National Library of Energy BETA

Sample records for tankless coil water

  1. Tankless Coil and Indirect Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters An indirect water heater. An indirect water heater. Tankless coil and indirect water heaters use a home's...

  2. Tankless Coil and Indirect Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    An indirect water heater. An indirect water heater. How does it work? Tankless coil and indirect water heaters use your home's heating system to heat water. Tankless coil and...

  3. Tankless Coil and Indirect Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters An indirect water heater. An indirect water heater. Tankless coil and indirect water heaters use a home's space heating system to heat water. They're part of what's called integrated or combination water and space heating systems. How They Work A tankless coil water heater provides hot water on demand without a tank. When a hot water faucet is turned on, water is heated as it flows through a heating coil or heat exchanger

  4. Tankless Coil and Indirect Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coil and Indirect Water Heater Basics Tankless Coil and Indirect Water Heater Basics August 19, 2013 - 3:03pm Addthis Illustration of a tankless coil water heater. The heater is box-shaped, and has two pipes sticking out one end: one a cold water inlet, and one a hot water outlet. These pipes lead into the heater to a cylindrical coil called a heat exchanger. Long tubes surrounding the heat exchanger are labeled the heated water jacket. At the bottom of the box is a row of small flames, called

  5. Promising Technology: Tankless Gas Water Heaters

    Broader source: Energy.gov [DOE]

    A tankless gas water heater does not have a storage tank, as a conventional water heater does. Instead, a tankless water heater instantaneously heats water flowing over the heat exchanger coils when there is hot water demand. Because there is no tank, tankless water heaters have no standby energy losses that are associated with storage units. Another non-energy saving benefit is that a tankless water heater is much more compact.

  6. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Environmental Management (EM)

    Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also...

  7. Tankless Gas Water Heater Performance - Building America Top...

    Energy Savers [EERE]

    Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater ...

  8. Tankless Electric Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Water Heaters Tankless Electric Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Water Heaters, Tankless Electric -- v2.0 More Documents &

  9. Tankless Gas Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Water Heaters Tankless Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Water Heaters, Tankless Gas -- v1_2 More Documents & Publications

  10. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also known as demand-type or instantaneous water heaters, provide hot water only as it is needed. They don't produce the standby energy losses associated with storage water heaters, which can save you money. Here you'll find basic information about how they work, whether a tankless water heater might be right for your home, and what

  11. Laboratory Evaluation of Gas-Fired Tankless and Storage Water...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title:...

  12. Laboratory Evaluation of Gas-Fired Tankless and Storage Water...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title: ...

  13. Monitoring SERC Technologies: On-Demand Tankless Water Heaters | Department

    Office of Environmental Management (EM)

    of Energy Weatherization Assistance Program » Pilot Projects » Monitoring SERC Technologies: On-Demand Tankless Water Heaters Monitoring SERC Technologies: On-Demand Tankless Water Heaters On Oct. 4, 2011, Ethan MacCormick, VP for Services to Energy Businesses at Performance Systems Development, presented a Webinar about On-Demand Tankless Water Heaters and how to properly monitor their installation. View the webinar presentation. More Information Some resources and tools mentioned in the

  14. Measure Guideline: Transitioning to a Tankless Water Heater

    SciTech Connect (OSTI)

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

  15. Tankless or Demand-Type Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a demand water heater at each hot water outlet. ENERGY STAR estimates that a typical family can save 100 or more per year with an ENERGY STAR qualified tankless water heater....

  16. Measure Guideline. Transitioning to a Tankless Water Heater

    SciTech Connect (OSTI)

    Brozyna, K.; Rapport, A.

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  17. Tankless Gas Water Heater Performance - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater measuring device mounted on the outside of a building wall. As improved thermal enclosures dramatically reduce heating and cooling loads, the water heating load continues to grow in importance. This Top Innovations profile describes Building America field testing by IBACOS that shed light on

  18. Tankless Demand Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold

  19. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for whole-home gas tankless water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most

  20. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater

    Office of Scientific and Technical Information (OSTI)

    Approaches to Combination Water and Space Heating (Technical Report) | SciTech Connect Technical Report: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with

  1. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater

    Office of Scientific and Technical Information (OSTI)

    Approaches to Combination Water and Space Heating (Technical Report) | SciTech Connect Technical Report: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with

  2. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect (OSTI)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  3. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect (OSTI)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida.The gas-fired tank type water heaters in the housing units were replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  4. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  5. Building America Top Innovations 2012: Tankless Gas Water Heater Performance

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America field testing that shed light on how real-world water usage affects energy saving estimates of high-efficiency water heating systems.

  6. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  7. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  8. Laboratory Evaluation of Gas-Fired Tankless and Storage Water...

    Office of Scientific and Technical Information (OSTI)

    Technologies Program Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION COMBINED SPACE AND WATER HEATING...

  9. Covered Product Category: Residential Whole-Home Gas Tankless...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition ...

  10. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  11. Building America Top Innovations Hall of Fame Profile … Tankless...

    Energy Savers [EERE]

    water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water ...

  12. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Energy Savers [EERE]

    Water Heaters | Department of Energy On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters. PDF icon serc_webinar_presentation_20111004.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot

  13. Selecting a new water heater

    SciTech Connect (OSTI)

    1995-03-01

    This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

  14. Tankless Water Heaters: Do They Really Work?

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on July 24-26, 2012.

  15. Sizing a New Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    systems: Tankless or demand-type water heaters Solar water heating system Storage and heat pump (with tank) water heaters. For sizing combination water and space heating systems --...

  16. Shut-off of a geopressured water channel behind casing via coiled tubing utilizing a dual slurry cement system: A case history

    SciTech Connect (OSTI)

    Nowak, T.W.; Lange, K.J.; Grant, W.H.; Patout, T.S.

    1995-12-31

    This paper presents a case history involving a unique dual cement system to shut off a geopressured water channel behind casing utilizing coiled tubing. The channeling problem was identified and documented using water flow logging techniques. Logging indicated the lower gravel packed selective could produce salt water if perforated without eliminating the suspected water channel. Reserves did not warrant a major rig workover, making a non-rig workover via coiled tubing the only viable option to repair the well. A unique dual cement system tested on a hesitation squeeze schedule pumped through coiled tubing with extremely limited thickening time was necessary to repair the primary cement job.

  17. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  18. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes

    Broader source: Energy.gov [DOE]

    This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems.

  19. Coiled tubing solves multiple downhole problems

    SciTech Connect (OSTI)

    Bedford, S. ); Smith, I. )

    1994-11-01

    Declining reservoir pressure and water breakthrough in the UK North Sea Magnus field has coincided with general advances in application of coiled tubing and a continuous drive to reduce operating costs, particularly in a climate of weak oil prices. These factors have led to a dramatic increase in diversity and volume of coiled tubing interventions. In the following article, coiled tubing interventions, and results of those interventions, are discussed. An assessment of future coiled tubing activity on Magnus field is provided.

  20. Novel Use of Water Soluble "Aquapour" As A Temporary Spacer During Coil Winding For The NSTX-U Centerstack

    SciTech Connect (OSTI)

    Mardenfeld, Michael

    2013-07-01

    A major facility upgrade to the National Spherical Torus eXperiment (NSTX-U) is currently underway at Princeton Plasma Physics Laboratory (PPPL). A key component of NSTX-U is the fabrication of a new, higher field centerstack (CS). In order to simultaneously provide robust joints between the inner and outer legs of the Toroidal Field Coils (TF) and minimize radial build, the NSTX-U CS design requires that the Ohmic Heating solenoid (OH) be wound directly on the inner TF bundle. To protect the OH against thermal expansion stress during scenarios where the inner TF bundle is hot but the OH is relatively cool, the completed CS will have a 0.100 inch annular gap between the outer diameter of the TF bundle and the inner diameter of the OH solenoid. "Aquapour", a proprietary material produced by the Advanced Ceramics Manufacturing Company will be used during manufacture to produce this gap. After the TF bundle is vacuum pressure impregnated and cured, a cylindrical "clam shell" mold will be assembled around it, and a slurry of powdered Aquapour and water will be pumped into the annular space between the mold and TF bundle. Subsequent baking will turn the Aquapour solid, and a protective layer of wet lay-up fiberglass and resin will be added. The OH solenoid will be wound directly on this wet lay-up shell. After vacuum pressure impregnation of the OH, the water soluble Aquapour will be washed away, leaving the required radial clearance between the TF and OH. This paper will describe prototyping and testing of this process, and plans for use on the actual CS fabrication.

  1. Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? |

    Energy Savers [EERE]

    Department of Energy 4: Are High Efficiency Hot Water Heating Systems Worth the Cost? Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective? PDF icon issue4_gasfired_waterheater.pdf PDF icon issue4_tankless_wh.pdf PDF icon issue4_waterhtg_solutions.pdf More Documents & Publications Cost Effective Water Heating Solutions Tankless

  2. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  3. Residential Water Heaters Webinar | Department of Energy

    Energy Savers [EERE]

    Residential Water Heaters Webinar Residential Water Heaters Webinar PDF icon 20110224_residential_water_heater_webinar.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters 2014-10-14 Issuance: Test Procedures and Energy Conservation Standards for Residential Solar Water Heaters; Request for Information Webinar: ENERGY STAR Hot Water Systems for High Performance Homes

  4. Protective link for superconducting coil

    DOE Patents [OSTI]

    Umans, Stephen D. (Belmont, MA)

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  5. Electromagnetic pump stator coil

    DOE Patents [OSTI]

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  6. Electromagnetic pump stator coil

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Dahl, Leslie R. (Livermore, CA)

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  7. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  8. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood (Marlboro, MA); Schwall, Robert E. (Northborough, MA)

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  9. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood (Marlboro, MA); Schwall, Robert E. (Northborough, MA)

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  10. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Welch, J.L. ); Whitlow, R.R. )

    1992-07-01

    This paper reports that pulling tubing to clean out a production liner at Prudhoe Bay Unit Western Operating Area (PBU WOA) averages $600,000 to $800,000. Coiled tubing underreaming was developed to accomplish this objective at lower costs. Beginning in 1988, these operations have been improved through several generations of procedures and tool designs. Using current technology, the underreamer, in conjunction with coiled tubing, can reduce the cost of drilling out to a liner to about $50,000 or $100,000, depending on the amount and type of material to be removed. PBU WOA, operated by BP Exploration, produces about 600,000 bopd from 395 wells. Another 61 wells are used to inject produced water, seawater and miscible fluids. Most of the remedial well servicing operations are conducted using coiled tubing (CT). Three contract coiled tubing units (CTUs) work daily, performing wellbore cleanouts, stimulations, inflatable bridge plug installations and cement squeeze operations. About 42 underreaming jobs were performed from 1990 to 1991 at PBU WOA for an average cost of between $75,000 and $100,000, a cost savings of $500,000 power well compared to pulling tubing and cleaning out the wells conventionally.

  11. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  12. Experimental studies on heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid in a circular pipe under laminar flow with wire coil inserts

    SciTech Connect (OSTI)

    Chandrasekar, M.; Suresh, S. [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015 (India); Chandra Bose, A. [Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620015 (India)

    2010-02-15

    In this paper, fully developed laminar flow convective heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid flowing through a uniformly heated horizontal tube with and without wire coil inserts is presented. For this purpose, Al{sub 2}O{sub 3} nanoparticles of 43 nm size were synthesized, characterized and dispersed in distilled water to form stable suspension containing 0.1% volume concentration of nanoparticles. The Nusselt number in the fully developed region were measured and found to increase by 12.24% at Re = 2275 for plain tube with nanofluid compared to distilled water. Two wire coil inserts made of stainless steel with pitch ratios 2 and 3 were used which increased the Nusselt numbers by 15.91% and 21.53% respectively at Re = 2275 with nanofluid compared to distilled water. The better heat transfer performance of nanofluid with wire coil insert is attributed to the effects of dispersion or back-mixing which flattens the temperature distribution and make the temperature gradient between the fluid and wall steeper. The measured pressure loss with the use of nanofluids is almost equal to that of the distilled water. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds/Peclet number, pitch ratio and volume concentration fits with the experimental data within {+-}15%. (author)

  13. Correction coil cable

    DOE Patents [OSTI]

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  14. Coil spring venting arrangement

    DOE Patents [OSTI]

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  15. Borehole induction coil transmitter

    DOE Patents [OSTI]

    Holladay, Gale (Livermore, CA); Wilt, Michael J. (Walnut Creek, CA)

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  16. Coiled tubing working life prediction

    SciTech Connect (OSTI)

    Wu, J.

    1995-12-31

    Failure of coiled tubing, due to the repeated bending and plastic deformation of coiled tubing on and off the reel and gooseneck, is of great concern in coiled tubing operations. This paper discusses the coiled tubing working life based on one of the coiled tubing life models published in the literature, and compares the results with other models. Certain agreements are found among these models. A group of curves is presented to illustrate the coiled tubing working life affected by coiled tubing size and wall thickness, internal pressure, yield strength, reel diameter, gooseneck radius, operation condition (corrosion) and butt-welded connection (stress concentration). The results show that coiled tubing life can be greatly increased by increasing CT wall thickness and CT strength, while the coiled tubing working life decreases under high internal pressure, corrosion, and butt-weld conditions. These curves can be easily used in estimating coiled tubing life for the field use.

  17. NCSX Toroidal Field Coil Design

    SciTech Connect (OSTI)

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  18. Correction coil cable

    DOE Patents [OSTI]

    Wang, Sou-Tien (Danville, CA)

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  19. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs. Read more Selecting a New Water Heater Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn

  20. Coiled tubing operations and services

    SciTech Connect (OSTI)

    Jaworsky, A.S. II )

    1991-11-01

    Coiled tubing offers many advantages over conventional jointed tubing used for drilling in oil fields, including time savings, pumping flexibility, fluid placement, reduced formation damage and safety. The article gives an overview of coiled tubing history and development. Operating concepts are explained, along with descriptions of the major equipment and components associated with coiled tubing use in the oil field today.

  1. DOE Zero Energy Ready Home Case Study: StreetScape Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with R-20 of open-cell spray foam, R-49 open-cell spray-foam sealed attic, an HRV, and a tankless water heater for hydro coil furnace with high-velocity, small-diameter ducts. ...

  2. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Brown, P.T.; Wimberly, R.D.

    1992-10-01

    Oil and gas wells that flow on initial completion eventually reach a condition of liquid loading that kills the wells. This results form declining reservoir pressure, decreased gas volume (velocity), increased water production and other factors that cause liquids to accumulate at the bottom of the well and exert back pressure on the formation. This restricts or in some cases prevents fluid entry into the wellbore form the formation. Flowing production can be restored or increased by reducing surface backpressure, well bore stimulation, pressure maintenance or by installing a string of smaller diameter tubing. This paper reports on installation (hanging off) of a concentric string of coiled tubing inside existing production tubing which is an economically viable, safe, convenient and effective alterative for returning some of these liquid loaded )logged-up) wells to flowing status.

  3. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect (OSTI)

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  4. Pumpdown assistance extends coiled tubing reach

    SciTech Connect (OSTI)

    Tailby, R.J. )

    1992-07-01

    One of the most challenging coiled tubing applications to emerge in the last few years is horizontal well maintenance. When wireline cannot be used, techniques that offer some of the same flexibility, availability and relatively low cost must be used. During this same period, however, drilling technology has also made huge strides in horizontal and extended-reach areas. Wells are now being drilled with horizontal lengths in excess of 6,000 ft and measured depths of more than 22,000 ft. This paper reports that although horizontal wells are definitely here to stay, many operators have had to reevaluate their positions after being confronted with the problem of recompleting these wells to eliminate excessive water or gas production. A full workover with workstring using either a drilling rig or snubbing unit can be expensive and may lead to lost production because of limited rig availability. Coiled tubing has successfully been used in most cases thus far, but it has length and horizontal reach limitations that drilling technology will soon overtake. Within the constraints of current technology and tube capabilities, coiled tubing does not have the buckling resistance or reel capacity to service today's longest horizontal and extended reach wells or those planned and foreseen in the future. Even if coiled tubing can reach TD, operations requiring downward force are severely restricted.

  5. Further advances in coiled-tubing drilling

    SciTech Connect (OSTI)

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.L.

    1994-12-31

    The use of coiled tubing to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefit of being able to drill at balance, safely and in a controlled manner, using nitrogen to reduce down hole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing impairment to the formation. The paper describes such a horizontal re-entry drilled in the shallow depleted water flooded reservoir Barenburg in Northern Germany. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the coiled tubing injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting of pipe and down hole tools was placed on the substructure. The development of a surface controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8 in. coiled tubing. This program represents a significant extension of the capabilities of drilling with coiled tubing.

  6. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Welch, J.L.; Stephens, R.K. )

    1992-09-01

    This paper reports on coiled tubing units which are used for many types of remedial well operations, including sand plugbacks, cement squeezes, fill cleanouts, underreaming, acid stimulations, and fishing. Fishing operations include removal of inflatable bridge plugs, lock mandrels stuck in profile nipples, coiled tubing, coiled tubing bottomhole assemblies (BHAs) and wireline. Recommended guidelines for selecting candidates, proper tool string configuration and operational techniques are presented here to assist coiled tubing supervisors and company representatives in the planning and implementation of efficient and effective fishing operations. Treatment of these areas are not intended to be exhaustive, but rather generally representative of common applications. Each fishing operation requires individualized analysis and planning.

  7. Design and Analysis of the ITER Vertical Stability Coils

    SciTech Connect (OSTI)

    Peter H. Titus, et. al.

    2012-09-06

    The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. An overview of the ELM coils is provided in another paper at this conference. 15 The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors The mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat is removed by water flowing at 3 m/s through the hollow copper conductor. A key element in the design is that slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils).The 120 degree segment joint, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. The transmission of the Lorentz and thermal expansion loads from the "spine" to the vessel rails is via friction augmented with a restraining "lip" to ensure the coil frictional slip is minimal and acceptable. Stresses in the coil, joints, and break-outs are presented. These are compared with static and fatigue allowables. Design for fatigue is much less demanding than for the ELM coils. A total of 30,000 cycles is required for VS design. Loads on the vessel due to the thermal expansion of the coil and spine are significant. Efforts to reduce these by reducing the cross section of the spine have been made but the vessel still must support loads resulting from restraint of thermal expansion.

  8. Collapse pressure of coiled tubing

    SciTech Connect (OSTI)

    Yang, Y.S.

    1996-09-01

    The collapse pressure is a measure of an external force required to collapse a tube in the absence of internal pressure. It is defined as the minimum pressure required to yield the tube in the absence of internal pressure. Coiled tubing is sometimes used in high-pressure wells. If the external pressure becomes too high, the coiled tubing will collapse. This could not only lead to serious well-control problems, but may result in extensive fishing operations. A reliable safety criterion of collapse pressure for the coiled tubing is needed by the coiled tubing operators. Theoretical models of collapse pressure are well developed for perfectly round coiled tubing but not for oval coiled tubing. Coiled tubing is initially manufactured with nearly perfect roundness, sometimes having a small ovality (typically {le} 0.5%). Perfectly round CT becomes oval owing to the plastic mechanical deformation of the coiled tubing as it spooled on and off the reel and over the gooseneck. As the cycling continues, the ovality usually increases. This ovality significantly decreases the collapse failure pressure as compared to perfectly round tubing. In this paper, an analytical model of collapse pressure for oval tubing under axial tension or compression is developed based on elastic instability theory and the von Mises criterion. The theoretical model shows satisfactory agreement with experimental data.

  9. Coiled tubing apparatus

    SciTech Connect (OSTI)

    Baugh, B.F.

    1981-05-05

    Disclosed are coiled tubing apparatus for operating on wells. A tubing injector head is supported on a mast and is moveable to selected elevations along the mast. The mast includes a lower section maintained in upright orientation, and an upper section which is pivotally joined to the lower section. The injector head may be lowered below the pivot point and the mast folded for transportation purposes. A chain drive maneuvers the injector head in one horizontal direction, and a fluid pressure cylinder maneuvers the injector head in a second horizontal direction generally orthogonal to the first. The chain drive is fitted with a worm gear coupling to positively lock the injector head in position. A height-adjustable level wind tubing guide directs the tubing onto or off of a reel. The base of the apparatus is fitted with a track along which a blowout preventer may be moved for subsequent positioning over a well.

  10. Coiled tubing - Operations and services

    SciTech Connect (OSTI)

    Gronseth, J.M. )

    1993-04-01

    Drilling with a continuous (rather than jointed) drill string is an old concept that is gaining new attention as a result of recent advances made in coiled tubing and drilling technology. The development of larger diameter, reliable, high-strength coiled tubing and smaller diameter, positive displacement motors, orienting tools, surveying systems and fixed cutting drill bits have given drilling with a continuous drill string a capability that was previously unattainable. Like its many other uses, (e.g., squeeze cementing, wellbore cleanouts, flow initiation, logging) the continuity of coiled tubing gives it several advantages over conventional drill strings. These include: drilling underbalanced safely, significantly reduced trip time, continuous circulation, smaller surface requirements. Coiled tubing drilling operations have smaller surface lease requirements than most conventional rigs due to the smaller footprint of the coiled tubing unit and associated equipment. Current coiled tubing drilling operations have the following limitations: conventional rig assistance is required for well preparation; conventional rigs must assist in running long protective and production casing strings or liners; hole sizes are smaller; working depth capabilities are shallower, coiled tubing life is less. This paper goes on to discuss the history of continuous drill strings and includes information on tubing units, circulating systems, drilling fluids, well control systems, downhole tools, orientation tools, and bottomhole assemblies. It then gives a cost comparison and an application of this type of drilling.

