression of CO2 and Pipeline Transport ...  

Science Conference Proceedings (OSTI)

... Final pressure around 1,500 to 2,200 psia for pipeline transport or re-injection. ... Perform optimization of pipeline booster stations ...

2012-10-22T23:59:59.000Z

194

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico...

195

Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Exports to Mexico...

196

St. Clair, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) St. Clair, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet) St. Clair, MI Natural Gas Pipeline Exports to...

197

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports to Mexico...

198

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

Gasoline and Diesel Fuel Update (EIA)

based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the...

199

Nevada Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution...

200

Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and...

202

Kansas Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution...

203

California Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and...

204

California Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use...

205

Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...

206

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million...

207

Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Exports...

208

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...

209

Minnesota Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million...

210

Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...

211

Alabama Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and...

212

Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, Texas Natural Gas Pipeline Exports to Mexico...

213

Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...

214

Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico...

215

Utah Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic...

216

Washington Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use...

217

Alabama Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million...

218

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico...

219

Massachusetts Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use...

220

Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Special Provisions Affecting Gas, Water, or Pipeline Companies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina) Special Provisions Affecting Gas, Water, or Pipeline...

222

Florida Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and...

223

Indiana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million...

224

Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico...

225

Virginia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million...

226

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports to Mexico...

227

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline...

228

Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million...

229

Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...

230

Texas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic...

231

Louisiana Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million...

232

Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...

233

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports...

234

Georgia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million...

235

Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and...

236

Florida Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million...

237

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million...

238

Massachusetts Natural Gas Pipeline and Distribution Use Price...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline...

239

Arizona Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million...

240

Montana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and...

242

Wisconsin Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million...

243

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and...

244

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million...

245

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

246

Fuel Cell Technologies Office: Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

- Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts...

247

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Energy Efficiency and Renewable Energy Fuel Cell Technologies Office 2005 Hydrogen Pipeline Working Group Workshop DOE held a Hydrogen Pipeline Working Group Workshop August...

248

Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million...

249

Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million...

250

Pennsylvania Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use...

251

Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline Exports...

252

Tennessee Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million...

253

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution...

254

Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Douglas, AZ Natural Gas Pipeline Exports to Mexico...

255

Mississippi Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use...

256

Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico...

257

Connecticut Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use...

258

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic...

259

Rules for Pipeline Public Utilities, Rules for Gas Service and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Savings Rules for Pipeline Public Utilities, Rules for Gas Service and Safety (New Hampshire) Rules for Pipeline...

260

Maryland Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Michigan Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million...

262

NIST/CSM Sensor Could Help Avert Pipeline Failures  

Science Conference Proceedings (OSTI)

... in conventional pipelines by slowly diffusing into the metal. The NIST/CSM sensor, described today at the 7th International Pipeline Conference ...

2012-10-02T23:59:59.000Z

263

Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million...

264

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports...

265

Colorado Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million...

266

In Natural Gas Pipelines, NIST Goes with the Flow  

Science Conference Proceedings (OSTI)

... flows from producers to consumers through a complex pipeline network totaling ... pressures an order of magnitude smaller than pipelines used in ...

2013-05-01T23:59:59.000Z

267

Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline...

268

Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Rio Bravo, Texas Natural Gas Pipeline Exports to...

269

Romas, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Romas, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand Cubic Feet) Romas, Texas Natural Gas Pipeline...

270

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG...  

NLE Websites -- All DOE Office Websites (Extended Search)

88: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project,...

271

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

272

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

273

Ruby natural gas pipeline begins service today (July 28, 2011 ...  

U.S. Energy Information Administration (EIA)

El Paso Corporation's Ruby Pipeline (Ruby), the largest natural gas pipeline project dedicated to serving the Western United States since the ...

274

High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio ...  

High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis Robotic pipeline allows for rapid analysis of optimal substrate/enzyme ...

275

December 4, 2007: NETL's Robotic Pipeline Inspection Tool  

Energy.gov (U.S. Department of Energy (DOE))

December 4, 2007The Department's National Energy Technology Laboratory announces the development of a new robotic pipeline inspection tool that could revolutionize the pipeline inspection process....

276

Upheaval Buckling of Offshore Pipelines in Homogeneous and Layered Soils.  

E-Print Network (OSTI)

??Offshore oil and gas pipelines are commonly buried below the seabed to provide environmental stability and protection. Many of these pipelines are prone to upheaval (more)

Deljoui, Porang

2012-01-01T23:59:59.000Z

277

Sequencing Technologies and Computational pipelines at the JGI  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequencing Technologies and Computational pipelines at the JGI Sequencing Technologies and Computational pipelines at the JGI September 17, 2013 JGI logo 2 James Han, JGI...

278

BLOCKAGE DETECTION IN NATURAL GAS PIPELINES BY TRANSIENT ANALYSIS.  

E-Print Network (OSTI)

??Pipelines are the most reliable means for the transportation of natural gas. A major problem of flow assurance in natural gas pipelines is solid deposition (more)

ADELEKE, NAJEEM

2010-01-01T23:59:59.000Z

279

Modeling fatique behavior of dents in petroleum pipelines.  

E-Print Network (OSTI)

??Dents in pipelines can seriously reduce the design life of a pipeline. Dents cause stress concentrations to develop which make dents susceptible to fatigue failures. (more)

Hoffmann, Roger Lynn

2012-01-01T23:59:59.000Z

280

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network (OSTI)

we divide the pipeline in equal length segment(i.e. 10we divide the pipeline into segments with equal length (i.e.

Lim, Jungsoo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

pipeline tariffs and gas prices were regulated (Mulherin,failed, in equMizing gas prices across the geographicallyNetwork Connectivity and Price Convergence: Gas Pipeline

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

282

South Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use...

283

Massena, NY Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Massena, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Massena, NY Natural Gas Pipeline Exports to Canada...

284

Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico...

285

Pipeline, rail backers lock horns on coal transport. [Coal pipeline act, H. R. 4370  

SciTech Connect

The backers of railroad and pipeline transport for coal clashed at hearings on the proposed Coal Pipeline Act. Slurry-pipeline advocates, claiming that high rail rates discourage industry and are counter to national energy goals, are seeking the eminent domain they need to secure rights-of-way for pipeline construction. Railroad lobbyists have successfully fought the idea so far and will continue to oppose a competing transport system. Proponents of several pipeline routes see them as a way to lower transport prices, while handling only about five percent of the nation's coal. The economics of pipelines appear to be a factor of distance and volume, with no hard evidence available. Arguments of both sides of the controversy are cited. Water rights are a major problem in transporting Western coal by pipeline and, in some states, are a larger issue than eminent domain. (DCK)

Murnane, T.

1980-03-24T23:59:59.000Z

286

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

287

Changes in the Pipeline Transportation Market  

Reports and Publications (EIA)

This analysis assesses the amount of capacity that may be turned back to pipeline companies, based on shippers' actions over the past several years and the profile of contracts in place as of July 1, 1998. It also examines changes in the characteristics of contracts between shippers and pipeline companies.

Information Center

1999-04-01T23:59:59.000Z

288

Natural Gas Pipeline and System Expansions  

Reports and Publications (EIA)

This special report examines recent expansions tothe North American natural gas pipeline networkand the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

Information Center

1997-04-01T23:59:59.000Z

289

Exploring Pipeline Dynamics to Connect New Markets  

Reports and Publications (EIA)

This presentation provides analytical results of ongoing research at the Natural Gas Division, Office of Oil and Gas, on the role of natural gas pipelines in the marketplace. The presentation also includes the latest market developments for pipeline expansion and new construction.

Information Center

2009-03-06T23:59:59.000Z

290

Integrity assurance of natural gas transmission pipelines  

Science Conference Proceedings (OSTI)

Natural gas transmission pipelines have proven to be a safe and efficient means for transporting the trillions of cubic feet of natural gas used annually in the United States. Since the peak of construction of these pipelines occurred between 1950 and the mid-1960s, their average age is now over thirty years. However, replacement of these pipelines because of age would be prohibitively expensive and unnecessary. Preventive maintenance and rehabilitation programs put into practice by the pipeline industry provides the key to ensuring the continued integrity of the transmission pipeline system. This article reviews the preventive maintenance practices commonly used by the gas industry. These practices include right-of-way patrols, corrosion control procedures, in-line inspection with intelligent or smart pigs that inspect the pipe while traveling through the inside of the pipe, direct access inspection of the pipe from bellhole excavations, and hydrostatic retesting of pipelines. When pipelines are properly maintained, these practices can ensure the integrity and long-term serviceability of transmission pipelines well into the 21st Century. 11 refs., 5 figs., 1 tab.

Posakony, G.J. (J-TECH Consulting, Richland, WA (United States))

1993-05-01T23:59:59.000Z

291

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

292

Performance Metrics for Embedded Parallel Pipelines  

Science Conference Proceedings (OSTI)

AbstractA statistical approach to performance prediction is applied to a system development methodology for pipelines comprised of independent parallel stages. The methodology is aimed at distributed memory machines employing medium-grained parallelization. ... Keywords: Performance prediction, parallel pipelines, real-time systems, order statistics.

Martin Fleury; Andrew C. Downton; Adrian F. Clark

2000-11-01T23:59:59.000Z

293

Algeria LPG pipeline is build by Bechtel  

SciTech Connect

The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

Horner, C.