  11. Coiled tubing. operations and services

    SciTech Connect (OSTI)

    Hightower, C.M. )

    1992-11-01

    Coiled tubing is being used with increasing frequency in conventional or traditional production operations. Demand for coiled pipe in these types of applications is expected to experience rapid growth as standard 2 (3/8) and 2 (7/8)-in. OD tubing sizes and units equipped to run larger pipe become more readily available. This paper reports on a recent market survey which indicated that coiled tubing used for velocity strings and standard production tubing installations are two areas with the most potential for immediate and near-term expansion. Other applications include: well casing and liners, gravel packing, artificial lift, flowlines and pipelines.

  12. Laminated magnet field coil sheath

    DOE Patents [OSTI]

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  13. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  14. Coiled tubing -- Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II ); Blount, C.G. ); Tailby, R.J. )

    1993-06-01

    This paper reviews three industry authority's views on developments that will impact coiled tubing equipment and techniques for conventional land locations, Arctic and harsh offshore environments. Examples which are provided include the development of high-strength steels, composite pipe, integral lift devices, abrasive jet drilling, and extended reach drilling. It discusses the application of coiled tubing to well completion and maintenance, including the applications to plugged pipelines. The use of new steels and alloys help increase the corrosion resistance of the drilling stem along with greater load-bearing capacity. The economic advantages of coiled drilling versus jointed tubing drilling is somewhat more questionable as the cost for downhole motors and directional tools remain prohibitively high and borehole diameters remain small.

  15. Comparison of the structures and stabilities of coiled-coil proteins...

    Office of Scientific and Technical Information (OSTI)

    Comparison of the structures and stabilities of coiled-coil proteins containing hexafluoroleucine and t-butylalanine provides insight into the stabilizing effects of highly ...

  16. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II )

    1991-12-01

    This article outlines the minimum safety requirements that should be considered for onshore and offshore oil well service operations with coiled tubing equipment. These guidelines comply with Minerals Management Service (MMS) regulations issued on May 31, 1988, for offshore work. Where specific MMS regulations are sited, the regulation reference, Incident of Non-Compliance (INC), number is provided. These guidelines can be used by operators and contractors, and although U.S. offshore operations are emphasized, they are applicable wherever coiled tubing services are used.

  17. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II )

    1992-03-01

    Operations involving sand or solids washing are the most common of today's coiled tubing workover services. Wellbore cleanouts require pumping fluid that will entrain solids and return them to the surface. In most cases, wash fluids and solids are captured in surface tanks of sufficient volume to allow solids to settle out. Where practical, fluids are recirculated to reduce cost. An important concern when designing sand wash programs is correct fluid system selection. Wash fluids should closely balance BHP and provide piston like displacement for solids removal. This paper is an overview of compressible and incompressible fluids commonly used for coiled tubing services.

  18. Wedding ring shaped excitation coil

    DOE Patents [OSTI]

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  19. Sizing a New Water Heater | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sizing a New Water Heater Sizing a New Water Heater Is your water heater the right size for you house? | Photo credit ENERGY STAR® Is your water heater the right size for you house? | Photo credit ENERGY STAR® A properly sized water heater will meet your household's hot water needs while operating more efficiently. Therefore, before purchasing a water heater, make sure it's the correct size. Here you'll find information about how to size these systems: Tankless or demand-type water heaters

  20. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  1. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  2. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. )

    1993-01-01

    Coiled tubing can be used to wash or spot acid across completion intervals in vertical and high-angle wells. This technique allows easy wellbore cleanout, fluid placement flexibility and convenient flowback, and reduces damage from tubular deposits. Better zone coverage and rapid load recovery can improve well productivity. Oil and gas completions are intended to provide for efficient fluid transfer from permeable zones. When fluid inflow is less than optimum, the blockage or restriction is called 'formation damage,' and production or injection can be significantly affected. Damage mitigation treatments range form simple acid soaks to massive hydraulic fracturing, depending on damage type and severity. This article covers planning, designing and implementing treatments using coiled tubing.

  3. Equations determine coiled tubing collapse pressure

    SciTech Connect (OSTI)

    Avakov, V.; Taliaferro, W.

    1995-07-24

    A set of equations has been developed for calculating pipe collapse pressure for oval tubing such as coiled tubing. When coiled tubing is placed onto a reel, the tubing is forced into an oval shape and never again returns to perfect roundness because the coiling process exceeds the plasticity limits of the tubing. Straightening the tubing for the trip into the well does not restore roundness. The consequence of this physical property is that all coiled tubing collapse pressure calculations should be made considering oval tubing, not round tubing. Tubing collapse can occur when formation pressure against the coiled tubing exceeds the collapse resistance inherent in the coiled tubing. As coiled tubing becomes more oval in shape, it becomes more oval in shape, it becomes more susceptible to collapse from outside pressure.

  4. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  5. Coiled-tubing logging system

    SciTech Connect (OSTI)

    Howell, E.P.; Smith, L.J.; Blount, C.G.

    1988-03-01

    Techniques have been developed to use coiled tubing containing a seven-conductor wireline to facilitate logging operations. Equipment has been designed to permit the connection of conventional logging tools to the tubing and the recording of logs. Operating techniques have been developed and applied under various wellbore conditions. The system allows traditional log measurements in a well while wellbore conditions are controlled. Advantages of the system include reduced wellbore pressure during peroration to maximize perforation performance; lubrication during pulling or pushing a logging tool through a borehole so that a more uniform velocity can be maintained with a logging sonde; continued circulation and thus borehole stability during logging; temperature reduction for improved reliability of logging sonde electronics in hot holes; and more stable positioning of perforation equipment. The ability of coiled tubing to push tools down highly deviated or horizontal wellbores makes logging or perforating feasible in these wells. Expenses can often be reduced with coiled-tubing logging because a rig is unnecessary during many operations.

  6. Underbalanced coiled tubing sidetrack successful

    SciTech Connect (OSTI)

    Adam, J.; Berry, M.

    1995-12-18

    The technique of drilling through a completion string, underbalanced, with coiled tubing eliminated some of the problems encountered with overbalanced drilling in a group of offset wells. This project confirmed that performing drilling operations in live wells can be carried out safely and effectively. Dalen is a sour gas field in the eastern part of The Netherlands and produces from vertical fractures in the Zechstein carbonate reservoir. The proposal for Dalen 2 was to abandon the lower section of the original hole and subsequently sidetrack conventionally to the top of the reservoir, run and cement a 5-in. liner, complete the well with a 5-in. monobore completion, and install the christmas tree. This part of the operation would be performed with a workover hoist. Thereafter, a 3 3/4-in. hole would be drilled through the completion and into the reservoir, underbalanced with coiled tubing. The drilling proposal had to address a number of key issues: creating underbalanced conditions; handling sour gas production at surface; handling and treating drilling fluids at surface; removing drilled solids from the returned fluid system; and deploying a long coiled tubing drilling bottom hole assembly (BHA) into a live well. The paper discusses planning, legislative issues, well preparation, the drilling program, and lessons learned.

  7. Coiled-tubing logging system

    SciTech Connect (OSTI)

    Howell, E.P.; Smith, L.J.; Blount, C.G.

    1986-01-01

    Techniques have been developed which use coiled tubing containing a seven-conductor wireline to facilitate logging operations. Equipment has been designed which permits the connection of conventional logging tools to the tubing and the recording of logs. Also, operating techniques have been developed and applied under various wellbore conditions. The system allows traditional log measurements in a well while controlling wellbore conditions. Advantages of the system include: reduced wellbore pressure during perforation to minimize formation damage: lubrication while pulling or pushing a logging tool through a borehole so that a more uniform velocity can be maintained with a logging sonde; continued circulation and thus borehole stability while logging; temperature reduction for improved reliability of logging sonde electronics in hot holes; and more stable positioning of perforation equipment. The ability of coiled tubing to push tools down highly deviated, or even horizontal wellbores, makes logging or perforating feasible in these wells. Expenses can often be reduced with coiled-tubing logging, since a rig is unnecessary during many operations.

  8. Advanced composites enhance coiled tubing capabilities

    SciTech Connect (OSTI)

    Sas-Jaworsky, A.; Williams, J.G.

    1994-04-01

    From early coiled tubing (CT) use to recent operations, most concerns have been about tube damage from past service and remaining safe working life. Composite CT (CCT) is designed and constructed to exhibit unique anisotropic characteristics relative to steel or alternative isotropic materials that expand burst, collapse, tensile and compressive load performance capabilities. In 1988, Conoco Inc. began a development effort focused on using high-performance composite materials to meet numerous challenges associated with current and future oil and gas exploration and development. At that time, Conoco initiated a project to explore composite materials use for high-pressure, long-length, non-corroding tubulars with primary application as onshore water injection lines. In 1989, Conoco awarded a contract to AMAT a/s in Sandefjord, Norway to develop spoolable composite pipe for small diameter subsea lines. Concurrent with ongoing spoolable composite subsea lines, Conoco also began to explore high-performance CCT development in 1989.

  9. Design Analysis and Manufacturing Studies for ITER In-Vessel Coils

    SciTech Connect (OSTI)

    Kalish, M.; Heitzenroeder, P.; Neumeyer, C.; Titus, P.; Zhai, Y.; Zatz, I.; Messineo, M.; Gomez, M.; Hause, C.; Daly, E.; Martin, A.; Wu, Y.; Jin, J.; Long, F.; Song, Y.; Wang, Z.; Yun, Zan; Hsiao, J.; Pillsbury, J. R.; Bohm, T.; Sawan, M.; Jiang, NFN

    2014-07-01

    ITER is incorporating two types of In Vessel Coils (IVCs): ELM Coils to mitigate Edge Localized Modes and VS Coils to provide Vertical Stabilization of the plasma. Strong coupling with the plasma is required so that the ELM and VS Coils can meet their performance requirements. Accordingly, the IVCs are in close proximity to the plasma, mounted just behind the Blanket Shield Modules. This location results in a radiation and temperature environment that is severe necessitating new solutions for material selection as well as challenging analysis and design solutions. Fitting the coil systems in between the blanket shield modules and the vacuum vessel leads to difficult integration with diagnostic cabling and cooling water manifolds.

  10. Crystal Structure of a Super Leucine Zipper an Extended Two-Stranded Super Long Coiled Coil

    SciTech Connect (OSTI)

    J Diao

    2011-12-31

    Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 {angstrom} resolution. The peptide monomer shows a helix trunk with short curved N- and C-termini. In the crystal, two monomers cross in 35{sup o} and form an X-shaped dimer, and each X-shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two-stranded, parallel, super long coiled coil rather than a discrete, two-helix coiled coil of the wild-type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild-type leucine zipper, the N-terminus of the mutant has a dramatic conformational change and the C-terminus has one more residue Glu 32 determined. The mutant X-shaped dimer has a large crossing angle of 35{sup o} instead of 18{sup o} in the wild-type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self-assembling protein fibers.

  11. Resonator coiling in thermoacoustic engines

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.

  12. Titanium vs. traditional coiled tubing

    SciTech Connect (OSTI)

    1997-06-01

    The development of composite and titanium pipe has the potential to eliminate many of the issues facing coiled-tubing (CT) work on platforms with restricted lift capability in the North Sea, such as the time to mobilize and set up the CT reel, additional personnel requirements, and weather dependence. A number of methods are available to overcome reel-weight limitations when conventional steel Ct is used. These include Ct welding, split reels, boat spooling, and tube/tube connectors. These factors are discussed then the paper discusses results from 3 field tests on gas and oil wells.

  13. Double Coil Condenser Apparatus - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double Coil Condenser Apparatus A glass condenser apparatus that allows the user to adjust the rate of condensation during testing Savannah River National Laboratory Contact SRNL About This Technology Double Coil Condenser Apparatus Double Coil Condenser Apparatus Technology Marketing Summary A Glass Technologist at the Savannah River National Laboratory has developed a glass condenser apparatus that allows the user to adjust the rate of condensation during testing. The apparatus consists of a

  14. Helical axis stellarator with noninterlocking planar coils

    DOE Patents [OSTI]

    Reiman, Allan (Princeton, NJ); Boozer, Allen H. (Rocky Hill, NJ)

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  15. Coiled tubing 1995 update: Production applications

    SciTech Connect (OSTI)

    Sas-Jaworsky II; Teel, M.E.

    1995-06-01

    This article reviews the use of coiled tubing in oil and gas well development and servicing. It reviews the new technology in tool development, concentric services, installation, and performance associated with coiled tubing. It provides numerous case studies of various offshore applications of coiled tubing for servicing of live wells without loosing production. Surface equipment and tool modifications allow tool segments to be connected, deployed, and retrieved in one trip. It also reviews the performance of the tubing for sand cleanouts, operation under high pressure environments, and for screen repairs. Finally, the article reviews the use of coiled tubing to enhance artificial lift technology.

  16. Coiled tubing - Operations and services

    SciTech Connect (OSTI)

    Rich, D.A.; Blue, T.H. )

    1993-03-01

    Sand production can severely impact well performance and profitability by damaging production equipment or plugging wellbores. Sand control in existing wells may be required because of inadequate initial completion design, recompletion to new intervals or changes in reservoir production characteristics. The most durable and reliable sand control is by conventional gravel packing, but in some cases, conventional packs may not be economic or feasible. Improvements in coiled tubing technology and reliability have resulted in better application and increased acceptance of through-tubing sand control. Concentric gravel packing and sand consolidation are being used more because of advances in equipment, services, downhole tools and fluids. Candidates for these techniques include conventional completions that begin producing sand and wells with gravel pack failures. Economical jobs have been performed successfully in several different wellbore configurations. Some initially non-gravel packed wells are now being designed for possible through-tubing gravel packing, anticipating sand production later in the completion's producing life. This paper reviews the general procedures for installing a through-tubing, washdown mechanical gravel pack using coiled tubing conveyance and placement techniques.

  17. Comparison of the structures and stabilities of coiled-coil proteins

    Office of Scientific and Technical Information (OSTI)

    containing hexafluoroleucine and t-butylalanine provides insight into the stabilizing effects of highly fluorinated amino acid side-chains (Journal Article) | SciTech Connect Comparison of the structures and stabilities of coiled-coil proteins containing hexafluoroleucine and t-butylalanine provides insight into the stabilizing effects of highly fluorinated amino acid side-chains Citation Details In-Document Search Title: Comparison of the structures and stabilities of coiled-coil proteins

  18. SourceGas - Residential Energy Efficiency Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    rebate-programsindex.php State Arkansas Program Type Rebate Program Rebate Amount Water Heating Equipment Tankless Water Heater: 500 Hybrid tankless Water Heater: 500...

  19. Innovative applications stimulate coiled tubing development

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II; Bell, S.

    1996-06-01

    Coiled tubing (CT) is increasingly becoming a viable option to many conventional well operations worldwide. Advanced technology, new equipment and recent field applications have shown CT to be a lower-cost, reliable and effective tool for drilling and recompleting certain wells. Seven example applications from two recent coiled tubing technical conferences are described.

  20. Helical axis stellarator with noninterlocking planar coils

    DOE Patents [OSTI]

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  1. Coiled tubing - Operations and services

    SciTech Connect (OSTI)

    Blount, C.G. )

    1993-05-01

    Perhaps the most exciting area of coil tubing technology in the oil and gas industry is the development and testing of specialized tools for improving existing operations or meeting the requirements of new applications and techniques. A new generation of surface equipment and downhole tools will greatly expand through-tubing well servicing utility. This paper provides descriptions of current peripheral devices for concentric well work. It also includes a look at what's needed to meet future challenges and advance this technology. It specifically discusses various forms of fishing tools, power tongs used for bring drill stem, orienting tools for drilling, downhole adjustment tools, steering tools, well casing materials, perforation tools, and various other support equipment.

  2. Coiled tubing helps gas production

    SciTech Connect (OSTI)

    Matheny, S.L. Jr.

    1980-08-11

    To boost production from its gas fields in Lake Erie, Consumers' Gas Co., Toronto, used a giant reel holding a 33,000-ft coil of 1-in. polypropylene-coated steel tubing to lay about 44 miles of control lines that now service 20 wells 17 miles offshore. As the forward motion of the boat unwound the tubing, the reel rig's hydraulic motor served as a brake to maintain the proper tension. This innovative method of laying the lines eliminated more than 80% of the pipe joints, correspondingly reduced the installation labor time, and improved the system's reliability. The two hydraulic-control lines that were laid actuate the gas-gathering line valves, while a hydrate-control line injects each well with methyl alcohol to inhibit hydrate formation.

  3. Helically coiled tube heat exchanger

    SciTech Connect (OSTI)

    Harris, A.M.

    1981-08-18

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle.

  4. Various factors affect coiled tubing limits

    SciTech Connect (OSTI)

    Yang, Y.S.

    1996-01-15

    Safety and reliability remain the primary concerns in coiled tubing operations. Factors affecting safety and reliability include corrosion, flexural bending, internal (or external) pressure and tension (or compression), and mechanical damage due to improper use. Such limits as coiled tubing fatigue, collapse, and buckling need to be understood to avoid disaster. With increased use of coiled tubing, operators will gain more experience. But at the same time, with further research and development of coiled tubing, the manufacturing quality will be improved and fatigue, collapse, and buckling models will become more mature, and eventually standard specifications will be available. This paper reviews the uses of coiled tubing and current research on mechanical behavior of said tubing. It also discusses several models used to help predict fatigue and failure levels.

  5. MHK Technologies/HydroCoil Turbine | Open Energy Information

    Open Energy Info (EERE)

    HydroCoil Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroCoil Turbine.jpg Technology Profile Primary Organization HydroCoil...

  6. Coiled tubing as initial production tubing: An overview of case histories

    SciTech Connect (OSTI)

    Nirider, H.L.; Snider, P.M.; Walsh, K.D.; Cordera, J.R.; Williams, J.

    1994-12-31

    From January, 1993 through July, 1994 Marathon Oil, Company completed ten newly drilled gas wells using coiled tubing as the initial production string. This paper reviews the operational aspects of each job and summarizes the areas where improvements in equipment and technique were implemented. The use of coiled tubing allows the tubing size to be closely matched to the performance of these relatively low rate wells, minimizing the tubular costs and improving the well`s ability to stay unloaded. The main areas of improvement from one job to the next involved the use of a pressurized, hydraulically operated access window, ensuring that all frac sand was cleaned out prior to landing the coiled tubing and employing a ``hot cut off`` system to make the final cut on the coil tubing. Lessons learned include keeping the coiled tubing size large enough to run smaller coiled tubing through it for clean out and slickline work, care in closing the BOP rams to avoid damaging the pipe and the use of wellhead equipment specifically designed for coiled tubing. This technique is especially suited to low pressure and water sensitive reservoirs where loss of fluid is of concern. An additional benefit is the cost savings from reducing the hole and casing sizes to match the reservoir potential. This completion technique is often quicker than using a conventional completion rig and jointed tubing.

  7. Results of industry experience survey on coiled tubing uses and failures

    SciTech Connect (OSTI)

    Maldonado, J.G.; Cayard, M.S.; Kane, R.D.

    1999-11-01

    A survey of coiled tubing failures in various field applications was conducted. The survey included the collection of information on failure type, number of strain cycles to failure, service environment, well depth, failure location on the coiled tubing string, and coiled tubing grade employed. The most prevalent causes of failures and the impact of localized corrosion on the performance of coiled tubing were assessed from over thirty case studies herein reported. Pitting and tensile overload were the primary causes for failure in fifty percent of the cases reported from the field. Fatigue and weld area failures were the next most common types of failure. Most failures occurred within the range of 10 to 50 strain cycles. H{sub 2}S and brine/water containing environments were the most prevalent service conditions. Most failures occurred at well depths between 5,001 to 10,000 feet (1,524.3 to 3,048 meters). Also, most failures occurred in the coiled tubing string near the surface (less than 1,000 feet (304.8 meters)). Failures in roughly similar numbers were reported in 70, 80 and 100 coiled tubing grades. The understanding of the principal modes of failure herein reported should help in the development of improved handling and running procedures to minimize coiled tubing failures.

  8. An Overview Of The ITER In-Vessel Coil Systems

    SciTech Connect (OSTI)

    Heitzenroeder, P J; Chrzanowski, J H; Dahlgren, F; Hawryluk, R J; Loesser, G D; Neumeyer, C; Mansfield, C; Smith, J P; Schaffer, M; Humphreys, D; Cordier, J J; Campbell, D; Johnson, G A; Martin, A; Rebut, P H; Tao, J O; Fogarty, P J; Nelson, B E

    2009-09-24

    ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable "natural" small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.

  9. A dynamic model for underbalanced drilling with coiled tubing

    SciTech Connect (OSTI)

    Rommetveit, R.; Vefring, E.H.; Wang, Z.; Bieseman, T.; Faure, A.M.

    1995-11-01

    A model for underbalanced drilling with coiled tubing has been developed which takes into account all important factors contributing to the process. This model is a unique tool to plan and execute underbalanced or near balance drilling operations. It is a transient, one-dimensional multi-phase flow model with the following components: Lift gas system model, multiphase hydraulics model, reservoir-wellbore interaction model, drilling model, models for multiphase fluids (lift gas, produced gas, mud, foam, produced gas, oil, water and cuttings). Various alternative geometries for gas injection are modeled as well as all important operations during underbalanced drilling with coiled tubing. The model as well as some simulation results for its use are presented in this paper.

  10. Analysis of Coiled-Coil Interactions between Core Proteins of the Spindle Pole Body

    SciTech Connect (OSTI)

    Zizlsperger, N.; Malashkevich, V; Pillay, S; Keating, A

    2008-01-01

    The spindle pole body (SPB) is a multiprotein complex that organizes microtubules in yeast. Due to its large size and association with the nuclear membrane, little is known about its detailed structure. In particular, although many SPB components and some of the interactions between them have been identified, the molecular details of how most of these interactions occur are not known. The prevalence of predicted coiled-coil regions in SPB proteins suggests that some interactions may occur via coiled coils. Here this hypothesis is supported by biochemical characterization of isolated coiled-coil peptides derived from SPB proteins. Formation of four strongly self-associating coiled-coil complexes from Spc29, Spc42, and Spc72 was demonstrated by circular dichroism (CD) spectroscopy and a fluorescence resonance energy transfer (FRET) assay. Many weaker self- and heteroassociations were also detected by CD, FRET, and/or cross-linking. The thermal stabilities of nine candidate homooligomers were assessed; six unfolded cooperatively with melting temperatures ranging from <11 to >50 C. Solution studies established that coiled-coil peptides derived from Spc42 and Spc72 form parallel dimers, and this was confirmed for Spc42 by a high-resolution crystal structure. These data contribute to a growing body of knowledge that will ultimately provide a detailed model of the SPB structure.

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Ceiling Fan Remove Ceiling Fan filter Filter by eligibility:...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Compressed air Remove Compressed air filter Filter by eligibility:...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Wind (All) Remove Wind (All) filter Filter by eligibility: Commercial...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Wind (Small) Remove Wind (Small) filter Filter by eligibility:...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apply Current search Motors Remove Motors filter Tankless Water Heater Remove Tankless Water Heater filter Filter by eligibility: Federal Government (5) Apply Federal Government...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Doors Remove Doors filter Filter by eligibility: Residential (7) Apply...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Personal Computing Equipment Remove Personal Computing Equipment...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Siding Remove Siding filter Filter by eligibility: Residential (4)...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Other EE Remove Other EE filter Filter by eligibility: Residential...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Tribal Government Remove Tribal Government filter Filter by...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    search Compressed air Remove Compressed air filter Tankless Water Heater Remove Tankless Water Heater filter Filter by eligibility: Commercial (6) Apply Commercial filter...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Investor-Owned Utility Remove Investor-Owned Utility filter Filter by...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Solar - Passive Remove Solar - Passive filter Filter by eligibility:...

  4. Corrosion degradation mechanisms in coiled tubing

    SciTech Connect (OSTI)

    Kane, R.D.; Cayard, M.S.

    1994-12-31

    This paper reviews the historical aspects related to the development of coiled tubing for oilfield drilling, logging, workover and production operations. It focuses on the metallurgical and process variables of coiled tubing and their interrelationship with aspects of the downhole service environment and the resultant corrosion performance. Special emphasis is placed on (1) operating conditions that can lead to excessive corrosion and/or cracking damage and corrosion fatigue and (2) metallurgical and processing parameters which can be controlled to maximize coiled tubing resistance to corrosion degradation.

  5. Coiled tubing facilitates deep underbalanced workover

    SciTech Connect (OSTI)

    Adams, L.S.; Overstreet, C.C.

    1997-03-31

    A recent workover shows the technical capability and cost effectiveness of coiled tubing for cleaning out scale in a 22,611-ft, low pressure, high-temperature gas well. The well, operated by Chevron USA Production Co., is in the Fort Stockton Gas Unit 5-1 Gomez (Ellenburger) field, in West Texas. The development of reliable 100,000-psi minimal yield strength coiled tubing was a major factor that allowed this work to succeed. The methods demonstrated by this workover are becoming a standard for deep well cleanouts in the Gomez (Ellenburger) field. The paper describes coiled tubing advantages, well history, and implementation.

  6. Collapse tests expand coiled tubing uses

    SciTech Connect (OSTI)

    Walker, E.J.; Mason, C.M. )

    1990-03-05

    Tests on coiled tubing have allowed the authors' company to decrease well work costs for some operations, especially squeeze cementing. They conducted collapse tests of 1.5 in. (0.095 in. and 0.109-in. wall thickness) and 1.75-in. (0.109-in. wall thickness) OD coiled tubing while under imposed axial load and differential pressure. These tests were performed to define accurate field operating limits for this size of coiled tubing. Findings from these tests are reported and discussed.

  7. Coiled tubing 1994: Enhanced value through innovation

    SciTech Connect (OSTI)

    Teel, M.E.

    1994-01-01

    This paper discusses the growth in use of coiled tubing in well completion and development processes. Larger tubing is now available and operations expand into more demanding and critical areas as a result of research and development, innovation, and better understanding of materials and tube development. This article highlights significant coiled tubing operations, services, practices, and applications since 1990. It describes the types of materials used in coiled tubing and the strength associated with each type. Various case studies are described which use this tubing in both horizontal and directional drilling. It also is discussed as it relates to various types of enhanced recovery techniques for oil and gas wells.

  8. Coiled Fiber Pulsed Laser Simulator

    Energy Science and Technology Software Center (OSTI)

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  9. Cooling arrangement for a superconducting coil

    DOE Patents [OSTI]

    Herd, K.G.; Laskaris, E.T.

    1998-06-30

    A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.

  10. Evolution of coiled tubing drilling technology accelerates

    SciTech Connect (OSTI)

    Simmons, J.; Adam, B.

    1993-09-01

    This paper reviews the status of coiled tubing technology in oil and gas drilling operations. The paper starts with a description of current coiled tubing technology and provides a cost comparison between conventional and coiled tubing drilling. The results show that offshore operations are already competitive while onshore operations will still lag behind conventional drilling methods. A list of known coiled tubing drilling operations is provided which gives the current borehole diameters and depths associated with this technology. The paper then goes on to provide the advantages and disadvantages of the technology. The advantages include improved well control, a continuous drillstring, reduced mobilization costs, simplified logging and measurement-while drilling measurements, and less tripping required. The disadvantages include high friction with the borehole wall, downhole motors required, limited drillhole size, and fatigued or damaged sections of the tubing cannot be removed. Finally, a review of the reliability of this technology is provided.

  11. Coiled tubing flowline cuts wetlands disturbance

    SciTech Connect (OSTI)

    Coats, E.A.; Marinello, S.A.

    1993-12-01

    Operators in environmentally sensitive wetland areas of South Louisiana have used jointed, or stickpipe flowlines to transmit oil and gas to and from wellsites and production facilities. Recently, a new method featuring coiled tubing was introduced, using it as a recyclable gas flowline. The coiled tubing method eliminates potential environmental damage that could occur when stickpipe is used and it allows the tubing to be easily recovered and reused when the well is taken out of service. This article describes economic advantages of using coiled tubing and how its use simplified environmental constraints encountered in swamps. It is an expanded version of the authors` presentation to World Oil`s Coiled Tubing Conference, Houston, March, 1993.

  12. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  13. Coiled tubing cuts horizontal screen repair cost

    SciTech Connect (OSTI)

    Crow, W.; Hill, P.; Johnston, R.

    1996-01-01

    This article presents a case history of the successful workover performed by a coiled tubing unit (CTU) on Mississippi Canyon (MC) Block 109 Well A-24 in the US Gulf of Mexico to clean out sand and install new concentric screen for sand control. Workover design and operational details discussed are: Workover design -- hole-cleaning hydraulics, CT and screen predictions and comparison considerations; Workover operations -- cleanout, running packer and screens, coiled tubing (CT) weights, acid treatment and nitrogen lift and flow back.

  14. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J. (Seattle, WA)

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  15. 15 Ways to Save on Your Water Heating Bill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill October 26, 2009 - 3:49pm Addthis Allison Casey Senior Communicator, NREL Sometimes it surprises me to see that the most popular pages on the site are the ones about solar water heaters and demand (or tankless) water heaters. But considering that water heating can account for around 12% of a family's utility bill-the biggest chunk after space heating and cooling-it really shouldn't be that surprising that you

  16. Radiation-hard electrical coil and method for its fabrication

    DOE Patents [OSTI]

    Grieggs, R.J.; Blake, R.D.; Gac, F.D.

    1982-06-29

    A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.

  17. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect (OSTI)

    Maguire, Jeff; Fang, Xia; Wilson, Eric

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  18. Coiled tubing buckling implication in drilling and completing horizontal wells

    SciTech Connect (OSTI)

    Wu, J.; Juvkam-Wold, H.C.

    1995-03-01

    This paper discusses coiled tubing buckling and load transmission when drilling and completing horizontal wells. Comprehensive analyses and new equations are presented to predict buckling of coiled tubing, slack-off weight transmission, actual bit weight or packer load, and maximum horizontal length. Coiled tubing lock-up and yield due to buckling are also discussed. These equations can also be used for other coiled tubing operations, such as coiled tubing workover, coiled tubing well stimulation, and even for conventional joint-connected drill strings. Calculations based on the equations presented are also compared with the previous literature.

  19. Equation determines pressure drop in coiled tubing

    SciTech Connect (OSTI)

    Yang, Y.S.

    1995-12-04

    A single equation can determine the pressure drop in wells with laminar, transitional, and turbulent incompressible fluid flow in coiled tubing or other steel tubulars. The single equation is useful, especially in computer-aided design and operations. The equation is derived and illustrated by an example.

  20. Squeeze cement method using coiled tubing

    SciTech Connect (OSTI)

    Underdown, D.R.; Ashford, J.D.; Harrison, T.W.; Eastlack, J.K.; Blount, C.G.; Herring, G.D.

    1986-12-09

    A method is described of squeeze cementing a well wherein the well has a casing throughout the wellbore, casing cement between the casing and the wellbore of the well, perforations through the casing and the casing cement to establish fluid communication between the interior of the casing and a formation adjacent the perforations, channels in the casing cement in fluid communication with at least some of the perforations, a well tubing string in the casing extending from the surface to the proximity of the perforations, and a packer means for sealing between the tubing and the casing above the perforations. The method consists of: isolating the casing adjacent the perforations; lowering a coiled tubing down the well tubing string to a point adjacent the perforations; flowing uncontaminated squeeze cement through the coiled tubing and through the perforations into the channels; flowing a cement contaminating liquid down the coiled tubing to mix with the squeeze cement remaining in the casing; allowing the uncontaminated squeeze cement in the channels to harden; and removing the contaminated squeeze cement from the casing through the coiled tubing.

  1. How loads affect coiled tubing life

    SciTech Connect (OSTI)

    Walker, E.J. Inc., AK )

    1992-01-01

    Fatigue testing was performed on 1-3/4-in OD, 0.125 in. wall thickness (WT) coiled tubing using a standard coiled tubing unit (CTU) as shown in this paper. Testing was conducted under Prudhoe Bay, Alaska oil well, conditions to determine the effects of axial load, internal pressure and bending stress on the longevity, or usable running footage, that can be expected with larger diameter tubing. The CTU was rigged up in a standard configuration with injector head 50 ft off the ground, the worst case for bending on most currently available North Slope units. Internal pressure was supplied by a small triplex pump and the end of tubing was closed off with a fishing neck and bull plug. Weight, for the first four tests, was suspended from the coiled tubing by a special clamp. The tubing was cycled up and over the guide arch until a loss of internal coiled tubing pressure (CTP) occurred, or until the tubing became stuck in the stripper brass.

  2. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  3. Modeling coiled tubing velocity strings for gas wells

    SciTech Connect (OSTI)

    Martinez, J.; Martinez, A.

    1995-12-31

    Multiphase flowing pressure and velocity prediction models are necessary to coiled tubing velocity string design. A model used by most of the coiled tubing service companies or manufacturers is reviewed. Guidance is provided for selecting a coiled tubing of the proper size. The steps include: (1) Measured data matching; (2) Fluid property adjustment; (3) Pressure, velocity, and holdup selection; (4) Correlation choice; (5) Coiled tubing selection. A velocity range for the lift of liquid is given.

  4. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect (OSTI)

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  5. Coiled tubing enables rapid CO{sub 2} completions

    SciTech Connect (OSTI)

    Payton, R.; Baker, R.; Turner, D.; Bertrand, B.

    1996-08-01

    In the Bravo Dome field of northeastern New Mexico, Amoco has doubled their expected carbon dioxide (CO{sub 2}) production and reduced completion costs by 7.5% using coiled tubing in conjunction with other technologies. Amoco initially expected to produce an average 2.6 MMcfd per well. Instead, six months after completing the 31-well package, the company is producing an average 5.1 MMcfd. Important elements contributing cost and time savings on the project were: Log analysis to select perforations and help prevent water production, and lost circulation; the mobility and flexibility of coiled tubing; using cement for low-cost lost circulation control; using thermoplastic film to prevent proppant flowback; fracture designs optimized for each well; and forming an alliance between Amoco and vendors and developing of mutual trust. Amoco and other producing companies use about 95% of the CO{sub 2} produced at Amoco`s Bravo Dome field for enhanced oil recovery (EOR) projects in the Permian Basin area. Amoco sells 5% of the purest product to companies in the US food industry. While the low price of CO{sub 2}, about one-fourth that of methane, furnished part of the impetus for Amoco to implement the cost-cutting methods at Bravo Dome, the methods can be applied in many completion applications and are discussed in this paper.

  6. A Feasibility Study. Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  7. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  8. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  9. Coiled tubing workover saves horizontal well in Lake Maracaibo

    SciTech Connect (OSTI)

    Lizak, K.; Patterson, J.; Suarez, D.; Salas, J.

    1996-12-31

    A slotted liner horizontal completion became stuck while being run. Inflatable packers were to be used to isolate the productive interval from a water-bearing, unconsolidated sand in the curved section of this well. While personnel were deciding how to cement the well, the liner was left in the hole with the inflatable packers unset, and the production tubing was run. Coiled tubing was used to log the well, isolate the productive interval, and remove damage to restore well productivity. Personnel considered all possible options, and a thorough decision-making process guided the workover. Because of severe lost-circulation problems, extensive ``what if`` scenarios were made and updated daily for the engineers on location. Service company and oil company personnel worked together to guarantee the job designs were practical and did not exceed the limits of the equipment on location. Computer simulations of all operations were run to allow corrective action to be taken if unusual circumstances arose. All fluids were thoroughly laboratory tested and witnessed by oil company personnel to ensure job success. Problems on the job included lost circulation, locating the exact positions of the packers and water zone, ensuring correct cement placement, removing mud and workover fluids without damaging the squeeze, and bad weather on Lake Maracaibo. Advantages and disadvantages of all the solutions that were considered are included to assist anyone in a similar situation. Post-job oil production has stabilized at 900 BOPD with no water or sand production. Careful job planning and the versatility of coiled tubing saved this well and proved economical with an estimated payout of 33 days, assuming a price of $12 per barrel of oil.

  10. Coiled tubing applications for underground gas storage

    SciTech Connect (OSTI)

    Fowler, H.; Holcombe, D.

    1994-12-31

    Technological advances in coiled tubing (CT), CT handling equipment, and application techniques have provided new opportunities for the effective, economic use of CT for gas storage and retrieval. This paper presents a review of the CT capabilities that can be used for improving the performance of gas storage wells and discusses applications that could be performed with CT in the near future. For more than 25 years, coiled tubing has been use as an effective, economic means of performing remedial well services. In response to the demand for better horizontal drilling equipment, the strength and diameter of CT has been increased, while surface equipment and downhole tools have become more sophisticated. CT is also widely used in well servicing after initial completion, especially since declining oil prices have made it imperative that operators find more cost-effective methods of increasing production and reducing maintenance costs. The gas storage industry can effectively take advantage of the many recent advancements in CT technology.

  11. Coiled tubing velocity strings keep wells unloaded

    SciTech Connect (OSTI)

    Wesson, H.R.; Shursen, J.L.

    1989-07-01

    Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.

  12. US ITER toroidal field coil conductor produc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER toroidal field coil conductor production requires miles of niobium-tin superconducting wire. Photo: Oxford Superconducting Technology Continued on page 6 INSIDE: ITER Site Progress View from DOE US Systems Update Engaging Industry, Universities and Labs Open Positions Upcoming Events PPPL-Led Researchers Seek to Demonstrate a New Diagnostic - by John Greenwald Scientists working under the leadership of the US Department of Energy's Princeton Plasma Physics Laboratory have developed and are

  13. Single coil bistable, bidirectional micromechanical actuator

    DOE Patents [OSTI]

    Tabat, Ned (Madison, WI); Guckel, Henry (Madison, WI)

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  14. Efficiently log and perforate 60 + wells with coiled tubing

    SciTech Connect (OSTI)

    Fertl, W.H.; Hotz, R.F.

    1987-07-01

    In today's petroleum industry, more and more emphasis is being placed on logging and completion techniques for highly deviated (extended-reach) and horizontal boreholes. This is the result of cost-effective development of oil and gas via: a minimum number of production platforms on large structures, incremental but marginal reserves in outlying and/or small fault blocks, shallow reservoirs in deep offshore waters, and significant hydrocarbon accumulations in environmentally sensitive and/or restrictive areas, e.g., perma-frost, urban areas, etc. The major challenge in logging such high-angle, extended-reach, and also horizontal boreholes is guiding the logging tool string to the bottom of the wellbore. In the horizontal portion of a borehole, the use of coiled tubing has proven successful in ''pushing'' the logging instrumentation toward the bottom (end) of the borehole.

  15. Ablation dynamics in coiled wire-array Z-pinches

    SciTech Connect (OSTI)

    Hall, G. N.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Chittenden, J. P.; Bland, S. N.; Harvey-Thompson, A.; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Blesener, K. S.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2013-02-15

    Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell University's Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.

  16. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  17. Toroid cavity/coil NMR multi-detector

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Meadows, Alexander D. (Indianapolis, IN); Gregar, Joseph S. (Naperville, IL); Rathke, Jerome W. (Homer Glen, IL)

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  18. Coiled tubing drilling requires economic and technical analyses

    SciTech Connect (OSTI)

    Gary, S.C. )

    1995-02-20

    Field experience has proven that coiled tubing drilling is a technical and economic option on some wells; however, coiled tubing drilling is not the solution to every drilling prospect or production-enhancement job. To determine if coiled tubing drilling is viable, the geographic, technical, and economic aspects of each project must be considered in detail. Generally, with some limitations, coiled tubing drilling is feasible primarily when jointed pipe cannot be used effectively. Also, coiled tubing drilling may be more appropriate because of some special well site requirements, such as environmental regulations requiring less surface disturbance. The paper discusses technical considerations which need to be considered, economic feasibility, limitations of well types (new shallow wells, conventional reentry, through-tubing reentry, and underbalanced drilling), and outlook for further growth in the coiled tubing drilling industry.

  19. Sound Coiled-Tubing Drilling Practices

    SciTech Connect (OSTI)

    Williams, Thomas; Deskins, Greg; Ward, Stephen L.; Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  20. Logging of subterranean wells using coiled tubing

    SciTech Connect (OSTI)

    Pilla, J.

    1991-01-15

    This patent describes an apparatus for production logging of a well utilizing artificial lift in a wellbore. It comprises: coiled tubing extending into the wellbore having wireline electrical cable passing through a central bore thereof and having a remote end within the wellbore which end is connected to gas injector means. The wireline cable passing through the gas injector means to a flexible electrically conductive support spacer having an end portion remote from the gas injector means and logging means connected to the end portion of the support spacer.

  1. Developments in coiled tubing BOP ram design

    SciTech Connect (OSTI)

    Palmer, R.; Newman, K.; Reaper, A.

    1995-12-31

    Significant technical improvements have been made recently in the design of coiled tubing (CT) blowout preventer (BOP) shear and slip rams. This technology is constantly being enhanced and refined as the CT service industry continues to mature and new operational demands are placed on the CT pressure control equipment. Larger CT sizes require better BOP shearing capabilities. Advancements in the understanding of CT fatigue life have caused the life reducing affects of the slip ram markings on the pipe to be examined. This paper explores the circumstances that have precipitated these improvements, and the research and development methods involved in developing better BOP rams.

  2. Coiled tubing technology advances to a bright future

    SciTech Connect (OSTI)

    Ghiselin, R.

    1998-07-01

    This supplement contains six short articles on coiled tubing, its advantages, performance, and materials. The articles are: Coiled Tubing--On the Brink of a New Millennium; CT Advances Promise a Broad, Dynamic Future; Performance, Safety and Cost Make the Case for HPCT; Fast and Accurate, CTD Helps Drillers Hit Their Targets; Composite Tubing Rapidly Proves Advantages in the Field; and People and Performance are Key to Coiled Tubing Growth.

  3. Method for manufacturing a rotor having superconducting coils

    DOE Patents [OSTI]

    Driscoll, David I. (South Euclid, OH); Shoykhet, Boris A. (Beachwood, OH)

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  4. Hole cleaning imperative in coiled tubing drilling operations

    SciTech Connect (OSTI)

    Rameswar, R.M.; Mudda, K.

    1995-09-01

    Annular flow modeling in coiled tubing applications is essential for optimizing mud rheology and keeping the hole clean. Cuttings transport in coiled tubing drilling must be optimized, particularly the modeling of hole cleaning capabilities. The effects of two different muds in contrasting geometries on hold cleaning efficiency are considered, with the simulation performed using Petrocalc 14. Coiled tubing is widely used to drill new vertical and horizontal wells, and in re-entry operations. Horizontal well problems are subsequently modeled, where annular eccentricities can range anywhere from concentric to highly offset, given the highly buckled or helically deflected states of many drill coils.