1984-08-01T23:59:59.000Z

294

Hydrostatic Pressure Retainment.  

E-Print Network (OSTI)

??There is a great deal of attention being concentrated on reducing the weight of pressure vessels and fuel/oxidizer tanks (tankage) by 10% to 20%. Most (more)

Setlock, Robert J., Jr.

2004-01-01T23:59:59.000Z

295

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

296

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

297

OPUS-97: A Generalized Operational Pipeline System  

E-Print Network (OSTI)

. OPUS is the platform on which the telemetry pipeline at the Hubble Space Telescope Science Institute is running currently. OPUS was developed both to repair the mistakes of the past, and to build a system which could meet the challenges of the future. The production pipeline inherited at the Space Telescope Science Institute was designed a decade earlier, and made assumptions about the environment which were unsustainable. While OPUS was developed in an environment that required a great deal of attention to throughput, speed, e#ciency, flexibility, robustness and extensibility, it is not just a "big science" machine. The OPUS platform, our baseline product, is a small compact system designed to solve a specific problem in a robust way. The OPUS platform handles communication with the OPUS blackboard; individual processes within this pipeline need have no knowledge of OPUS, of the blackboard, or of the pipeline itself. The OPUS API is an intermediate pipeline product. In addition to t...

J. Rose

1998-01-01T23:59:59.000Z

298

Key decisions near for Chad pipeline proposal  

Science Conference Proceedings (OSTI)

The World Bank is expected to play a key role in a proposed $3 billion development of oil fields in Chad and an export pipeline through Cameroon to the Atlantic Ocean. The project, which has been at least 4 years in the making, could see a breakthrough later this year. Esso Exploration and production Chad Inc. is operator for the consortium proposing the project. It holds a 40% interest, Ste. Shell Tchadienne de Recherches et d`Exploitation has 40%, and Elf Hydrocarbures Tchad has a 20% share it purchased from Chevron Corp. in 1993 (OGJ, February 1, 1993, p 25). The governments of Chad and Cameroon, which had approved a framework agreement for the pipeline in 1995, now are studying an assessment of the pipeline`s environmental impact. If they approve the plans, they are expected to apply to the World Bank for financing. The paper describes the Chad fields, the export pipeline, background information, and the Banks role.

Crow, P.

1997-05-12T23:59:59.000Z

299

Corrosion cracking of gas-carrying pipelines  

Science Conference Proceedings (OSTI)

Samples of soil and other materials adhering to the outer and inner surfaces of pipeline coatings, and pieces of rupture pipe were studied to investigate causes of gas-carrying pipeline failures in Pakistan. Chemical analysis of the ruptured pipe shows the pipeline steel had no material flaw. X-ray diffraction studies of the soil reveal that it contains clay and nonclay minerals normally found. The material adhering to the coating facing the pipeline surface contains carbonates and bicarbonates of sodium, namely, nahcolite and trona. This study shows that nahcolite and trona, as products of cathodic protection that were then synthesized in the vicinity of the pipeline surface, could have attacked the pipe surface over the years and caused corrosion.

Hussain, K.; Shaukat, A.; Hassan, F.

1989-02-01T23:59:59.000Z

300

Tank SY-102 waste retrieval assessment: Rheological measurements and pump jet mixing simulations  

SciTech Connect

Wastes stored in Hanford Tank 241-SY-102 are planned to be retrieved from that tank and transferred to 200 East Area through the new pipeline Replacement Cross Site Transfer System (RCSTS). Because the planned transfer of this waste will use the RCSTS, the slurry that results from the mobilization and retrieval operations must meet the applicable waste acceptance criteria for this system. This report describes results of the second phase (the detailed assessment) of the SY-102 waste retrieval study, which is a part of the efforts to establish a technical basis for mobilization of the slurry, waste retrieval, and slurry transport. Hanford Tank 241-SY-102 is located in the SY Tank Farm in the Hanford Site`s 200 West Area. It was built in 1977 to serve as a feed tank for 242-S Evaporator/Crystallizer, receiving supernatant liquid from S, SX, T, and U tank farms. Since 1981, the primary sources of waste have been from 200 West Area facilities, e.g., T-Plant decontamination operations, Plutonium Finishing Plant operations, and the 222-S Laboratory. It is the only active-service double-shell tank (DST) in the 200 West Area and is used as the staging tank for cross-site transfers to 200 East Area DSTs. The tank currently stores approximately 470 kL (125 kgal) of sludge wastes from a variety of sources including the Plutonium Finishing Plant, T-Plant, and the 222-S Laboratory. In addition to the sludge, approximately twice this amount (about 930 kL) of dilute, noncomplexed waste forms a supernatant liquid layer above the sludge.

Onishi, Y.; Shekarriz, R.; Recknagle, K.P. [and others

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The LOFAR Known Pulsar Data Pipeline  

E-Print Network (OSTI)

Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being developed for the Blue Gene/P (BG/P) supercomputer and a large Linux cluster in order to utilize enormous amounts of computational capabilities (50Tflops) to process data streams of up to 23TB/hour. The LOFAR pipeline output will be using the Hierarchical Data Format 5 (HDF5) to efficiently store large amounts of numerical data, and to manage complex data encompassing a variety of data types, across distributed storage and processing architectures. We present the LOFAR Known Pulsar Data Pipeline overview, the pulsar beam-formed data format, the status of the pipeline processing as well as our future plans for developing the LOFAR Pulsar Search Pipeline. These LOFAR pipelines and software tools are being developed as the next gen...

Alexov, A; Mol, J D; Stappers, B; van Leeuwen, J

2010-01-01T23:59:59.000Z

302

Pipeline response to nearby detonations  

SciTech Connect

Texas Gas Transmission Corp. has supplemented the findings of Southwest Research Institute's study of detonation-induced stresses on pipelines by applying SwRI's equations to actual field problems. Texas Gas used the blasting-stress equations to fix the minimum allowable stand-off distance and maximum particle velocities for strip-mining operations planned along a transmission line right-of-way. The ultimate goal was to ensure that the combined stresses of blasting and operating pressures would not exceed 72% of the pipe's specified minimum yield strength. These stress calculations enabled Texas Gas to maintain normal operating conditions throughout the time that overburden blasting was taking place 100-500 ft from the line.

Bart, G.J.

1979-01-01T23:59:59.000Z

303

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #50010050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #50010050 Task 3Summary Report AssessmentofCurrentlyAvailablePipeline

304

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network (OSTI)

Evaluation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Retrofitting Existing NG Pipelines fro Hydrogen/Hythane Service New Pipeline Installation and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

305

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #500-10-050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #500-10-050 Baseline Technology Assessment for Pipeline Integrity

306

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

307

Pipelining with common operands for power-efficient linear systems  

Science Conference Proceedings (OSTI)

We propose a systematic pipelining method for a linear system to minimize power and maximize throughput, given a constraint on the number of pipeline stages and a set of resource constraints. Unlike most existing pipelining approaches, our method takes ... Keywords: common operand, linear system, operand sharing, pipelining, power

Daehong Kim; Dongwan Shin; Kiyoung Choi

2005-09-01T23:59:59.000Z

308

Reflex: Scientific Workflows for the ESO Pipelines  

E-Print Network (OSTI)

The recently released Reflex scientific workflow environment supports the interactive execution of ESO VLT data reduction pipelines. Reflex is based upon the Kepler workflow engine, and provides components for organising the data, executing pipeline recipes based on the ESO Common Pipeline Library, invoking Python scripts, and constructing interaction loops. Reflex will greatly enhance the quick validation and reduction of the scientific data. In this paper we summarize the main features of Reflex, and demonstrate as an example its application to the reduction of echelle UVES data.

Ballester, Pascal; Forchi, Vincenzo; Freudling, Wolfram; Garcia-Dabo, Cesar Enrique; Gebbinck, Maurice klein; Modigliani, Andrea; Romaniello, Martino

2011-01-01T23:59:59.000Z

309

Policies of System Level Pipeline Modeling  

E-Print Network (OSTI)

Pipelining is a well understood and often used implementation technique for increasing the performance of a hardware system. We develop several SystemC/C++ modeling techniques that allow us to quickly model, simulate, and evaluate pipelines. We employ a small domain specific language (DSL) based on resource usage patterns that automates the drudgery of boilerplate code needed to configure connectivity in simulation models. The DSL is embedded directly in the host modeling language SystemC/C++. Additionally we develop several techniques for parameterizing a pipeline's behavior based on policies of function, communication, and timing (performance modeling).

Harcourt, Ed

2008-01-01T23:59:59.000Z

310

Offshore pipeline design utilizing a PLEM  

SciTech Connect

A unique pipeline end module (PLEM) functioning as an intermediate underwater tie-in point is planned for use in the Gulf of Thailand to permit new connections without disruption of flow. In March 1983, the Petroleum Authority of Thailand (PTT) contracted with PLT Engineering Inc. to do the preliminary design for a 43-km, 24-in. gas pipeline from Union Oil's newly developed Platong field in the Gulf of Thailand. The assigned task was to tie the new pipeline into an existing 34-in. trunkline that carries gas from Erawan field to shore at Sattahip, Thailand.

Karpathy, S.A.