  5. Coiled tubing used for slim hole re-entry

    SciTech Connect (OSTI)

    Traonmilin, E. ); Newman, K. )

    1992-02-17

    A coiled tubing unit with slim hole tools successfully re-entered and cored an existing Elf Aquitaine vertical well in the Paris basin in France. This experiment proved that coiled tubing could be used to drill, core, and test a slim hole well. Elf Aquitaine studied the use of coiled tubing for drilling inexpensive exploration wells in the Paris basin. As a result of this study, Elf believed that coiled tubing exploration drilling could significantly reduce exploration costs. This paper reports on a number of questions raised by this study: Can coiled tubing be used effectively to drill slim open hole How would the drilling rate compare with that of a conventional drilling rig If the rate were too slow, coiled tubing might not be economical. Can a straight vertical well be drilled Coiled tubing pipe has a residual curvature from bending over the reel and gooseneck. Will this curvature make it impossible to drill straight Can the coiled tubing also be used to take cores Once the hole is drilled, can it be tested with coiled tubing

  6. Nondestructive evaluation of new coiled tubing and pipe

    SciTech Connect (OSTI)

    Stanley, R.K.

    1996-09-01

    The nondestructive testing (NDT) and evaluation (NDE) of coiled tubing and pipe during manufacture has not previously been described. This paper outlines the NDE methods employed during the production of such material, along with flaw removal criteria. This paper describes coiled tubing and pipe up to 3.5 inches diameter for both downhole and line pipe use.

  7. Coiled-tubing applications for blowout-control operations

    SciTech Connect (OSTI)

    Adams, N.J.; Mack, S.K.; Fannin, V.R.; Rocchi, T.

    1996-05-01

    Coiled-tubing drilling is now being used in various operations. Its complete field of applications is not currently established. Coiled tubing used for well control while drilling is a new field where its limits are being explored. This paper provides guidelines on topics to be considered in determining the applicability of coiled tubing for well-control problems. The information provided is based on recent field experiences with several well-control problems when drilling vent and relief wells. In some cases, coiled-tubing drilling capabilities, by necessity, were significantly extended beyond levels the industry considered to be upper limits. Well control cannot always be handled by coiled tubing. It is a special-application tool that can handle many situations and is, in some cases, clearly the optimum choice for the application. This paper presents guidelines for selecting coiled tubing for each application and discusses economics. It also describes coiled-tubing operations for regaining control of blowout wells in certain situations and gives technical requirements for planning and executing these types of jobs. Case histories where coiled-tubing units (CTU`s) have been used to regain control of drilling and producing wells are provided for illustration.

  8. Downhole control -- The key to coiled tubing drilling efficiency

    SciTech Connect (OSTI)

    1996-10-01

    Coiled tubing drilling has experienced dramatic growth in recent years. Originally a step-child, the technique now claims built-for-purpose equipment and promises cost-effective drilling with little damage to formations. The paper describes a bottom hole assembly and an orienting tool designed to be used to control coiled tubing drilling.

  9. High voltage fault current limiter having immersed phase coils

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  10. Coiled tubing sidetrack: Slaughter Field case history

    SciTech Connect (OSTI)

    Hightower, C.M.; Blount, C.G.; Ward, S.L.; Martin, R.F.; Cantwell, D.L.; Ackers, M.J.

    1995-03-01

    The paper describes the successful sidetrack of an oil well in the Slaughter Field in West Texas using coiled tubing (CT). Several first-time CT operations performed during this workover include: setting a whipstock in casing on CT; cutting a window with CT; using mud pulse measurement-while-drilling (MWD) with CT in a real well; use of a fluid-operated orientation tool for in-hole toolface changes; successful use of an autodriller to maintain weight on bit while drilling. Directional control of the sidetracked hole proved to be ineffective due to a surface software problem. The resultant wellbore was not horizontal as planned, but instead closely paralleled the original well for much of its length. However, the previously non-productive well flowed 1,000 barrels of fluid per day (BFPD) from the sidetrack following the workover.

  11. Sidetracking technology for coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Doremus, D.M.; Hearn, D.D.; Rike, E.A.; Paslay, P.R.

    1996-05-01

    Coiled-tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and re-entry applications. Through-tubing drilling has evolved as a major application for CT drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. This paper describes the three technologies developed for sidetracking and presents a mathematical model of forces, penetration rates, and torques for window milling with the cement-sidetracking (CS) technique. Window milling has been a seat of the pants operation in the past. To the authors` knowledge, this is the first published work on the mechanics of window milling. The results from several yard tests and one field test are presented and show some of the problems associated with sidetracking.

  12. Transformer current sensor for superconducting magnetic coils

    DOE Patents [OSTI]

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    includes water heaters,... Eligibility: Commercial, Industrial Savings Category: Clothes Washers, Water Heaters, Other EE, Food Service Equipment, Tankless Water Heater...

  14. Sidetracking technology for coiled tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Hearn, D.D.; Rike, E.A.

    1995-12-31

    Coiled tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and reentry applications. A new market has evolved as being a major application for CT drilling. This market is through-tubing drilling. The lower cost of mobilization of a coiled tubing unit (CTU) to an offshore platform or Arctic wellsite vs. a rotary rig provides additional economic incentive. In addition, the ease of drilling 4-3/4-in. and smaller boreholes with CT is an advantage in a region which does not have an established practice of slimhole drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. The three technologies (cement sidetracking, whipstock in cement, and through-tubing whipstock) that have been developed for sidetracking are described in this paper. A mathematical model of forces, penetration rates, and torques for window milling with the cement sidetracking technique is presented. Window milling has been a {open_quotes}seat of the pants{close_quotes} operation in the past, to the authors` knowledge, this is the first published work on the mechanics of window milling. The analysis has shed much light on the interaction between motor bending stiffness, motor bend angle, and allowable advance rates for {open_quotes}time drilling.{close_quotes} The results from several yard tests are presented, and indicate some of the problems associated with sidetracking. The photographs of the sectioned hole/window illustrate the ledges caused downhole from {open_quotes}minor{close_quotes} bottomhole assembly (BHA) changes. The cement sidetrack technique has been successfully applied many times in the field, and the results of one of these field applications is presented.

  15. More collapse tests add to coiled tubing applications

    SciTech Connect (OSTI)

    Walker, E.J. ); Costall, D. )

    1991-06-17

    The collapse limits of thicker-walled coiled tubing have been determined to ensure safe and successful workover operations. Prudhoe Bay has been using 1.75-in OD coiled tubing for 2 years. When BP Exploration (Alaska) Inc. initially started using this larger size coil, collapse tests were run on 0.109-in. wall thickness coil. These tests provide a base curve by which much work has been performed in the western operating area of the Prudhoe Bay Unit. However, use of 1.75-in. coiled tubing has been expanded to include wall thickness of 0.125, 0.134, and 0.156-in. Except for theoretical calculations, no data were available to ensure that we would know the collapsed limitations for these sizes. To fill in this gap, further collapse testing has been done.

  16. Lessons Learned During the Manufacture of the NCSX Modular Coils

    SciTech Connect (OSTI)

    James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

    2009-09-15

    The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

  17. Vehicle to wireless power transfer coupling coil alignment sensor

    DOE Patents [OSTI]

    Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.

    2016-02-16

    A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.

  18. Interface Control Document for the Interface between the Central Solenoid Insert Coil and the Test Facility

    SciTech Connect (OSTI)

    Smirnov, Alexandre; Martovetsky, Nicolai N; Nunoya, Yoshihiko

    2011-06-01

    This document provides the interface definition and interface control between the Central Solenoid Insert Coil and the Central Solenoid Model Coil Test Facility in Japan.

  19. Microhole Coiled Tubing Bottom Hole Assemblies

    SciTech Connect (OSTI)

    Don Macune

    2008-06-30

    The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. The equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.

  20. Buildings Energy Data Book: 5.4 Water Heaters

    Buildings Energy Data Book [EERE]

    2 Water Heater Stock for Residential Buildings, By Storage Type Small (30 gallons or less) 17.1 17% 1.4 14% 18.5 17% Medium (31 to 49 gallons) 52.4 53% 2.4 24% 54.8 50% Large (50 gallons or more) 27.1 27% 2.8 27% 29.9 27% Tankless water heater 1.1 1% 0.2 2% 1.3 1% No Separate Water Heater 1.9 2% 3.4 33% 5.3 5% Total (1) 99.6 100% 10.2 100% 109.8 100% Note(s): Souce(s): Number and Percent of Households in 2005 Used by One Unit Used by Multiple Units Total According to RECS, 1.1 million households

  1. Inspecting coiled tubing for well operations

    SciTech Connect (OSTI)

    Gard, M.F.; Pasternack, E.S.; Smith, L.J.

    1992-02-18

    This patent describes improvement in a coiled tubing system for insertion of a substantially continuous bendable length of metal tubing into and withdrawal from a wellbore, the system including a tubing injection unit disposed for injecting the length of tubing into the well bore and storage means for dispensing the length of tubing and receiving the length of tubing from the injection unit. The improvement includes: tubing inspection apparatus for substantially continuously inspecting the wall section of the tubing to detect cracks and structural defects which may lead to tubing failure, the apparatus comprising: a source of electromagnetic radiation mounted in proximity to the tubing between the injection unit and a wellhead into which the tubing is injected; a radiation detector unit for receiving signals from the source which have been projected through the wall of the tubing; means for receiving signals form the detector unit for monitoring the structural integrity o the wall of the tubing during one of injecting and withdrawing the tubing with respect to the wellhead; and housing means supported for rotation about a longitudinal axis of the tubing.

  2. Advances in coiled-tubing operating systems

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II

    1997-06-01

    The expansion of coiled tubing (CT) applications into spooled flowlines, spooled completions, and CT drilling continues to grow at an accelerated rate. For many users within the oil and gas industry, the CT industry appears to be poised on the threshold of the next logical step in its evolution, the creation of a fully integrated operating system. However, for CT to evolve into such an operating system, the associated services must be robust and sufficiently reliable to support the needs of exploration, development drilling, completion, production management, and wellbore-retirement operations both technically and economically. The most critical hurdle to overcome in creating a CT-based operating system is a fundamental understanding of the operating scope and physical limitations of CT technology. The complete list of mechanisms required to advance CT into an operating system is large and complex. However, a few key issues (such as formal education, training, standardization, and increased levels of experience) can accelerate the transition. These factors are discussed.

  3. Coiled tubing 1994 update: Expanding applications

    SciTech Connect (OSTI)

    Teel, M.E.

    1994-06-01

    The coiled tubing (CT) resurgence, which began in late 1989 shows little sign of moderating in spite of lower oil and gas prices. In fact, this so-called revolution continues to expand into major new services and applications. CT units are replacing workover rigs and snubbing units in some areas and have recently started to replace drilling rigs even outside Alaska's North Slope Prudhoe Bay field. Activity is reaching record levels in many areas. Although drilling, completions and flowlines generate a lot of interest, these are currently only a small part of total CT business. About 75% of activity is split evenly between nitrogen, acidizing and cleanouts. The other 25% includes newer services like cementing, fishing, sliding sleeves, logging, underreaming to remove scale or cement and drilling. CT is used to drill slimholes and reentry drainholes up to 6 1/8-in. CT has been used as casing and more casing applications are planned. CT ODs to 3 1/2-in. are produced and 4 1/2-in. OD CT production is scheduled later this year. Larger ODs make CT feasible for replacing conventional jointed tubing and welded flowlines.

  4. Defining coiled tubing limits -- A new approach

    SciTech Connect (OSTI)

    Newman, K.R.; Sathuvalli, U.B.; Stone, L.R.; Wolhart, S.

    1996-12-31

    The burst, collapse and axial load operating limits for Coiled Tubing (CT) are currently established using the Von Mises incipient yield criterion. This criterion has historically been used to calculate the limits for oil country tubular goods (OCTG). The limits according to this criterion are based on the point at which the pipe material reaches a load state in which it begins to yield. Because of the bending that occurs when the CT is spooled on and off the reel, and when it is bent over the guide arch, the CT is already far beyond the yield point before it enters a well. Thus, this criterion does not really apply to CT. This paper describes a research project currently in progress. The purpose of this project is to define a new set of CT limits based on criteria other than incipient yield. This new approach to setting CT operating limits takes into account the internal residual stresses in the CT which are a consequence of repeated bending cycles and the accompanying change in material properties.

  5. Small Business Assistance Mechanical Testing of Z-Coil Shoe

    ScienceCinema (OSTI)

    Sandia

    2009-09-01

    Sandia National Laboratories conducts mechanical testing in 2001 through New Mexico Small Business Assistance Program on shoes developed and patented by Z-Coil Footwear. (SAND2006-2144P)

  6. Midcontinent well operators learn advantages of coiled-tubing techniques

    SciTech Connect (OSTI)

    Lyle, D.

    1995-07-01

    From well cleanup to velocity strings to squeeze jobs, more Midcontinent operators are adding coiled-tubing methods to their oilfield techniques. The advantages of these techniques are discussed.

  7. Specialized equipment enabled completions with large coiled tubing

    SciTech Connect (OSTI)

    Taylor, R.W.; Conrad, B.

    1996-02-19

    Specialized equipment enabled successful well completions in Oman with large 3{1/2}-inch coiled tubing. Conventional drilling or completion rigs were not needed. Although the use of 3{1/2}-inch coiled tubing to complete wells is relatively new, it is gaining widespread industry application. One Middle East operating company felt that if downhole completion equipment could be successfully run using coiled tubing, greater cost efficiency, both in initial deployment and in maintenance, could be derived. The paper lists some of the technical considerations for these assumptions. The long-term advantages regarding production and well maintenance cannot yet be determined, but experience in Oman has confirmed the belief that large coiled tubing completions can be technically achieved.

  8. Test data from the US-Demonstration Poloidal Coil experiment

    SciTech Connect (OSTI)

    Painter, T.A.; Steeves, M.M.; Takayasu, M.; Gung, C.; Hoenig, M.O. . Plasma Fusion Center); Tsuji, H.; Ando, T.; Hiyama, T.; Takahashi, Y.; Nishi, M.; Yoshida, K.; Okuno, K.; Nakajima, H.; Kato, T.; Sugimoto, M.; Isono, T.; Kawano, K.; Koizumi, N.; Osikiri, M.; Hanawa, H.; Ouchi, H.; Ono, M.; Ishida, H.; Hiue, H.; Yoshida, J.; Kamiyauchi, Y.; Ouchi, T.; Tajiri, F.

    1992-01-01

    The US Demonstration Poloidal Field Coil (US-DPC) experiment took place successfully at the Japan Atomic Energy Research Institute (JAERI) in late 1990. The 8 MJ niobium-tin coil was leak tight; it performed very well in DC tests; it performed well in AC tests, achieving approximately 70% of its design goal. An unexpected ramp-rate barrier at high currents was identified. The barrier could not be explored in the regime of higher fields and slower ramp rates due to limitations of the background-field coils. This document presents the results of the experiment with as little editing as possible. The coil, conductor, and operating conditions are given. The intent is to present data in a form that can be used by magnet analysts and designers.

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial, Residential Savings Category: Solar Water Heat, Solar Space Heat, Solar Photovoltaics, Hydroelectric (Small), Tankless Water Heater Commercial Energy Efficiency...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction, Residential Savings Category: Water Heaters, Furnaces, Other EE, Food Service Equipment, Tankless Water Heater Southwest Gas Corporation- Home Builder...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Furnaces, Boilers, Programmable Thermostats, Tankless Water Heater Montgomery County- Residential Energy Conservation Property Tax Credit Note: As originally...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Category: Water Heaters, Furnaces, Boilers, Heat recovery, Programmable Thermostats, Food Service Equipment, Commercial Cooking Equipment, Tankless Water Heater Mass Save...

  13. NSTX-U Digital Coil Protection System Software Detailed Design

    SciTech Connect (OSTI)

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  14. NMR of thin layers using a meanderline surface coil

    DOE Patents [OSTI]

    Cowgill, Donald F. (San Ramon, CA)

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  15. Coiled tubing velocity string hangoff method and apparatus

    SciTech Connect (OSTI)

    Gipson, T.C.

    1991-07-02

    This patent describes a method for hanging off a coiled tube velocity string in an active gas production well tubing run, the run having at least a master valve and a first line valve. It includes installing a hangoff assembly in the production well tubing run between the master valve and the first line valve the hangoff assembly comprising a hangoff head, a second line valve, an upper valve, and a hydraulic packoff valve, the hangoff head further comprising a threaded body member, a slip bowl and a threaded cap; inserting through the hydraulic packoff valve, the upper valve, and the hangoff head, coiled tubing for fluid communication with well gases and fluids in the production well tubing run, the coiled tubing having a first downhole end being open to immediately receive and conduct the gases and fluids; opening gas and fluid communication between the production well tubing run and the open end of the coiled tubing whereby the well gases and fluid may pass up through the coiled tubing, the hangoff head sealing the gases and fluids from passing to the hydraulic packoff valve, the upper valve and the second line valve; further inserting the coiled tubing to a desired depth in the production well tubing run; and rotating the cap of the hangoff head to expose the slip bowl.

  16. Logging with coiled tubing less effective than with drill pipe

    SciTech Connect (OSTI)

    Van Den Bosch, R. )

    1994-01-31

    Coiled tubing offered neither economic nor operational advantages over drill pipe for conveying logging tools in open hole shallow horizontal wells in Germany. In the past 2 years, Mobil Erdgas-Erdoel GMbH (MEEG) participated in completing eight shallow horizontal wells. These were medium-to-short radius wells at measured depths of between 850 and 2,000 m. The average horizontal section was 350 m. The logging tools were conveyed by coiled tubing or drill pipe. MEEG attempted to log five wells with coiled tubing-conveyed tools, four with 1 1/2-in. tubing. Total depth was reached reliably in only one well, the shallowest and with the shortest horizontal section. Simulation programs were unreliable for calculating the downhole forces of the coil/tool combination or predicting possible helical lockups. In wells with drill pipe-conveyed logs, the tool combination could always be pushed to total depth, and the operations were generally faster and cost less than logging with coiled tubing. Also, drill pipe allowed longer and heavier tool strings. For reliable operations, coiled tubing needs to be more rigid, rig-up/rig-down times need to be improved, and the simulation programs must be more reliable for predicting downhole lock-up.

  17. Further advances in coiled-tubing drilling

    SciTech Connect (OSTI)

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.

    1995-05-01

    The use of coiled tubing (CT) to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefits of being able to drill at balance, safely and in a controlled manner, with nitrogen to reduce downhole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing formation damage. This paper describes such a horizontal re-entry drilled in the shallow depleted waterflooded reservoir Barenburg in northern Germany. The scope of work for this project included (1) cutting windows through 6 5/8- and 9 5/8-in. casing, (2) drilling a 5 7/8-in.-medium-radius curve, (3) running a 5-in. liner and a 5 1/2-in. parasitic string for nitrogen injection, (4) drilling a 4 3/8-in. horizontal with nitrogen to maintain a balanced condition, (5) running openhole logs, and (6) running 3 1/2-in. slotted liner. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the CT injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting pipe and downhole tools was placed on the substructure. The development of a surface-controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8-in. CT. This program represents a significant extension of the capabilities of drilling with CT.

  18. Method and apparatus for making superconductive magnet coils

    DOE Patents [OSTI]

    Borden, A.R.

    1983-11-07

    A curved, shell-type magnet coil, adapted to be used in a superconducting magnet, is wound by providing a mandrel having a tubular cylindrical mid-portion terminating at both ends in tapered end portions formed with longitudinal slots having flexible fingers therebetween. An elongated electrical conductor is wound around an elongated oval-shaped pole island engaged with the outside of the cylindrical mid-portion, to form a multiplicity of oval-shaped turns engaged with a 180-degree segment of the mandrel. The coil turns have longitudinal portions with curved portions therebetween, engaging the tapered end portions of the mandrel. Upon completion of the winding, tapered expansion members are fully inserted into the tapered end portions, to displace the flexible fingers outwardly into a cylindrical form and to displace the curved portions of the turns into a shape conforming to such cylindrical form while also exerting increased tension upon the turns to minimize draping of the turns and to enhance the mechanical integrity of the coil. A half cylinder clamp may then be employed to clamp the coil, whereupon the coil may be solidified by the use of an epoxy adhesive.

  19. Power Supply Changes for NSTX Resistive Wall Mode Coils

    SciTech Connect (OSTI)

    Ramakrishnan, S S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils need fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.

  20. Reducing the risk, complexity and cost of coiled tubing drilling

    SciTech Connect (OSTI)

    Portman, L.

    1999-07-01

    Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

  1. Case studies from Oman for coiled tubing deployed completion techniques

    SciTech Connect (OSTI)

    Taylor, R.W.; Conrad, B.

    1996-09-01

    Although the use of ultra-large coiled tubing to complete wells is relatively new, it is gaining widespread industry application. This paper will detail the equipment necessary to perform an operation of this type and will present information from several case studies in Oman in which an operator has successfully deployed completion equipment on 3-1/2-inch-OD coiled tubing. In addition to a discussion of the equipment required to perform the necessary operations, the trial parameters that were established by this operator will be given. The information presented has been selected to allow an initial evaluation to be made of coiled tubing completions in general and will help to determine whether this method can prove to be less expensive than traditional rig-based completions. The topics presented have been chosen to provide the reader with a thorough understanding of the techniques and preparation needed to execute a coiled tubing completion. The summary of experiences will conclude that this innovative completion technique can be a viable method for completing wells. Although long-term advantages regarding production and well maintenance cannot yet be determined, the operator`s experiences to date have confirmed his initial belief that use of coiled tubing in ultra-large continuous-pipe applications can be cost effective.

  2. Method and apparatus for making superconductive magnet coils

    DOE Patents [OSTI]

    Borden, Albert R. (El Cerrito, CA)

    1985-01-01

    A curved, shell-type magnet coil, adapted to be used in a superconducting magnet, is wound by providing a mandrel having a tubular cylindrical mid-portion terminating at both ends in tapered end portions formed with longitudinal slots having flexible fingers therebetween. An elongated electrical conductor is wound around an elongated oval-shaped pole island engaged with the outside of the cylindrical mid-portion, to form a multiplicity of oval-shaped turns engaged with a 180-degree segment of the mandrel. The coil turns have longitudinal portions with curved portions therebetween, engaging the tapered end portions of the mandrel. Upon completion of the winding, tapered expansion members are fully inserted into the tapered end portions, to displace the flexible fingers outwardly into a cylindrical form and to displace the curved portions of the turns into a shape conforming to such cylindrical form while also exerting increased tension upon the turns to minimize draping of the turns and to enhance the mechanical integrity of the coil. A half cylinder clamp may then be employed to clamp the coil, whereupon the coil may be solified by the use of an epoxy adhesive.

  3. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, R.

    1984-05-22

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  4. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA)

    1984-01-01

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  5. Modeling coiled-tubing velocity strings for gas wells

    SciTech Connect (OSTI)

    Martinez, J.; Martinez, A.

    1998-02-01

    Because of its ability to prolong well life, its relatively low expense, and the relative ease with which it is installed, coiled tubing has become a preferred remedial method of tubular completion for gas wells. Of course, the difficulty in procuring wireline-test data is a drawback to verifying the accuracy of the assumptions and predictions used for coiled-tubing selection. This increases the importance of the prediction-making process, and, as a result, places great emphasis on the modeling methods that are used. This paper focuses on the processes and methods for achieving sound multiphase-flow predictions by looking at the steps necessary to arrive at coiled-tubing selection. Furthermore, this paper examines the variables that serve as indicators of the viability of each tubing size, especially liquid holdup. This means that in addition to methodology, emphasis is placed on the use of a good wellbore model. The computer model discussed is in use industry wide.

  6. World Oils`s 1995 coiled tubing tables

    SciTech Connect (OSTI)

    1995-03-01

    Increasingly in demand in almost every aspect of today`s E and P market because of flexibility, versatility and economy, coiled tubing is being used for a variety of drilling, completion and production operations that previously required conventional jointed pipe, workover and snubbing units, or rotary drilling rigs. For 1995 the popular coiled tubing tables have been reformatted, expanded and improved to give industry engineering and field personnel additional, more specific selection, operational and installation information. Traditional specifications and dimensions have been augmented by addition of calculated performance properties for downhole workover and well servicing applications. For the first time the authors are presenting this information as a stand-alone feature, separate from conventional jointed tubing connection design tables, which are published annually in the January issue. With almost seven times as much usable data as previous listings, the authors hope that their new coiled tubing tables are even more practical and useful to their readers.

  7. Uniformly wound superconducting coil and method of making same

    DOE Patents [OSTI]

    Mookerjee, Sumit (Cedar Hill, TX); Weijun, Shen (Beijun, CN); Yager, Billy (Waxahachie, TX)

    1994-01-01

    A coil of superconducting wire for a superconducting magnet having a relaely dense and uniformly spaced winding to enhance the homogeneity and strength of the magnetic field surrounding the coil and a method of winding the same wherein the mandrel used to wind said coil comprises removable spacers and retainers forming a plurality of outwardly opening slots, each of said slots extending generally about the periphery of the mandrel and being sized to receive and outwardly align and retain successive turns of the superconducting wire within each slot as the wire is wound around and laterally across the mandrel to form a plurality of wire ribbons of a predetermined thickness laterally across the mandrel.

  8. Uniformly wound superconducting coil and method of making same

    DOE Patents [OSTI]

    Mookerjee, S.; Weijun, S.; Yager, B.

    1994-03-08

    A coil of superconducting wire for a superconducting magnet is described having a relatively dense and uniformly spaced winding to enhance the homogeneity and strength of the magnetic field surrounding the coil and a method of winding the same wherein the mandrel used to wind said coil comprises removable spacers and retainers forming a plurality of outwardly opening slots, each of said slots extending generally about the periphery of the mandrel and being sized to receive and outwardly align and retain successive turns of the superconducting wire within each slot as the wire is wound around and laterally across the mandrel to form a plurality of wire ribbons of a predetermined thickness laterally across the mandrel. 8 figures.

  9. PPPL awards coil contract to Pennsylvania firm | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab awards coil contract to Pennsylvania firm By Kitta MacPherson August 11, 2011 Tweet Widget Google Plus One Share on Facebook The U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has awarded an $800,000 contract to a Nazareth, Pa.-based magnet manufacturer that will enable the production of essential components designed for an advanced fusion experiment. The PPPL-designed components, known as "trim coils", will be manufactured by Everson Tesla, Incorporated

  10. Coiled tubing: Applications for today`s challenges

    SciTech Connect (OSTI)

    Connell, M.; Headrick, D.; Isennock, C.

    1999-07-01

    Although coiled tubing (CT) was introduced to the oil and gas industry in the 1960s, the product was used for little more than nitrogen jetting and sand removal for nearly two decades. Then, in the 1990s, the availability of CT with large diameters (up to 4 inch OD) and higher strength enabled its use for more complicated and demanding jobs. For the first time, CT could provide the high flow rates and withstand the pressures required for production tubulars, without a rig or hoist unit. The paper describes composite coiled tubing, fracturing, laying offshore flow lines, and a gas storage well cleanout, and a geothermal well cleanout.

  11. An overview of McKittrick coiled tubing drilling project

    SciTech Connect (OSTI)

    Ewert, D.P.; Ramagno, R.A.; Hurkmans, R.S.

    1995-12-31

    In an effort to reduce drilling costs on thermal wells, service companies began reducing casing sizes and well pad location sizes in 1993. Based on a successful four-well pilot project completed in early 1994 at the Belridge Field, a 115-well steam injector project was completed in the McKittrick Field in late 1994, of which 68 wells were drilled with coiled tubing. This paper will discuss why slimhole completions and coiled tubing drilling were selected for this project, the operational aspects of drilling 68 wells in 92 working days, and conclusions about the project.

  12. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect (OSTI)

    Cayard, M.S.; Kane, R.D.

    1996-08-01

    Coiled tubing is an extremely useful tool in many well logging and workover applications in oil and gas production operations. Several important concerns regarding its use include the need for improved guidelines for the assessment of mechanical integrity, fatigue damage, and the effects of hydrogen sulfide in sour oil and gas production environments. This paper provides information regarding the use of coiled tubing in sour environments with particular emphasis on sulfide stress cracking, hydrogen induced cracking and stress-oriented hydrogen induced cracking and how they work synergistically with cyclic cold working of the steel tubing.

  13. Eddy current gauge for monitoring displacement using printed circuit coil

    DOE Patents [OSTI]

    Visioli, Jr., Armando J.

    1977-01-01

    A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.

  14. Control coil arrangement for a rotating machine rotor

    DOE Patents [OSTI]

    Shah, Manoj R. (Latham, NY); Lewandowsk, Chad R. (Amsterdam, NY)

    2001-07-31

    A rotating machine (e.g., a turbine, motor or generator) is provided wherein a fixed solenoid or other coil configuration is disposed adjacent to one or both ends of the active portion of the machine rotor for producing an axially directed flux in the active portion so as to provide planar axial control at single or multiple locations for rotor balance, levitation, centering, torque and thrust action. Permanent magnets can be used to produce an axial bias magnetic field. The rotor can include magnetic disks disposed in opposed, facing relation to the coil configuration.

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tankless Water Heater, Commercial Refrigeration Equipment State Building Energy Standards In May 2013 the Sustainable Coonstruction Advisory Committee responsible for...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment National Grid (Gas)- Commercial Energy Efficiency Programs National Grid's Commercial...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Alameda Municipal Power- Commercial New Construction Rebate Program Alameda Municipal Power...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Food Service Equipment, Vending Machine Controls, Personal Computing Equipment, Data Center Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Windows, CustomOthers pending approval, Other EE, Tankless Water Heater Energy Conservation Improvements Property Tax Exemption Qualifying...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Food Service Equipment, Vending Machine Controls, Personal Computing Equipment, Tankless Water Heater Energy Efficiency Investment Fund Rebates Specific efficiency requirements...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    specific technologies not identified, Insulation, Food Service Equipment, Commercial Cooking Equipment, Tankless Water Heater, Commercial Refrigeration Equipment Refine your...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    specific technologies not identified, Insulation, Food Service Equipment, Commercial Cooking Equipment, Tankless Water Heater, Commercial Refrigeration Equipment Cleco-...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Heat recovery, Programmable Thermostats, Food Service Equipment, Commercial Cooking Equipment, Tankless Water Heater Oklahoma Natural Gas- Residential Efficiency Rebates...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    specific technologies not identified, Insulation, Food Service Equipment, Commercial Cooking Equipment, Tankless Water Heater, Commercial Refrigeration Equipment DHCD-...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Vending Machine Controls, Personal Computing Equipment, Data Center Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Community Energy...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Lassen Municipal Utility District- Residential Energy Efficiency Rebate Program Lassen Municipal Utility...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roofs, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Montgomery County- Residential Energy Conservation Property Tax Credit Note: As originally...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pending approval, Other EE, Food Service Equipment, Vending Machine Controls, Personal Computing Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tankless Water Heater, Commercial Refrigeration Equipment Modesto Irrigation District- Commercial Energy Efficiency Rebate Program Modesto Irrigation District's Commercial...

  10. Georgia Environmental Finance Authority - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    gas furnaces, tankless water heaters, building envelope improvements, diagnostic testing, duct sealing, insulation and controls improvements Estes Heating and Air:...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Personal Computing Equipment, Tankless Water Heater Anaheim Public Utilities- Green Building Rebate Program Anaheim Public Utilities (APU) offers commercial,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Others pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Energy Conservation Improvements Property Tax Exemption Qualifying...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Insulation, Windows, Doors, Insulation, LED Lighting, Tankless Water Heater Jackson Energy Cooperative- Residential Energy Efficiency Rebate Programs Established in...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Programmable Thermostats, Windows, Other EE, Vending Machine Controls, Tankless Water Heater Marshall Municipal Utilities- Commercial Energy...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE, Food Service Equipment, Commercial Cooking Equipment, Personal Computing Equipment, Data Center Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Food Service Equipment, Vending Machine Controls, Personal Computing Equipment, Data Center Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tankless Water Heater Xcel Energy (Electric)- Residential Energy Efficiency Rebate Programs Customers interested in comprehensive home energy efficiency improvements may...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Ameren Illinois (Electric)- Custom, HVAC and Motor Business Efficiency Incentives Lighting Eligibility:...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tankless Water Heater, Commercial Refrigeration Equipment SCE- Non-Residential Energy Efficiency Programs Southern California Edison (SCE) offers incentives for...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Alternative Energy Portfolio Standard Eligible technologies Eligibility:...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roofs, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Eau Claire Energy Cooperative- Residential Energy Efficiency Rebate Program Eau Claire...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Personal Computing Equipment, Tankless Water Heater Renewable Energy Systems Tax Credit (Corporate) Residential Systems:... Eligibility: Commercial, Construction,...

  3. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    DOE Patents [OSTI]

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  4. Superconducting coil and method of stress management in a superconducting coil

    DOE Patents [OSTI]

    McIntyre, Peter M. (College Station, TX); Shen, Weijun (Oak Ridge, TN); Diaczenko, Nick (College Station, TX); Gross, Dan A. (College Station, TX)

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  5. Produce through coiled tubing to keep marginal wells unloaded

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The use of coiled tubing as an alternate production tubing string has been attempted or considered by numerous operators in the past. However, its use has been tempered due to several problems known to be inherent with coiled tubing recompletions. Some of the problems encountered are: Killing the well to allow for tubing installation always carries the risk of formation damage; Candidate wells normally are marginal producers and may not produce sufficient revenue to justify the cost of a major workover; Procedures followed to install surface equipment may be hazardous; Previous installation designs required running the coiled tubing to the top of the tree, affecting the functional loss of all existing wellhead equipment; Often substandard modifications were required to reconnect into existing production facilities. However, a prototype spool and tubing hanger that incorporated modifications designed to solve these problems has been developed jointly by Reeled Tubing, Inc., and Well-head Control Systems. The solution is a new concept in the coiled tubing hanger. The design incorporates a floating element, which is a combination slip bowl, seal element and retaining sub. The entire assembly is installed and activated in the bore of a specially designed spool installed between the primary and secondary master valves of the existing wellhead.

  6. Proper bit selection improves ROP in coiled tubing drilling

    SciTech Connect (OSTI)

    King, W.W. )

    1994-04-18

    Using the correct type of bit can improve the rate of penetration (ROP) and therefore the economics of coiled tubing drilling operations. Key factors, based on studies of the coiled tubing jobs to date, are that the drilling system must be analyzed as a whole system and that both the drill bit type and the formation compressive strength are critical components in this analysis. Once a candidate job has been qualified technically for drilling with coiled tubing, the job will have to be justified economically compared to conventional drilling. A key part of the economic analysis is predicting the ROP in each formation to be drilled to establish a drilling time curve. This prediction should be based on the key components of the system, including the following: hydraulics, motor capabilities, weight on bit (WOB), rock compressive strength, and bit type. This analysis should not base expected ROPs and offset wells drilled with conventional rigs and equipment. Furthermore, a small-diameter bit should not be selected simply by using the International Association of Drilling Contractor (IADC) codes of large-diameter bits used in offset wells. Coiled tubing drilling is described, then key factors in the selection are discussed.

  7. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect (OSTI)

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  8. Multiaxial cyclic ratcheting in coiled tubing -- Part 1: Theoretical modeling

    SciTech Connect (OSTI)

    Rolovic, R.; Tipton, S.M.

    2000-04-01

    Coiled tubing is a long, continuous string of steel tubing that is used in the oil well drilling and servicing industry. Bending strains imposed on coiled tubing as it is deployed and retrieved from a well are considerably into the plastic regime and can be as high as 3%. Progressive growth of tubing diameter occurs when tubing is cyclically bent-straightened under constant internal pressure, regardless of the fact that the hoop stress imposed by typical pressure levels is well below the material's yield strength. A new incremental plasticity model is proposed in this study that can predict multiaxial cyclic ratcheting in coiled tubing more accurately than the conventional plasticity models. A new hardening rule is presented based on published experimental observations. The model also implements a new plastic modulus function. The predictions based on the new theory correlate well with experimental results presented in Part 2 of this paper. Some previously unexpected trends in coiled tubing deformation behavior were observed and correctly predicted using the proposed model.

  9. Electrical and Quench Performance of the First MICE Coupling Coil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tartaglia, M. A.; Carcagno, R.; Makulski, A.; Nogiec, Jerzy; Orris, D.; Pilipenko, R.; Sylvester, C.; Caspi, S.; Pan, H.; Prestemon, S.; et al

    2014-11-10

    The first MICE Coupling Coil has been tested in a conduction-cooled environment in the new Solenoid Test Facility at Fermilab. We present an overview of the power and quench protection scheme, and report on the electrical and quench performance results obtained during cold power tests of the magnet.

  10. Coiled tubing operations and services. Part 3; Tube technology and capabilities

    SciTech Connect (OSTI)

    Sas-Jaworsky, A.I.I. )

    1992-01-01

    This article offers an overview of developments in commercial coiled tubing for oil wells including continuous coiled pipe manufacturing and production. Pipe behavior under various stresses and forces encountered during typical workover operations is addressed.

  11. An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes

    SciTech Connect (OSTI)

    Cioncolini, Andrea; Santini, Lorenzo [Department of Nuclear Engineering, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy)

    2006-03-01

    An experimental study was carried out to investigate the transition from laminar to turbulent flow in helically coiled pipes. Twelve coils have been tested, with ratios of coil diameter to tube diameter ranging from 6.9 to 369, and the interaction between turbulence emergence and coil curvature has been analyzed from direct observation of the experimental friction factor profiles. The experimental data compare favorably with existing results and reveal new features that apparently were not observed in previous research. (author)

  12. The challenge of performing safer coiled tubing operations

    SciTech Connect (OSTI)

    Van Adrichem, W.P.; Dowell, S.; Godsman, J.M.

    1996-12-31

    The substantial growth in coiled tubing services over the past several years has increased both the frequency of lost time injuries and potential for job execution related incidents. As the industry realizes the additional benefits of coiled tubing e.g. well intervention under pressure, efficiency, selective placement of fluids down hole and drilling, it is obvious that pipe size has, and will continue to increase. Pipe size has increased from a modest 1 {1/4} inches outside diameter ten years ago to outside diameters in excess of 2 7/8 inch being used on a regular basis today. In addition the development of programs to predict pipe fatigue and down hole stresses have encouraged operators to become more confident with the service.

  13. Study of HTS Insert Coils for High Field Solenoids

    SciTech Connect (OSTI)

    Lombardo, Vito; /Fermilab

    2009-09-01

    Fermilab is currently working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting materials (HTS) is being considered for these solenoids using Helium refrigeration. Several studies have been performed on insert coils made of BSCCO-2223 tapes and second generation (2G) YBCO coated conductors, which are tested at various temperatures and at external fields of up to 14 T. Critical current (I{sub c}) measurements of YBCO short samples are presented as a function of bending stress, magnetic field and field orientation with respect to the sample surface. An analytical fit of critical current data as a function of field and field orientation is also presented. Results from several single-layer and double-layer pancake coils are also discussed.

  14. Design and Construction of a Prototype Solenoid Coil for MICE Coupling Magnets

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Guo, XingLong; Xu, FengYu; Liu, XiaoKun; Wu, Hong; Zheng, ShiXian; Green, Michael A; Li, Derun; Virostek, Steve; Zisman, Michael

    2010-06-28

    A superconducting coupling solenoid mounted around four conventional RF cavities, which produces up to 2.6 T central magnetic field to keep the muons within the cavities, is to be used for the Muon Ionization Cooling Experiment (MICE). The coupling coil made from copper matrix NbTi conductors is the largest of three types of magnets in MICE both in terms of 1.5 m inner diameter and about 13MJ stored magnetic energy at full operation current of 210A. The stress induced inside the coil assembly during cool down and magnet charging is relatively high. In order to validate the design method and develop the coil winding technique with inside-wound SC splices required for the coupling coil, a prototype coil made from the same conductor and with the same diameter and thickness but only one-fourth long as the coupling coil was designed and fabricated by ICST. The prototype coil was designed to be charged to strain conditions that are equivalent or greater than would be encountered in the coupling coil. This paper presents detailed design of the prototype coil as well as developed coil winding skills. The analyses on stress in the coil assembly and quench process were carried out.

  15. Development of a coiled tubing cable installation system

    SciTech Connect (OSTI)

    Newman, K.R.; Haver, N.A.; Stone, L.R.

    1995-12-31

    A system has been developed which installs and de-installs an electric wireline cable in coiled tubing (CT) while the CT is still on the reel. This cable installation system reduces the cost of a cable installation significantly compared with previous installation methods. This paper discusses the need for such a system, the theory used to develop this system, the various concepts considered, the system that was developed and test installation cases.

  16. The effect of fluid flow on coiled tubing reach

    SciTech Connect (OSTI)

    Bhalla, K.; Walton, I.C.

    1996-12-31

    A critical parameter to the success of many coiled tubing (CT) operations in highly deviated or horizontal wells is the depth penetration that can be attained before the CT buckles and locks up. Achieving a desired depth is always critical in CT operations and attaining an additional reach of a few hundred feet can be crucial. This paper addresses the effect of fluid flow in the CT and in the CT/wellbore annulus on the state of force and stress in the CT, and thereby predicts its effect on the reach attainable by the CT. The flow of fluid through the CT and annulus between the CT and borehole modifies the pressures and the effective force which governs the mechanical stability of the CT. The net force per unit length due to fluid flow in the coiled tubing and annulus between the coiled tubing casing/well is calculated in terms of the shear stress and its effect on the onset of buckling and lockup is determined. The model is then implemented in a full tubing forces calculation and the effect of flowing fluids and producing fluids on reach is analyzed. The new model is utilized in the design of commercial jobs. The exact analytic model shows that fluid flow inside the CT has zero impact on reach, that downward flow in the annulus has a favourable impact, and upward flow in the annulus reduces the maximum attainable reach. Using the full tubing forces model, a coiled tubing job can be designed taking into account the flow of a fluid with a specified rheology, density and flow rate. Thus the feasibility of attaining a given reach can be more accurately determined. Results are presented in the form of the surface weight for commercial wells and compared to field jobs.

  17. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-08-26

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H{sup +}] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  18. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOE Patents [OSTI]

    Fukushima, Eiichi (Los Alamos, NM); Roeder, Stephen B. W. (La Mesa, CA); Assink, Roger A. (Albuquerque, NM); Gibson, Atholl A. V. (Bryan, TX)

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  19. New guidelines should enhance coiled tubing well control security

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II

    1997-12-01

    The use of coiled tubing (CT) technology in well servicing operations has expanded dramatically in recent years, becoming a staple of remedial and workover programs. The advantages of CT services are numerous and well defined. As a result, the capabilities of this continuous-length tube technology have been exploited in applications such as high-pressure CT (HPCT), pushing the performance envelope into critical operations. In recent years, the mechanical capability and limitations of CT equipment components have become further defined, enhancing the safe working conditions of the prescribed operations. However, safety in coiled tubing operations is not only the product of equipment design, but of proper planning and identification of potential hazards. The following article highlights safety guidelines related to CT well control stack components as published in API RP 5C7, Recommended Practice for Coiled Tubing Operations in Oil and Gas Well Services (Dec. 1, 1996). API standards are published to facilitate the broad availability of proven engineering and operating practices, and are not intended to obviate the need for applying sound engineering judgment regarding when and where these standards should be utilized. Therefore, these standards should be considered the minimum safety requirements for well service operations, both onshore and offshore. These recommended practice guidelines have been prepared to reflect use by both operators and contract personnel.