1984-04-01T23:59:59.000Z

311

MFL tool hardware for pipeline inspection  

SciTech Connect

The intelligent pig based on the magnetic flux leakage (MFL) is frequently used for inline inspection of gas and liquid transportation pipelines. The tool is capable of reliably detecting and characterizing several commonly occurring pipeline defects including metal loss due to corrosion and gouges, dents, and buckles, which tend to threaten the structural integrity of the pipeline. The defect detection and characterization capabilities of the tool are directly dependent upon the type of critical hardware components and systems selected for the tool assembly. This article discusses the key components of an advanced or high resolution MFL tool.

Tandon, K.K. [Engineers India Ltd., Haryana (India). Research and Development Complex

1997-02-01T23:59:59.000Z

312

Pipeline Carriers (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carriers (Montana) Carriers (Montana) Pipeline Carriers (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Program Info State Montana Program Type Siting and Permitting Provider State of Montana Public Service Commission Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by these regulations. The regulations address construction permits and the use of eminent domain by pipeline carriers, records and reporting, connection and interchange facilities, and the prohibition of discrimination in rates and service

313

EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Pipeline Network, 2009 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of ...

314

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

315

Communication systems vital to Colombian pipeline  

Science Conference Proceedings (OSTI)

Construction of the Centro Oriente Gas Pipeline represents a major step in Colombia`s goal to strengthen the emerging natural gas business. With construction beginning in 1995, the Centro Oriente is scheduled to begin operation early this year transporting 150 MMcf/d. The 779-kilometer (484-mile) pipeline ranging in diameter from 22-inch to 12-inches, provides the central transportation link between major gas suppliers in both the northern and western regions of Colombia and new markets throughout their immediate regions as well as in the central and eastern regions. TransCanada, operating company for the Centro Oriente pipeline, will develop and manage the support organizations required to operate and maintain the system. The central control system for the CPC is the Gas SCADA system, ADACS, provided by Bristol Babcock Inc. (BBI). This control system provides the data acquisition and control capabilities necessary to operate the entire pipeline safely and efficiently from Burcaramanga.

Serrato, E. [Ecopetrol, Bogota (Colombia); Mailloux, R. [Bristol Babcock Inc., Watertown, CT (United States)

1997-02-01T23:59:59.000Z

316

Overview of interstate hydrogen pipeline systems.  

DOE Green Energy (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

317

Caspian Region Oil Pipelines (U) KIEV RUSSIA  

U.S. Energy Information Administration (EIA)

Kashagan Tengiz Azeri Chirag Guneshli Deep Neka-Tehran 50,000 b/d (first stage) Atyrau-Samara 300,000 b/d Karachaganak-Atyrau (planned) 180,000 b/d Caspian Pipeline

318

Construction advances on gas pipeline in Germany  

Science Conference Proceedings (OSTI)

This paper reports that construction is well under way on a pipeline to transport gas form the North Sea and Russia into the heart of Germany. Mitte Deutchland Anbindungs Leitung (Midal) gas pipeline, under construction for Winershall AG and partner Gazprom, the Russian state gas company, will extend more than 640 km from the North Sea coast to Ludwigshafen in Southwest Germany. en route, the line will make more than 100 river crossings. Midal will connect with the joint ventures' Sachesen-Thurigen-Erdgas Leitung (Stegal) pipeline, which moves Russian gas into eastern Germany and Wintershall's gas storage site at Rehden. Wintershall Erdgas Handelshaus GmbH, set up to manage the joint venture project, divided the pipeline route into six parts, hiring different contractors to lay each section.

Not Available

1992-09-28T23:59:59.000Z

319

Weld Simulation in X100 Pipeline Steel  

Science Conference Proceedings (OSTI)

Abstract Scope, The effect of gas metal arc weld (GMAW) parameters on the coarse-grain heat-affect zone (CGHAZ) of X100 pipeline steel has been studied by...

320

Gaseous Hydrogen Embrittlement of Pipeline Steels  

Science Conference Proceedings (OSTI)

Abstract Scope, The tensile properties of x52, x65, x80 and x100 pipeline steels have been measured in a high pressure (13.6 MPa), high purity, hydrogen gas...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Computer Systems to Oil Pipeline Transporting  

E-Print Network (OSTI)

Computer systems in the pipeline oil transporting that the greatest amount of data can be gathered, analyzed and acted upon in the shortest amount of time. Most operators now have some form of computer based monitoring system employing either commercially available or custom developed software to run the system. This paper presented the SCADA systems to oil pipeline in concordance to the Romanian environmental reglementations.

Chis, Timur

2009-01-01T23:59:59.000Z

322

Riser, pipelines installed in Griffin field  

Science Conference Proceedings (OSTI)

A mooring riser and flow lines along with a 67-km, 8-in., gas-export pipelines have been installed offshore Australia for BHP Petroleum's Griffin field development. The 66-km gas line will carry Griffin field gas to an onshore gas-processing plant. Completing the projects ahead of schedule was Clough Stena Joint Venture (Asia), Perth. BHP awarded the contracts in early 1993; the project was completed in January this year. The paper describes the contractor, pipeline installation, and handling equipment.

Not Available

1994-05-23T23:59:59.000Z

323

Pipeline integrity programs help optimize resources  

SciTech Connect

Natural Gas Pipeline Co. of America has developed an integrity program. NGPL operates approximately 13,000 miles of large-diameter parallel gas pipelines, which extend from traditional supply areas to the Chicago area. Line Number 1, the 24-in. Amarillo-to-Chicago mainline, was built in 1931, and parts of it are still in operation today. More than 85% of the NGPL systems is more than 25 years old, and continues to provide very reliable service. The company operated for many years with specialized crews dedicated to pipeline systems, and a corrosion department. Under this organization, employees developed an intimate knowledge of the pipeline and related integrity issues. NGPL relied on this knowledge to develop its integrity program. The risk assessment program is a very valuable tool for identifying areas that may need remedial work. However, it is composed of many subjective evaluations and cannot predict failure nor ensure good performance. The program is an excellent data management tool that enables a pipeline operator to combine all available information needed to make integrity decisions. The integrity of a pipeline is continually changing, and any program should be updated on a regular basis.

Dusek, P.J. (Natural Gas Pipeline Co. of America, Lombard, IL (United States))

1994-03-01T23:59:59.000Z

324

Applications of the Pipeline Environment for Visual Informatics and Genomics Computations  

E-Print Network (OSTI)

et al. : Applications of the pipeline environment for visualusing the LONI pipeline. Frontiers in Neuroinformatics 2010,Access Applications of the pipeline environment for visual

2011-01-01T23:59:59.000Z

325

GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes  

E-Print Network (OSTI)

PRediction IMprovement Pipeline for Amrita Pati 1 , NataliaGene Prediction IMprovement Pipeline, http://geneprimp.jgi-based post-processing pipeline that identifies erroneously

Pati, Amrita

2012-01-01T23:59:59.000Z

326

Pipelines, Pathways, and Payoffs: Economic Challenges and Returns to Changing Demographics in California  

E-Print Network (OSTI)

on Multiple Pathways Pipelines, Pathways, and Payoffs:Jon Stiles & Henry Brady Pipelines, Pathways, and Payoffs:of the educational pipeline to describe how students

Stiles, Jon; Brady, Henry

2007-01-01T23:59:59.000Z

327

Stuck in the Pipeline: A Critical Review of STEM Workforce Literature  

E-Print Network (OSTI)

and science careers: Leaky pipeline or gender filter? GenderL. (2006). Expanding the pipeline: Transforming the cultureThe incredible shrinking pipeline. Inroads: SIGCE Bulletin,

Metcalf, Heather

2010-01-01T23:59:59.000Z

328

BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data  

E-Print Network (OSTI)

RL: MethylCoder: software pipeline for bisulfite-treateda versatile aligning pipeline for bisulfite sequencing dataof BS Seeker, as a full pipeline for mapping bisulfite

2013-01-01T23:59:59.000Z

329

Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads  

E-Print Network (OSTI)

transcriptome assembly pipeline from stranded RNA-Seq readsRnnotator assembly pipeline. Figure 2. Read dereplicationan automated software pipeline that generates transcript

Martin, Jeffrey

2011-01-01T23:59:59.000Z

330

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

System for Natural Gas Pipelines." Study prepared underin the Natural Gas Pipeline Industry. Ph.D. dissertation,the remaining barfers to pipeline integration. REFERENCES

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

331

Web-Based and Geospatially Enabled Tool for Water and Wastewater Pipeline Infrastructure Risk Management.  

E-Print Network (OSTI)

??Advanced pipeline risk management is contingent on accurately locating the buried pipelines, the milieu, and also the physical condition of the pipelines. The web-based and (more)

Sekar, Varun Raj

2011-01-01T23:59:59.000Z

332

Tank Waste Corporate Board | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Corporate Board Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. November 18, 2010 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. July 29, 2009 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board

333

FEMA Think Tank Call Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMA Think Tank Call Meeting FEMA Think Tank Call Meeting Minimize Date: Wednesday, September 25, 2013 Time: 1:00 - 2:30 p.m. (Eastern Time) Location: Y-12 New Hope Center, 602 Scarboro Rd, Oak Ridge, TN 37830 Overview Description: The FEMA Think Tank is a mechanism to formally collect, discuss, evaluate, and develop innovative ideas in the emergency management community - state, local, and tribal governments, as well as members of the public, including the private sector, the disability community, and volunteer groups. It ensures whole community partners and federal employees are motivated and encouraged to innovate, actively solicit and discuss ideas, and oversee the implementation of promising ideas. The FEMA Think Tank is designed to act as a forum where good ideas are shared, discussed, and become innovative solutions. There are currently two components to the think tank. The first, an online component, can be accessed at any time at, http://fema.ideascale.com. The second component is a conference call that includes both a nationwide telephone audience and an audience at the FEMA Think Tank Call site. This second component is described in more detail at the following website: http://www.fema.gov/fema-think-tank.