  20. Solar Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector.

  1. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  2. Clamp for use in winding large magnet coils

    DOE Patents [OSTI]

    Brown, R.L.; Kenney, W.J.

    1981-05-05

    In one aspect, the invention is a novel arrangement for applying forces to turns of a vertically extending helical coil which is wound about a support. The apparatus includes a first rigid member extending towards the turns. A second rigid member extends transversely from the end of the first and has a vertically extending face provided with a generally straight groove extending transversely of the turns. A longitudinal passage in the first member connects to the groove to form therewith a continuous guideway for rollable articles. A rigid lug longitudinally movable in the groove is provided with a projection which extends out of the groove and beneath the bottom of a selected turn of the coil. A train of rigid, rollable articles is disposed in the guideway inwardly of the lug. Means are provided for applying force to that end of the train which is relatively remote from the lug, to urge the latter against the bottom face of the selected turn. As a result, that turn is moved upward along the face of the support, establishing a selected spacing between that turn and the previously formed turn of the coil. When upward movement of the selected turn stops, the force applied to the lug immediately translates to a force which urges the above-mentioned grooved face against all of the formed turns, thus compressing them against the support. The above-mentioned first and second members are swingably mounted so that they can be temporarily moved out of the winding path, thus permitting continuous winding.

  3. Analysis of Superconducting Dipole Coil of 11 GeV Super High Momentum Spectrometer

    SciTech Connect (OSTI)

    Sun, Eric; Cheng, Gary; Lassiter, Steve R.; Brindza, Paul D.; Fowler, Michael J.

    2015-06-01

    Jefferson Lab is constructing five Super High Momentum Spectrometer (SHMS) superconducting magnets for the 12 GeV Upgrade. This paper reports measured coil material properties and the results of the extensive finite element analysis (FEA) for the dipole coil. To properly define the smeared orthotropic material of the coil, a detailed coil model is set up to compute material parameters because not all parameters were measured. Stress and strain acceptance criteria are discussed. Eight load steps are defined. The preheat temperature of the force collar is optimized under two loading scenarios so that the positive pressure between the inner coil and central spacer is maintained while there is not too much squeeze to the coil.

  4. Workover well control. Part 4. Coiled-tubing pigs speed workover operations

    SciTech Connect (OSTI)

    Adams, N.

    1981-09-14

    Many workover operations can be completed quickly and efficiently by using coiled tubing instead of jointed tubing or conventional rigs. In general, coiled tubing is a continuous string of small-diameter tubing that can be run into the well without the necessity of making joint connections. The operations are safe, involve small amounts of rig time, and usually are more economical than other forms of concentric work. Coiled tubing work is usually conducted on producing wells, which necessitates pressure-control precautions. Applications for coiled tubing involve all aspects of workover operations except wire-line work. Coiled tubing can be used in initiating flow, cleaning out sand in tubing, and performing stimulation operations. In addition, drilling can be conducted with coiled tubing when down-hole motors are used.

  5. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers

    SciTech Connect (OSTI)

    Ghorbani, N. [School of Mechanical Engineering, University of Leeds, Leeds, England (United Kingdom); Taherian, H. [Department of Engineering Technology and Industrial Distribution, Texas A and M University, College Station, TX (United States); Gorji, M. [Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol (Iran); Mirgolbabaei, H. [Department of Mechanical Engineering, Islamic Azad University, Jouybar branch, Jouybar (Iran)

    2010-10-15

    In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers, various tube-to-coil diameter ratios and different dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil. Effects of coil pitch and tube diameters on shell-side heat transfer coefficient of the heat exchanger were studied. Different characteristic lengths were used in various Nusselt number calculations to determine which length best fits the data and several equations were proposed. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that the equivalent diameter of shell is the best characteristic length. (author)

  6. Graphene-coated coupling coil for AC resistance reduction

    DOE Patents [OSTI]

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  7. Coiled tubing completions: An economic discussion of procedures

    SciTech Connect (OSTI)

    Courville, P.W.; Clark, T.R.

    1995-11-01

    The introduction of 2- to 3 {1/2}-in. coiled tubing (CT) sizes provides economical alternative completion opportunities for both new and existing wells. Smaller diameters of CT can also be incorporated into completion designs on existing tubular completions for rigless workovers. This paper will discuss the evaluation method for CT completions in relatively low bottom-hole pressure wells in a non-hostile environment. It will concentrate on two major methods of artificial lift: (1) the use of electric submersible pumps (ESPs) on new wells or (2) the use of gas lift methods to extend the production life of existing wells.

  8. COLLOQUIUM: Evolution of Coil Design and Manufacturing at PPPL | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab September 24, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Evolution of Coil Design and Manufacturing at PPPL James Chrzanowski Princeton University Presentation: File WC24SEP2014_JChrzanowski.pptx WC24SEP2014_JChrzanowski Colloquium Committee: The Princeton Plasma Physics Laboratory 2015-2016 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future colloquia.

  9. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    DOE Patents [OSTI]

    Tekletsadik, Kasegn D. (Rexford, NY)

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  10. On the laminar to turbulent flow transition in diabatic helically coiled pipe flow

    SciTech Connect (OSTI)

    Cioncolini, Andrea; Santini, Lorenzo [Department of Nuclear Engineering, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy)

    2006-07-15

    Recently the authors experimentally investigated the turbulence emergence process in adiabatic coiled pipe flow. The results of such an investigation compared favorably with existing experimental evidence and revealed as well some new and striking features of the turbulence emergence process in coiled pipes that were not observed in previous research. The objective of the present investigation is to confirm such findings with diabatic flow through coiled pipes. (author)

  11. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    SciTech Connect (OSTI)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  12. CVEN 6960 master's project, investigation of a cooling coil in high humidity conditions. Master's thesis

    SciTech Connect (OSTI)

    Sloop, R.E.

    1993-12-10

    The primary purpose of this project is to validate the HVAC*2 Toolkit calculations for a cooling coil in high humidity conditions. A total of 19 experimental runs at different entering air temperature and humidity conditions were performed at the Joint Center for Energy Management HVAC Laboratory that exposed a cooling coil to temperature and humidity conditions that are typically found in the southern United States. The inlet conditions and manufacturer's coil rating data was used as input to the HVAC*2 Toolkit simple cooling coil subroutine (CCSIM). The predicted results from the toolkit were then compared to the experimental results.

  13. Coiled tubing deployed ESP on the Auk platform

    SciTech Connect (OSTI)

    Stewart, D.W.; Watkins, P.; Holtslag, R.J.; Hudson, A.; Wee, P.Y.; McCleery, B.

    1996-12-31

    In March 1995, what is believed to be the world`s first offshore coiled tubing deployed electrical submersible pump (ESP) was successfully commissioned in well AA-03S1 on Shell U.K. Exploration and Production (Shell Expro) Auk platform in the United Kingdom`s Central North Sea. The ESP provides a new and important method of artificial lift for the 21 year old Auk platform, which hitherto had relied upon downhole hydraulic jet pumps to lift approximately half of the platform`s oil production. The coiled tubing deployment proved the viability of performing future workovers with or without the assistance or indeed the presence of a drilling package. The novel completion design successfully catered to the wide variety of customer requirements; Well Engineering for a rigless workover, Petroleum Engineering for reservoir access and Facilities Engineering for a specified flowline height. The experience gained during this project will be a valuable input in determining the future artificial lift strategy for this platform and for other prospects in terms of performance, reliability and operating costs.

  14. Recomplete deep hot wells successfully with coiled tubing

    SciTech Connect (OSTI)

    Garner, T.; Fleckenstein, W.; Shelley, B.

    1995-06-01

    A squeeze reperforation procedure in the Elk Hills, California field using coiled tubing included contaminating excess cement and jetting it from the well bore to eliminate the need to drill out cement before shooting new perforations. The 324-7R well was producing 260 b/d of oil through 2 7/8-in. production tubing, with a 20,000-scf/bbl gas-oil ratio (GOR). Bottomhole static temperature was 250 F. After pumping a cement squeeze to 9,000 ft trough 1{1/2}-in. coiled tubing (CT) run inside the production tubing, oil production increased to 550 b/d of oil, and the GOR decreased to 5,000 scf/bbl when new perforations were shot. Cement was pumped 9,000 ft through the CT and circulated back through the production tubing/CT annulus. Operation cost was estimated at 20% less than for a comparable job performance with conventional tubing. Cost of the CT squeeze was recovered by 58 days incremental production.

  15. Multiaxial plasticity and fatigue life prediction in coiled tubing

    SciTech Connect (OSTI)

    Tipton, S.M.

    1996-12-31

    Coiled tubing is being used increasingly in the oil well drilling and servicing industry. Continuous steel tubing of structural dimensions (up to 89 mm or 3.5 in. in diameter) is wound onto a large-diameter reel for repeated deployment into and out of a well bore. The bending strain range associated with each wrap-unwrap cycle can exceed 3% with lives well below 100 cycles. During constant internal pressure fatigue testing, tubing has been observed to grow in diameter by as much as 30%. This paper describes an analytical model to predict the fatigue behavior of coiled tubing subjected to variable pressure service conditions. The approach utilizes standard low-cycle fatigue data but requires additional experimental results from constant pressure fatigue testing. The algorithm is based on estimates of biaxial ratcheting from an incremental plasticity model using a hybrid associated flow rule, a modified kinematic hardening rule with multiple von Mises yield surfaces, and a specialized limit surface concept. An empirical damage parameter was formulated based on constant pressure fatigue data using mean and fluctuating von Mises equivalent strain components occurring throughout the life of a section of tubing. This parameters is used with the Palmgren-Miner definition of cumulative damage to track damage that is accumulating nonlinearly under constant or variable pressure histories. Modifications to standard incremental plasticity components and implementation assumptions used to apply the model are presented and discussed. The predictive capability of the model is demonstrated relative to data generated under constant and variable pressure histories.

  16. Coiled tubing isolates zones, fractures wells with single trip service

    SciTech Connect (OSTI)

    Silverman, S.A.

    1999-04-01

    A system has been devised that combines high pressure coiled tubing (CT) and a selective isolation technique to frac multiple zones in a single operation. Multiple zones in one well can be individually isolated, fractured and flowed back simultaneously which results in reduced exposure to kill fluids and therefore higher retained conductivity for newly created fractures. The technique has been named CoilFRAC{trademark} by Dowell. The key benefits to the entire operation are reduced rig and operations time compared to conventional fracturing processes. Time savings, increased production, and environmental benefits are the economic drivers that result in rapid return on investment for production operators. The single trip concept for perforating and stimulation crews also brings additional benefits over multiple mobilizations. Wells which previously had only major zones perforated and stimulated and which are currently depleted can be revived economically using this system, giving the well a second life. The paper describes the equipment and its safety and contingency features, optimized shallow gas production in Alberta, and results from a South Texas oil well fracturing.

  17. Monolithically integrated Helmholtz coils by 3-dimensional printing

    SciTech Connect (OSTI)

    Li, Longguang [Department of Electrical Engineering, University of MichiganShanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of MichiganShanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6?A of electrical current and produce magnetic field up to 70?G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  18. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOE Patents [OSTI]

    Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)

    2002-01-01

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  19. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    water heaters,... Eligibility: Commercial, Industrial Savings Category: Clothes Washers, Water Heaters, Other EE, Food Service Equipment, Tankless Water Heater City of Palo Alto...

  1. Berkshire Gas - Residential Energy Efficiency Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    400 Storage Water Heaters: 100 Condensing Stand Alone Water Heaters: 500 Tankless Water Heaters: 500 - 800 Heat Recovery Ventilator: 500 After-Market Boiler Reset...

  2. Columbia Gas of Massachusetts - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Heaters: 400 Tankless Water Heaters: 500 - 800 Condensing Water Heater: 400 Storage Water Heaters: 100 Thermostat: 25 After Market Boiler Reset: 225 Heat Recovery...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, Doors, Insulation, LED Lighting, Tankless Water Heater Cedarburg Light & Water Utility- Residential Energy Efficiency Rebate Program Cedarburg Light & Water (CL&W)...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Water Heat, Water Heaters, Furnaces, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Other EE, Tankless Water Heater Texas-New Mexico Power...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Personal Computing Equipment, Tankless Water Heater Burbank Water & Power- Business Bucks Energy Efficiency Grant Program Burbank Water and Power (BWP) offers the...

  6. Design and Construction of Test Coils for the MICE Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Xu, F.Y.; Liu, XioaKun; Chen, AnBin; Li, LanKai; Gou, XingLong; Wu, Hong; Green, Michael; Li, Darun; Strauss, Bruce

    2008-08-08

    The superconducting coupling solenoid to be applied in the Muon Ionization Cooling Experiment (MICE) is made from copper matrix Nb-Ti conductors with inner radius of 750 mm, length of 285 mm and thickness of 102.5 mm at room temperature. The magnetic field up to 2.6 T at the magnet centerline is to keep the muons within the MICE RF cavities. Its self inductance is around 592 H and its magnet stored energy is about 13 MJ at a full current of 210 A for the worst operation case of the MICE channel. The stress induced inside the coil during cool down and charging is relatively high. Two test coils are to build and test in order to validate the design method and develop the fabrication technique required for the coupling coil winding, one is 350 mm inner diameter and full length same as the coupling coil, and the other is one-quarter length and 1.5 m diameter. The 1.5 m diameter coil will be charged to strain conditions that are greater than would be encountered in the coupling coil. This paper presents detailed design of the test coils as well as developed winding skills. The analyses on stress in coil assemblies, AC loss, and quench process are carried out.

  7. An evaluation of large diameter coiled tubing for subsurface production tubulars

    SciTech Connect (OSTI)

    Adams, L.S.; Smith, L.W.

    1995-12-31

    This paper provides an economic and technological perspective for use of large diameter coiled tubing relative to threaded tubulars for subsurface production tubing. This new advancement in coiled tubing technology can significantly reduce the expense for purchasing and installing production tubing while increasing hydrocarbon reserve recovery and providing a safer, more desirable ecosystem interrelation.

  8. Induction logging device with a pair of mutually perpendicular bucking coils

    DOE Patents [OSTI]

    Koelle, Alfred R. (Los Alamos, NM); Landt, Jeremy A. (Los Alamos, NM)

    1981-01-01

    An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.

  9. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  10. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    SciTech Connect (OSTI)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

    2006-05-09

    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of time is divided among the remaining four functions of rig up/rig down, logging, lay down bottomhole assembly, and pick up bottomhole assembly. Observations made during all phases of CT rig operation at each of the project well installations have verified a number of characteristics of the technology that represent advantages that can produce significant savings of 25-35 percent per well. Attributes of the CT rig performance include: (1) Excellent hole quality with hole deviation amounting to 1-2 degrees; (2) Reduced need for auxiliary equipment; (3) Efficient rig mobilization requiring only four trailers; (4) Capability of ''Zero Discharge'' operation; (5) Improved safety; and, (6) Measurement while drilling capability. In addition, commercial cost data indicates that the CT rig reduces drilling costs by 25 to 35% compared to conventional drilling technology. Widespread commercial use of the Microhole Coiled Tubing technology in the United States for onshore Lower-48 drilling has the potential of achieving substantially positive impacts in terms of savings to the industry and resource expansion. Successfully commercialized Microhole CT Rig Technology is projected to achieve cumulative savings in Lower-48 onshore drilling expenditures of approximately 6.8 billion dollars by 2025. The reduced cost of CT microhole drilling is projected to enable the development of gas resources that would not have been economic with conventional methods. Because of the reduced cost of drilling achieved with CT rig technology, it is estimated that an additional 22 Tcf of gas resource will become economic to develop. In the future, the Microhole Coiled Tubing Rig represents an important platform for the continued improvement of drilling that draws on a new generation of various technologies to achieve goals of improved drilling cost and reduced impact to the environment.

  11. Fuel cell crimp-resistant cooling device with internal coil

    DOE Patents [OSTI]

    Wittel, deceased, Charles F. (late of Linden, NJ)

    1986-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.

  12. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect (OSTI)

    1997-06-01

    Hydrogen sulfide (H{sub 2}S) can reduce useful coiled-tubing (CT) life by strength degradation through a combination of hydrogen blistering, hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), sulfide-stress cracking (SSC), and possible weight-loss corrosion. These effects may work synergistically with the cyclic cold working of the steel that takes place during spooling and running. Prior studies on carbon steels have shown that cold work may significantly reduce the SSC threshold stresses. To develop a CT performance database, CLI Intl. Inc. conducted a multiclient program to increase understanding of the combined effects of strain cycling and resistance of CT to cracking in H{sub 2}S environments. The program was supported by 14 sponsors consisting of major oil and gas companies, service companies, CT manufacturers, and materials suppliers.

  13. Technical and economical feasibility of coiled tubing drilling

    SciTech Connect (OSTI)

    Gary, S.C.; Doremus, D.M.

    1995-12-31

    The technique for evaluating coiled tubing (CT) drilling prospects is described. The technical and economic factors involved are discussed using a flowchart to guide the operator in the decision making process. In the technical analysis, the parameters limiting the feasibility of using CT for a given drilling project are reviewed. These parameters include CT tension, helical buckling which limits the weight on bit (WOB) and the horizontal reach, CT collapse pressure when drilling underbalanced, CT fatigue, and the usual hydraulic parameters such as annular velocity and pumping pressure. In today`s business environment, some projects, while technically feasible, may not be economically feasible. In the economic analysis, the competitiveness of each CT drilling application versus conventional solutions is evaluated, and factors such as project duration and equipment use are reviewed. The equipment normally required for a CT drilling job and the costs associated with mobilizing this equipment are discussed.

  14. The challenge for the coiled-tubing industry

    SciTech Connect (OSTI)

    Blount, C.G.

    1994-05-01

    From Aug. 9 through 14, 1992, approximately 80 individuals from throughout the globe met in a seemingly remote area of the Colorado Rocky Mountains with one common bond: advancement of coiled-tubing (CT) technology. Numerous ideas and opinions were generated at the SPE Forum Series meeting to create a long list of areas with high leveraging potential (high return on investment) for an oil industry well below the crest of a boom'' cycle. However, from the master list, each individual was given the opportunity to vote for only three issues that they felt were the most pressing. The 17 items that survived the exercise are listed below, prioritized'' by this group's vote. A year and a half later, where do these leveraging ideas fit into the overall CT industry picture The paper reviews progress.

  15. Consumers' Gas lays coiled steel tubing in Lake Erie

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Forty-four miles of polypropylene-coated, coiled steel tubing have been laid underwater by the Consumers' Gas Co. of Toronto. Laid in 33,000-ft sections from a giant reel, the tubing is used for the remote control of subsea hydraulically operated line valves and the distribution of methyl alcohol to subsea gas wells. The installation is the first of long, continuous tubing underwater using this technology in Canada. The line was installed in conjunction with a newly completed gas well gathering system and processing plant that is expected to yield more than 35 billion cu ft of fuel over the next 15 yr. The new system under W.-Central Lake Erie provides consumers with a cost-effective method for remotely controlling underwater hydraulic valves and distributing methyl alcohol to eliminate hydrate build-up in the gas gathering lines.

  16. Novel coiled tubing application controls large LPG storage well fire

    SciTech Connect (OSTI)

    Gebhardt, F.; Eby, D.; Barnett, D.

    1996-06-01

    Conventional well control techniques for normal oil and gas wells are widely known and have been presented on numerous occasions. However, LPG storage (or cavern) wells rarely blow out and/or catch on fire. As a result, little information has been presented on the topic of well control for these types of wells. This article chronicles a case history of a high-volume liquid propane storage well fire. Because conventional wellhead removal methods could not be applied in this case, the capping/kill plan called for use of coiled tubing in a novel manner to cut the tubing downhole and install an inflatable packer to shut off propane flow. The plan was successfully executed, saving the operator millions of dollars in LPC product loss and cost of control.

  17. Coiled tubing: Early warning system to detect flaws in flat sheet prior to rolling and welding

    SciTech Connect (OSTI)

    Edens, C.W. )

    1994-05-01

    Through experimentation and dynamic evaluation of skelp at a coiled tubing mill, the use of leakage flux solid state sensing devices shows clearly that the requirement for nondestructively testing skelp can be met. As coiled tubing for drilling purposes gains wider usage, its skelp can take advantage of upstream inspection prior to forming the tubes. A reliable coiled tubing product is one in which every aspect of its manufacturing was considered, from raw material through final inspection. In no other way can the concept of total quality management be satisfied providing reliability of product use. A guarantee of fitness for purpose falls directly on the coiled tubing manufacturer. Purveyors of jointed electronic resistance weld tubulars may also take advantage of this inspection method. The American Petroleum Institute (API) has recently established a committee to study and formulate recommended practices for coiled tubing operations.

  18. An overview of the nondestructive inspection techniques for coiled tubing and pipe

    SciTech Connect (OSTI)

    Stanley, R.K.

    1996-11-01

    Coiled steel tubing and pipe in the diameter range 20--90 mm (0.75--3.5 in.) are replacing conventional oilfield materials for a variety of purposes including workovers, drilling, production tubing, umbilicals, and flowlines. They offer all the advantages of long tubes with no threaded connections. Because coiled tubing is being produced to high quality standards, it is lasting longer than ever before, and the need has arisen for careful nondestructive inspection at frequent intervals to determine accumulated damage to the string and the need for repair. Currently, derating of used coiled tubing using nondestructive testing (NDT) is not performed. While NDT devices for oilfield tubulars have been well documented, little has been written regarding the NDT of coiled tubing. This paper outlines the current NDT methods used during the manufacture of new tubing and the inspection of used coiled tubing.

  19. Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field Assessment

    Broader source: Energy.gov [DOE]

    In this project, the NorthernSTAR team analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating.

  20. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    SciTech Connect (OSTI)

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  1. Numerical simulation of the compressor coil of the plasma dynamic accelerator

    SciTech Connect (OSTI)

    Thomas, P.

    1997-01-01

    The plasma dynamic accelerator accelerates a plasma to very high velocities in a coaxial accelerator and then compresses it in a compressor coil, achieving high densities. The axial component of the current distribution, extending from the tip of the coaxial accelerator`s center electrode to the coil turns, causes compressing forces, the radial component yields accelerating forces. The rapid change of the coil current induces azimuthal eddy currents in the plasma that interact with the coil`s magnetic field, again yielding Lorentz forces. Aerodynamic compression may also be an important effect. A new two-dimensional magnetohydrodynamics code is used to investigate which of these effects are really important for the compression. The code allows one to simulate all effects mentioned separately and in combination. In a first step only aerodynamic compression is considered. Then each electromagnetic effect is imposed on the system. Finally, a complete simulation of the compressor coil is performed. The analysis of the results provides new insights in the way the coil operates. This paper presents important aspects of the mathematical model and of the numerical implementation and reports results.

  2. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    SciTech Connect (OSTI)

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  3. Design Of JET ELM Control Coils For Operation At 350 C

    SciTech Connect (OSTI)

    Zatz, I J; Brooks, A; Cole, M; Neilson, G H; Lowry, C; Mardenfeld, M; Omran, H; Thompson, V; Todd, T

    2010-09-20

    A study has confirmed the feasibility of designing, fabricating and installing resonant magnetic field perturbation (RMP) coils in JET1 with the objective of controlling edge localized modes (ELM). A system of two rows of in-vessel coils, above the machine midplane, has been chosen as it not only can investigate the physics of and achieve the empirical criteria for ELM suppression, but also permits variation of the spectra allowing for comparison with other experiments. These coils present several engineering challenges. Conditions in JET necessitate the installation of these coils via remote handling, which will impose weight, dimensional and logistical limitations. And while the encased coils are designed to be conventionally wound and bonded, they will not have the usual benefit of active cooling. Accordingly, coil temperatures are expected to reach 350 C during bakeout as well as during plasma operations. These elevated temperatures are beyond the safe operating limits of conventional OFHC copper and the epoxies that bond and insulate the turns of typical coils. This has necessitated the use of an alternative copper alloy conductor C18150 (CuCrZr). More importantly, an alternative to epoxy had to be found. An R&D program was initiated to find the best available insulating and bonding material. The search included polyimides and ceramic polymers. The scope and status of this R&D program, as well as the critical engineering issues encountered to date are reviewed and discussed.

  4. Suppression of n=1 Tilt Instability by Magnetic Shaping Coils in Rotamak Plasmas

    SciTech Connect (OSTI)

    Yang, X.; Petrov, Y.; Huang, T. S.

    2009-06-26

    Measurements from the array of Mirnov magnetic coils provide the first evidence for n=1 tilt and radial shift instabilities in a 40 ms field-reversed configuration (FRC) driven by rotating magnetic field. External plasma-shaping magnetic coils are utilized to suppress the n=1 instability modes. It is demonstrated that by energizing the middle shaping coil with 250-500 A current, the tilt mode is completely suppressed when a doublet FRC with an internal figure-of-eight separatrix is formed.

  5. Square Grains in Asymmetric Rod-Coil Block Copolymers (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Square Grains in Asymmetric Rod-Coil Block Copolymers Citation Details In-Document Search Title: Square Grains in Asymmetric Rod-Coil Block Copolymers Unlike the rounded grains that are well known to form in most soft materials, square grains of microphase-separated lamellae are observed in thin films of a rod-coil block copolymer because of hierarchical structuring originating from the molecular packing of the rods. The square grains are oriented with lamellar layers

  6. Application of coiled-tubing-drilling technology on a deep underpressured gas reservoir

    SciTech Connect (OSTI)

    1997-06-01

    The Upper-Mississippian Elkton formation is a dolomitized shallow-water carbonate consisting of dense limestones and porous dolomites. The Elkton was deposited in an open-shelf environment as crinoid grainstones, coral packstones, and lime muds. Deposition of impermeable shales and siltstones of the Lower Cretaceous created the lateral and updip seals. Reservoir thickness can be up to 20 m, with porosities reaching 20% and averaging 10%. The reservoir gas contains approximately 0.5% hydrogen sulfide. Well 11-18 was to be completed in the Harmatten Elkton pool. The pool went on production in 1967 at an initial pressure of 23,500 kPa. At the current pressure of 16,800 kPa, the remaining reserves are underpressured at 6.5 kPa/m, and underbalanced horizontal drilling was selected as the most suitable technique for exploiting remaining reserves. Coiled-tubing (CT) technology was selected to ensure continuous underbalanced conditions and maintain proper well control while drilling. The paper describes the equipment, CT drilling summary, and drilling issues.

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Furnaces, Boilers, Steam-system upgrades, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater Cedar Falls Utilities- Commercial Energy...

  8. Set the PACE St. Louis (Missouri) | Open Energy Information

    Open Energy Info (EERE)

    Insulation, Windows, Doors, Comprehensive MeasuresWhole Building, Solar Water Heat, Photovoltaics, Pool Pumps, Tankless Water Heaters Active Incentive Yes Implementing Sector...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Freezers, Dehumidifiers, Ceiling Fan, Water Heaters, Lighting, Lighting ControlsSensors, Chillers, Heat Pumps, Air conditioners, Other EE, Tankless Water Heater NSTAR...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Furnaces, Boilers, Steam-system upgrades, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater Atmos Energy- Natural Gas and Weatherization...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Cedarburg Light & Water Utility- Commercial Energy Efficiency Rebate Program The Request for Proposals (RFP)...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Piedmont Natural Gas- Residential Equipment Efficiency Program Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heaters, Steam-system upgrades, Programmable Thermostats, Building Insulation, Food Service Equipment, Tankless Water Heater Renewable Energy and Energy Efficiency...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial, Nonprofit, Residential Savings Category: Water Heaters, Furnaces, Vending Machine Controls, Tankless Water Heater Alliant Energy Interstate Power and Light (Gas and...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    InstallersContractors Savings Category: Water Heaters, Furnaces, Boilers, Heat recovery, Steam-system upgrades, Other EE, Food Service Equipment, Tankless Water Heater...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermostats, DuctAir sealing, Building Insulation, Windows, Other EE, Tankless Water Heater Questar Gas- Residential Solar Assisted Water Heating Rebate Program Questar Gas...

  17. Ameren Illinois (Electric) - Custom, HVAC and Motor Business...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters Chillers Heat Pumps Air conditioners Heat recovery Compressed air Motor VFDs Agricultural Equipment CustomOthers pending approval Other EE Tankless Water...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters, Furnaces, Boilers, Steam-system upgrades, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater National Fuel (Gas)- Small Commercial...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Pool Pumps, Tankless Water Heater NY Green Bank Funding Eligibility: Commercial, Construction, Industrial, Residential Savings Category: Solar Water Heat, Solar Thermal...

  20. Coiled tubing drilling (CTD) moves to commercial viability

    SciTech Connect (OSTI)

    Romagno, R. ); Walker, R. )

    1994-12-01

    Shell Western E and P, Inc. (SWEPI) California Drilling Operations was interested in coiled tubing (CT) for drilling slimhole steam injectors. A four-well pilot project at South Belridge field, Kern County, Calif., was targeted for immediate CT use. Well programs included completion, a goal not previously attempted on wells drilled from surface with CT. This paper reviews the primary project focus which was to develop slimhole steam injectors and improve injection profiles in lower Tulare formation E and G sands. Feasibility of drilling wells with CT and having CT crews run and cement completion tubulars in place was an issue to be determined. Conventional tubing installation is usually outside the scope of CT operations, so it was not known if this would be technically or economically feasible. Another goal was to refine personnel expertise to further develop CTD services as a successful business line. Other items targeted for investigation were: deviation control; lost circulation solutions; WOB optimization to obtain maximum ROP; potential steam blowout intervals; and high temperature. Finally, economic feasibility of using CTD as a rotary rig alternative for specific applications like slimhole wells on sites where surface location is limited was to be determined.

  1. Field installation proves coiled tubing ESP completions successful

    SciTech Connect (OSTI)

    Tovar, J.J.; Head, P.; Jordan, R.

    1995-06-01

    Coiled tubing (CT) technology has contributed new and innovative solutions for wells using electrical submersible pumps (ESP). A CT-ESP deployment system was developed as part of a joint industry project to take advantage of this new technology. Ten oil and service companies and the EEC, under the Thermie program, participated in its development. Two main areas were identified to introduce these innovations. The first was deployment and well control. This area has a great impact on the safety and operational aspects of installing and servicing ESPs. The second is cost. As ESPs are considered for new field developments and recompletion of old fields, installation and workover costs play a major role in the selection of completion alternatives. One of the main limitations of ESPs in the past has been the economics of installation and uncertainty about pump life. With focus in these two major areas, a system was successfully produced that offers considerable advantages over existing technologies. The reduction in rig time and equipment cost makes this alternative very attractive for areas where technical and economic obstacles such as live well deployment and high operating cost limit the use of ESP technology. Two field tests have been carried successfully during the development of this system.

  2. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOE Patents [OSTI]

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  3. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  4. Use of coiled tubing fans out among well sites of the world

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    Better operator understanding of coiled tubing improvements is generating a burst of applications at well sites around the world. Prompted by economics, producers are using coiled tubing in a wide range of well maintenance and remediation procedures to lower costs and increase recovery. Some more common workovers using coiled tubing--production tubing cleanouts and matrix acidizing, for example--not only are lowering costs but also are achieving better results. Other less known uses--logging, recompletions, and reentry drilling--until recently were thought unreliable or impossible. But better management of tubing fatigue, better materials, and larger tubing sizes are combining to boost producers' confidence in the relatively old technology. The paper describes coiled tubing opportunities, modeling fatigue, and then discusses some of its current applications.

  5. Handling state-of-the-art large-diameter coiled tubing

    SciTech Connect (OSTI)

    Courville, P.

    1994-12-31

    Completion and workover demands placed on coiled tubing technology in the last 10 years have shown the limitations of small-diameter (1- to 1{1/2}-in.) coiled tubing. The small tubing tends to buckle when used at lengths greater than 1,500 ft in most horizontal applications. Large-diameter coiled tubing (up to 3{1/2} in.) provides greater flexibility of job design and increases horizontal reach possibilities for drilling, completion, and workover activities. Transportation and handling equipment to accommodate the larger, heavier tubing is naturally a critical component of the system. This paper will present the benefits of large-diameter coiled tubing including completion and workover for greater depth and more extended horizontal reach. It will also discuss the unique concerns of transportation and handling of large diameter tubing and associated equipment.

  6. Progress on the Design of the Coupling coils for MICE andMUCOOL

    SciTech Connect (OSTI)

    Green, M.A.; Li, D.; Virostek, Steve P.; Wang, L.; Wu, H.; Li,L.K.; Li, S.Y.; Xu, F.Y.; Guo, X.L.; Liu, C.S.; Han, G.; Liu, X.K.; Jia,L.X.

    2007-06-20

    The Muon Ionization Cooling Experiment (MICE) [1]willdemonstrate ionization cooling in a short section of a realistic coolingchannel using a muon beam at Rutherford Appleton Laboratory (RAL) in theUK. The MICE RF and Coupling Coil (RFCC) Module consists of asuperconducting solenoid mounted around four normal conducting 201.25-MHzRF cavities. The coil package that surrounds the RF cavities is to bemounted in a 1.4 m diameter vacuum vessel. The coupling coil confines thebeam in the RFCC module within the radius of the RF cavity beam windows.Each coupling magnet will be powered by a 300 A, 10 V power supply. Themaximum design longitudinal force that will be carried by the cold masssupport system is 0.5 MN. The detailed design and analysis of thecoupling magnet has been completed by ICST. The primary magnetic andmechanical design features of the coils are presented in thispaper.

  7. PPPL-designed coil critical to experiment arrives in stellar condition |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab U.S.-German collaboration bears first fruits PPPL-designed coil critical to experiment arrives in stellar condition By John Greenwald July 10, 2012 Tweet Widget Google Plus One Share on Facebook Max Planck staffers with delivered trim coil. Front row from left: Dr. Thomas Rummel, head of magnet and cryostat subdivision; Stefan Freundt, engineer; Dr. Hans-Stephan Bosch, associate director for coordination; Victor Bykov, engineer. Back row, from left: Konrad Risse,

  8. New technologies address the problem areas of coiled-tubing cementing

    SciTech Connect (OSTI)

    Carpenter, R.B. )

    1992-05-01

    Coiled-tubing cementing has been practiced successfully on the Alaskan North Slope for several years. This paper discusses the special problems faced when this technology was applied to offshore U.S. gulf coast operations. The innovative solutions and procedures developed to improve the economic and technical success of coiled-tubing cementing are also discussed. Comparative laboratory and computer studies, as well as field case histories, will be presented to show the economic merit of this technology.

  9. Improved coiled-tubing squeeze-cementing techniques at Prudhoe Bay

    SciTech Connect (OSTI)

    Hornbrook, P.R.; Mason, C.M. )

    1991-04-01

    This paper presents major changes in coiled-tubing squeeze-cementing techniques used in the Prudhoe Bay Unit Western Operating Area (PBUWOA). Changes include introduction of a polymer diluent to replace borax contamination, increased differential pressures placed on squeeze and coil, reduced cement volumes, and incorporation of an inflow test and resqueeze procedure. These changes resulted in increased squeeze effectiveness by reducing equipment and engineering time requirements and by shortening well shut-in time after the workover.

  10. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect (OSTI)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  11. Using coiled tubing in HP/HT corrosive gas wells

    SciTech Connect (OSTI)

    1997-06-01

    High-yield-strength (100,000 psi) coiled tubing (CT) material has allowed for CT intervention in Mobile Bay Norphlet completions. These wells are approximately 22,000-ft-vertical-depth, high-pressure, hydrogen sulfide (H{sub 2}S) gas wells. Operations performed on the Norphlet wells include a scale cleanout to approximately 22,000 ft, a hydrochloric acid (HCl) job at 415 F, and buildup removal from a safety valve. The scale cleanout was performed first with a spiral wash tool. The well was killed with 10-lbm/gal sodium bromide (NaBr) brine; the same brine was used for cleanout fluid. Cost savings of 60% were realized. A HCl matrix acid job at 415 F was performed next, followed by a scale cleanout across the downhole safety valve. The safety valve was cleared of debris in 1 operational day. Estimated cost of the CT operation was 5 to 10% less than that of a rig workover. The 100,000-psi-yield Ct material used for the Mobile Bay operations does not comply with the (NACE) Standard MR-0175. But on the basis of extensive laboratory testing by the CT manufacturer, the decision was made that the material would pass a modified test performed with decreased H{sub 2}S levels. A maximum level of 400 ppm H{sub 2}S was determined as the safe working limit. Because the maximum H{sub 2}S content in the wells described later was 120 ppm, the risk of sulfide-stress cracking (SSC) was considered acceptably low. Elevated bottomhole temperatures (BHT`s) increase the corrosion rate of metals exposed to corrosives. Extensive laboratory testing of corrosion inhibitors allowed for design of a matrix-acidizing treatment to remove near-wellbore damage caused by lost zinc bromide (ZnBr) completion brine.

  12. Electromagnetic and Mechanical Analysis of the Coil Structure for the CLAS12 Torus for 12 GeV Upgrade

    SciTech Connect (OSTI)

    Ghoshal, P. K.; Pastor, O.; Kashy, D.; Schneider, W.; Wiseman, M.; Zarecky, M.; Young, G.; Rode, C.; Elouadrhiri, L.; Burkert, V.

    2014-12-18

    The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coil case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.

  13. DOE Zero Energy Ready Home Case Study: StreetScape Development, LLC,

    Energy Savers [EERE]

    Libertyville, IL, Custom | Department of Energy StreetScape Development, LLC, Libertyville, IL, Custom DOE Zero Energy Ready Home Case Study: StreetScape Development, LLC, Libertyville, IL, Custom Case study of a DOE Zero Energy Ready Home in Libertyville, IL, that scored HERS 45 without PV. This 2,763-square-foot custom home has advanced framed walls with R-20 of open-cell spray foam, R-49 open-cell spray-foam sealed attic, an HRV, and a tankless water heater for hydro coil furnace with

  14. Protective Embolization of the Gastroduodenal Artery with a One-HydroCoil Technique in Radioembolization Procedures

    SciTech Connect (OSTI)

    Lopez-Benitez, R.; Hallscheidt, P.; Kratochwil, C.; Ernst, C.; Kara, L.; Rusch, O.; Vock, P.; Kettenbach, J.

    2013-02-15

    Protective occlusion of the gastroduodenal artery (GDA) is required to avoid severe adverse effects and complications in radioembolization procedures. Because of the expandable features of HydroCoils, our goal was to occlude the GDA with only one HydroCoil to provide particle reflux protection. Twenty-three subjects with unresectable liver tumors, who were scheduled for protective occlusion of the GDA before radioembolization therapy, were included. The primary end point was to achieve a proximal occlusion of the GDA with only one detachable HydroCoil. Evaluated parameters were duration of deployment, and early (during the intervention) and late (7-21 days) occlusion rates of GDA. Secondary end points included complete duration of the intervention, amount of contrast medium used, fluoroscopy rates, and adverse effects. In all cases, the GDA was successfully occluded with only one HydroCoil. The selected diameter/length range was 4/10 mm in 2 patients, 4/15 mm in 6 patients, and 4/20 mm in 15 patients. HydroCoils were implanted, on average, 3.75 mm from the origin of the GDA (range 1.5-6.8 mm), with an average deployment time of 2:47 (median 2:42, range 2:30-3:07) min. In 21 (91%) of 23 patients, a complete occlusion of the GDA was achieved during the first 30 min after the coil implantation; however, in all patients, a late occlusion of the GDA was present after 6 to 29 days. No clinical or technical complications were reported. We demonstrated that occlusion of the GDA with a single HydroCoil is a safe procedure and successfully prevents extrahepatic embolization before radioembolization.

  15. Large-diameter coiled tubing completions decrease risk of formation damage

    SciTech Connect (OSTI)

    Norton, V. ); Edens, F. ); Coker, G. ); King, G. )

    1992-07-20

    Amoco Production Co. has used large-diameter coiled tubing strings to avoid damaging gas wells with kill fluids. The coiled tubing is stripped in the gas well under pressure. In Amoco's case, the gas flows up the tubing/casing annulus. The coiled tubing string provides a way to blow down the well whenever the well loads up with liquids from completion, workover, or naturally produced fluids. This paper reports that to date, Amoco has installed coiled tubing in four wells. The oldest has 18 months of service. Although some turbine longevity questions must be answered, the first four completions have proven fast and trouble free. The basic equipment for handling coil tubing is shown. The transport trailer and tubing injector head are similar to standard servicing equipment and not considered experimental. The production tubing reel is capable of carrying 14,000 ft of 2-in tubing or 18,000 ft of 1 3/4-in. tubing. For shallower wells, multiple tubing strings can be would on the same spool. Because of handling difficulties of large tubing, spools must be wound at the factory. Most of the largest sizes are made to order, making lead time a necessary consideration.

  16. Development of a computer wellbore simulator for coiled-tube operations

    SciTech Connect (OSTI)

    Gu, H.; Walton, I.C.; Dowell, S.

    1994-12-31

    This paper describes a computer wellbore simulator developed for coiled tubing operations of fill cleanout and unloading of oil and gas wells. The simulator models the transient, multiphase fluid flow and mass transport process that occur in these operations. Unique features of the simulator include a sand bed that may form during fill cleanout in deviated and horizontal wells, particle transport with multiphase compressible fluids, and the transient unloading process of oil and gas wells. The requirements for a computer wellbore simulator for coiled tubing operations are discussed and it is demonstrated that the developed simulator is suitable for modeling these operations. The simulator structure and the incorporation of submodules for gas/liquid two-phase flow, reservoir and choke models, and coiled tubing movement are addressed. Simulation examples are presented to show the sand bed formed in cleanout in a deviated well and the transient unloading results of oil and gas wells. The wellbore simulator developed in this work can assist a field engineer with the design of coiled tubing operations. By using the simulator to predict the pressure, flow rates, sand concentration and bed depth, the engineer will be able to select the coiled tubing, fluid and schedule of an optimum design for particular well and reservoir conditions.

  17. Transcatheter Ovarian Vein Embolization Using Coils for the Treatment of Pelvic Congestion Syndrome

    SciTech Connect (OSTI)

    Kwon, Se Hwan; Oh, Joo Hyeong Ko, Kyung Ran; Park, Ho Chul; Huh, Joo Yup

    2007-07-15

    Purpose. To evaluate the therapeutic effectiveness of ovarian vein embolization using coils for pelvic congestion syndrome (PCS), a common cause of chronic pelvic pain in multiparous women. Methods. Between November 1998 and June 2005, 67 patients were diagnosed with PCS and underwent ovarian vein coil embolization. Through medical records and telephone interviews, the pre-embolization pain level and post-embolization pain control were assessed. In addition, in those cases where pain persisted after embolization or where patients were dissatisfied with the procedure, additional treatments and subsequent changes in pain scores were also analyzed. Evaluation after coil embolization was performed within 3-6 months (n = 3), 6 months to 1 year (n 7), 1-2 years (n = 13), 2-3 years (n = 7), 3-4 years (n = 7), 4-5 years (n 13), or 5-6 years (n = 17). Results. Among a total of 67 patients, 82% (55/67) experienced pain reduction after coil embolization, were satisfied with the procedure, and did not pursue any further treatment. Twelve patients (18%, 12/67) responded that their pain level had not changed, or had become more severe. Among them, 9 patients were treated surgically and the remaining 3 patients remained under continuous drug therapy. Conclusion. Ovarian vein embolization using coils is a safe and effective therapeutic method for treatment of PCS. It is thought that surgical treatment should be considered in cases where embolization proves ineffective.