334

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

335

High temperature gas reactor and energy pipeline system  

DOE Green Energy (OSTI)

A study was made of the following aspects of the High Temperature Gas Reactor (HTGR) Closed Loop Chemical Energy Pipeline (CEP) concept: pipeline transmission and storage system design, pipeline and storage system cost, methane reformer interface, and system safety and environmental aspects. This paper focuses on the pipeline and storage system concepts. Pipeline size, compressor power, and storage facility requirements were developed for four different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Allen, D.C.; Pflasterer, G.R.

1980-12-19T23:59:59.000Z

336

High temperature gas reactor and energy pipeline system  

SciTech Connect

Under contract to the General Electric Co. as a part of a DOE-sponsored program, the Energy Systems Analysis Group at the Institute of Gas Technology examined the following aspects of the high temperature gas reactor closed loop chemical energy pipeline concept: (1) pipeline transmission and storage system design; (2) pipeline and storage system cost; (3) methane reformer interface; and (4) system safety and environmental aspects. This work focuses on the pipeline and storage system concepts, pipeline size, compressor power, and storage facility requirements were developed for 4 different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Pflasterer, G.R.; Allen, D.C.

1981-01-01T23:59:59.000Z

337

Runtime Assignment of Reconfigurable Hardware Components for Image Processing Pipelines  

E-Print Network (OSTI)

The combination of hardware acceleration and flexibility make FPGAs important to image processing applications. There is also a need for efficient, flexible hardware/software codesign environments that can balance the benefits and costs of using FPGAs. Image processing applications often consist of a pipeline of components where each component applies a different processing algorithm. Components can be implemented for FPGAs or software. Such systems enable an image analyst to work with either FPGA or software implementations of image processing algorithms for a given problem. The pipeline assignment problem chooses from alternative implementations of pipeline components to yield the fastest pipeline. Our codesign system solves the pipeline assignment problem to provide the most effective implementation automatically, so the image analyst can focus solely on choosing components which make up the pipeline. However, the pipeline assignment problem is NP complete. An efficient, dynamic solution to the pipeline assignment problem is a desirable enabler of codesign systems which use both FPGA and software implementations. This paper is concerned with solving pipeline assignment in this context. Consequently, we focus on optimal and heuristic methods for fast (fixed time limit) runtime pipeline assignment. Exhaustive search, integer linear programming and local search methods for pipeline assignment are investigated. We present experimental findings for pipelines of 20 or fewer components which show that in our environment, optimal runtime solutions are possible for smaller pipelines and nearly optimal heuristic solutions are possible for larger pipelines.

Heather Quinn; L. A. Smith King; Miriam Leeser; W. Meleis; Waleed Meleis

2003-01-01T23:59:59.000Z

338

Method and apparatus for the laying of a submerged pipeline such as a submarine pipeline. [Patents  

SciTech Connect

A method and apparatus are disclosed for laying a submerged pipeline, such as a submarine pipeline, on the bed of a body of water along a path which crosses a ditch in the bed in which there is a current transverse to the pipeline, the depth of the body of water being at a maximum in the ditch and the pipeline being drawn along the bed from a shore towards open water, wherein at least one ballast tube is integrally associated with the pipeline so that a portion of the pipeline with the associated ballast tube takes up a position within the ditch in substantially U-form, the ballast tube being filled partly with air and partly with water which collects in the portion of the ballast tube of substantially U-form whereby the apparent weight of the pipeline is increased solely with respect to the portion thereof located in the ditch, the water remaining in position in the portion of the ballast tube temporarily located within the ditch as the pipeline and the associated ballast tube move forward during the laying operation. An air circulation pipe may be associated with the ballast tube, being preferably located inside the ballast tube, the pipe placing the part of the space within the ballast tube near the front end thereof into communication with a source of air located on land.

Lamy, J.E.

1977-12-13T23:59:59.000Z

339

Tank 241-C-103 tank characterization plan. Revision 2  

Science Conference Proceedings (OSTI)

This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-C-103.

Homi, C.S.

1995-10-04T23:59:59.000Z

340

Tank 241-AN-102 tank characterization plan. Revision 1  

Science Conference Proceedings (OSTI)

This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

Homi, C.S.

1995-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tank characterization report for single-shell Tank B-201  

Science Conference Proceedings (OSTI)

The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank.

Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

1994-09-01T23:59:59.000Z

342

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

343

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

344

The pipeline OQ Rule: Perspectives, options, and implementation  

Science Conference Proceedings (OSTI)

The US Department of Transportation (DOT) Pipeline Safety: Qualification of Pipeline Personnel Rule, commonly termed the Operator Qualification (OQ) Rule, became law on October 26, 1999. The rule requires operators to develop a qualification program for pipeline personnel. Personnel must demonstrate proficiency and be able to react to abnormal operating conditions. the intent is to reduce pipeline incidents caused by human error by ensuring that pipeline personnel are qualified. This paper describes different perspectives on the need for the rule, constraints to its implementation, and options and resources available to pipeline operators.

Lewis, B.

2000-04-01T23:59:59.000Z

345

High-Pressure Hydrogen Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

346

Improvement in LNG storage tanks  

SciTech Connect

To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

NONE

1999-11-20T23:59:59.000Z

347

Hydrogen Storage "Think Tank" Report  

NLE Websites -- All DOE Office Websites (Extended Search)

brainstorming on this critical issue. This "Think Tank" meeting was held in Washington, D.C. on March 14, 2003 and was organized and sponsored by the U.S. Department of...

348

A Cheap Levitating Gas/Load Pipeline  

E-Print Network (OSTI)

Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

Alexander Bolonkin

2008-12-02T23:59:59.000Z

349

A Cheap Levitating Gas/Load Pipeline  

E-Print Network (OSTI)

Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

Bolonkin, Alexander

2008-01-01T23:59:59.000Z

350

Coal slurry pipelines: a maze of rights  

SciTech Connect

A survey of coal slurry pipeline projects, discussed at the 4th Annual International Slurry Transportation Conference showed that Energy Transportation Systems Inc. has effectively solved the right-of-way problem for its 1400 mi line from Wyoming's Powder River Basin and expects to have an environmental impact statement completed within 30 mo and have the pipeline in operation by 1983. San Marco Pipeline Co., is developing a source of water from wells drilled near Alamosa, Colo., for use in a proposed line from Walsenburg, Colo., to Houston. The Alton pipeline from the Alton coal field in southern Utah to power stations in southern Nevada is delayed by right-of-way needs through federal land and by changing environmental requirements. Florida Gas Co., is working on alternative projects to bring coal to Florida by pipeline. Northwest Energy Co.'s proposed slurry line from Gillette, Wyo., to Boise, Idaho, and Boardman, Oreg., is in a holding position. Texas Eastern Transmission Co. hopes to have a 1300 mi 38 in. line in operation in 1985 from Wyoming's Powder River Basin to the Houston area.

1979-08-01T23:59:59.000Z

351

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

NattmdGas Pipeline of America(NGPL) Northern Natural GasNatural Gas Pipeline of America (NGPL) Teanease~Gas PipelineGas Pipeline of America(NGPL) Northern Natural Gas (NORH-I)

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

352

NewPipeline-Robot-Power-Source.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

353

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

354

Method of pipeline transportation of natural gas  

SciTech Connect

A USSR-developed method for transporting natural gas in the form of hydrates increases pipeline transmission capacity by at least 3-4 times as compared to a conventional pipeline and reduces the specific capital investment since thin-walled carbon-steel pipes can be used instead of cryogenic-resistant ones. In the approach, natural gas in hydrate form is loaded into wheeled containers or capsules which are then propelled through a pipeline by compressed and cooled natural gas. The physical state of the gas hydrates is preserved during their transport by keeping the pressure between 715 and 285 psi (50 and 20 kg/sq cm) and the temperature between -40/sup 0/ and +14/sup 0/F (-40/sup 0/ and -10/sup 0/C).

Chersky, N.V.; Klimenko, A.P.; Bokserman, J.I.; Kalina, A.I.; Karimov, F.A.

1975-06-10T23:59:59.000Z

355

Pipeline and Distribution Use of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports...

356

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) Decade Year-0...

357

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) Year Jan Feb...

358

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) Decade Year-0...

359

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) Year Jan Feb...

360

Software Pipelining in Nested Loops with Prolog-Epilog Merging  

Science Conference Proceedings (OSTI)

Software pipelining (or modulo scheduling) is a powerful back-end optimization to exploit instruction and vector parallelism. Software pipelining is particularly popular for embedded devices as it improves the computation throughput without increasing ...

Mohammed Fellahi; Albert Cohen

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Suggested integrated optical implementation of pipelined polynomial processors  

SciTech Connect

Optical systolic pipeline processors for polynomial evaluation can be built using horner's rule. With integrated optics techniques, it will be possible to fabricate large order pipelines operating at very high speeds. 10 references.

Verber, C.M.; Kenan, R.P.; Caulfield, H.J.; Ludman, J.E.; Stilwell, P.D., Jr.

1983-01-01T23:59:59.000Z

362

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

1 and length 2 between the vertices of the pipeline networkor.i length twopaths. By 1988, most of the pipelines werepipelines, the number of vertices connected by at l~ast one path of length

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

363

Activity based scheduling simulator for product transport using pipeline networks  

Science Conference Proceedings (OSTI)

Oil companies often rely on scheduling algorithms to increase the throughput of oil derivatives and other products which are transported through pipeline networks. This work presents an architecture for a scheduling simulator for pipeline networks, and ...

Danilo Shibata; Daniel Alfenas; Ricardo Guiraldelli; Marcos R. Pereira-Barretto; Fernando Marcellino

2012-12-01T23:59:59.000Z

364

Software design for panoramic astronomical pipeline processing  

E-Print Network (OSTI)

We describe the software requirement and design specifications for all-sky panoramic astronomical pipelines. The described software aims to meet the specific needs of super-wide angle optics, and includes cosmic-ray hit rejection, image compression, star recognition, sky opacity analysis, transient detection and a web server allowing access to real-time and archived data. The presented software is being regularly used for the pipeline processing of 11 all-sky cameras located in some of the world's premier observatories. We encourage all-sky camera operators to use our software and/or our hosting services and become part of the global Night Sky Live network.

Lior Shamir; Robert J. Nemiroff; David O. Torrey; Wellesley E. Pereira

2005-11-23T23:59:59.000Z

365

Hydrogen degradation of pipeline steels: Final report  

DOE Green Energy (OSTI)

Purpose of investigations conducted by Battelle Columbus Laboratories was to develop a research data base applicable to the problem of hydrogen degradation in pipeline steels. The findings would provide pipeline designers and operators with insight for developing specifications and procedures in the event available natural gas transmission/distribution systems are used for hydrogen transport. Fundamental investigations and data derived from sophisticated analytical and test procedures have been equated to practical field conditions and experiences as may be encountered should the hydrogen energy storage/transport option become an economic reality.

Holbrook, J.H.; Collings, E.W.; Cialone, H.J.; Drauglis, E.J.

1986-03-01T23:59:59.000Z

366

Multi-criteria scheduling of pipeline workflows  

E-Print Network (OSTI)

Mapping workflow applications onto parallel platforms is a challenging problem, even for simple application patterns such as pipeline graphs. Several antagonist criteria should be optimized, such as throughput and latency (or a combination). In this paper, we study the complexity of the bi-criteria mapping problem for pipeline graphs on communication homogeneous platforms. In particular, we assess the complexity of the well-known chains-to-chains problem for different-speed processors, which turns out to be NP-hard. We provide several efficient polynomial bi-criteria heuristics, and their relative performance is evaluated through extensive simulations.

Benoit, Anne; Robert, Yves

2007-01-01T23:59:59.000Z

367

NIST Pipeline-Scale Flow Measurement Standards for Natural ...  

Science Conference Proceedings (OSTI)

Pipeline-Scale Flow Measurement Standards for Natural Gas. Summary: NIST natural gas flow calibrations are performed ...

2013-01-28T23:59:59.000Z

368

Markets indicate possible natural gas pipeline constraints in the ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... This difference reflects expectations about the likelihood of capacity constraints associated with moving natural gas on pipelines ...

369

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

370

EIA - Natural Gas Pipeline Network - Regional/State ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

371

EIA - Natural Gas Pipeline Network - Salt Cavern Storage ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

372

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

373

Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2011 Hanford Site C Tank Farm Meeting Summary - May 2011 Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary -...

374

Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2010 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

375

Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2009 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

376

Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

377

Hanford Waste Tank Plant PIA, Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford...

378

Auxiliary resonant DC tank converter  

SciTech Connect

An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

Peng, Fang Z. (Knoxville, TN)

2000-01-01T23:59:59.000Z

379

241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity  

Science Conference Proceedings (OSTI)

This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

Barnes, Travis J.; Gunter, Jason R.

2013-08-26T23:59:59.000Z

380

241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity  

Science Conference Proceedings (OSTI)

This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

2013-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Life Estimation of High Level Waste Tank Steel for H-Tank Farm ...  

the tanks is not considered in the analysis. Life Estimation of High Level Waste Tank ... conservative scenario in which the concrete vault has completely

382

Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System  

E-Print Network (OSTI)

In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

Lah, Mike M. (Mike Myoung)

2007-01-01T23:59:59.000Z

383

Expansion of the U.S. Natural Gas Pipeline Network  

Reports and Publications (EIA)

Additions in 2008 and Projects through 2011 - This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

Information Center

2009-09-30T23:59:59.000Z

384

Sensor and transmitter system for communication in pipelines  

DOE Patents (OSTI)

A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

Cooper, John F.; Burnham, Alan K.

2013-01-29T23:59:59.000Z

385

Optimal operation of pipeline systems using genetic algorithm  

Science Conference Proceedings (OSTI)

A Genetic Algorithm (GA) is used in this paper for the optimal operation, result in better solution than the existing one, of the pipeline systems under transient conditions caused by valve closure. Simulation of pipeline system is carried out here by ... Keywords: genetic algorithm, implicit method of characteristic, pipeline system, transient flow, water hammer

M. H. Afshar; M. Rohani

2009-05-01T23:59:59.000Z

386

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters  

E-Print Network (OSTI)

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters Michael S. Lee1,2,3 , Rajkumar. Methodology/Principal Findings: The pipeline consists of a Perl core that integrates more than 20 individual-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial

387

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network (OSTI)

Hydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory, Columbus, Ohio (After-service pipeline materials) Ms. M. A. Quintana of Lincoln Electric Company, Cleveland

388

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network (OSTI)

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water

389

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H2 Pipeline Standard (in

390

Asynchronous ARM processor employing an adaptive pipeline architecture  

Science Conference Proceedings (OSTI)

This paper presented an asynchronous ARM processor employing adaptive pipeline and enhanced control schemes. This adaptive pipeline employed stage-skipping and stage-combining. The stage-skipping removed the redundant stage operations, bubbles. The stage-combining ... Keywords: adaptive pipeline, asynchronous design, processor

Je-Hoon Lee; Seung-Sook Lee; Kyoung-Rok Cho

2007-03-01T23:59:59.000Z

391

Automation Schemes for FPGA Implementation of Wave-Pipelined Circuits  

Science Conference Proceedings (OSTI)

Operating frequencies of combinational logic circuits can be increased using Wave-Pipelining (WP), by adjusting the clock periods and clock skews. In this article, Built-In Self-Test (BIST) and System-on-Chip (SOC) approaches are proposed for automating ... Keywords: CORDIC, DAA, FPGA, SOC, pipelining, wave-pipelining

G. Seetharaman; B. Venkataramani

2009-06-01T23:59:59.000Z

392

Power-optimal pipelining in deep submicron technology  

Science Conference Proceedings (OSTI)

This paper explores the effectiveness of pipelining as a power saving tool, where the reduction in logic depth per stage is used to reduce supply voltage at a fixed clock frequency. We examine power-optimal pipelining in deep submicron technology, both ... Keywords: pipelining, power scaling, supply voltage reduction

Seongmoo Heo; Krste AsanoviC

2004-08-01T23:59:59.000Z

393

TANK48 CFD MODELING ANALYSIS  

SciTech Connect

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

Lee, S.

2011-05-17T23:59:59.000Z

394

TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu)  

E-Print Network (OSTI)

1 TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens....................................................................................................................................................................... 3 Pipeline Controls.0_standalone or tassel4.0_standalone. Execute On Windows, use run_pipeline.bat to execute the pipeline. In UNIX

Buckler, Edward S.

395

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

396

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

the construction costs of natural gas, oil, and petroleumR. Current pipeline costs. Oil & Gas Journal; Nov 21,cost projections for over 20,000 miles of natural gas, oil, and

Parker, Nathan

2004-01-01T23:59:59.000Z

397

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Adjustments in 1991. Oil & Gas Journal; Nov 23, 1992; 90,begin 1993 on upbeat. Oil & Gas Journal; Nov 22, 1993; 91,Current pipeline costs. Oil & Gas Journal; Nov 21, 1994;

Parker, Nathan

2004-01-01T23:59:59.000Z

398

Diversion tanks will prevent field shutdown: design-build project is 80% alaskan  

SciTech Connect

The nation's second largest oil field is nearing peak production of 250,000 bbl per day. The Kuparuk River field on Alaska's North Slope put a second central processing facility (CPF-2) on line this year and a third will arrive on the 1986 sea lift. By 1990, the field will hold 400 producing wells and 400 water injection wells. Considering this investment, field operator Arco Alaska Inc., wanted to find a way to avoid costly field shutdowns that could be caused by oil-gas-water separation system problems or a temporary shutdown of the trans-Alaska pipeline or Alyeska terminal. The answer was a system of diversion tanks through which 220,000 bbl of crude could be kept circulating until problems could be corrected. The design and construction of these tanks are described.

Harris, M.

1985-12-01T23:59:59.000Z

399

Surface mine blasting near pressurized transmission pipelines  

Science Conference Proceedings (OSTI)

The US Bureau of Mines and the State of Indiana cooperated with AMAX Coal Co. and its consultants to determine the effects of coal mine overburden blasting on nearby pipelines. Five pressurized 76-m pipeline sections were installed on the Minnehaha Mine highwall near Sullivan, IN, for testing to failure. Four 17- to 51-cm-diameter welded steel pipes and one 22-cm PVC pipe were monitored for vibration, strain, and pressure for a period of 6 months while production blasting advanced up to the test pipeline field. In contrast to previous studies of small-scale, close-in blasting for construction, these tests involved overburden blasts of up to 950 kg per delay in 31-cm blastholes. Analyses found low pipe responses, strains, and calculated stresses from even large blasts. Ground vibrations of 120 to 250 mm/s produced worst case strains that were about 25 pcts of the strains resulting from normal pipeline operations and calculated stresses of only about 10 to 18 pct of the ultimate tensile strength. No pressurization failures or permanent strains occurred even at vibration amplitudes of 600 mm/s.

Siskind, D.E.; Stagg, M.S.; Wiegand, J.E.; Schultz, D.L.

1994-12-31T23:59:59.000Z

400

Modeling and synthesis of asynchronous pipelines  

Science Conference Proceedings (OSTI)

We propose a set of modeling rules and a synthesis method for the design of asynchronous pipelines. To keep the circuit area and power dissipation of the asynchronous control network small, the proposed approach avoids the conventional syntaxdirected ... Keywords: asynchronous, low power

Chong-Fatt Law; Bah-Hwee Gwee; Joseph S. Chang

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

Science Conference Proceedings (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

J. Bruce Nestleroth

2005-11-30T23:59:59.000Z

402

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

403

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

404

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

405

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

406

Bidirectional Pipelining for Scalable IP Lookup and Packet Classification  

E-Print Network (OSTI)

Both IP lookup and packet classification in IP routers can be implemented by some form of tree traversal. SRAM-based Pipelining can improve the throughput dramatically. However, previous pipelining schemes result in unbalanced memory allocation over the pipeline stages. This has been identified as a major challenge for scalable pipelined solutions. This paper proposes a flexible bidirectional linear pipeline architecture based on widely-used dual-port SRAMs. A search tree is partitioned, and then mapped onto pipeline stages by a bidirectional fine-grained mapping scheme. We introduce the notion of inversion factor and several heuristics to invert subtrees for memory balancing. Due to its linear structure, the architecture maintains packet input order, and supports non-blocking route updates. Our experiments show that, the architecture can achieve a perfectly balanced memory distribution over the pipeline stages, for both trie-based IP lookup and tree-based multi-dimensional packet classification. For IP looku...

Jiang, Weirong; Prasanna, Viktor K

2011-01-01T23:59:59.000Z

407

PROBER: Ad-Hoc Debugging of Extraction and Integration Pipelines  

E-Print Network (OSTI)

Complex information extraction (IE) pipelines assembled by plumbing together off-the-shelf operators, specially customized operators, and operators re-used from other text processing pipelines are becoming an integral component of most text processing frameworks. A critical task faced by the IE pipeline user is to run a post-mortem analysis on the output. Due to the diverse nature of extraction operators (often implemented by independent groups), it is time consuming and error-prone to describe operator semantics formally or operationally to a provenance system. We introduce the first system that helps IE users analyze pipeline semantics and infer provenance interactively while debugging. This allows the effort to be proportional to the need, and to focus on the portions of the pipeline under the greatest suspicion. We present a generic debugger for running post-execution analysis of any IE pipeline consisting of arbitrary types of operators. We propose an effective provenance model for IE pipelines which cap...

Sarma, Anish Das; Bohannon, Philip

2010-01-01T23:59:59.000Z

408

RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM  

SciTech Connect

Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North and South hemispheres is currently supported by a single Mantis rover sample in each hemisphere. A floor scrape sample was obtained from a compact region near the center riser slightly in the South hemisphere and has been analyzed for a shortened list of key analytes. There is not enough additional material from the floor scrape sample material for completing the full suite of constituents. No floor scrape samples have been previously taken from the North hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 19 residual floor material, four additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Three of the four additional samples from each hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape sample results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in t

Harris, S.; Shine, G.

2009-12-14T23:59:59.000Z

409

Military - Tougher tanks | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Military - Tougher tanks Improving welds of heavy and light armored fighting vehicles is the target of a collaboration among Oak Ridge National Laboratory, the U.S. Army Tank...

410

Technical requirements specification for tank waste retrieval  

Science Conference Proceedings (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

411

Comparative safety analysis of LNG storage tanks  

Science Conference Proceedings (OSTI)

LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

1982-07-01T23:59:59.000Z

412

Tanks 18/19: Sample Characterization, Method Development and ...  

Measurement of radioactive constituents in tank. ... SRS Waste Tank . 5 ... Low Level Measurements Ra-226 1*10-4

413

Savannah River Site- Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE))

This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing.

414

T-TY Tank Farm Interim Surface Barrier DemonstrationVadose Zone Monitoring Plan  

SciTech Connect

The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energys Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

2010-09-27T23:59:59.000Z

415

Tank 241-BY-107 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

Huckaby, J.L.

1995-05-05T23:59:59.000Z

416

Tank 241-S-102 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank 241-S-102 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-S-102 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution. {close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

417

Tank 41H bounding uranium enrichment  

Science Conference Proceedings (OSTI)

The intent of this document is to combine data from salt samples and historical process information to bound the uranium (U-235) enrichment which could be expected in the upper portion of the salt in Tank 41H. This bounding enrichment will be used in another document to establish a nuclear safety basis for initial salt removal operations. During the processing period of interest (4/82-4/87), waste was fed to the 2H Evaporator from Tank 43H, and the evaporator bottoms were sent to Tank 41H where the bottoms were allowed to cool (resulting in the formation of salt deposits in the tank). As Tank 41H was filled with concentrate, the supernate left after salt formation was recycled back to Tank 43H and reprocessed through the evaporator along with any additional waste which had been added to Tank 43H. As Tank 41 H filled with salt, this recycle took place with increasing frequency because it took less time to fill the decreased volume with evaporator concentrate. By determining which of the sampled waste tanks were receiving fresh waste from the canyons at the time the tanks were sampled (from published transfer records), it was possible to deduce which samples were likely representative of fresh canyon waste. The processing that was being carried out in the Separation canyons when these tanks were sampled, should be comparable to the processing while Tank 41H was being filled.

Cavin, W.S.

1994-07-12T23:59:59.000Z

418

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance Yield in sub-100nm Technologies  

E-Print Network (OSTI)

Operating frequency of a pipelined circuit is determined by the delay of the slowest pipeline stage. However, under statistical delay variation in sub-100nm technology regime, the slowest stage is not readily identifiable and the estimation of the pipeline yield with respect to a target delay is a challenging problem. We have proposed analytical models to estimate yield for a pipelined design based on delay distributions of individual pipe stages. Using the proposed models, we have shown that change in logic depth and imbalance between the stage delays can improve the yield of a pipeline. A statistical methodology has been developed to optimally design a pipeline circuit for enhancing yield. Optimization results show that, proper imbalance among the stage delays in a pipeline improves design yield by 9% for the same area and performance (and area reduction by about 8.4% under a yield constraint) over a balanced design.

Datta, Animesh; Mukhopadhyay, Saibal; Banerjee, Nilanjan; Roy, Kaushik

2011-01-01T23:59:59.000Z

419

EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first report was submitted and accepted by the Assistant Secretary for Environmental Management (EM-1) in September 2010. The EM-TWS responded to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at Hanford (WTP) under construction in Richland, Washington. EM's responses were timely, and efforts have been

420

Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank 48 Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then cleaning the tank sufficiently to support return to service Processing contents to eliminate TPB hazard August 2006 3 SRS Tank 48 ITR SRS Tank 48 ITR Overarching ITR Conclusions 1. TPB Processing is on the right track - DOE/WSRC have selected the most promising candidates - Fluidized Bed Steam Reforming (FBSR) is the most technically attractive and mature of the candidate processes August 2006 4 SRS Tank 48 ITR SRS Tank 48 ITR Overarching Conclusions (continued) 2. Heel removal and tank cleanout will be a very challenging task. Compounding issues: - Physical difficulties in cleanout (access, congestion, etc.)

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

compressed natural-gas (CNG) ICEVs; liquefied natural-in fuel storage (e.g. , CNG tankage), powertrain, emissionor alcohol, high-pressure CNG tanks, low-pressure LPG tanks,

Delucchi, Mark

2005-01-01T23:59:59.000Z

422

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

compressed natural-gas (CNG) ICEVs; liquefied natural-in fuel storage (e.g. , CNG tankage), powertrain, emissionor alcohol, high-pressure CNG tanks, low-pressure LPG tanks,

Delucchi, Mark

2005-01-01T23:59:59.000Z

423

Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)  

DOE Green Energy (OSTI)

Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

Mitlitsky, F; Myers, B; Weisberg, A H

1999-06-01T23:59:59.000Z

424

Parallel IP Lookup using Multiple SRAM-based Pipelines  

E-Print Network (OSTI)

Pipelined SRAM-based algorithmic solutions have become competitive alternatives to TCAMs (ternary content addressable memories) for high throughput IP lookup. Multiple pipelines can be utilized in parallel to improve the throughput further. However, several challenges must be addressed to make such solutions feasible. First, the memory distribution over different pipelines as well as across different stages of each pipeline must be balanced. Second, the traffic among these pipelines should be balanced. Third, the intra-flow packet order should be preserved. In this paper, we propose a parallel SRAM-based multi-pipeline architecture for IP lookup. A two-level mapping scheme is developed to balance the memory requirement among the pipelines as well as across the stages in a pipeline. To balance the traffic, we propose a flow pre-caching scheme to exploit the inherent caching in the architecture. Our technique uses neither a large reorder buffer nor complex reorder logic. Instead, a payload exchange scheme exploiting the pipeline delay is used to maintain the intra-flow packet order. Extensive simulation using real-life traffic traces shows that the proposed architecture with 8 pipelines can achieve a throughput of up to 10 billion packets per second (GPPS) while preserving intra-flow packet order.

Weirong Jiang; et al.

2008-01-01T23:59:59.000Z

425

Pipelineable syncrude (synthetic crude) from heavy oil  

SciTech Connect

This patent describes a process for converting a metals-contaminated heavy crude oil characterized by an API gravity less than about 20{degrees} and a substantial Conradson Carbon Residue to a pipelineable and substantially upgraded syncrude with concomitant recovery of blown asphalt. It comprises: air-blowing at least the 650{degrees} F.{sup +} fraction of the heavy crude oil at a temperature of 390{degrees} to 600{degrees} F. under conditions effective to increase its combined oxygen content by at least 0.5 weight percent; deasphalting the air-blown crude oil with solvent whereby separately recovering a blown asphalt and an intermediate syncrude having a substantially lower concentration of metals and less Conradson Carbon residue than the heavy crude oil; and, visbreaking the intermediate syncrude at 800{degrees} to 950{degrees} F. and at a severity effective to impart to it pipelineable viscosity characteristics.

Rankel, L.A.

1989-06-12T23:59:59.000Z

426

Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis  

SciTech Connect

Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy); Strom, Alexander [Institute of Geospheres Dynamics, Leninskiy Avenue, 38, Building 1, 119334, Moscow (Russian Federation)

2008-07-08T23:59:59.000Z

427

Foothills pipeline project prebuild being completed  

Science Conference Proceedings (OSTI)

September 1982 marked the completion of the 395-mile eastern leg of the Alaska Highway Gas Pipeline project; the western leg went into service in October 1981. The design capacities are, respectively, 1.075 billion and 240 million CF/day. Phase 11 of the project will consist of installing the northern, large-diameter sections in Alberta, British Columbia, the Yukon, and Alaska, along with additional facilities on the two completed legs.

Stewart, M.E.

1982-06-01T23:59:59.000Z

428

Energy consumption in the pipeline industry  

SciTech Connect

Estimates are developed of the energy consumption and energy intensity (EI) of five categories of U.S. pipeline industries: natural gas, crude oil, petroleum products, coal slurry, and water. For comparability with other transportation modes, it is desirable to calculate EI in Btu/Ton-Mile, and this is done, although the necessary unit conversions introduce additional uncertainties. Since water and sewer lines operate by lift and gravity, a comparable EI is not definable.

Banks, W. F.

1977-12-31T23:59:59.000Z

429

ICPP Tank Farm planning through 2012  

SciTech Connect

Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

1998-04-01T23:59:59.000Z

430

Exploiting level sensitive latches in wire pipelining  

E-Print Network (OSTI)

The present research presents procedures for exploitation of level sensitive latches in wire pipelining. The user gives a Steiner tree, having a signal source and set of destination or sinks, and the location in rectangular plane, capacitive load and required arrival time at each of the destinations. The user also defines a library of non-clocked (buffer) elements and clocked elements (flip-flop and latch), also known as synchronous elements. The first procedure performs concurrent repeater and synchronous element insertion in a bottom-up manner to find the minimum latency that may be achieved between the source and the destinations. The second procedure takes additional input (required latency) for each destination, derived from previous procedure, and finds the repeater and synchronous element assignments for all internal nodes of the Steiner tree, which minimize overall area used. These procedures utilize the latency and area advantages of latch based pipelining over flip-flop based pipelining. The second procedure suggests two methods to tackle the challenges that exist in a latch based design. The deferred delay padding technique is introduced, which removes the short path violations for latches with minimal extra cost.

Seth, Vikram

2004-12-01T23:59:59.000Z

431

Growing demand for gas spawns pipeline projects  

Science Conference Proceedings (OSTI)

This paper reports that burgeoning demand for gas is fueling pipeline construction in Eastern and Western hemispheres. In the East, the North Sea is the focal point for activity. And in the West, the U.S. gas market is the power behind construction. As predictions of U.S. gas demand increase, Canadian pipeliners adjust expansion plans to be ready to capture greater shares of markets. Canada's TransCanada Pipelines Ltd. is racing to step up its share of the U.S. market. TransCanada's Western Gas Marketing Ltd. sold 242.3 bcf of gas in the 3 months ended last June 30, a 9.8% increase from last year. TransCanada reported lower volumes sold into Canadian markets, while exports into the U.S. continued to rise. Gas Research Institute (GRI) projects Canadian gas exports to the U.S. by 2000 will reach 2 tcf/year and LNG exports 800 bcf/year. U.S. gas supplies could increase to 23.9 tcf/year by 2010, mostly from Lower 48 production. GRI says supplies from Canada will make up the balance. In the past 2 years, TransCanada has spent about $1 billion expanding its interprovincial main line system.

Not Available

1991-09-09T23:59:59.000Z

432

Illinois Gas Pipeline Safety Act (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Gas Pipeline Safety Act (Illinois) Illinois Gas Pipeline Safety Act (Illinois) Illinois Gas Pipeline Safety Act (Illinois) < Back Eligibility Commercial Utility Program Info State Illinois Program Type Safety and Operational Guidelines Provider Illinois Commerce Commission Standards established under this Act may apply to the design, installation, inspection, testing, construction, extension, operation, replacement, and maintenance of pipeline facilities. Whenever the Commission finds a particular facility to be hazardous to life or property, it may require the person operating such facility to take the steps necessary to remove the hazard. Each person who engages in the transportation of gas or who owns or operates pipeline facilities shall file with the Commission a plan for inspection and maintenance of each pipeline facility owned or operated by

433

Gas supplies of interstate natural gas pipeline companies, 1986  

SciTech Connect

The publication provides information on the total reserves, production, and deliverability capabilities of the 90 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing State and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico. 7 figs., 18 tabs.

Not Available

1987-12-18T23:59:59.000Z

434

Rethinking the pipeline as objectoriented states with transformations  

E-Print Network (OSTI)

The pipeline is a simple and intuitive structure to speed up many problems. Novice parallel programmers are usually taught this structure early on. However, expert parallel programmers typically eschew using the pipeline in coarsegrained applications because it has three serious problems that make it difficult to implement efficiently. First, processors are idle when the pipeline is not full. Second, load balancing is crucial to obtaining good speedup. Third, it is difficult to incrementally incorporate more processors into an existing pipeline. Instead, experts recast the problem as a master/slave structure which does not suffer from these problems. This paper details a transformation that allows programs written in a pipeline style to execute using the master/slave structure. Parallel programmers can benefit from both the intuitive simplicity of the pipeline and the efficient execution of a master/slave structure. This is demonstrated by performance results from two applications. 1.

Steve Macdonald; Duane Szafron; Jonathan Schaeffer

2004-01-01T23:59:59.000Z

435

Hydrogen pipeline compressors annual progress report.  

DOE Green Energy (OSTI)

The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

Fenske, G. R.; Erck, R. A. (Energy Systems)

2011-07-15T23:59:59.000Z

436

Life Extension of Aging High-Level Waste Tanks  

Science Conference Proceedings (OSTI)

The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

Bryson, D.; Callahan, V.; Ostrom, M.; Bryan, W.; Berman, H.

2002-02-26T23:59:59.000Z

437

Evaluation of 241 AN tank farm flammable gas behavior  

DOE Green Energy (OSTI)

The 241 AN Tank Farm tanks 241-AN-103, -104, and 105 are Flammable Gas Watch List tanks. Characteristics exhibited by these tanks (i.e., surface level drops, pressure increases, and temperature profiles) are similar to those exhibited by tank 241-SY-101, which is also a Watch List tank. Although the characteristics exhibited by tank 241-SY-101 are also present in tanks 241-AN-103, -104, and 105, they are exhibited to a lesser degree in the AN Tank Farm tanks. The 241 AN Tank Farm tanks have only small surface level drops, and the pressure changes that occur are not sufficient to release an amount of gas that would cause the dome space to exceed the lower flammability limit (LFL) for hydrogen. Therefore, additional restrictions are probably unnecessary for working within the 241 AN Tank Farm, either within the dome space of the tanks or in the waste.

Reynolds, D.A.

1994-01-01T23:59:59.000Z

438

CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS  

SciTech Connect

The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

Hommel, S.; Fountain, D.

2012-03-28T23:59:59.000Z

439

New construction era reflected in East Texas LPG pipeline  

SciTech Connect

Installation of 240 miles of 6, 10, and 12-in. LPG pipelines from Mont Belvieu to Tyler, Tex., has provided greater feedstock-supply flexibility to a petrochemical plant in Longview, Tex. The project, which took place over 18 months, included tie-ins with metering at four Mont Belvieu suppliers. The new 10 and 12-in. pipelines now transport propane while the new and existing parts of a 6-in. pipeline transport propylene.

Mittler, T.J. (Texas Eastman Co., Longview, TX (US))

1990-04-02T23:59:59.000Z

440

U.S. pipeline industry enters new era  

Science Conference Proceedings (OSTI)

The largest construction project in North America this year and next--the Alliance Pipeline--marks some advances for the US pipeline industry. With the Alliance Pipeline system (Alliance), mechanized welding and ultrasonic testing are making their debuts in the US as primary mainline construction techniques. Particularly in Canada and Europe, mechanized welding technology has been used for both onshore and offshore pipeline construction for at least 15 years. However, it has never before been used to build a cross-country pipeline in the US, although it has been tested on short segments. This time, however, an accelerated construction schedule, among other reasons, necessitated the use of mechanized gas metal arc welding (GMAW). The $3-billion pipeline will delivery natural gas from northwestern British Columbia and northeastern Alberta in Canada to a hub near Chicago, Ill., where it will connect to the North American pipeline grid. Once the pipeline is completed and buried, crews will return the topsoil. Corn and other crops will reclaim the land. While the casual passerby probably won't know the Alliance pipeline is there, it may have a far-reaching effect on the way mainline pipelines are built in the US. For even though mechanized welding and ultrasonic testing are being used for the first time in the United States on this project, some US workers had already gained experience with the technology on projects elsewhere. And work on this pipeline has certainly developed a much larger pool of experienced workers for industry to draw from. The Alliance project could well signal the start of a new era in US pipeline construction.

Johnsen, M.R.

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

442

Enhanced Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

443

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

444

RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM  

SciTech Connect

Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was obtained from a compact region near the northeast riser and has been analyzed for a shortened list of key analytes. Since the unused portion of the floor scrape sample material is archived and available in sufficient quantity, additional analyses need to be performed to complete results for the full suite of constituents. The characterization of the full suite of analytes in the South hemisphere is currently supported by a single Mantis rover sample; there have been no floor scrape samples previously taken from the South hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 18 residual floor material, three additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Two of the three additional samples from the North hemisphere and three of the four additional samples from the South hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape samples (the sample previously obtained near NE riser plus the two additional samples that will be analyzed) results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in the stati

Shine, G.

2009-12-14T23:59:59.000Z

445

241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect

This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-30T23:59:59.000Z

446

241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect

This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-25T23:59:59.000Z

447

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS  

SciTech Connect

This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

448

EIA - Natural Gas Pipeline Network - States Dependent on Interstate  

U.S. Energy Information Administration (EIA) Indexed Site

States Dependent on Interstate Pipelines States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New York, District of Columbia Midwest - Illinois, Indiana, Minnesota, Ohio, Wisconsin Central - Iowa, Missouri, Nebraska, South Dakota West - Arizona, California, Idaho, Nevada, Oregon, Washington Interstate Natural Gas Supply Dependency, 2007 Map: Interstate Natural Gas Supply Dependency

449

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection Division prior to any petroleum or petroleum product pipe company acquiring property or interests by eminent domain. Monitoring conditions will be issued with

450

EIA - Natural Gas Pipeline Network - Natural Gas Market Centers...  

Gasoline and Diesel Fuel Update (EIA)

Corridors, 2009 DCP DCP Midstream Partners LP; EPGT Enterprise Products Texas Pipeline Company. Note: The relative widths of the various transportation corridors are based...

451

Enter the Post-Doc: The Untapped Sourcing Pipeline  

Science Conference Proceedings (OSTI)

This article addresses the potential formulation and utilization of an industry-based Post-Doc program in order to create workforce candidate pipelines with targeted universities.

Boscow, Ryan B.

2011-07-30T23:59:59.000Z

452

NETL: News Release - DOE-Funded Pipeline Robot Revolutionizes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Go to US DOE Publications News Release Release Date: December 04, 2007 DOE-Funded Pipeline Robot Revolutionizes Inspection Process Explorer II Demonstrates Huge Potential for...

453

Evalutation of Natural Gas Pipeline Materials and Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Thad Adams, George Rawls, Poh-Sang Lam and Robert Sindelar Savannah River National...

454

Microsoft Word - Tualatin_River_Pipeline_Crossing_Site_LURR_19940060...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum Julie Goodrich - TERR-3 Project Manager Proposed Action: Tualatin River Pipeline Crossing Site - Monitoring Well Redevelopment Categorical Exclusion Applied (from...

455

,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

456

Pipelines and Underground Gas Storage (Iowa) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of...

457

Application Filing Requirements for Natural Gas Pipeline Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas...

458

Fiber Reinforced Composite Pipeline - DOE Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

End Date: October 1, 2016 Fiscal Year (FY) 2012 Objectives Fiber Reinforced Composite Pipeline (FRP) Successfully adapt spoolable FRP currently used in * the oil and natural gas...

459

Fuel Cell Technologies Office: Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Pipeline Working Group to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen...

460

The Oak Ridge Genome Annotation and Analysis Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Grail (Microbial Gene Prediction System Internet Link) GrailEXP Genome Analysis Pipeline DomainParser PROSPECT (PROtein Structure Prediction and Evaluation Computer...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Natural Gas Pipeline and Underground Storage Expansions ...  

U.S. Energy Information Administration (EIA)

Pipeline transportation and underground storage are vital and complementary components of the U.S. natural gas system. While mainline gas transmission ...

462

Rio Bravo, Texas Natural Gas Pipeline Exports (Price) Mexico...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Rio Bravo, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand Cubic Feet) Rio Bravo, Texas Natural Gas...

463

EIA - Natural Gas Pipeline Network - Region To Region System ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines ... The EIA has determined that the informational map displays here do not raise security ...

464

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural ... The EIA has determined that the informational map displays here do not raise security ...

465

New natural gas pipeline capacity adds service into Florida ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration based on BENTEK Energy, LLC Note: Daily natural gas flow data and daily pipeline capacity derived from Florida's Gas ...

466

Natural Gas Pipeline and System Expansions, 1997-2000  

U.S. Energy Information Administration (EIA)

complement CNGs planned improvement to its system for Pipeline Companys Express 500 is one such proposal, with flowing gas between Leidy, Pennsylvania, ...

467

,"Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Hidalgo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

468

,"Rhode Island Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005...

469

,"Warroad, MN Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Warroad, MN Natural Gas Pipeline Exports to Canada (Million Cubic Feet)",1,"Annual",2003 ,"Release Date:","172014"...

470

,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Troy, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

471

,"Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

472

,"Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Penitas, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2002 ,"Release Date:","172014" ,"Next...

473

EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram  

Annual Energy Outlook 2012 (EIA)

Natural Gas based on data through 20072008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process...

474

,"Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

475

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

476

,"Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pittsburg, NH Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

477

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...  

Annual Energy Outlook 2012 (EIA)

Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground...

478

,"Warroad, MN Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Warroad, MN Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

479

,"International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

480

,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

Note: This page contains sample records for the topic "tanks pipeline tankage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Marysville, MI Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Marysville, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

482

,"Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Eagle Pass, TX Natural Gas Pipeline Exports to Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

483

EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...  

Annual Energy Outlook 2012 (EIA)

Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

484

,"Massena, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Massena, NY Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

485

,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

486

,"Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

487

,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

488

,"Calais, ME Natural Gas Pipeline Imports From Canada (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Calais, ME Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

489

,"Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2003 ,"Release Date:","172014" ,"Next...

490

,"Sherwood, ND Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Sherwood, ND Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

491

,"Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

492

,"Eastport, ID Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Eastport, ID Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

493

,"Waddington, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Waddington, NY Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

494

,"Sherwood, ND Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Sherwood, ND Natural Gas Pipeline Exports to Canada (Million Cubic Feet)",1,"Annual",2006 ,"Release Date:","172014"...

495

,"Sumas, WA Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Sumas, WA Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

496

,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

497

,"Noyes, MN Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Noyes, MN Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2012 ,"Release Date:","172014" ,"Next...

498

,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

499

UNITED STATES OF AMERICA DEPARTMENT OF TRANSPORTATION PIPELINE...  

NLE Websites -- All DOE Office Websites (Extended Search)

AMERICA DEPARTMENT OF TRANSPORTATION PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION HAZARDOUS MATERIALS CERTIFICATE OF REGISTRATION FOR REGISTRATION YEAR(S) 2009-2012...

500

Pipeline Annual Data - 1996 Gas Transmission Annuals Data (Zip...  

NLE Websites -- All DOE Office Websites (Extended Search)

Blogs Let's Talk Energy Beta You are here Data.gov Communities Energy Data Pipeline Annual Data - 1996 Gas Transmission Annuals Data (Zip) Dataset Summary Description...