  18. Endovascular Management of Visceral Artery Pseudoaneurysms: Transcatheter Coil Embolization Using the Isolation Technique

    SciTech Connect (OSTI)

    Ikeda, Osamu Nakasone, Yutaka; Tamura, Yoshitaka; Yamashita, Yasuyuki

    2010-12-15

    PurposeTo describe our experiences with treatment of visceral artery pseudoaneurysms (VAPA) by transcatheter coil embolization using an isolation technique and to propose indications for treating VAPA with this method.Materials and MethodsWe treated 37 patients with VAPA endovascularly: There were 15 pancreaticoduodenal arcade, 10 hepatic, 5 renal, 3 splenic, and 1 each left gastric, gastroepiploic, adrenal, and superior mesenteric artery pseudoaneurysms. Preprocedure computed tomography (CT) and/or angiographic studies confirmed the presence of VAPA in all 37 patients. Using the isolation technique, we embolized vessels at sites distal and proximal to the pseudoaneurysm.ResultsTranscatheter coil embolization with the isolation technique was technically successful in 33 (89%) of 37 patients, and angiogram confirmed the complete disappearance of the VAPA in 32 patients. No major complications occurred during the procedures. In a patient with a pancreaticoduodenal arcade artery pseudoaneurysm, we were unable to control hemorrhage. In 30 of 32 patients who recovered after transcatheter coil embolization using the isolation technique, follow-up CT scan showed no flow in VAPA; they survived without rebleeding. Two of the 32 patients (6%) with confirmed complete disappearance of VAPA on angiogram and CT scan obtained the day after the procedure manifested rebleeding during follow-up.ConclusionTranscatheter coil embolization using the isolation technique is an effective alternative treatment in patients with VAPA. In combination with coil embolization, the isolation technique is particularly useful in patients whose pseudoaneurysms present surgical difficulties.

  19. Electromagnetic and Mechanical Analysis of the Coil Structure for the CLAS12 Torus for 12 GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghoshal, P. K.; Pastor, O.; Kashy, D.; Schneider, W.; Wiseman, M.; Zarecky, M.; Young, G.; Rode, C.; Elouadrhiri, L.; Burkert, V.

    2014-12-18

    The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coilmore » case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.« less

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, LED Lighting, Tankless Water Heater Be SMART Home Efficiency Loan Program Under the Be SMART Homes program, the Maryland...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Whole Building, CustomOthers pending approval, Other EE, Tankless Water Heater Be SMART Home Efficiency Loan Program Under the Be SMART Homes program, the Maryland...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Food Service Equipment, Vending Machine Controls, Personal Computing Equipment, Data Center Equipment, LED Lighting, Tankless Water Heater,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater TEP- Commercial EasySave Plus Program The Commercial Energy Solutions EasySave Plus program...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Roofs, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment TEP- Commercial EasySave Plus Program The Commercial Energy Solutions EasySave Plus program...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment TEP- Commercial EasySave Plus Program The Commercial Energy Solutions EasySave Plus program...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Jane E. Lawton Conservation Loan Program Lawton Loans can be made to eligible nonprofits,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Windows, Comprehensive MeasuresWhole Building, Insulation, Tankless Water Heater Efficiency Works- Residential Energy Efficiency Rebate Program (Offered by 5...

  8. Piedmont Natural Gas- Commercial Equipment Efficiency Program

    Broader source: Energy.gov [DOE]

    Piedmont Natural Gas offers rebates to commercial customers for purchasing and installing high-efficiency natural gas tankless water heaters. Customers on the 202-Small General Service Standard...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Air conditioners, Programmable Thermostats, Other EE, LED Lighting, Tankless Water Heater Renewable Energy and Energy Efficiency Project Financing For the purposes of...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Roofs, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Barron Electric Cooperative- Residential Energy Resource Conservation Loan Program A 5-year...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Other EE, Tankless Water Heater Barron Electric Cooperative- Residential Energy Resource Conservation Loan Program A 5-year...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater Energy Standards for Public Buildings In April 2009 Missouri's Governor issued Executive Order No....

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Other EE, Pool Pumps, Tankless Water Heater Federal Appliance Standards Note: HR 6582 of 2012 made some modifications to the efficiency standards previously...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    using Renewable Fuels, Reflective Roofs, Tankless Water Heater Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Tankless Water Heater, Commercial Refrigeration Equipment Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Food Service Equipment, Vending Machine Controls, Tankless Water Heater Santee Cooper- Commercial Energy Efficiency Rebate Program Santee Cooper, through its Reduce The Use...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weather-stripping, Building Insulation, Doors, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Enterprise Energy Fund Loans The New...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater National Grid (Gas)- Residential Energy Efficiency Rebate Programs (Upstate New York)...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater National Grid (Gas)- Commercial Energy Efficiency Rebate Programs (Upstate New York)...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tankless Water Heater Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings National Grid (Gas)- Residential Energy Efficiency Rebate Programs (Upstate New York)...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    upgrades, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater National Fuel (Gas)- Small Commercial Conservation Program National Fuel has partnered...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Windows, CustomOthers pending approval, Other EE, Tankless Water Heater National Grid (Gas)- Commercial Energy Efficiency Rebate Programs (Upstate New York)...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Nevada who purchase energy efficient natural gas tankless water heaters, clothes dryers, windows and smart low-flow showerheads. Furnaces are also available to customers...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Roofs, Motors, Motor VFDs, Other EE, Food Service Equipment, Reflective Roofs, LED Lighting, Tankless Water Heater, Commercial...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mgmt. SystemsBuilding Controls, Motors, Motor VFDs, CustomOthers pending approval, Food Service Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, Building Insulation, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater On-Farm Energy Efficiency & Production...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater On-Farm Energy Efficiency & Production...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting ControlsSensors, Energy Mgmt. SystemsBuilding Controls, Motors, Other EE, Food Service Equipment, Vending Machine Controls, LED Lighting, Tankless Water Heater,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Whole Building, CustomOthers pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater Renewable Energy and Energy Efficiency Project Financing For...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other EE, Food Service Equipment, Tankless Water Heater Energy Conservation for Ohioans (ECO-Link) Program Qualifying Technology A wide range of energy-efficiency upgrades and...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CustomOthers pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater Town of Buckeye- Green Building Incentive The program's goals are to reduce...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    approval, Other EE, Food Service Equipment, Data Center Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Town of Buckeye- Green Building Incentive...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Town of Buckeye- Green Building Incentive The program's goals are to reduce...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Other EE, Wind (Small), Fuel Cells using Renewable Fuels, Tankless Water Heater Town of Buckeye- Green Building Incentive The program's goals are to reduce...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermostats, DuctAir sealing, Building Insulation, Windows, Other EE, Tankless Water Heater Town of Buckeye- Green Building Incentive The program's goals are to reduce...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment, Personal Computing Equipment, Data Center Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Town of Buckeye- Green Building Incentive...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Town of Buckeye- Green Building Incentive The program's goals are to reduce...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Town of Buckeye- Green Building Incentive The program's goals are to reduce...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    VFDs, CustomOthers pending approval, Food Service Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Town of Buckeye- Green Building Incentive...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Estes Park Light and Power Department- Commercial and Industrial Energy Efficiency Rebate...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Alliant Energy Interstate Power and Light...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater City of Palo Alto Utilities- Commercial Energy...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Silicon Valley Power- Commercial Energy...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Xcel Energy (Electric)- Business Energy...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater NorthWestern Energy (Electric)- Commercial...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Avista Utilities (Gas)- Prescriptive...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Food Service Equipment, Tankless Water Heater Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs Interstate Power and...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Estes Park Light and Power Department- Commercial and Industrial Energy Efficiency Rebate Program Estes Park...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Personal Computing Equipment, Tankless Water Heater Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs Interstate Power and...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Personal Computing Equipment, Tankless Water Heater Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program Interstate...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Windows, Roofs, CustomOthers pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Energy Loan Program The Missouri...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sealing, Building Insulation, Windows, Roofs, CustomOthers pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Property Tax Exemption...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Windows, Roofs, CustomOthers pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater MDA- Energy Efficiency Revolving Loan...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Alameda Municipal Power- Residential Energy Efficiency Grant Program Alameda Municipal Power...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Boilers, Heat Pumps, Comprehensive MeasuresWhole Building, Tankless Water Heater Alameda Municipal Power- Residential Energy Efficiency Grant Program Alameda Municipal Power...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Heat Pumps, Comprehensive MeasuresWhole Building, Tankless Water Heater Alameda Municipal Power- Commercial New Construction Rebate Program Alameda Municipal Power...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tankless Water Heater Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Dollar and Energy Savings Loans Renewable energy projects may be eligible for a loan under...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tankless Water Heater Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Business Incentive Program Below is a list of equipment categories for which incentives are...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CustomOthers pending approval, Other EE, LED Lighting, Tankless Water Heater EmPOWER Maryland Clean Energy Communities Grant Program NOTE: The program deadline to apply...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Chillers, Heat Pumps, Air conditioners, Other EE, Tankless Water Heater OTEC- Residential Energy Efficiency Rebate Program Oregon Trail Electric Cooperative (OTEC)...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Wind (Small), Fuel Cells using Renewable Fuels, Tankless Water Heater State Home Oil Weatherization (SHOW) Program Residents complete an "Energy Audit Checklist"...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sealing, Building Insulation, Windows, CustomOthers pending approval, Other EE, Tankless Water Heater Vermont Gas- Residential Energy Efficiency Loan and Rebate Program Vermont...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Anaheim Public Utilities- Green Building...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Food Service Equipment, Tankless Water Heater Baltimore Gas & Electric Company (Electric)- Commercial Energy Efficiency Program Baltimore...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Illinois Clean Energy Community Foundation Grants Grants support both energy...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Alternative and Clean Energy Program In July 2008, Pennsylvania enacted a...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Edison Innovation Clean Energy Manufacturing Fund- Grants and Loans The total...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Windows, Roofs, Comprehensive MeasuresWhole Building, Other EE, Tankless Water Heater Edison Innovation Clean Energy Manufacturing Fund- Grants and Loans The total...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Motor VFDs, Agricultural Equipment, CustomOthers pending approval, Other EE, Tankless Water Heater Local Option- Clean Energy Development Boards PACE Overview Eligibility:...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Other EE, Wind (Small), Fuel Cells using Renewable Fuels, Tankless Water Heater Alternative and Clean Energy Program In July 2008, Pennsylvania enacted a...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Food Service Equipment, Vending Machine Controls, LED Lighting, Tankless Water Heater Property Assessed Clean Energy Financing The District of Columbia offers a...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats, Windows, Other EE, Vending Machine Controls, Tankless Water Heater Clean Energy Development Fund (CEDF) NOTE: The Vermont Clean Energy...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Others pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Clean Energy Revenue Bond Program The bonds are exempt from taxation by the...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Doors, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Property Assessed Clean Energy Financing The District of Columbia offers a...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CustomOthers pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater Edison Innovation Clean Energy Manufacturing Fund- Grants and Loans The total...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Local Option- Property Assessed Clean Energy Property-Assessed Clean Energy...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Other EE, Tankless Water Heater Edison Innovation Clean Energy Manufacturing Fund- Grants and Loans The total...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CustomOthers pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater Local Option- Property Assessed Clean Energy Property-Assessed Clean Energy...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agricultural Equipment, CustomOthers pending approval, Other EE, LED Lighting, Tankless Water Heater Energy Conservation Tax Credits- Competitively-Selected Projects (Corporate)...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Other EE, Wind (Small), Fuel Cells using Renewable Fuels, Tankless Water Heater Energy Conservation Improvements Property Tax Exemption Qualifying...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sealing, Building Insulation, Windows, CustomOthers pending approval, Other EE, Tankless Water Heater Energy Conservation Improvements Property Tax Exemption Qualifying...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Comprehensive MeasuresWhole Building, CustomOthers pending approval, Other EE, Tankless Water Heater Energy Conservation Tax Credits- Competitively-Selected Projects (Corporate)...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CustomOthers pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater Business Energy Conservation Loan Program The Vermont Business Energy...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Wind (Small), Fuel Cells using Renewable Fuels, Reflective Roofs, Tankless Water Heater Community Conservation Challenge The Indiana Office of Energy Development...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Other EE, Wind (Small), Fuel Cells using Renewable Fuels, Tankless Water Heater Energy Conservation Installation Credit Use Montana Department of Revenue Tax...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agricultural Equipment, CustomOthers pending approval, Other EE, LED Lighting, Tankless Water Heater Energy Conservation Tax Credits- Small Premium Projects (Corporate) Energy...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Other EE, Tankless Water Heater Barron Electric Cooperative- Residential Energy Resource Conservation Loan...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Windows, Roofs, Comprehensive MeasuresWhole Building, Other EE, Tankless Water Heater Energy Conservation Tax Credits- Competitively-Selected Projects (Corporate)...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Other EE, Tankless Water Heater Energy Conservation Improvements Property Tax Exemption Qualifying...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agricultural Equipment, CustomOthers pending approval, Other EE, LED Lighting, Tankless Water Heater Community Conservation Challenge The Indiana Office of Energy Development...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    MeasuresWhole Building, CustomOthers pending approval, Insulation, Tankless Water Heater Energy Conservation Loan Loans for large residential properties are available...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Doors, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Business Energy Conservation Loan Program The Vermont Business Energy...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Comprehensive MeasuresWhole Building, Other EE, Wind (Small), Pool Pumps, Tankless Water Heater Energy Conservation Loan Loans for large residential properties are available...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater New York City- Green Building Requirements for Municipal Buildings A series of additional laws...

  18. Questar Gas - Home Builder Gas Appliance Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Other EE Tankless Water Heater Program Info Sector Name Utility Administrator Questar Gas Website http:www.thermwise.combuilderBuilderRebates.html State Utah Program Type...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Boilers, Heat recovery, Steam-system upgrades, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater New England Gas Company- Residential and...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Boilers, Heat recovery, Steam-system upgrades, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Columbia Gas of Massachusetts- Commercial...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Steam-system upgrades, Programmable Thermostats, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater Columbia Gas of Massachusetts- Commercial...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater City of Palo Alto Utilities- Commercial...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Austin Utilities (Gas and Electric)-...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Steam-system upgrades, Programmable Thermostats, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater Otter Tail Power Company- DollarSmart Energy...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Steam-system upgrades, Programmable Thermostats, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater Xcel Energy (Electric)- Business Energy...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater New Jersey SmartStart Buildings- New...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Xcel Energy (Electric)- Residential Energy...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Xcel Energy (Electric)- Commercial Energy...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Steam-system upgrades, Programmable Thermostats, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater Pacific Power- FinAnswer Express Pacific...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Boilers, Heat recovery, Steam-system upgrades, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater National Grid (Electric)- Large Commercial...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pumps, Steam-system upgrades, Programmable Thermostats, Building Insulation, Other EE, Food Service Equipment, Tankless Water Heater PG&E- Non-Residential Energy Efficiency...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater PG&E- Non-Residential Energy Efficiency...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not identified, Tankless Water Heater Michigan Saves- Business Energy Financing Pre-qualification application materials are available on the program web site. Eligibility:...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CustomOthers pending approval, Other EE, Tankless Water Heater, Commercial Refrigeration Equipment Michigan Saves- Business Energy Financing Pre-qualification application...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siding, Roofs, Motors, Motor VFDs, Processing and Manufacturing Equipment, Agricultural Equipment, CustomOthers pending approval, Other EE, LED Lighting, Tankless Water Heater...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Steam-system upgrades, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Michigan Saves- Business Energy Financing...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprehensive MeasuresWhole Building, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater SoCalGas- Custom Non-Residential Energy...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mgmt. SystemsBuilding Controls, Motor VFDs, CustomOthers pending approval, Other EE, Food Service Equipment, Vending Machine Controls, LED Lighting, Tankless Water Heater...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Reflective Roofs, Tankless Water Heater Commercial Energy Efficiency Rebate Program Hawaii Energy is a ratepayer-funded conservation and efficiency program administered by...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater New Jersey Comfort Partners Program The New Jersey Comfort Partners program is a free of charge, direct...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pending approval, Other EE, Tankless Water Heater Alliant Energy Interstate Power and Light (Gas and Electric)- New Home Construction Incentives Interstate Power and Light's...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Food Service Equipment, Tankless Water Heater Alliant Energy Interstate Power and Light (Gas and Electric)- New Home Construction Incentives Interstate Power and Light's...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Vending Machine Controls, Personal Computing Equipment, Tankless Water Heater City of Detroit- SmartBuildings Detroit Green Fund Loan The Economic Development Corporation (EDC) of...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater City of Detroit- SmartBuildings Detroit Green Fund Loan The Economic Development Corporation (EDC) of...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment, Tankless Water Heater Vectren Energy Delivery of Indiana (Gas)- Commercial Energy Efficiency Rebates Vectren Energy Delivery offers commercial natural gas customers...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Tankless Water Heater Vectren Energy Delivery of Indiana (Gas)- Commercial Energy Efficiency Rebates Vectren Energy Delivery offers commercial natural gas customers...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Comprehensive MeasuresWhole Building, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Business Incentive Program Below is a list of...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mgmt. SystemsBuilding Controls, Motors, Motor VFDs, CustomOthers pending approval, Food Service Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Comprehensive MeasuresWhole Building, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Efficient Living Energy Grant Applications are...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat recovery, Steam-system upgrades, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Unitil (Electric)- Residential Energy Efficiency...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat recovery, Programmable Thermostats, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater New Jersey SmartStart Buildings- Direct...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Vending Machine Controls, Tankless Water Heater ConEd (Electric)-...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Food Service Equipment, Tankless Water Heater Energy Conservation Improvements Property Tax...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mgmt. SystemsBuilding Controls, Motor VFDs, CustomOthers pending approval, Other EE, Food Service Equipment, Vending Machine Controls, LED Lighting, Tankless Water Heater PEPCO-...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Vending Machine Controls, Reflective Roofs, Tankless Water Heater Energy Efficiency Investment Fund Rebates Specific efficiency requirements...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermostats, DuctAir sealing, Building Insulation, Windows, Other EE, Tankless Water Heater City of Plano- Green Building Policy for Municipal Buildings Return on...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Motors, LED Lighting, Tankless Water Heater Energy Efficiency Investment Fund Rebates Specific efficiency requirements...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CustomOthers pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater City of Plano- Green Building Policy for Municipal Buildings Return on...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment, Personal Computing Equipment, Data Center Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment City of Plano- Green Building Policy for...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Comprehensive MeasuresWhole Building, CustomOthers pending approval, Other EE, Tankless Water Heater Energy Efficiency Investment Fund Rebates Specific efficiency requirements...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Yes; specific technologies not identified, Food Service Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Energy Efficiency Investment Fund Rebates...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heaters, Furnaces, Boilers, DuctAir sealing, Building Insulation, Windows, Tankless Water Heater (CHIF) Home Energy Solutions Loan Program Connecticut Housing Investment Fund...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building, CustomOthers pending approval, Other EE, Food Service Equipment, Vending Machine Controls, Personal Computing Equipment, LED Lighting, Tankless Water Heater,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pending approval, Other EE, Food Service Equipment, Tankless Water Heater Savings by Design (Offered by five Utilities) In conjunction with the California Department of Public...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater MassSAVE (Electric)- Commercial Retrofit...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation, Windows, Siding, Roofs, Other EE, Yes; specific technologies not identified, Food Service Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater City of Indianapolis- Green Building...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells using Renewable Fuels, Reflective Roofs, Tankless Water Heater Dominion Virginia Power- Residential Energy Efficiency Rebate Program Dominion Virginia Power provides a...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    approval, Other EE, Vending Machine Controls, LED Lighting, Tankless Water Heater Cedar Falls Utilities- Commercial Energy Efficiency Rebate Program The CFU Commercial Energy...

  10. Burlington Electric Department - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Lighting Air conditioners Compressed air Tankless Water Heater Maximum Rebate 3200 max incentive for air compressors Program Info Sector Name Utility Administrator Burlington...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Others pending approval, Other EE, Food Service Equipment, Tankless Water Heater Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program NOTE: Promotional...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Windows, Comprehensive MeasuresWhole Building, Other EE, Tankless Water Heater Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program NOTE: Promotional...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls, Tankless Water Heater Alliant Energy Interstate Power and Light (Electric)- Business Energy Efficiency Rebate Programs Alliant Energy - Interstate Power and Light (IPL)...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Windows, Roofs, CustomOthers pending approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Energy Trust of Oregon Of the funds...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment California Solar Initiative- PV Incentives In January 2006, the California Public Utilities Commission...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    approval, Other EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pending approval, Other EE, Fuel Cells using Renewable Fuels, Tankless Water Heater Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Reflective Roofs, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Equipment, LED Lighting, Tankless Water Heater, Commercial Refrigeration Equipment Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Siding, Roofs, Comprehensive MeasuresWhole Building, Other EE, Tankless Water Heater Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers...