National Library of Energy BETA

Sample records for tank integrity project

  1. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 ...

  2. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    SciTech Connect (OSTI)

    Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.; Johnson, Jeremy M.; Castleberry, Jim L.

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.

  3. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    SciTech Connect (OSTI)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis of current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.

  4. Fifth Single-Shell Tank Integrity Project Expert Panel Meeting August 28-29, 2014

    SciTech Connect (OSTI)

    Martin, Todd M.; Gunter, Jason R.; Boomer, Kayle D.

    2015-01-07

    On August 28th and 29th, 2014 the Single-Shell Tank Integrity Project (SSTIP) Expert Panel (Panel) convened in Richland, Washington. This was the Panel’s first meeting since 2011 and, as a result, was focused primarily on updating the Panel on progress in response to the past recommendations (Single-Shell Tank Integrity Expert Panel Report, RPP-RPT-45921, Rev 0, May 2010). This letter documents the Panel’s discussions and feedback on Phase I activities and results.

  5. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect (OSTI)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  6. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    SciTech Connect (OSTI)

    Joyner, William Scott; Knight, Mark A.

    2013-11-14

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

  7. Evaluation of Ultrasonic Measurement Variation in the Double-Shell Tank Integrity Project

    SciTech Connect (OSTI)

    Pardini, Allan F.; Weier, Dennis R.; Crawford, Susan L.; Munley, John T.

    2010-01-12

    Washington River Protection Solutions (WRPS) under contract from the U.S. Department of Energy (DOE) is responsible for assessing the condition of the double-shell tanks (DST) on the Hanford nuclear site. WRPS has contracted with AREVA Federal Services LLC (AFS) to perform ultrasonic testing (UT) inspections of the 28 DSTs to assess the condition of the tanks, judge the effects of past corrosion control practices, and satisfy a regulatory requirement to periodically assess the integrity of the tanks. Since measurement inception in 1997, nine waste tanks have been examined twice (at the time of this report) providing UT data that can now be compared over specific areas. During initial reviews of these two comparable data sets, average UT wall-thickness measurement reductions were noted in most of the tanks. This variation could be a result of actual wall thinning occurring on the waste-tanks walls, or some other unexplained anomaly resulting from measurement error due to causes such as the then-current measurement procedures, operator setup, or equipment differences. WRPS contracted with the Pacific Northwest National Laboratory (PNNL) to assist in understanding why this variation exists and where it stems from.

  8. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant� Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

  9. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect (OSTI)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)

  10. SINGLE-SHELL TANK INTEGRITY PROJECT ANALYSIS OF RECORD-PRELIMINARY MODELING PLAN FOR THERMAL AND OPERATING LOADS

    SciTech Connect (OSTI)

    RAST RS; RINKER MW; BAPANAALLI SK; DEIBLER JE; GUZMAN-LEONG CE; JOHNSON KI; KARRI NK; PILLI SP; SANBORN SE

    2010-10-22

    This document is a Phase I deliverable for the Single-Shell Tank Analysis of Record effort. This document is not the Analysis of Record. The intent of this document is to guide the Phase II detailed modeling effort. Preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. The preliminary analysis document reviews and preliminary modeling analysis results are reported herein. In addition, this report provides recommendations for the next phase of the SST AOR project, SST detailed modeling. Efforts and results discussed in this report do not include seismic modeling as seismic modeling is covered by a separate report. The combined results of both static and seismic models are required to complete this effort. The SST AOR project supports the US Department of Energy's (DOE) Office of River Protection (ORP) mission for obtaining a better understanding of the structural integrity of Hanford's SSTs. The 149 SSTs, with six different geometries, have experienced a range of operating histories which would require a large number of unique analyses to fully characterize their individual structural integrity. Preliminary modeling evaluations were conducted to determine the number of analyses required for adequate bounding of each of the SST tank types in the Detailed Modeling Phase of the SST AOR Project. The preliminary modeling was conducted in conjunction with the Evaluation Criteria report, Johnson et al. (2010). Reviews of existing documents were conducted at the initial stage of preliminary modeling. These reviews guided the topics that were explored in the SST preliminary modeling. The reviews determined the level of detail necessary to perform the analyses of the SSTs. To guide the Phase II detailed modeling effort, preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. Conclusions were derived from case studies on one of the tank types when no additional runs of similar cases on other types of tanks were found necessary to derive those conclusions. The document reviews provided relatively complete temperature histories for Type IV tanks. The temperature history data for Type I, II, and III tanks was almost nonexistent for years prior to 1975. Document reviews indicate that there might be additional useful data in the US Department of Energy, Richland Operations Office (DOE-RL) records in Seattle, WA, and these records need to be reviewed to extract data that might have been disregarded during previous reviews. Thermal stress analyses were conducted using different temperature distribution scenarios on Type IV tanks. Such studies could not be carried out for other tank types due to lack of temperature history data. The results from Type IV tank analyses indicate that factors such as temperature distribution in the tank waste and rate of rise in waste temperature have a significant impact on the thermal stresses in the tank structures. Overall, the conclusion that can drawn from the thermal stress analyses is that these studies should be carried out for all tank types during the detailed analysis phase with temperature values that are reasonably close to the typical temperature histories of the respective tank types. If and/or when additional waste temperature data is acquired for tank Type I, II, and III tanks, additional cases need to be considered as tank structural integrity is sensitive to thermal loads. A few case studies were also performed using Type IV-b models to comprehend the effects of excavation boundaries, change in soil stratigraphy (layer thickness and properties), and radial extent of soil in the finite element models. The result from the case studies indicates that the slight variation in soil stratigraphy has little effects on the tank sections force and moment demands under mechanical loads. The case study for excavation slope or backfill transition boundary indicated that inclusion of such boundary yields conservative demands in the wall region while demands at other locations remain unaffected. Hence this excavation slope will be modeled in the detailed analysis of SSTs.

  11. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  12. High-Level Liquid Waste Tank Integrity Workshop - 2008

    Office of Environmental Management (EM)

    techniques for primarysecondary tank wall and concrete * * Develop tank integrity roadmap and execution plan Develop tank integrity roadmap and execution plan including...

  13. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    SciTech Connect (OSTI)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.

  14. Experts Review Tank Integrity Program at Hanford

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – An expert panel met this month to discuss the integrity of double-shell tank AY-102 on behalf of EM’s Office of River Protection (ORP).

  15. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    SciTech Connect (OSTI)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford SSTs is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65-year-old tank is being tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar testing ongoing. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide continuing indication of Hanford SST structural integrity.

  16. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  17. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  18. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment |

    Energy Savers [EERE]

    Department of Energy Tank 48H Waste Treatment Project Technology Readiness Assessment SRS Tank 48H Waste Treatment Project Technology Readiness Assessment Full Document and Summary Versions are available for download PDF icon SRS Tank 48H Waste Treatment Project Technology Readiness Assessment PDF icon Summary - Savannah River Site Tank 48H Waste Treatment Project More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H

  19. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  20. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    SciTech Connect (OSTI)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

  1. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    SciTech Connect (OSTI)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore; Washenfelder, Dennis; Johnson, Jeremy

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect (OSTI)

    MACKEY TC; DEIBLER JE; JOHNSON KI; PILLI SP; KARRI NK; RINKER MW; ABATT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the SDT System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect (OSTI)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global buckling of the tank under increased vacuum) could occur.

  4. Savings Project: Insulate Your Water Heater Tank | Department...

    Energy Savers [EERE]

    Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings 20-45 annually Time to Complete 1.5 hours Overall ...

  5. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

    Office of Environmental Management (EM)

    Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry ... Energy Aiken, South Carolina SRS Tank 48H Waste Treatment Project SPD-07-195 Technology ...

  6. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

  7. Tank waste remediation system characterization project quality policies. Revision 1

    SciTech Connect (OSTI)

    Trimble, D.J.

    1995-10-02

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System.

  8. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  9. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  10. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY...

    Office of Scientific and Technical Information (OSTI)

    Title: HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL ... the definition of the design ground motion or in the properties of the tank-waste system. ...

  11. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC...

    Office of Scientific and Technical Information (OSTI)

    Title: HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS M&D Professional Services, Inc. (M&D) is under subcontract to Pacific ...

  12. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  13. Tank Waste Remediation System Projects Document Control Plan

    SciTech Connect (OSTI)

    Slater, G.D.; Halverson, T.G.

    1994-09-30

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project.

  14. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING...

    Office of Scientific and Technical Information (OSTI)

    Title: HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING EVALUATION METHODS ... The analysis must account for the variation in design details and operating conditions ...

  15. 241-AN Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  16. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  17. Hanford Single-Shell Tank Integrity Program

    Office of Environmental Management (EM)

    production reactors to irradiate fuel and produce plutonium. * Four large ... Type III 100 Series Tanks 241-BY, S, TX, and TY Farms, 48 Tanks 758,000 gallon capacity ...

  18. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-03-26

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

  19. Integrated Project Team RM

    Broader source: Energy.gov [DOE]

    The Integrated Project Team (IPT) is an essential element of the Department’s acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals...

  20. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    SciTech Connect (OSTI)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be recei

  1. Project Design Concept for Transfer Piping For Project W-314 Tank Farm Restoration and Safe Operations

    SciTech Connect (OSTI)

    MCGREW, D.L.

    1999-09-28

    This Project Design Concept represents operational requirements for design of transfer piping system for Phase I of Project W-314, Tank Farm Restoration and Safe Operation Upgrades.

  2. Summary - Savannah River Site Tank 48H Waste Treatment Project

    Office of Environmental Management (EM)

    Savannah Rive SRS Tank 48H Project July 2007 Departmen ah River E-EM Did This cess k 48H is a 1.3 ately 250, 000 aste ... FBSR s further her Handling erring plant have criteria oduct

  3. Single-shell tank interim stabilization project plan

    SciTech Connect (OSTI)

    Ross, W.E.

    1998-03-27

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE`s Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. The plan is based on realistic assumptions and addresses three separate funding scenarios.

  4. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect (OSTI)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  5. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  6. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  7. Single Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval

    SciTech Connect (OSTI)

    DEFIGH PRICE, C.

    2000-09-20

    In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover.

  8. Single Shell Tank (SST) Interim Stabilization Project Plan

    SciTech Connect (OSTI)

    VLADIMIROFF, D.T.; BOYLES, V.C.

    2000-05-22

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  9. Single-shell tank interim stabilization project plan

    SciTech Connect (OSTI)

    Ross, W.E.

    1998-05-11

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  10. Department of Energy Manual 435.1-1 Waste Incidental To Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank

    Broader source: Energy.gov [DOE]

    Department of Energy Manual 435.1-1 Waste Incidental To Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank

  11. Environmental Assessment for the Accelerated Tank Closure Demonstration Project

    SciTech Connect (OSTI)

    N /A

    2003-06-16

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) needs to collect engineering and technical information on (1) the physical response and behavior of a Phase I grout fill in an actual tank, (2) field deployment of grout production equipment and (3) the conduct of component closure activities for single-shell tank (SST) 241-C-106 (C-106). Activities associated with this Accelerated Tank Closure Demonstration (ATCD) project include placement of grout in C-106 following retrieval, and associated component closure activities. The activities will provide information that will be used in determining future closure actions for the remaining SSTs and tank farms at the Hanford Site. This information may also support preparation of the Environmental Impact Statement (EIS) for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington (Tank Closure EIS). Information will be obtained from the various activities associated with the component closure activities for C-106 located in the 241-C tank farm (C tank farm) under the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989). The impacts of retrieving waste from C-106 are bounded by the analysis in the Tank Waste Remediation System (TWRS) EIS (DOE/EIS-0189), hereinafter referred to as the TWRS EIS. DOE has conducted and continues to conduct retrieval activities at C-106 in preparation for the ATCD Project. For major federal actions significantly affecting the quality of the human environment, the ''National Environmental Policy Act of 1969'' (NEPA) requires that federal agencies evaluate the environmental effects of their proposed and alternative actions before making decisions to take action. The President's Council on Environmental Quality (CEQ) has developed regulations for implementing NEPA. These regulations are found in Title 40 of the Code of Federal Regulations (CFR), Parts 1500-1508. They require the preparation of an Environmental Assessment (EA) that includes an evaluation of alternative means of addressing the problem and a discussion of the potential environmental impacts of a proposed federal action. An EA provides analysis to determine whether an EIS or a finding of no significant impact should be prepared.

  12. DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda DOE Hydrogen ...

  13. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect (OSTI)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  14. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    SciTech Connect (OSTI)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list.

  15. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    SciTech Connect (OSTI)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  16. Project management plan for project W-320, tank 241-C-106 sluicing

    SciTech Connect (OSTI)

    Leliefeld, K.W.

    1996-02-02

    This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987). The sluicing is for retrieving high-heat waste from single shell tank 241-C-106.

  17. Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

  18. Integrated heat exchanger design for a cryogenic storage tank

    SciTech Connect (OSTI)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U.; Tomsik, T. M.; Conyers, H. J.

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  19. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  20. Integrated Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Integrated Projects Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize component development, optimized integrated hydrogen and fuel cell systems must be developed and validated. Novel new approaches such as Power Parks, which "marry" the transportation and electricity generation markets in synergistic ways, and integrated renewable hydrogen production systems, which combine electrolysis powered by wind, solar, and other

  1. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    SciTech Connect (OSTI)

    Renfro, G.G.

    1994-12-20

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices.

  2. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting | Department of Energy Delivery High-Pressure Tanks and Analysis Project Review Meeting DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting On February 8-9, 2005, the Department of Energy held the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting at Argonne National Laboratory. The purpose of the meeting was to review the progress and plans of the R&D projects and to facilitate collaboration among researchers. The

  3. Structural integrity and potential failure modes of hanford high-level waste tanks

    SciTech Connect (OSTI)

    Han, F.C.

    1996-09-30

    Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

  4. NREL: Distributed Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of two men in safety glasses working with electric equipment in a laboratory. NREL's distributed grid integration projects develop and test technologies, systems, and methods to interconnect variable renewable energy with the electric power grid. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our

  5. Integrated Project Team RM

    Office of Environmental Management (EM)

    DOE-STD-1189-2008, Integration of Safety into the Design Process, and EM's internal business management practices. The SRP follows the Critical Decision (CD) process and...

  6. DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting Agenda, held February 8-9, 2005 by Argonne National Laboratory

  7. HLW System Integrated Project Team

    Office of Environmental Management (EM)

    l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team ... and skilled kf Developing and deploying t h l i This document is intended for planning ...

  8. Functional design criteria, Project W-211, Initial Tank Retrieval Systems. Revision 1

    SciTech Connect (OSTI)

    Rieck, C.A.

    1995-02-07

    This document provides the technical baseline for retrieval of waste from ten double-shell tanks in the SY, AN, AP, AW, AY, and AZ tank farms. In order to retrieve waste from these tanks, systems are needed to mix the sludge with the supernate and pump the waste mixture from the tank. For 101-SY, the existing mitigation pump will be used to mix the waste and Project W-211 will provide for waste removal. The retrieval scope for the other nine tanks includes both the waste mixing and removal functions.

  9. National Bioenergy Center Biochemical Platform Integration Project

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

  10. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 10, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Integrated Project Team Update on Double-Shell Tank AY-102 ................................................................. 2 Update on Single-Shell Tank (SST) T-111 and SSTs with Decreasing Levels

  11. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  12. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT DYTRAN...

    Office of Scientific and Technical Information (OSTI)

    ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DST PRIMARY TANK ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

  14. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-10-03

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  15. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  16. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  17. Hanford Tank Safety Project: Minutes of the Tank Waste Science Panel meeting, February 7--8, 1991

    SciTech Connect (OSTI)

    Strachan, D.M.

    1991-06-01

    The Tank Waste Science Panel met February 7--8, 1991, to review the latest data from the analyses of the October 24, 1990, gas release from Tank 241-SY-101 (101-SY) at Hanford; discuss the results of work being performed in support of the Hanford Tank Safety Project; and be briefed on the ferrocyanide issues included in the expanded scope of the Science Panel. The shapes of the gas release curves from the past three events are similar and correlate well with changes in waste level, but the correlation between the released volume of gas and the waste height is not as good. An analysis of the kinetics of gas generation from waste height measurements in Tank 101-SY suggests that the reaction giving rise to the gases in the tank is independent of the gas pressure and independent of the physical processes that give rise to the episodic release of the gases. Tank waste height data were also used to suggest that a floating crust formed early in the history of the tank and that the current crust is being made thicker in the eastern sector of the tank by repeated upheaval of waste slurry onto the surface. The correlation between the N{sub 2}O and N{sub 2} generated in the October release appears to be 1:1, suggesting a single mechanistic pathway. Analysis of other gas generation ratios, however, suggests that H{sub 2} and N{sub 2}O are evolved together, whereas N{sub 2} is from the air. If similar ratios are observed in planned radiolysis experiments are Argonne National Laboratory, radiolysis would appear to be generating most of the gases in Tank 101-SY. Data from analysis of synthetic waste crust using a dynamic x-ray diffractometer suggest that, in air, organics are being oxidized and liberating CO{sub 2} and NO{sub x}. Experiments at Savannah River Laboratory indicate that irradiation of solutions containing NO{sub 3} and organics can produce N{sub 2}O.

  18. Integrated Development Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    Development Projects Ltd Jump to: navigation, search Name: Integrated Development Projects Ltd Place: Devon, United Kingdom Zip: EX18 7BL Sector: Biomass Product: The company's...

  19. Secretarial Memorandum on Integrating Project Management with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretarial Memorandum on Integrating Project Management with NEPA Compliance to Improve ... implementation of DOE programs and projects," the Secretary has signed a memorandum ...

  20. Preparation plan, preliminary safety documentation, tank farm restoration and safe operations, Project W-314

    SciTech Connect (OSTI)

    Kidder, R.J.

    1994-10-20

    This preparation plan is developed to establish planning for the preliminary safety documentation for Project W-314, {open_quotes}Tank Farm Restoration and Safe Operations.{close_quotes}

  1. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    SciTech Connect (OSTI)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and {sup 90}Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste.

  2. DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program (PDF 9.19 MB), George Parks, ConocoPhilips High-Pressure Tube Trailers and Tanks (PDF 4.21 MB), Slavador Aceves, ...

  3. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  4. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  5. NREL: Distributed Grid Integration - Technology Development Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Projects NREL works on several distributed energy integration technology development projects, including the following: High Penetration Photovoltaics Hydrogen Systems Research Metering Solutions Mobile Electric Power Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards Data Collection & Visualization Hawaii Clean Energy Initiative Microgrids Power Systems Modeling Solar Distributed Grid Integration Technology Development High

  6. Tank waste remediation system privatization phase 1 infrastructure project, systems engineering implementation plan

    SciTech Connect (OSTI)

    Schaus, P.S.

    1998-08-19

    This Systems Engineering Implementation Plan (SEIP) describes the processes, products, and organizational responsibilities implemented by Project W-519 to further define how the project`s mission, defined initially by the Tank Waste Remediation System Phase 1 Privatization Infrastructure Project W-503 Mission Analysis Report (Hoertkorn 1997), will be accomplished using guidance provided by the Tank Waste Remediation System Systems Engineering Management Plan (SEMP) (Peck 1998). This document describes the implementation plans for moving from a stated mission to an executable cost, schedule, and technical baseline and to help ensure its successful completion of those baselines.

  7. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  8. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    SciTech Connect (OSTI)

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of the Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.

  9. Summary - Savannah River Site Tank 48H Waste Treatment Project

    Office of Environmental Management (EM)

    S Wet Air Savan contain liquid w contain potent to the option tank w Bed S condu be pur The as Techn Techn as liste * W o o The Ele Site: S roject: S P Report Date: J ited States Savanna Why DOE r Oxidation Proc nnah River Tan ning approxima waste. The wa ns tetraphenylb tially flammable tank head spa s have been id waste: Wet Air O team Reformin cted to aid in d rsued for treatin What th ssessment team ology Element ology Readine ed below: Wet Air Oxidatio Reactor sys Offgas Trea To view the

  10. Pilot Scale Integration Project Presentation for BETO 2015 Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Scale Integration Project March 25, 2015 Biochemical Conversion Area Daniel Schell NREL This presentation does not contain any proprietary, confidential or otherwise ...

  11. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  12. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  13. Supplement analysis for the proposed upgrades to the tank farm ventilation, instrumentation, and electrical systems under Project W-314 in support of tank farm restoration and safe operations

    SciTech Connect (OSTI)

    1997-05-01

    The mission of the TWRS program is to store, treat, and immobilize highly radioactive tank waste in an environmentally sound, safe, and cost-effective manner. Within this program, Project W-314, Tank Farm Restoration and Safe Operations, has been established to provide upgrades in the areas of instrumentation and control, tank ventilation, waste transfer, and electrical distribution for existing tank farm facilities. Requirements for tank farm infrastructure upgrades to support safe storage were being developed under Project W-314 at the same time that the TWRS EIS alternative analysis was being performed. Project W-314 provides essential tank farm infrastructure upgrades to support continued safe storage of existing tank wastes until the wastes can be retrieved and disposed of through follow-on TWRS program efforts. Section4.0 provides a description of actions associated with Project W-314. The TWRS EIS analyzes the environmental consequences form the entire TWRS program, including actions similar to those described for Project W-314 as a part of continued tank farm operations. The TWRS EIS preferred alternative was developed to a conceptual level of detail to assess bounding impact areas. For this Supplement Analysis, in each of the potential impact areas for Project W-314, the proposed action was evaluated and compared to the TWRS EIS evaluation of the preferred alternative (Section 5.0). Qualitative and/or quantitative comparisons are then provided in this Supplement Analysis to support a determination on the need for additional National Environmental Policy Act (NEPA) analysis. Based on this Supplement Analysis, the potential impacts for Project W-314 would be small in comparison to and are bounded by the impacts assessed for the TWRS EIS preferred alternative, and therefore no additional NEPA analysis is required (Section 7.0).

  14. Tank characterization technical sampling basis

    SciTech Connect (OSTI)

    Brown, T.M.

    1998-04-28

    Tank Characterization Technical Sampling Basis (this document) is the first step of an in place working process to plan characterization activities in an optimal manner. This document will be used to develop the revision of the Waste Information Requirements Document (WIRD) (Winkelman et al. 1997) and ultimately, to create sampling schedules. The revised WIRD will define all Characterization Project activities over the course of subsequent fiscal years 1999 through 2002. This document establishes priorities for sampling and characterization activities conducted under the Tank Waste Remediation System (TWRS) Tank Waste Characterization Project. The Tank Waste Characterization Project is designed to provide all TWRS programs with information describing the physical, chemical, and radiological properties of the contents of waste storage tanks at the Hanford Site. These tanks contain radioactive waste generated from the production of nuclear weapons materials at the Hanford Site. The waste composition varies from tank to tank because of the large number of chemical processes that were used when producing nuclear weapons materials over the years and because the wastes were mixed during efforts to better use tank storage space. The Tank Waste Characterization Project mission is to provide information and waste sample material necessary for TWRS to define and maintain safe interim storage and to process waste fractions into stable forms for ultimate disposal. This document integrates the information needed to address safety issues, regulatory requirements, and retrieval, treatment, and immobilization requirements. Characterization sampling to support tank farm operational needs is also discussed.

  15. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

  16. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    SciTech Connect (OSTI)

    Wyrwas, R. B.

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  17. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Hays, W.H.

    1998-06-25

    The ``Tank Farm Restoration and Safe Operations`` (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization`s waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ``Test and Evaluation,`` which is derived from DOE Order 430.1, ``Life Cycle Asset Management.`` It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending with operational testing and turn-over of the upgraded systems to Tank Farm Operations. The TEP will be updated as required to reflect the appropriate test acceptance and startup requirements to support design, construction, turnover and initial operations.

  18. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    SciTech Connect (OSTI)

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-10-19

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy.

  19. NREL: Transmission Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers are exploring the potential impacts of higher penetrations of solar and wind power on system operations. Our projects provide insights that enable improved and ...

  20. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    SciTech Connect (OSTI)

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  1. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect (OSTI)

    VAN BEEK, J.E.

    2000-05-05

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

  2. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    SciTech Connect (OSTI)

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-07-07

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency.

  3. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    SciTech Connect (OSTI)

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.

  4. Tank waste remediation system characterization project quality policies

    SciTech Connect (OSTI)

    Trible, T.C., Westinghouse Hanford

    1996-07-31

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised on eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer`s quality requirements known as the `RULE`, 10 CFR 830.120, Quality Assurance.

  5. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect (OSTI)

    TC MACKEY; JE DEIBLER; MW RINKER; KI JOHNSON; SP PILLI; NK KARRI; FG ABATT; KL STOOPS

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is the analysis of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. The reevaluation of the AP anchor bolts showed that (for a given temperature increase) the anchor shear load distribution did not change significantly from the initially higher stiffness to the new secant shear stiffness. Therefore, the forces and displacements of the other tank components such as the primary tanks stresses, secondary liner strains, and concrete tank forces and moments also did not change significantly. Consequently, the revised work in Revision 1 focused on the changes in the anchor bolt responses and a full reevaluation of all tank components was judged to be unnecessary.

  6. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect (OSTI)

    Jolly, R.C.Jr. [Washington Savannah River Company (United States); Martin, B. [Washington Savannah River Company, A Washington Group International Company (United States)

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra-area transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations. (authors)

  7. Water Integration Project Science Strategies White Paper

    SciTech Connect (OSTI)

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  8. Meeting the Challenge: Integrating Acquisition and Project Management...

    Energy Savers [EERE]

    Meeting the Challenge: Integrating Acquisition and Project Management - J. E. Surash, P.E. Meeting the Challenge: Integrating Acquisition and Project Management - J. E. Surash, ...

  9. SunShot's National Laboratory Projects Target Grid Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot's National Laboratory Projects Target Grid Integration Challenges SunShot's National Laboratory Projects Target Grid Integration Challenges March 25, 2016 - 4:40pm Addthis ...

  10. PROJECT PROFILE: Combined PV/Battery Grid Integration with High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Combined PVBattery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP) PROJECT PROFILE: Combined PVBattery Grid Integration with ...

  11. Double-shell tank integrity assessments ultrasonic test equipment performance test

    SciTech Connect (OSTI)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  12. Waste Characterization Plan for the Hanford Site single-shell tanks. Appendix D, Quality Assurance Project Plan for characterization of single-shell tanks: Revision 3

    SciTech Connect (OSTI)

    Hill, J.G.; Winters, W.I.; Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States); Buck, J.W.; Chamberlain, P.J.; Hunter, V.L. [Pacific Northwest Lab., Richland, WA (United States)

    1991-09-01

    This section of the single-shell tank (SST) Waste Characterization Plan describes the quality control (QC) and quality assurance (QA) procedures and information used to support data that is collected in the characterization of SST wastes. The section addresses many of the same topics discussed in laboratory QA project plans (QAPjP) (WHC 1989, PNL 1989) and is responsive to the requirements of QA program plans (QAPP) (WHC 1990) associated with the characterization of the waste in the SSTs. The level of QC for the project depends on how the data is used. Data quality objectives (DQOs) are being developed to support decisions made using this data. It must be recognized that the decisions and information related to this part of the SST program deal with the materials contained within the tank only and not what may be in the environment/area surrounding the tanks. The information derived from this activity will be used to determine what risks may be incurred by the environment but are not used to define what actual constituents are contained within the soil surrounding the tanks. The phases defined within the DQOs on this Waste Characterization Plan follow the general guidance of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) yet are pertinent to analysis of the contents of the tanks and not the environment.

  13. Contacts for Integrating Renewable Energy into Federal Construction Projects

    Broader source: Energy.gov [DOE]

    Contacts to learn more about integrating renewable energy technologies into Federal construction projects.

  14. Major Risk Factors to the Integrated Facility Disposition Project |

    Energy Savers [EERE]

    Department of Energy to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). PDF icon Major Risk Factors to the Integrated Facility Disposition Project More Documents & Publications Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

  15. Design review report: AN valve pit upgrades for Project W-314, tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Boes, K.A.

    1998-01-13

    This Design Review Report (DRR) documents the contractor design verification methodology and records associated with project W-314`s AN Valve Pit Upgrades design package. The DRR includes the documented comments and their respective dispositions for this design. Acceptance of the comment dispositions and closure of the review comments is indicated by the signatures of the participating reviewers. Project W-314, Tank Farm Restoration and Safe Operations, is a project within the Tank Waste Remediation System (TWRS) Tank Waste Retrieval Program. This project provides capital upgrades for the existing Hanford tank farms` waste transfer, instrumentation, ventilation, and electrical infrastructure systems. To support established TWRS programmatic objectives, the project is organized into two distinct phases. The initial focus of the project (i.e., Phase 1) is on waste transfer system upgrades needed to support the TWRS Privatization waste feed delivery system. Phase 2 of the project will provide upgrades to support resolution of regulatory compliance issues, improve tank infrastructure reliability, and reduce overall plant operating/maintenance costs. Within Phase 1 of the W-314 project, the waste transfer system upgrades are further broken down into six major packages which align with the project`s work breakdown structure. Each of these six sub-elements includes the design, procurement, and construction activities necessary to accomplish the specific tank farm upgrades contained within the package. The first package to be performed is the AN Valve Pit Upgrades package. The scope of the modifications includes new pit cover blocks, valve manifolds, leak detectors, transfer line connections (for future planned transfer lines), and special protective coating for the 241-AN-A and 241-AN-B valve pits.

  16. Project management plan for Project W-320, Tank 241-C-106 sluicing

    SciTech Connect (OSTI)

    Phillips, D.R.

    1994-12-01

    This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987).

  17. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models for salt batch mixing and transfer pump operations. This major scientific advance in mixing technology resulted in multi-million dollar cost savings to SRR. New techniques were developed for both experiment and analysis to complete this research. Supporting this success, research findings are summarized in the Conclusions section of this report, and technical recommendations for design and operation are included in this section of the report.

  18. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Wave Tank Test for Reference Model 3 Floating- Point Absorber Wave Energy Converter Project Y.-H. Yu, M. Lawson, and Y. Li National Renewable Energy Laboratory M. Previsic and J. Epler Re Vision Consulting J. Lou Oregon State University Technical Report NREL/TP-5000-62951 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no

  19. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Review | Department of Energy 4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I: Progress in Advanced Biofuels 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Gerson Santos-Leon, Executive Vice President, Abengoa PDF icon santos-leon_biomass_2014.pdf More Documents & Publications Abengoa IBR Successes Applicant

  20. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006), the results of the two investigations will be compared to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. Both rigid tank and flexible tank configurations were analyzed with ANSYS. The response parameters of interest are total hydrodynamic reaction forces, impulsive and convective mode frequencies, waste pressures, and slosh heights. To a limited extent: tank stresses are also reported. The results of this study demonstrate that the ANSYS model has the capability to adequately predict global responses such as frequencies and overall reaction forces. Thus, the model is suitable for predicting the global response of the tank and contained waste. On the other hand, while the ANSYS model is capable of adequately predicting waste pressures and primary tank stresses in a large portion of the waste tank, the model does not accurately capture the convective behavior of the waste near the free surface, nor did the model give accurate predictions of slosh heights. Based on the ability of the ANSYS benchmark model to accurately predict frequencies and global reaction forces and on the results presented in Abatt, et al. (2006), the global ANSYS model described in Carpenter et al. (2006) is sufficient for the seismic evaluation of all tank components except for local areas of the primary tank. Due to the limitations of the ANSYS model in predicting the convective response of the waste, the evaluation of primary tank stresses near the waste free surface should be supplemented by results from an ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions. However, the primary tank is expected to have low demand to capacity ratios in the upper wall. Moreover, due to the less than desired mesh resolution in the primary tank knuckle of the global ANSYS model, the evaluation of the primary tank stresses in the lo

  1. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vision: Partnering with our customers, we provide support to further the laboratory's mission to operate a world class user facility for conducting nuclear physics research. Our focus is to provide project management and integrated planning support across the Lab that is aligned with Lab goals, objectives and guidance. Mission: To ensure, through partnership with the Lab Leadership/staff, the successful conduct of the mission of the laboratory. As such, we provide technical and administrative

  2. River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description

    SciTech Connect (OSTI)

    DOVALLE, O.R.

    1999-12-29

    This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

  3. Tank waste remediation system privatization phase 1 infrastructure project W-519, project execution plan

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-08-28

    This Project Execution Plan (PEP) defines the overall strategy, objectives, and contractor management requirements for the execution phase of Project W-519 (98-D403), Privatization Phase 1 Infrastructure Support, whose mission is to effect the required Hanford site infrastructure physical changes to accommodate the Privatization Contractor facilities. This plan provides the project scope, project objectives and method of performing the work scope and achieving objectives. The plan establishes the work definitions, the cost goals, schedule constraints and roles and responsibilities for project execution. The plan also defines how the project will be controlled and documented.

  4. DOE Integrated Technology Validation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Integrated Projects » DOE Integrated Technology Validation Projects DOE Integrated Technology Validation Projects Integrated hydrogen and fuel cell systems will maximize overall system efficiencies, reduce costs, and optimize component development. DOE's Fuel Cell Technologies Office has a number of demonstrations underway to develop, evaluate, and validate the performance of integrated systems such as Power Parks. The status of DOE's integrated technology validation

  5. Integrated Project Team Guide for Formation and Implementation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8A, Integrated Project Team Guide for Formation and Implementation by John Makepeace Functional areas: Project Management The guide provides detailed guidance of the preferred...

  6. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farms Office of River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 242-A Evaporator 222-S Laboratory Newsroom Contracts & Procurements Contact ORP Tank Farms Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Tank Farms What are Tank Farms? For more than 40 years, facilities at the Hanford Site produced plutonium Tanks by the Numbers critical to the nation's

  7. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-07-31

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline.

  8. Tank waste remediation system year 2000 dedicated file server project HNF-3418 project plan

    SciTech Connect (OSTI)

    SPENCER, S.G.

    1999-04-26

    The Server Project is to ensure that all TWRS supporting hardware (fileservers and workstations) will not cause a system failure because of the BIOS or Operating Systems cannot process Year 2000 dates.

  9. Statements of work for FY 1996 to 2001 for the Hanford Low-Level Tank Waste Performance Assessment Project

    SciTech Connect (OSTI)

    Mann, F.M.

    1995-06-07

    The statements of work for each activity and task of the Hanford Low-Level Tank Waste Performance Assessment project are given for the fiscal years 1996 through 2001. The end product of this program is approval of a final performance assessment by the Department of Energy in the year 2000.

  10. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in the frequency domain, but frequency domain analysis is limited to systems with linear responses. The nonlinear character of the coupled SSI model and tank structural model requires that the seismic analysis be solved in the time domain. However, time domain SSI analysis is somewhat nontraditional and requires that the appropriate methodology be developed and demonstrated. Moreover, the analysis of seismically induced fluid-structure interaction between the explicitly modeled waste and the primary tank must be benchmarked against known solutions to simpler problems before being applied to the more complex analysis of the DSTs. The objective of this investigation is to establish the methodology necessary to perform the required SSI analysis of the DSTs in the time domain. Specifically, the analysis establishes the capabilities and limitations of the time domain codes ANSYS and Dytran for performing seismic SSI analysis of the DSTs. The benchmarking of the codes Dytran and ANSYS for performing seismically induced fluid-structure interaction (FSI) between the contained waste and the DST primary tank are documented in Abatt (2006) and Carpenter and Abatt (2006), respectively. The results of those two studies show that both codes have the capability to analyze the fluid-structure interaction behavior of the primary tank and contained waste. As expected, Dytran appears to have more robust capabilities for FSI analysis. The ANSYS model used in that study captures much of the FSI behavior, but does have some limitations for predicting the convective response of the waste and possibly the response of the waste in the knuckle region of the primary tank. While Dytran appears to have somewhat stronger capabilities for the analysis of the FSI behavior in the primary tank, it is more practical for the overall analysis to use ANSYS. Thus, Dytran served the purpose of helping to identify limitations in the ANSYS FSI analysis so that those limitations can be addressed in the structural evaluation of the primary tank. The limitations of ANSYS for predicting the details of the convective

  11. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  12. Integrated Project Team Guide for Formation and Implementation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-02-03

    The guide provides detailed guidance of the preferred processes to form and implement an Integrated Project Team (IPT) in support of proper project execution as prescribed in DOE O 413.3B.

  13. EWIS European wind integration study (Smart Grid Project) (Germany...

    Open Energy Info (EERE)

    Germany) Jump to: navigation, search Project Name EWIS European wind integration study Country Germany Coordinates 51.165691, 10.451526 Loading map... "minzoom":false,"mapping...

  14. EWIS European wind integration study (Smart Grid Project) (France...

    Open Energy Info (EERE)

    France) Jump to: navigation, search Project Name EWIS European wind integration study Country France Coordinates 45.897655, 2.021484 Loading map... "minzoom":false,"mappingser...

  15. EWIS European wind integration study (Smart Grid Project) (Spain...

    Open Energy Info (EERE)

    Spain) Jump to: navigation, search Project Name EWIS European wind integration study Country Spain Coordinates 40.522152, -4.163818 Loading map... "minzoom":false,"mappingserv...

  16. EWIS European wind integration study (Smart Grid Project) (United...

    Open Energy Info (EERE)

    United Kingdom) Jump to: navigation, search Project Name EWIS European wind integration study Country United Kingdom Coordinates 55.378052, -3.435973 Loading map......

  17. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  18. EWIS European wind integration study (Smart Grid Project) (Denmark...

    Open Energy Info (EERE)

    search Project Name EWIS European wind integration study Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  19. EWIS European wind integration study (Smart Grid Project) (Czech...

    Open Energy Info (EERE)

    Czech Republic) Jump to: navigation, search Project Name EWIS European wind integration study Country Czech Republic Coordinates 49.817493, 15.472962 Loading map......

  20. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    SciTech Connect (OSTI)

    Burritt, James G.; Berkey, Edgar

    2012-07-01

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  1. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  2. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly K. Krug, Project Management Office Manager (757) 269-6044, krug@jlab.org Christine Fragapane, Project Management Executive Assistant (757) 269-7502, chummel@jlab.org Matrixed: Claus H. Rode, 12 GeV Upgrade Project Manager (757) 269-7511, rode@jlab.org Program Development & Planning The Program Development function of Project Management Office serves three main purposes: 1. Monitor EVMS processes on Jefferson Lab projects and conducting an annual EVMS surveillance review to ensure the

  3. CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183

    SciTech Connect (OSTI)

    Thaxton, D; Timothy Baughman, T

    2008-01-16

    Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

  4. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect (OSTI)

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Desk-book. The TRA consists of three parts: - Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. - Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. - Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy. (authors)

  5. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energys (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRCs ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  6. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: (1) Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. (2) Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. (3) Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  7. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  8. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  9. Secretarial Memorandum on Integrating Project Management with NEPA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compliance to Improve Decision Making | Department of Energy Secretarial Memorandum on Integrating Project Management with NEPA Compliance to Improve Decision Making Secretarial Memorandum on Integrating Project Management with NEPA Compliance to Improve Decision Making June 12, 2012 - 4:14pm Addthis Declaring that "Compliance with [NEPA] is a pre-requisite to successful implementation of DOE programs and projects," the Secretary has signed a memorandum on "Improved Decision

  10. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  11. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect (OSTI)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  12. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  13. EIS-0374: Klondike III/ Bigelow Canyon Wind Integration Project, OR

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's decision to approve an interconnection requested by PPM Energy, Inc. (PPM) to integrate electrical power from their proposed Klondike III Wind roject (Wind Project) into the Federal Columbia River Transmission System (FCRTS).

  14. Major Risk Factors to the Integrated Facility Disposition Project

    Office of Environmental Management (EM)

    Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization,

  15. Integrated Project Team Guide for Formation and Implementation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-02-03

    The guide provides detailed guidance of the preferred processes to form and implement an Integrated Project Team (IPT) in support of proper project execution as prescribed in DOE O 413.3B. Admin Chg 1 dated 10-22-2015.

  16. EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

  17. NREL: Distributed Grid Integration - Microgrid Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid Projects NREL is providing microgrid testing services for the Sacramento Municipal Utility District and Portland General Electric. Sacramento Municipal Utility District Photo of SMUD microgrid equipment at NREL's DERTF SMUD microgrid equipment at NREL's DERTF. Photo by Connie Komomua, NREL Sacramento Municipal Utility District (SMUD) is installing a microgrid at its headquarters in Sacramento, California. To support this important endeavor, NREL has completed testing of newly-developed

  18. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  19. Tank evaluation system shielded annular tank application

    SciTech Connect (OSTI)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  20. Hanford tanks initiative plan

    SciTech Connect (OSTI)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  1. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  2. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  3. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-08-01

    April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  4. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #17, October-December 2007

    SciTech Connect (OSTI)

    Schell, D.

    2008-01-01

    October to December, 2007 edition of the newsletter of the Biochemical Platform Process Integration project.

  5. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008

    SciTech Connect (OSTI)

    Schell, D. J.

    2008-12-01

    July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  6. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009

    SciTech Connect (OSTI)

    Schell, D.

    2010-01-01

    October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  7. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #15, April - June 2007

    SciTech Connect (OSTI)

    Schell, D.

    2007-07-01

    July quarterly update for the National Bioenergy Center's Biochemical Processing Platform Integration Project.

  8. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  9. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-10-01

    July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  10. Annex II Technical Specifications Project Integration of ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Integration of ITER Neutron Diagnostics ITER_D_SSYW98 v 2.0 ITER_D_R83AFD Page 2 of 8 Table of Contents 1 Abstract .................................................................................. Error! Bookmark not defined. 2 Background and Objectives ...............................................................................................3 3 Scope of Work ......................................................................................................................4 4

  11. Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations Project W-314

    SciTech Connect (OSTI)

    MCGREW, D.L.

    2000-04-19

    The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project.

  12. Integrated monitoring plan for the Hanford groundwater monitoring project

    SciTech Connect (OSTI)

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  13. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    SciTech Connect (OSTI)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

  14. Tank Closure

    Office of Environmental Management (EM)

    of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act Three agency Federal...

  15. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    SciTech Connect (OSTI)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance of the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.

  16. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  17. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    SciTech Connect (OSTI)

    Gelles, C. M.; Sheppard, F. R.

    2002-02-26

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

  18. Tank waste remediation system immobilized high-level waste storage project configuration management implementation plan

    SciTech Connect (OSTI)

    Burgard, K.G.

    1998-09-24

    This Configuration Management Implementation Plan was developed to assist in the management of systems, structures, and components, to facilitate the effective control and statusing of changes to systems, structures, and components; and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Project W-464 will take in implementing a configuration management control, to determine the rigor of control, and to identify the mechanisms for imposing that control.This Configuration Management Implementation Plan was developed to assist in the management of systems, structures, and components, to facilitate the effective control and statusing of changes to systems, structures, and components; and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Project W-464 will take in implementing a configuration management control, to determine the rigor of control, and to identify the mechanisms for imposing that control.

  19. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008

    SciTech Connect (OSTI)

    Schell, D.

    2009-01-01

    October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

  20. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  1. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005

    SciTech Connect (OSTI)

    Schell, D. J.

    2006-01-01

    Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  2. National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008

    SciTech Connect (OSTI)

    Schell, D.

    2008-04-01

    January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

  3. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #11, April-June 2006

    SciTech Connect (OSTI)

    Schell, D.

    2006-07-01

    Volume 11 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  4. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006

    SciTech Connect (OSTI)

    Schell, D.

    2006-10-01

    Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  5. A Texas project illustrates the benefits of integrated gasification

    SciTech Connect (OSTI)

    Philcox, J.; Fenner, G.W.

    1997-07-14

    Gasification can be an attractive option for converting a variety of petroleum feedstocks to chemicals. Natural gas is commonly sued to produce acetic acid, isocyanates, plastics, and fibers. But low-cost, bottom-of-the-barrel feeds, such as vacuum resid, petroleum coke, and asphaltenes, also can be used. In any case, gasification products include synthesis gas, carbon monoxide, hydrogen, steam, carbon dioxide, and power. The more a gasification facility is integrated with utilities and other non-core operations of a production complex, the more economical the products are for all consumers. The paper discusses gasification of natural gas, light hydrocarbons (ethane, propanes, and butanes), and heavy hydrocarbons (distillates, heavy residues, asphalts, coals, petroleum coke). The paper then describes a Texas City Gasification Project, which gasifies methane to produce carbon monoxide, hydrogen, and alcohol. The plant is integrated with a cogeneration plant. Economics are discussed.

  6. TFA Tanks Focus Area Multiyear Program Plan FY00-FY04

    SciTech Connect (OSTI)

    BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

    1999-10-12

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50 or OST).

  7. Site wide integration of the Rocky Flats closure project

    SciTech Connect (OSTI)

    Burdge, L.F.; Golan, P.

    1998-06-01

    The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

  8. Solid waste integrated cost analysis model: 1991 project year report

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  9. Tank waste remediation system configuration management plan

    SciTech Connect (OSTI)

    Vann, J.M.

    1998-01-08

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

  10. TANK SPACE OPTIONS REPORT

    SciTech Connect (OSTI)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  11. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  12. Integrated geologic/engineering study of Kurten field waterflood project

    SciTech Connect (OSTI)

    Gay, A.L.

    1989-03-01

    An integrated interpretation of petrographic, geochemical, engineering, and electric-log data is used to evaluate a current waterflood project in Kurten field, Brazos County, Texas. Petrographic studies reveal three sand facies deposited in a dynamic sand ridge environment. Although electric-log porosity is relatively constant throughout the sand body, SEM, thin-section, and engineering profile studies reveal the clean well-sorted sand facies to be impermeable due to quartz overgrowths. A quartz-rich bioturbated sand is identified as the reservoir facies, having fewer quartz overgrowths and more authigenic clays. The third sand facies, a clay-rich bioturbated sand, is impermeable due to an overabundance of authigenic and detrital clays. Engineering and production data support this interpretation. A comparison of hydrocarbon composition of the oils using capillary gas chromatography supports the conclusion that the well-sorted clean sand contains many permeability barriers and is not a continuous reservoir conductive to waterflooding. Interactive computer interpretation of electric logs, using a combination of sonic and density porosities, deep resistivity, and SP, allows the mapping of the sand facies. Water saturation and net oil-in-place maps reveal the best portions of the field on which to focus the revised waterflood project. This revision should concentrate on the quartz-rich bioturbated sand in the central portion of the original unit to result in a more efficient, economical, secondary recovery program.

  13. High-Pressure Tube Trailers and Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  14. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  15. Exposure Based Health Issues Project Report: Phase I of High Level Tank Operations, Retrieval, Pretreatment, and Vitrification Exposure Based Health Issues Analysis

    SciTech Connect (OSTI)

    Stenner, Robert D.; Bowers, Harold N.; Kenoyer, Judson L.; Strenge, Dennis L.; Brady, William H.; Ladue, Buffi; Samuels, Joseph K.

    2001-11-30

    The Department of Energy (DOE) has the responsibility to understand the ''big picture'' of worker health and safety which includes fully recognizing the vulnerabilities and associated programs necessary to protect workers at the various DOE sites across the complex. Exposure analysis and medical surveillance are key aspects for understanding this big picture, as is understanding current health and safety practices and how they may need to change to relate to future health and safety management needs. The exposure-based health issues project was initiated to assemble the components necessary to understand potential exposure situations and their medical surveillance and clinical aspects. Phase I focused only on current Hanford tank farm operations and serves as a starting point for the overall project. It is also anticipated that once the pilot is fully developed for Hanford HLW (i.e., current operations, retrieval, pretreatment, vitrification, and disposal), the process and analysis methods developed will be available and applicable for other DOE operations and sites. The purpose of this Phase I project report is to present the health impact information collected regarding ongoing tank waste maintenance operations, show the various aspects of health and safety involved in protecting workers, introduce the reader to the kinds of information that will need to be analyzed in order to effectively manage worker safety.

  16. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was renovated in 1998, but the existing roof had not been designed to carry a large load. Due to this fact, a complete roofing and structural analysis had to be performed to match the available roof loading to the existing and/or new solar PV technology, and BIPV was considered an excellent solution for this structure with the roof weight limitations. The solar BIPV system on the large roof area was estimated to provide about 25% of the total facility load with an average of 52,560 kWh per month. In order to accomplish the goals of the project, the following steps were performed: 1. SFPUC and consultants evaluated the structural capability of the facility roof, with recommendations for improvements necessary to accommodate the solar PV system and determine the suitable size of the system in kilowatts. The electrical room and switchgear were evaluated for any improvements necessary and to identify any constraints that might impede the installation of necessary inverters, transformers or meters. 2. Development of a design-build Request for Proposal (RFP) to identify the specifications for the solar PV system, and to include SFPUC technical specifications, equipment warranties and performance warranties. Due to potential labor issues in the local solar industry, SFPUC adjusted the terms of the RFP to more clearly define scope of work between electricians, roofers and laborers. 3. Design phase of project included electrical design drawings, calculations and other construction documents to support three submittals: 50% (preliminary design), 90% (detailed design) and 100% (Department of Building Inspection permit approved). 4. Installation of solar photovoltaic panels, completion of conduit and wiring work, connection of inverters, isolation switches, meters and Data Acquisition System by Contractor (Department of Public Works). 5. Commissioning of system, including all necessary tests to make the PV system fully functional and operational at its rated capacity of 100 kW (DC-STC). Following completion of these steps, the solar PV system was installed and fully integrated by late October 2013. The interconnection with PG&E utility grid was completed and the system began generating power on November 21, 2013. The projected annual energy generation for the system is estimated at 127,120 kWh/year.

  17. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-10-18

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  18. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-10-06

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  19. US Recovery Act Smart Grid Projects - Integrated and Crosscutting...

    Open Energy Info (EERE)

    ygons":,"circles":,"rectangles":,"locations":"text":"Project" title"Burbank Water and Power Smart Grid Project...

  20. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Comprehensive Project Review Gerson Santos-Leon, Executive Vice President, Abengoa PDF icon santos-leonbiomass2014.pdf More Documents & Publications Abengoa IBR ...

  1. Recommendations to Improve EVM and Project Management Integration in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE)

    Significant improvements can be made by DOE to improve EVM and project management integration by focusing on two prevailing themes:  (1) Trust based project management approach, and (2) Formal...

  2. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  3. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

    Office of Environmental Management (EM)

    D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the

  4. Integration & Scale-Up Presentation for BETO 2015 Project Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information Integration & Scale-Up WBS 2.4.1.301 NREL is a ... * Tt-K. Bio-oil Pathways Process Integration * Tt-E. Liquefaction of Biomass and ...

  5. Bench Scale Integration Presentation for BETO 2015 Project Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bench Scale Integration WBS 2.4.1.100 2015 DOE BioEnergy Technologies Office (BETO) ... - Bt-K Biochemical Conversion Process Integration - Bt-L BiochemicalThermochemical ...

  6. Hanford Double-Shell Tank Inspection Annual Report Calendar Year 2012

    SciTech Connect (OSTI)

    Petermann, Tasha M.; Boomer, Kayle D.; Washenfelder, D. J.

    2013-12-02

    The double-shell tanks (DSTs) were constructed between 1968 and 1986. They will have exceeded their design life before the waste can be removed and trasferred to the Waste Treatment and Immobilization Plant for vitrification. The Double-Shell Tank Integrity Project has been established to evaluate tank aging, and ensure that each tank is structurally sound for continued use. This is the first issue of the Double-Shell Tank Inspection Annual Report. The purpose of this issue is to summarize the results of DST inspections conducted from the beginnng of the inspection program through the end of CY2012. Hereafter, the report will be updated annually with summaries of the past year's DST inspection activities.

  7. EV Network integration (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    EU Smart Grid Projects Map1 Overview This project will take two typical LV (220V) circuits, one urban and one rural, and will examine in detail through modeling and through...

  8. EV Network integration (Smart Grid Project) (Ireland) | Open...

    Open Energy Info (EERE)

    EU Smart Grid Projects Map1 Overview This project will take two typical LV (220V) circuits, one urban and one rural, and will examine in detail through modeling and through...

  9. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge |

    Energy Savers [EERE]

    Biomass Program Major DOE Biofuels Project Locations in the United States PDF icon Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

    Slide 1 The Current State of Technology for Cellulosic Ethanol

    Algal Biofuel Technologies Slide 1

    101 Major Program Offices Doing Business with... Energy Efficiency and Renewable Energy Office of Environmental Management

  10. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  11. Savannah River Site - Tank 48 SRS Review Report | Department of Energy

    Energy Savers [EERE]

    SRS Review Report Savannah River Site - Tank 48 SRS Review Report Full Document and Summary Versions are available for download PDF icon Savannah River Site - Tank 48 SRS Review Report PDF icon Summary - Tank 48 at the Savannah River Site More Documents & Publications Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

  12. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing ...

  13. Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN

    Office of Environmental Management (EM)

    & ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did This Review Approximately two million pounds of mercury are unaccounted for at Y-12 and mercury contamination has been detected in both soils and groundwater. The IFDP will

  14. Progress Report 15, December 1979-April 1980, and proceedings of the fifteenth Project Integration Meeting

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is reported. Reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering; and operations are included. Also, a report on, and copies of visual presentations made at, the Project Integration Meeting held April 2 and 3, 1980, are included.

  15. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  16. Integrated Project Teams Guide for Use with DOE O 413. 3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-24

    This Guide provides those responsible for program and project management with the information and perspective needed to successfully implement the requirements of DOE O 413.3A relating to the use of integrated project teams to achieve improved project outcomes and efficiency.

  17. Review of the Sodium Bearing Waste Treatment Project - Integrated...

    Office of Environmental Management (EM)

    B-1 ii Acronyms ALARA As Low As Reasonably ... Sodium Bearing Waste Treatment Project SMP Safety Management Program SSC ... an abnormal pressure level on the fire sprinkler ...

  18. PROJECT PROFILE: Accelerating Systems Integration Codes and Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project focuses on accelerating the revision process of the IEEE 1547 series and UL ... IEEE 1547 revision will address shortcomings such as interoperability and ...

  19. Delegation of Approval Authority for Integrated Project Team...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Delegate: J. E. Surash, Deputy Assistant Secretary for Acquisition and Project Management Status: Current Effective Date: Mar 27, 2012 Re-delegation Allowed: No...

  20. Recommendations to Improve EVM and Project Management Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To cause a true paradigm shift, these themes must be interwoven into the message from the top leadership. Conducted for: Office of Project Management Oversight and Assessments ...

  1. Light Duty Vehicle CNG Tanks

    Energy Savers [EERE]

    Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office, EERE, US DOE Arlington VA, January 13, 2014 Advanced Research Projects Agency-Energy Can I put my luggage in the trunk? Uh, sorry no Commercial CNG Tanks Tank Type I Type IV Material steel carbon fiber Capacity 12 gallon 12 gallon Weight 490 lb 190 lb Cost $1,700 $4,300 50% less

  2. FOA for the Demonstration of an Integrated Biorefinery System: POET Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liberty, LLC | Department of Energy POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC. PDF icon Award No. DE-FC36-07GO17026, Part 1 PDF icon Award No. DE-FC36-07GO17026, Part 2 PDF icon Technology Investment Agreement (TIA) Award No. DE-FO36-08GO18121 More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery

  3. Category:Smart Grid Projects - Integrated and Crosscutting Systems...

    Open Energy Info (EERE)

    Systems" The following 37 pages are in this category, out of 37 total. B Burbank Water and Power Smart Grid Project C Central Lincoln People's Utility District Smart Grid...

  4. Grid Integration of Offshore Windparks (Smart Grid Project) ...

    Open Energy Info (EERE)

    Jun 2011 References EU Smart Grid Projects Map1 Overview With the WCMS the scattered wind farms have been combined in to a cluster and the control room of the relevant network...

  5. NREL: Distributed Grid Integration - Wind2Battery Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind2Battery Project photo of the Wind2Battery site near Luverne, Minnesota. Wind2Battery site near Luverne, Minnesota. Courtesy of Xcel Energy NREL is working with Xcel Energy to ...

  6. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

  7. EIS-0280: Proposed Clean Power from Integrated Coal/Ore Reduction Project (CPICOR) at Vineyard, Utah

    Broader source: Energy.gov [DOE]

    This EIS assesses the potential environmental and human health impacts of a proposed project under the Clean Coal Technology Program that would integrate the production of molten iron for steelmaking with the production of electricity.

  8. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-04-01

    January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

  9. National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-12-01

    Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

  10. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  11. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  12. SunShot’s National Laboratory Projects Target Grid Integration Challenges

    Broader source: Energy.gov [DOE]

    National Laboratories are tackling systems integration challenges through the SunShot National Laboratory Multiyear Partnership (SuNLaMP) funding program. These research and development projects will enable hundreds of gigawatts of solar energy to be integrated reliably and cost-effectively onto the U.S. electric power grid.

  13. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect (OSTI)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  14. NREL: Distributed Grid Integration - Power Systems Modeling Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Modeling Projects Photo of power block prototype and advanced controller inside a power inverter cabinet. Power block prototype and advanced controller. Photo by Joshua Bauer, NREL NREL researchers work with industry and stakeholders to create power systems models. Modeling power systems is important for product research and development. For example, researchers have developed renewable energy inverters which convert energy from sources such as photovoltaic arrays and flywheels and

  15. NREL: Distributed Grid Integration - Vehicle-to-Grid Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-to-Grid Project NREL engineers test and analyze electrical vehicle charging and discharging to the electric grid, known as Vehicle-to-Grid (V2G). Testing is conducted at NREL's Distributed Energy Resources Test Facility, where researchers connect, instrument, and test V2G platforms. NREL provides calibrated, high-resolution data acquisition, grid simulation, and 240 volt alternating current residential transformer connect-ability for real world analysis. NREL is currently working with

  16. NREL’s Grid Integration Lab Nominated for Prestigious Project Management Award

    Broader source: Energy.gov [DOE]

    The new Energy Systems Integration Facility (ESIF) at the Energy Department’s National Renewable Energy Laboratory (NREL) received a nomination as one of three international finalists for the Project Management Institute (PMI) Project of the Year Award. Although the ESIF project team didn’t take home the top honor this year, we are proud of the accomplishments they made in bringing one of the most innovative new laboratories in the country from the drawing board to fruition.

  17. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  18. Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  19. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  20. Steam generator with integral downdraft dryer. Final project report

    SciTech Connect (OSTI)

    Hochmuth, F.W.

    1992-02-01

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  1. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version

    SciTech Connect (OSTI)

    Gray, David; Sato, Suzanne; Garcia, Fernando; Eppler, Ross; Cherry, Joel

    2014-03-12

    The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and a basis for full-scale manufacturing processes and facility design.

  2. WRPS MEETING THE CHALLENGE OF TANK WASTE

    SciTech Connect (OSTI)

    BRITTON JC

    2012-02-21

    Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2008, the recordable injury rate has decreased 43 percent, while the lost work-days rate decreased by 30 percent. The company recently surpassed three million hours worked without a lost workday accident.

  3. Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

  4. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    SciTech Connect (OSTI)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  5. Tank 241-U-204 tank characterization plan

    SciTech Connect (OSTI)

    Bell, K.E.

    1995-03-23

    This document is the tank characterization plan for Tank 241-U-204 located in the 200 Area Tank Farm on the Hanford Reservation in Richland, Washington. This plan describes Data Quality Objectives (DQO) and presents historical information and scheduled sampling events for tank 241-U-204.

  6. Actinide behavior in the Integral Fast Reactor. Final project report

    SciTech Connect (OSTI)

    Courtney, J.C.

    1994-11-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and weapons grade plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for seven day exposure in the Experimental Breeder Reactor-II which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction rates and neutron spectra. These experimental data increase the authors confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  7. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  8. Single-Shell Tank Evaluations - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Shell Tank Evaluations Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Single-Shell Tank Evaluations Email Email Page | Print Print Page |Text

  9. Results Of Routine Strip Effluent Hold Tank And Decontaminated Salt Solution Hold Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 5 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.

    2013-04-30

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 5 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 4 samples indicate generally consistent operations. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in the Actinide Removal process (ARP).

  10. FY 1996 Tank waste analysis plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-09-18

    This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

  11. Kaiser Engineers Hanford internal position paper -- Project W-236A, Multi-function Waste Tank Facility -- Peer reviews of selected activities

    SciTech Connect (OSTI)

    Stine, M.D.

    1995-01-04

    The purpose of this paper is to develop and document a proposed position on the performance of independent peer reviews on selected design and analysis components of the Title 1 [Preliminary] and Title 2 [Final] design phases of the Multi-Function Waste Tank Facility [MWTF] project. An independent, third-party peer review is defined as a documented critical review of documents, data, designs, design inputs, tests, calculations, or related materials. The peer review should be conducted by persons independent of those who performed the work, but who are technically qualified to perform the original work. The peer review is used to assess the validity of assumptions and functional requirements, to assess the appropriateness and logic of selected methodologies and design inputs, and to verify calculations, analyses and computer software. The peer review can be conducted at the end of the design activity, at specific stages of the design process, or continuously and concurrently with the design activity. This latter method is often referred to as ``Continuous Peer Review.``

  12. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  13. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    SciTech Connect (OSTI)

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  14. C-106 tank process ventilation test

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-20

    Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of the equipment was not correct for that type of operation. To correct this problem an ECN was generated against the design documents, the equipment modified accordingly, and the ATP re-performed. The last type of problem was where the equipment operated per the direct ions in the ATP, agreed with the design documents, yet violated requirements of the Basis of Interim Operation (BIO). In this instance a Non Conformance Report (NCR) was generated. To correct problems documented on an NCR, an ECN was generated to modify the design and field work performed, followed by retesting to verify modifications corrected noted deficiencies. To expedite the completion of testing and maintain project schedules, testing was performed concurrent with construct on, calibrations and the performance of other ATP`s.

  15. EIS-0150: Salt Lake City Area Integrated Projects Electric Power Marketing

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this environmental impact statement to analyze the environmental impacts of its proposal to establish the level of its commitment (sales) of long- term firm electrical capacity and energy from the Salt Lake City Area Integrated Projects hydroelectric power plants.

  16. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011

    SciTech Connect (OSTI)

    Schell, D. J.

    2011-04-01

    Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

  17. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  18. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect (OSTI)

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  19. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-07-01

    April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

  20. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  1. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  2. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  3. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    SciTech Connect (OSTI)

    Washenfelder, Dennis J.

    2014-04-10

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanfords Double-Shell Tank Integrity Program.

  4. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect (OSTI)

    Chapeaux, A.; Schell, D.

    2013-06-01

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  5. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management ...

  6. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  7. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    SciTech Connect (OSTI)

    Stephenson, David E.; Delegard, Calvin H.; Schmidt, Andrew J.

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactive sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.

  8. Mixer pump test plan for double shell tank AZ-101

    SciTech Connect (OSTI)

    STAEHR, T.W.

    1999-05-12

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

  9. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    SciTech Connect (OSTI)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to treat these wastes as transuranic waste (TRU) for disposal at the Waste Isolation Pilot Plant (WIPP), which will reduce the WTP system processing time by three years. We are also developing and testing bulk vitrification as a technology to supplement the WTP LAW vitrification facility for immobilizing the massive volume of LAW. We will conduct a full-scale demonstration of the Demonstration Bulk Vitrification System by immobilizing up to 1,100 m{sup 3} (300,000 gallons) of tank S-109 low-curie soluble waste from which Cs-137 had previously been removed. This past year has been marked by both progress and new challenges. The focus of our tank farm work has been retrieving waste from the old single-shell tanks (SSTs). We have completed waste retrieval from three SSTs and are conducting retrieval operations on an additional three SSTs. While most waste retrievals have gone about as expected, we have faced challenges with some recalcitrant tank heel wastes that required enhanced approaches. Those enhanced approaches ranged from oxalic acid additions to deploying a remote high-pressure water lance. As with all large, long-term projects that employ first of a kind technologies, we continue to be challenged to control costs and maintain schedule. However, it is most important to work safely and to provide facilities that will do the job they are intended to do.

  10. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-10-01

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  11. Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-10-25

    The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

  12. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

  13. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX MISCIBLE AND IMMISCIBLE LIQUIDS IN TANK 50H

    SciTech Connect (OSTI)

    Poirier, M.

    2011-06-15

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). At present, Tank 50H contains two standard slurry pumps and two Quad Volute slurry pumps. Current requirements and mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste would like to move one or both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that are failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to blend miscible and immiscible liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Salt Disposition Integration Project (SDIP) and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters needed to blend the tank contents. The conclusions from this analysis are: (1) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will be able to blend miscible liquids (i.e., salt solution) in Tank 50H within 4.4 hours. (2) Two rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 3.1 hours. (3) Three rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 2.5 hours. (4) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will disperse Isopar L{reg_sign} droplets that are less than or equal to 15 micron in diameter. If the droplets are less than 15 micron, they will be dispersed within 4.4 hours. Isopar L{reg_sign} provides a lower bound on the maximum size of droplets that will be dispersed by the slurry pumps in Tank 50H. (5) Two rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron within 3.1 hours, and three rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron within 2.5 hours. (6) If the Isopar L{reg_sign} droplets are drawn through the pump, they will be further reduced in size, with a maximum drop size less than 15 micron.

  14. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  15. Progress Report 16 for the period April-September 1980, and the proceedings of the 16th Project Integration Meeting

    SciTech Connect (OSTI)

    McDonald, R.R.

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period April to September 1980, is reported in detail. Progress on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations is described. A report on, and copies of visual presentations made at, the Project Integration Meeting held September 24 and 25, 1980 are included.

  16. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  17. HANFORD TANK CLEANUP UPDATE

    SciTech Connect (OSTI)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  18. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/SCE High Penetration PV Integration Project: FY13 Annual Report Barry A. Mather National Renewable Energy Laboratory Sunil Shah Southern California Edison Benjamin L. Norris and John H. Dise Clean Power Research Li Yu, Dominic Paradis, and Farid Katiraei Quanta Technology Richard Seguin, David Costyk, Jeremy Woyak, Jaesung Jung, Kevin Russell, and Robert Broadwater Electrical Distribution Design, Inc. Technical Report NREL/TP-5D00-61269 June 2014 NREL is a national laboratory of the U.S.

  19. PROJECT PROFILE: Accelerating Systems Integration Codes and Standards (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project focuses on accelerating the revision process of the IEEE 1547 series and UL 1741 standards and testing procedures. Collectively, these standards are the foundational documents in the U.S. that are mandated for integrating solar energy systems with the electric distribution grid. Establishing accelerated development of new interconnection and interoperability requirements and conformance procedures will allow for more photovoltaic (PV) solar energy to be added to the grid.

  20. Tank 241-C-106 in-tank imaging system operational test report

    SciTech Connect (OSTI)

    Pedersen, L.T.

    1998-07-07

    This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106.

  1. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  2. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect (OSTI)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  3. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect (OSTI)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  4. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of soil between the ground surface and the water table 200-to-300 feet below. The project tracks and monitors contamination in the soil. Technologies are being developed and deployed to detect and monitor contaminants. Interim surface barriers, which are barriers put over the single-shell tanks, prevent rain and snow from soaking into the ground and spreading contamination. The impermeable barrier placed over T Farm, which was the site of the largest tank waste leak in Hanford's history, is 60,000 square feet and sloped to drain moisture outside the tank farm. The barrier over TY Farm is constructed of asphalt and drains moisture to a nearby evaporation basin. Our discussion of technology will address the incredible challenge of removing waste from Hanford's single-shell tanks. Under the terms of the Tri-Party Agreement, ORP is required to remove 99 percent of the tank waste, or until the limits of technology have been reached. All pumpable liquids have been removed from the single-shell tanks, and work now focuses on removing the non-pumpable liquids. Waste retrieval was completed from the first single-shell tank in late 2003. Since then, another six single-shell tanks have been retrieved to regulatory standards. (authors)

  5. Configuration Management Plan for the Tank Farm Contractor

    SciTech Connect (OSTI)

    WEIR, W.R.

    2000-04-21

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.

  6. Hanfords Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.; Beck, T. H.; Matyas, Josef; Bagaasen, Larry M.; Cooley, Scott K.; Pierce, Eric M.; Kim, Dong-Sang; Schweiger, Michael J.

    2008-02-22

    The GeoMelt In-Container Vitrification (ICV) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanfords low-activity waste (LAW). Also referred to as bulk vitrification, this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV process before operating the Hanford pilot-plant. In 2007, the projects fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D.

  7. Tank Waste | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste Tank Waste May 16, 2016 EM Assistant Secretary Monica Regalbuto, directly left of the Tank Closure Monument, gathers with federal and contractor employees at SRS. Cheers ...

  8. Systematic assessment of wellbore integrity for geologic carbon storage projects using regulatory and industry information

    SciTech Connect (OSTI)

    Moody, Mark; Sminchak, J.R.

    2015-11-01

    Under this three year project, the condition of legacy oil and gas wells in the Midwest United States was evaluated through analysis of well records, well plugging information, CBL evaluation, sustained casing pressure (SCP) field testing, and analysis of hypothetical CO2 test areas to provide a realistic description of wellbore integrity factors. The research included a state-wide review of oil and gas well records for Ohio and Michigan, along with more detailed testing of wells in Ohio. Results concluded that oil and gas wells are clustered along fields in areas. Well records vary in quality, and there may be wells that have not been identified in records, but there are options for surveying unknown wells. Many of the deep saline formations being considered for CO2 storage have few wells that penetrate the storage zone or confining layers. Research suggests that a variety of well construction and plugging approaches have been used over time in the region. The project concluded that wellbore integrity is an important issue for CO2 storage applications in the Midwest United States. Realistic CO2 storage projects may cover an area in the subsurface with several hundred legacy oil and gas wells. However, closer inspection may often establish that most of the wells do not penetrate the confining layers or storage zone. Therefore, addressing well integrity may be manageable. Field monitoring of SCP also indicated that tested wells provided zonal isolation of the reservoirs they were designed to isolate. Most of these wells appeared to exhibit gas pressure originating from intermediate zones. Based on these results, more flexibility in terms of cementing wells to surface, allowing well testing, and monitoring wells may aid operators in completing CO2 storage project. Several useful products were developed under this project for examining wellbore integrity for CO2 storage applications including, a database of over 4 million items on well integrity parameters in the study areas, a systematic CBL evaluation tool for rating cement in boreholes, SCP field testing procedures and analysis methodology, a process for summarizing well integrity at CO2 storage fields, a statistical analysis of well integrity indicators, and an assessment of practical methods and costs necessary to repair/remediate typical wells in the region based on assessment of six test study areas. Project results may benefit both CO2 storage and improved oil recovery applications. This study of wellbore integrity is a useful precursor to support development of geologic storage in the Midwest United States because it sheds more light on the actual well conditions (rather than the perceived condition) of historic oil and gas wells in the region.

  9. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  10. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

  11. Tanks Focus Area annual report FY2000

    SciTech Connect (OSTI)

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  12. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.; Beck, T.H.; Matyas, J.; Bagaasen, L.M.; Cooley, S.K.; Pierce, E.; Kim, D.S.; Schweiger, M.J.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV{sup TM} melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D. (authors)

  13. Improved Decision Making through the Integration of Program and Project Management with National Environmental Policy Act Compliance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-06-12

    Recommendations from the DOE Field Management Council (FMC), NEPA Improvement Team, and the Council on Environmental Quality (CEQ) for improving NEPA compliance through the integration of Program ad Project Management

  14. MHD Integrated Topping Cycle Project. Seventeenth quarterly technical progress report, August 1, 1991--October 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  15. Tank farm surveillance and waste status summary report for May 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations.

  16. MHD Integrated Topping Cycle Project. Eighteenth quarterly technical progress report, November 1, 1991--January 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  17. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  18. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

  19. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  20. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    SciTech Connect (OSTI)

    Berglin, E.J.

    1998-02-05

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report analyzes the retrieval testing issues and describes what has been learned and issues that need further resolution. As such, it can serve as a guide to additional testing that must be performed before the systems are used in-tank. The major issues discussed are tank access, deployment, mining strategy, waste retrieval, liquid scavenging (liquid usage), maneuverability, positioning, static and dynamic performance, remote operations, reliability, availability, maintenance, tank safety, and cost.

  1. Waste Tank Summary Report for Month ending March 31 2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2003-05-05

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  2. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 01/2004

    SciTech Connect (OSTI)

    HANLON, B.M.

    2004-03-02

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28,2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  3. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  4. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  5. MHD Integrated Topping Cycle Project. Thirteenth quarterly technical progress report, August 1, 1990--October 31, 1990

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number_sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  6. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-06-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

  7. Optimizing hourly hydro operations at the Salt Lake City Area Integrated Projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-10-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado River Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. The Hydro LP (Linear Program) model, which was developed by Argonne National Laboratory (ANL), was used to analyze a broad range of issues associated with many possible future operational restrictions at SLCA/IP power plants. With technical assistance from Western, the Hydro LP model was configured to simulate hourly power plant operations for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) operating reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation was simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue was computed.

  8. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

  9. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    SciTech Connect (OSTI)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.; Espinoza, J.; Murphy, M.D.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSI addressed some of these issues to create a more manageable public key infrastructure.

  10. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  11. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  12. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  13. Acceptance test report for the Tank 241-C-106 in-tank imaging system

    SciTech Connect (OSTI)

    Pedersen, L.T.

    1998-05-22

    This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer`s (OEM) specifications. This document reports the results of the testing.

  14. Tanks Focus Area Site Needs Assessment FY 2000

    SciTech Connect (OSTI)

    Allen, Robert W.

    2000-03-10

    This document summarizes the Tanks Focus Area (TFA's) process of collecting, analyzing, and responding to high-level radioactive tank waste science and technology needs developed from across the DOE complex in FY 2000. The document also summarizes each science and technology need, and provides an initial prioritization of TFA's projected work scope for FY 2001 and FY 2002.

  15. Recommendations to Improve Earned Value Management (EVM) and Project Management Integration in the Department of Energy (DOE)

    Energy Savers [EERE]

    Recommendations to Improve Earned Value Management (EVM) and Project Management Integration in the Department of Energy (DOE) Conducted for: Office of Project Management Oversight and Assessments (PMOA) PM-1 Prepared by: Humphreys & Associates, Inc. 9910 Research Drive Irvine, CA 92618 (714) 685-1730; Fax (714) 685-1734 www.humphreys-assoc.com August 14, 2015 © 2015 Humphreys & Associates, Inc. All rights reserved. i www.humphreys-assoc.com Table of Contents Table of Figures

  16. Technology development activities supporting tank waste remediation

    SciTech Connect (OSTI)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  17. Compressed/Liquid Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

  18. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  19. Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33

    SciTech Connect (OSTI)

    Elder, J.; Vandekamp, R.

    2014-09-29

    Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the In-Service Inspection (ISI) Program for High Level Waste Tanks. No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall and accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five plate/strips would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall of the secondary tank noted during the initial inspections in 2005. That area was inspected again in 2014 and found to be larger and slightly deeper. The deepest area of thinning in the secondary wall is less than 20% wall loss. The maximum length of thinning is less than 24 inches and does not impact structural or leak integrity per WSRC-TR-2002-00063. Inspection results were presented to the In-service Inspection Review Committee (ISIRC) where it was determined that no additional data was required to complete these inspections.

  20. Hanford Tanks Initiative requirements and document management process guide

    SciTech Connect (OSTI)

    Schaus, P.S.

    1998-05-22

    This revision of the guide provides updated references to project management level Program Management and Assessment Configuration Management activities, and provides working level directions for submitting requirements and project documentation related to the Hanford Tanks Initiative (HTI) project. This includes documents and information created by HTI, as well as non-HTI generated materials submitted to the project.

  1. Preliminary analysis of tank 241-C-106 dryout due to large postulated leak and vaporization

    SciTech Connect (OSTI)

    Piepho, M.G.

    1994-12-01

    This analysis assumes that there is a hypothetical large leak at the bottom of Tank 241-C-106 which initiates the dryout of the tank. The time required for a tank to dryout after a leak is of interest for safety reasons. As a tank dries out, its temperature is expected to increase which could affect the structural integrity of the concrete tank dome. Hence, it is of interest to know how fast and how high the temperature in a leaky tank increases, so that mitigation procedures can be planned and implemented in a timely manner. This analysis is focused on tank 241-C-106, which is known to be high thermal tank. The objective of the study was to determine how long it would take for tank 241-C-106 to reach 350 degrees Fahrenheit (about 177 degrees Centigrade) after a postulated large leak develops at the bottom center of the tank. The temperature of 350 degrees Fahrenheit is the minimum temperature that can cause structural damage to concrete (ACI 1992). The postulated leak at the bottom of the tank and the resulting dryout of the sludge in the tank make this analysis different from previous thermal analyses of the C-106 tank and other tanks, especially the double-shell tanks which are mostly liquid.

  2. TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES

    SciTech Connect (OSTI)

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-09-29

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na{sub 2}SO{sub 4} {center_dot} Na{sub 2}CO{sub 3}). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

  3. RECENT PROGRESS IN DOE WASTE TANK CLOSURE

    SciTech Connect (OSTI)

    Langton, C

    2008-02-01

    The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

  4. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    SciTech Connect (OSTI)

    Lambert, D.P.

    2000-03-22

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

  5. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The permit will include a requirement for DOE to prepare a closure plan. Chris said DOE ... including evaluations of tank removal, pipeline closure, diversion boxes, and catch tanks. ...

  6. Reverberant Tank | Open Energy Information

    Open Energy Info (EERE)

    Reverberant Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleReverberantTank&oldid596388" Feedback Contact needs updating Image needs...

  7. Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Tow Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleTowTank&oldid596389" Feedback Contact needs updating Image needs updating Reference...

  8. EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS

    SciTech Connect (OSTI)

    Fellinger, A.

    2010-02-16

    The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval options and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah River, Idaho, and Oak Ridge. The meeting was arranged by the Retrieval Knowledge Center (RKC), which is a technology development project sponsored by the Office of Technology Innovation & Development - formerly the Office of Engineering and Technology - within the DOE Office of Environmental Management (EM).

  9. Material and energy recovery in integrated waste management systems: Project overview and main results

    SciTech Connect (OSTI)

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Saccani, Cesare

    2011-09-15

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

  10. Tank waste decision analysis report. Draft

    SciTech Connect (OSTI)

    Johnson, M.E.; Grygiel, M.L.; Baynes, P.A.; Bekemeier, J.P.; Zimmerman, B.D.; Triplett, M.B.

    1993-03-31

    The Assistant Secretary for Environmental Restoration and Waste Management and the director of the Washington State Department of Ecology agreed to the need to re-evaluate treatment and disposal plans for Hanford Site tank waste. Re-evaluation of the tank waste treatment and disposal plans (referred to as rebaselining) was necessary to (1) provide an integrated system approach for achieving safe storage, (2) resolve tank safety issues, and (3) treat and dispose of all Hanford Site tank waste. Rebaselining evaluated new approaches to remediate Hanford Site tank waste and, thus, reaffirm existing plans or recommend a new technical strategy. To facilitate this integrated system approach for managing the program elements, the US Department of Energy formed the Tank Waste Remediation System (TWRS). While conducting this re-evaluation, the US Department of Energy agreed to continue supporting the existing plan for treatment and disposal of Hanford Site tank waste. The selection of a proposed new technical strategy for the TWRS Program is a complex task involving the evaluation of a large body of data. The data that is available to support the selection of a proposed new technical strategy is based on engineering estimates and preliminary technology development. To accommodate this complex, dynamic situation, a systems engineering approach is being applied to structure and analyze technical strategies and to manage the TWRS Program. Systems engineering is a generalized and systematic methodology for defining problems, evaluating solutions, and implementing the solutions. This report describes the development of the TWRS Program systems engineering analysis, the analytical methodologies that support it, and the results of the analyses that were used to define the proposed new technical strategy.

  11. Tank Waste Remediation Systems (TWRS) Configuration Management Implementation Plan

    SciTech Connect (OSTI)

    WEIR, W.R.

    2000-12-18

    The Tank Waste Configuration Management (TWRS) Configuration Management Implementation Plan descibes the execution of the configuration management (CM) that the contractor uses to manage and integrate its programmatic and functional operations to perform work.

  12. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect (OSTI)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  13. MHD Integrated Topping Cycle Project. Fourteenth quarterly technical progress report, November 1, 1990-- January 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  14. Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

  15. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 1, Summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams) are influenced by Western`s power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Western`s firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action altemative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  16. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  17. Tank 241-BY-105 tank characterization plan

    SciTech Connect (OSTI)

    Schreiber, R.D.

    1995-02-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-105.

  18. Glass optimization for vitrification of Hanford Site low-level tank waste

    SciTech Connect (OSTI)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  19. Preliminary Assessment of the Hanford Tank Waste Feed Acceptance and Product Qualification Programs

    SciTech Connect (OSTI)

    Herman, C. C.; Adamson, Duane J.; Herman, D. T.; Peeler, David K.; Poirier, Micheal R.; Reboul, S. H.; Stone, M. E.; Peterson, Reid A.; Chun, Jaehun; Fort, James A.; Vienna, John D.; Wells, Beric E.

    2013-04-01

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL) have been chartered to implement a science and technology program addressing Hanford Tank waste feed acceptance and product qualification. As a first step, the laboratories examined the technical risks and uncertainties associated with the planned waste feed acceptance and qualification testing for Hanford tank wastes. Science and technology gaps were identified for work associated with 1) feed criteria development with emphasis on identifying the feed properties and the process requirements, 2) the Tank Waste Treatment and Immobilization Plant (WTP) process qualification program, and 3) the WTP HLW glass product qualification program. Opportunities for streamlining the accetpance and qualification programs were also considered in the gap assessment. Technical approaches to address the science and technology gaps and/or implement the opportunities were identified. These approaches will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Pursuing the identified approaches will have immediate and long-term benefits to DOE in reducing risks and uncertainties associated with tank waste removal and preparation, transfers from the tank farm to the WTP, processing within the WTP Pretreatment Facility, and in producing qualified HLW glass products. Additionally, implementation of the identified opportunities provides the potential for long-term cost savings given the anticipated facility life of WTP.

  20. Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1

    SciTech Connect (OSTI)

    Lenseigne, D. L.

    1997-09-15

    The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

  1. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  2. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  3. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006

    SciTech Connect (OSTI)

    Schell, D. J.

    2007-01-01

    Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

  4. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #14, January - March 2007

    SciTech Connect (OSTI)

    Schell, D.

    2007-04-01

    Volume 14 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

  5. Tank 48 - Chemical Destruction

    SciTech Connect (OSTI)

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  6. Assessment of performing an MST strike in Tank 21H

    SciTech Connect (OSTI)

    Poirier, Michael R.

    2014-09-29

    Previous Savannah River National Laboratory (SRNL) tank mixing studies performed for the Small Column Ion Exchange (SCIX) project have shown that 3 Submersible Mixer Pumps (SMPs) installed in Tank 41 are sufficient to support actinide removal by MST sorption as well as subsequent resuspension and removal of settled solids. Savannah River Remediation (SRR) is pursuing MST addition into Tank 21 as part of the Large Tank Strike (LTS) project. The preliminary scope for LTS involves the use of three standard slurry pumps (installed in N, SE, and SW risers) in a Type IV tank. Due to the differences in tank size, internal interferences, and pump design, a separate mixing evaluation is required to determine if the proposed configuration will allow for MST suspension and strontium and actinide sorption. The author performed the analysis by reviewing drawings for Tank 21 [W231023] and determining the required cleaning radius or zone of influence for the pumps. This requirement was compared with previous pilot-scale MST suspension data collected for SCIX that determined the cleaning radius, or zone of influence, as a function of pump operating parameters. The author also reviewed a previous Tank 50 mixing analysis that examined the ability of standard slurry pumps to suspend sludge particles. Based on a review of the pilot-scale SCIX mixing tests and Tank 50 pump operating experience, three standard slurry pumps should be able to suspend sludge and MST to effectively sorb strontium and actinides onto the MST. Using the SCIX data requires an assumption about the impact of cooling coils on slurry pump mixing. The basis for this assumption is described in this report. Using the Tank 50 operating experience shows three standard slurry pumps should be able to suspend solids if the shear strength of the settled solids is less than 160 Pa. Because Tank 21 does not contain cooling coils, the shear strength could be larger.

  7. Office of River Protection (ORP) and Washingotn River Protection Solutions, LLC (WRPS) Partnering Agreement for the DOE-EM Tank Operations Project

    Office of Environmental Management (EM)

    Fall 2012 Office of Indian Energy Newsletter: Fall 2012 Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Fall 2012 Issue: DOE Office of Indian Energy Provides Tribes with Hands-On Support to Advance Tribal Energy Projects Message from the Director Sharing Knowledge: DOE Office of Indian Energy Commissions Regional Transmission and Renewable Energy Analysis Opening Doors: Seminole Tribe to Host Grant Proposal Writing Workshop Crow Nation Students Participate

  8. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect (OSTI)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

  9. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

  10. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-10-25

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  11. PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project will develop new power electronics devices, systems, and materials to address power electronic and dispatchability challenges that result from connecting hundreds of gigawatts of solar energy onto the electricity grid. These devices will incorporate advanced high-frequency (HF) magnetics along with the latest wide bandgap silicon carbide (SiC) switches. This design enables cost-effective grid integration of PV while increasing its dispatchability.

  12. ORP Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Office of River Protection About ORP ORP Projects & Facilities Tank Farms Waste Treatment & Immobilization Plant 222-S Laboratory 242-A Evaporator Newsroom Contracts &...

  13. Idaho Site D&D Crew Uses Specialized Tools to Cut Apart Massive Tank in

    Energy Savers [EERE]

    Demolition Project | Department of Energy D&D Crew Uses Specialized Tools to Cut Apart Massive Tank in Demolition Project Idaho Site D&D Crew Uses Specialized Tools to Cut Apart Massive Tank in Demolition Project November 25, 2015 - 12:05pm Addthis A worker employs a thermal lance to cut apart a massive tank so it can be removed from a building slated for demolition at the Idaho Site's Materials and Fuels Complex. A worker employs a thermal lance to cut apart a massive tank so it can

  14. Low-level tank waste simulant data base

    SciTech Connect (OSTI)

    Lokken, R.O.

    1996-04-01

    The majority of defense wastes generated from reprocessing spent N- Reactor fuel at Hanford are stored in underground Double-shell Tanks (DST) and in older Single-Shell Tanks (SST) in the form of liquids, slurries, sludges, and salt cakes. The tank waste remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. This report discusses three principle topics: the need for and basis for selecting target or reference LLW simulants, tanks waste analyses and simulants that have been defined, developed, and used for the GDP and activities in support of preparing and characterizing simulants for the current LLW vitrification project. The procedures and the data that were generated to characterized the LLW vitrification simulants were reported and are presented in this report. The final section of this report addresses the applicability of the data to the current program and presents recommendations for additional data needs including characterization and simulant compositional variability studies.

  15. Analysis of vehicle fuel release resulting in waste tank fire

    SciTech Connect (OSTI)

    STEPHENS, L.S.

    2003-03-21

    This document reevaluates several aspects of the in-tank vehicle fuel fire/deflagration accident formally documented as an independent accident (representative accident [rep acc] 2). This reevaluation includes frequencies for the accidents and incorporates the behavior of gasoline and diesel fuel in more detail than previous analysis. This reevaluation uses data from RPP-13121, ''Historical Summary of Occurrences from the Tank Farm Safety Analysis Report'', Table B-1, ''Tank Farm Events, Off-Normal and Critiques,'' and B-2, ''Summary of Occurrences,'' and from the River Protection Project--Occurrence Reporting & Processing System (ORPS) reports as a basis for changing some of the conclusions formally reported in HNF-SD-WM-CN-037, ''Frequency Analysis of Vehicle Fuel Releases Resulting in Waste Tank Fire''. This calculation note will demonstrate that the in-tank vehicle fuel fire/deflagration accident event may be relocated to other, more bounding accidents.

  16. EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

  17. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    SciTech Connect (OSTI)

    Washenfelder, Dennis J.

    2015-02-03

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  18. Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-09-01

    BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

  19. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    SciTech Connect (OSTI)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  20. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  1. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  2. Project Profile: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics

    Broader source: Energy.gov [DOE]

    The Dow Chemical Company, under the BOS-X funding opportunity, has launched a transformational product in the building-integrated photovoltaics (BIPV) industry: the Dow POWERHOUSE Solar Shingle.

  3. Single-shell tank retrieval program mission analysis report

    SciTech Connect (OSTI)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  4. Tank Waste Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/15 Tank Waste Committee Priorities for advice on FY17 budget Not in priority order, numbering refers to last year's related advice points, per DOE response  (#1) The Board strongly urges DOE-Headquarters (HQ) to request full funding from Congress to meet all legal requirements of the ongoing cleanup work in FY 2016 and 2017 in addition to the following specific requests.  (#2) The Board advises DOE-ORP continue to request funding to proceed to empty leaking tanks (particularly AY-102 and

  5. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  6. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE May 8, 2013 Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Advice Development Regarding Double-Shell Tank AY-102 (Joint with PIC) ........................................... 1 Meeting participants

  7. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  8. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    SciTech Connect (OSTI)

    Potter, R.D.

    1998-01-08

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project`s Waste Retrieval and Disposal Mission.

  9. Single-shell tank ventilation upgrades needs analysis report

    SciTech Connect (OSTI)

    Kriskovich, J.R., Fluor Daniel Hanford

    1997-02-03

    This report was written to comply with the objectives of the Hanford Federal Facility Agreement and Consent Order, Tri-Party Agreement Milestone M-43-03 Provide to the Washington State Department of Ecology and Department of Health the Results of the Single-Shell Tank Ventilation Upgrades Needs Analysis. The needs analysis consists of identifying the current type and status of each single-shell tank ventilation system, identifying current and projected authorization basis requirements, and identifying ventilation system compliance deficiencies.

  10. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  11. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 9, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on Double-Shell Tank Construction-Extent of Conditions Report ................................................ 2 Review of Responses to HAB Advice #271 Leaking Tanks and HAB Advice #273 Openness

  12. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    SciTech Connect (OSTI)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.

  13. Plating Tank Control Software

    Energy Science and Technology Software Center (OSTI)

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  14. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  15. RESULTS OF ROUTINE STRIP EFFLUENT HOLD TANK AND DECONTAMINATED SALT SOLUTION HOLD TANK SAMPLES FROM MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT DURING MACROBATCH 3 OPERATIONS

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2011-06-10

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the 'microbatches' of Integrated Salt Disposition Project (ISDP) Salt Batch ('Macrobatch') 3 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate consistent operations. However, the Decontamination Factors for plutonium and strontium removal have declined in Macrobatch 3, compared to Macrobatch 2. This may be due to the differences in the Pu concentration or the bulk chemical concentrations in the feed material. SRNL is considering the possible reasons for this decline. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in ARP. During operation of the ISDP, quantities of salt waste are processed through the Actinide Removal Process (ARP) and MCU in batches of {approx}3800 gallons. Monosodium titanate (MST) is used in ARP to adsorb actinides and strontium from the salt waste and the waste slurry is then filtered prior to sending the clarified salt solution to MCU. The MCU uses solvent extraction technology to extract cesium from salt waste and concentrate cesium in an acidic aqueous stream (Strip Effluent - SE), leaving a decontaminated caustic salt aqueous stream (Decontaminated Salt Solution - DSS). Sampling occurs in the Decontaminated Salt Solution Hold Tank (DSSHT) and Strip Effluent Hold Tank (SEHT) in the MCU process. The MCU sample plan requires that batches be sampled and analyzed for plutonium and strontium content by Savannah River National Lab (SRNL) to determine MST effectiveness. The cesium measurement is used to monitor cesium removal effectiveness and the inductively coupled plasma emission spectroscopy (ICPES) is used to monitor inorganic carryover.

  16. Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

  17. Summary Report on Information Technology Integration Activities For project to Enhance NASA Tools for Coastal Managers in the Gulf of Mexico and Support Technology Transfer to Mexico

    SciTech Connect (OSTI)

    Gulbransen, Thomas C.

    2009-04-27

    Deliverable to NASA Stennis Space Center summarizing summarizes accomplishments made by Battelle and its subcontractors to integrate NASA's COAST visualization tool with the Noesis search tool developed under the Gulf of Mexico Regional Collaborative project.

  18. Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

  19. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  20. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    SciTech Connect (OSTI)

    Not Available

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  1. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview

    SciTech Connect (OSTI)

    none,

    2010-01-01

    This study evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a high-level analysis of transmission to deliver the wind energy to load centers, in the study year 2024.

  2. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview

    Broader source: Energy.gov [DOE]

    This study evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a high-level analysis of transmission to deliver the wind energy to load centers, in the study year 2024.

  3. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    SciTech Connect (OSTI)

    Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph

    2008-07-01

    California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.

  4. Single-Shell Tank Leak Integrity Summary

    SciTech Connect (OSTI)

    Harlow, D. G.; Girardot, C. L.; Venetz, T. J.

    2015-03-26

    This document summarizes and evaluates the information in the Hanford Tri-Party Agreement Interim Milestone M-045-91F Targets completed between 2010 and 2015. 1) Common factors of SST liner failures (M-045-91F-T02), 2) the feasibility of testing for ionic conductivity between the inside and outside of SSTs (M-045-91F-T03, and 3) the causes, locations, and rates of leaks from leaking SSTs (M-045-91F-T04).

  5. Tank farm surveillance and waste status summary report for January 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-03-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  6. Waste Tank Summary Report for Month Ending 05/31/2002

    SciTech Connect (OSTI)

    HANLON, B M

    2002-07-25

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy Order 435.I (WOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  7. Waste tank summary report for month ending 06/30/2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2003-08-18

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  8. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 12/31/2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2004-02-06

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  9. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 11/30/2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2004-01-14

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  10. Waste tank summary report for month ending 05/31/2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2003-07-07

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  11. Waste tank summary report for month ending 04/30/2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2003-06-10

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  12. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 09/30/2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2003-10-31

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities. and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy, Washington, D. C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  13. Waste tank summary report for month ending 07/30/2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2003-09-19

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  14. Tank farm surveillance and waste status summary report for May 1994

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1994-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  15. Tank Farm surveillance and waste status summary report for February 1994

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1994-07-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is Intended to meet the requirement of US Department of Energy Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  16. Tank Farm surveillance and waste status summary report for July 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-11-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vesseL integrity are contained within the report. This report provides data on each of the existing 177 Large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  17. Tank farm surveillance and waste status summary report for December 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1994-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special 9 surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, U.S. Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  18. Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds a wide variety of renewable energy and energy efficiency projects in an effort to assist tribes in realizing their energy visions.

  19. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    SciTech Connect (OSTI)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

  20. SLUDGE PARTICLE SEPAPATION EFFICIENCIES DURING SETTLER TANK RETRIEVAL INTO SCS-CON-230

    SciTech Connect (OSTI)

    DEARING JI; EPSTEIN M; PLYS MG

    2009-07-16

    The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske & Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to the basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.

  1. TFA Tank Focus Area - multiyear program plan FY98-FY00

    SciTech Connect (OSTI)

    1997-09-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

  2. Light Duty Utility Arm System applications for tank waste remediation

    SciTech Connect (OSTI)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy`s (DOE`s) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE`s underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE`s environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE`s environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design.

  3. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

  4. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect (OSTI)

    Certa, P.J.

    1998-01-07

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  5. he Hanford Story Tank Waste Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    he Hanford Story Tank Waste Cleanup he Hanford Story Tank Waste Cleanup Addthis Description The Hanford Story Tank Waste Cleanup

  6. experimental tank tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental tank tests - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10

    The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

  8. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  9. Development of advanced blanket performance under irradiation and system integration through JUPITER-II project

    SciTech Connect (OSTI)

    Abe, Katsunori; Kohyama, Akira; Tanaka, Satoru; Namba, C.; Terai, T.; Kunugi, T.; Muroga, Takeo; Hasegawa, Akira; Sagara, A.; Berk, S.; Zinkle, Steven J.; Sze, Dai Kai; Petti, D. A.; Abdou, Mohamed A.; Morley, Neil B.; Kurtz, Richard J.; Snead, Lance L.; Ghoniem, Nasr M.

    2008-12-01

    This report describes an outline of the activities of the JUPITER-II collaboration (japan-USA program of Irradiation/Integration test for Fusion Research-II), Which has bee carried out through six years (2001-2006) under Phase 4 of the collabroation implemented by Amendment 4 of Annex 1 to the DOE (United States Department of Energy)-MEXT (Ministry of Education ,Culture,Sports,Science and Technology) Cooperation. This program followed the RTNS-II Program (Phase1:1982-4986), the FFTF/MOTA Program (Phase2:1987-1994) and the JUPITER Program (Phase 3: 1995-2000) [1].

  10. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  11. Demonstration project Smart Charging (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  12. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect (OSTI)

    Becker, D.L.

    1998-09-02

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  13. Industrial mixing techniques for Hanford double-shell tanks

    SciTech Connect (OSTI)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks.

  14. Project Specific Quality Assurance Plan (QAPP)

    SciTech Connect (OSTI)

    Huston, J.J.

    1994-11-01

    The Project QAPP`s describe the program and the planned actions which WHC will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C. The Project involves retrieving the high-heat waste from Tank 241-C-106 to close the safety issue associate with the tank, demonstrate initial waste retrieval technology for a Single Shell Tank, and provide feed for the Hanford Waste Vitrification Plant.

  15. 2014 DOE Project Management Workshop

    Broader source: Energy.gov [DOE]

    What:  2014 DOE Project Management Workshop (Meeting the Challenge—Integrated Acquisition & Project Management)

  16. Hanford tank waste pretreatment overview

    SciTech Connect (OSTI)

    Gasper, K.A.

    1994-12-31

    The U.S. Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the Hanford Site tank waste. Pretreatment is one of the major program elements of the TWRS. The scope of the TWRS Tank Waste Pretreatment Program is to treat tank waste to separate it into high- and low-level waste fractions and to provide additional treatment as required to feed low-level and high-level waste immobilization processes. The Pretreatment Program activities include technology development, design, fabrication, construction, and operation of facilities to support the pretreatment of radioactive mixed waste retrieved from 28 large underground double-shell tanks and 149 single-shell tanks.

  17. Molten-caustic-leaching (Gravimelt) system integration project. Quarterly report, April--June 1989

    SciTech Connect (OSTI)

    1989-07-15

    Operation of the Gravimelt Integrated Test Circuit for desulfurization and demineralization of coal has been completed. A 48-test process matrix was performed over 750 hours of operational time resulting in production of 3,000 pounds of treated coal suitable for further test and evaluation. Optimization testing was performed resulting in product coal containing 0.4 percent sulfur (0.6 lbs SO{sub 2}/MMBtu) and 0.15 percent ash with more than 85 percent organic sulfur removal, 95 percent SO{sub 2} reduction from ROM coal and 91 percent SO{sub 2} reduction from precleaned process feed. This report contains all of the product sulfur, ash, volatiles and heat content data obtained to date.

  18. Projecting

    U.S. Energy Information Administration (EIA) Indexed Site

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS infrastructure development Matthew Tanner Office of Petroleum, Gas, & Biofuels Analysis U.S. Energy Information Administration October 25, 2010 This paper is released to encourage discussion and critical comment. The analysis and conclusions ex- pressed here are those of the author and not necessarily those of the U.S. Energy Information Administration. Author: Matthew Tanner, matthew.tanner@eia.gov

  19. Utilization of the MPI Process for in-tank solidification of heel material in large-diameter cylindrical tanks

    SciTech Connect (OSTI)

    Kauschinger, J.L.; Lewis, B.E.

    2000-01-01

    A major problem faced by the US Department of Energy is remediation of sludge and supernatant waste in underground storage tanks. Exhumation of the waste is currently the preferred remediation method. However, exhumation cannot completely remove all of the contaminated materials from the tanks. For large-diameter tanks, amounts of highly contaminated ``heel'' material approaching 20,000 gal can remain. Often sludge containing zeolite particles leaves ``sand bars'' of locally contaminated material across the floor of the tank. The best management practices for in-tank treatment (stabilization and immobilization) of wastes require an integrated approach to develop appropriate treatment agents that can be safely delivered and mixed uniformly with sludge. Ground Environmental Services has developed and demonstrated a remotely controlled, high-velocity jet delivery system termed, Multi-Point-Injection (MPI). This robust jet delivery system has been field-deployed to create homogeneous monoliths containing shallow buried miscellaneous waste in trenches [fiscal year (FY) 1995] and surrogate sludge in cylindrical (FY 1998) and long, horizontal tanks (FY 1999). During the FY 1998 demonstration, the MPI process successfully formed a 32-ton uniform monolith of grout and waste surrogates in about 8 min. Analytical data indicated that 10 tons of zeolite-type physical surrogate were uniformly mixed within a 40-in.-thick monolith without lifting the MPI jetting tools off the tank floor. Over 1,000 lb of cohesive surrogates, with consistencies similar to Gunite and Associated Tank (GAAT) TH-4 and Hanford tank sludges, were easily intermixed into the monolith without exceeding a core temperature of 100 F during curing.

  20. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act (ARRA) of 2009 supported nine industrial energy efficiency projects in Wisconsin. ... Didion Milling, Incorporated's new fermentation tanks and CO 2 scrubber vessel are in ...

  1. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  2. Final Meeting Summary Page 1 Tank Waste Committee Meeting October 10, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting October 10, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE October 10, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Integration of Tank Farms and Waste Treatment and Immobilization Plant (WTP): One System Team .... 1 Washington State's Letter to Energy Secretary

  3. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.

  4. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  5. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    SciTech Connect (OSTI)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  6. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  7. Development of a waste dislodging and retrieval system for use in the Oak Ridge National Laboratory gunite tank

    SciTech Connect (OSTI)

    Randolph, J.D.; Lloyd, P.D.; Burks, B.L.

    1997-03-01

    As part of the Gunite And Associated Tanks (GAAT) Treatability Study the Oak Ridge National Laboratory (ORNL) has developed a tank waste retrieval system capable of removing wastes varying from liquids to thick sludges. This system is also capable of scarifying concrete walls and floors. The GAAT Treatability Study is being conducted by the Department of Energy Oak Ridge Environmental Restoration Program. Much of the technology developed for this project was cosponsored by the DOE Office of Science and Technology through the Tanks Focus Area (TFA) and the Robotics Technology Development Program. The waste dislodging and conveyance (WD&C) system was developed jointly by ORNL and participants from the TFA. The WD&C system is comprised of a four degree-of-freedom arm with back driveable motorized joints. a cutting and dislodging tool, a jet pump and hose management system for conveyance of wastes, confined sluicing end-effector, and a control system, and must be used in conjunction with a robotic arm or vehicle. Other papers have been submitted to this conference describing the development and operation of the arm and vehicle positioning systems. This paper will describe the development of the WD&C system and its application for dislodging and conveyance of ORNL sludges from the GAAT tanks. The confined sluicing end-effector relies on medium pressure water jets to dislodge waste that is then pumped by the jet pump through the conveyance system out of the tank. This paper will describe the results of cold testing of the integrated system. At the conference presentation there will also be results from the field deployment. ORNL has completed fabrication of the WD&C system for waste removal and is full-scale testing, including testing of the confined sluicing end-effector.

  8. CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS

    SciTech Connect (OSTI)

    BERRIOCHOA MV; ALCALA LJ

    2009-01-06

    In 2000 the Hanford Tank Farms had one of the worst safety records in the Department of Energy Complex. By the end of FY08 the safety performance of the workforce had turned completely around, resulting in one of the best safety records in the DOE complex for operations of its kind. This paper describes the variety of programs and changes that were put in place to accomplish such a dramatic turn-around. The U.S. Department of Energy's 586-square-mile Hanford Site in Washington State was established during World War II as part of the Manhattan Project to develop nuclear materials to end the war. For the next several decades it continued to produce plutonium for the nation's defense, leaving behind vast quantities of radioactive and chemical waste. Much of this waste, 53,000,000 gallons, remains stored in 149 aging single-shell tanks and 28 newer double-shell tanks. One of the primary objectives at Hanford is to safely manage this waste until it can be prepared for disposal, but this has not always been easy. These giant underground tanks, many of which date back to the beginning of the Manhattan Project, range in size from 55,000 gallons up to 1.1 million gallons, and are buried beneath 10 feet of soil near the center of the site. Up to 67 of the older single-shell tanks have leaked as much as one million gallons into the surrounding soil. Liquids from the single-shell tanks were removed by 2003 but solids remain in the form of saltcake, sludges and a hardened heel at the bottom of some tanks. The Department of Energy's Office of River Protection was established to safely manage this waste until it could be prepared for disposal. For most of the last seven years the focus has been on safely retrieving waste from the 149 aging single-shell and moving it to the newer double-shell tanks. Removing waste from the tanks is a difficult and complex task. The tanks were made to put waste in, not take it out. Because of the toxic nature of the waste, both chemically as well as radiologically, all retrieval operations must be performed using remote-controlled equipment which has to be installed in each tank, then removed when retrieval is completed. This process involves a variety of potentially hazardous construction activities including crane and rigging, excavation, electrical and piping work. It also requires strong attention to safety to avoid injuries to personnel and contamination of the environment.

  9. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    SciTech Connect (OSTI)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  10. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  11. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    SciTech Connect (OSTI)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  12. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  13. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    SciTech Connect (OSTI)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  14. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    SciTech Connect (OSTI)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  15. Tank Farm surveillance and waste status summary report for March 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are Contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding flank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  16. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 17, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING April 17, 2012 Richland, WA Topics in this Meeting Summary Welcome & Introductions ............................................................................................................................. 1 Discussion of Tank-Related Permit Units ..................................................................................................... 1 Discussion of IDF and Risk Budget Tool

  17. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    SciTech Connect (OSTI)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.; Boomer, K. D.; Gunter, J. R.; Venetz, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’s remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.

  18. High-Pressure Hydrogen Tank Testing

    Broader source: Energy.gov [DOE]

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  19. Tank Closure & Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RODs: Tanks with leaks removed to get at leak contamination. Tank gear, pipes, valves, etc to be removed. RTD contaminated soils where necessary. Watch for...

  20. Tank Farm Area Cleanup Decision-Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

  1. Organic liner for thermoset composite tank

    DOE Patents [OSTI]

    Garvey, Raymond E.

    1991-01-01

    A cryogenic tank that is made leak-proof under cryogenic conditions by successive layers of epoxy lining the interior of the tank.

  2. Underground storage tank management plan

    SciTech Connect (OSTI)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  3. Independent Oversight Review, Hanford Tank Farms- November 2011

    Broader source: Energy.gov [DOE]

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  4. Relationship Between Flowability And Tank Closure Grout Quality

    SciTech Connect (OSTI)

    Langton, C. A.; Stefanko, D. B.; Hay, M. S.

    2012-10-08

    After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediation's (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

  5. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    SciTech Connect (OSTI)

    Adkins, B.J.

    2002-12-03

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  6. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  7. Preliminary design requirements document for the initial single-shell tank retrieval system

    SciTech Connect (OSTI)

    Hertzel, J.S., Westinghouse Hanford

    1996-07-24

    The scope of this Preliminary Design Requirements Document is to identify and define the functions, with associated requirements, which must be performed to demonstrate and accomplish the initial single-shell tank saltcake retrieval from selected tanks. This document sets forth functions, requirements, performance requirements and design constraints necessary to begin conceptual design for the Initial Single-shell Tank Retrieval System. System and physical interfaces between the Initial Single-shell Tank Retrieval System project and the Tank Waste Remediation are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. The design requirements provided in this document will be augmented by additional detailed design to be documented by the project.

  8. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  9. Performance of Integrated Hydronic Heating Systems.

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    2007-12-20

    A variety of system configurations are used in North America to meet the heating and domestic hot water needs of single-family homes. This includes, for example: warm air furnaces with electric water heaters; boilers with integrated hot water coils; and boilers with 'indirect' hot water storage tanks. Integrated hydronic systems which provide both heat and hot water are more popular only in the Northeast and mid-Atlantic regions. For those making decisions about configurations of these integrated hydronic systems, including control options, little information is available concerning the annual energy cost implications of these decisions. This report presents results of a project to use a direct load emulation approach to measure the performance of hydronic systems, develop performance curves, and to provide decision tools to consumers. This is a laboratory measurement system involving direct energy input and output measurements under different load patterns. These results are then used to develop performance correlations for specific systems that can be used to predict energy use in specific applications. A wide range of system types have been tested under this project including conventional boilers with 'tankless' internal coils for domestic hot water production, boilers with indirect external storage tanks, tank type water heaters which may also be used for space heating, condensing oil- and gas-fired systems, and systems with custom control features. It is shown that low load and idle energy losses can have a very large impact on the total annual energy use and that the potential energy savings associated with replacing old equipment with newer, high efficiency equipment with low losses at idle or low load can be in the 25% range. These savings are larger than simple combustion efficiency measurements would indicate.

  10. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    SciTech Connect (OSTI)

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-12-07

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  11. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 4, Appendixes B-D

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  12. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 3, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  13. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced by Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.

  14. Tanks Focus Area site needs assessment FY 2000

    SciTech Connect (OSTI)

    RW Allen

    2000-04-11

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). During the past year, the TFA established a link with DOE's Fernald site to exchange, on a continuing basis, mutually beneficial technical information and assistance.

  15. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks

    SciTech Connect (OSTI)

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-11-10

    ABSTRACT Several tanks at the Hanford Site (in Washington State, USA) belong to the first generation of underground nuclear waste storage tanks known as single shell tanks (SSTs). These tanks were constructed between 1943 and 1964 and are well beyond their design life. This article discusses the structural analysis approach and modeling challenges encountered during the ongoing analysis of record (AOR) for evaluating the structural integrity of the SSTs. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads of these tanks for proper estimation of creep strains and thermal degradation of material properties. The loads prescribed in the AOR models also include anticipated loads that these tanks may see during waste retrieval and closure. Due to uncertainty in a number of inputs to the models, sensitivity studies were conducted to address questions related to the boundary conditions to realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed soil surrounding the backfill. Because of the limited availability of data on the thermal and operating history for many of the individual tanks, some of the data was assumed or interpolated. However, the models developed for the analysis of record represent the bounding scenarios and include the loading conditions that the tanks were subjected to or anticipated. The modeling refinement techniques followed in the AOR resulted in conservative estimates for force and moment demands at various sections in the concrete tanks. This article discusses the modeling aspects related to Type-II and Type-III SSTs. The modeling techniques, methodology and evaluation criteria developed for evaluating the structural integrity of SSTs at Hanford are in general applicable to any similar tanks or underground concrete storage structures.

  16. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    SciTech Connect (OSTI)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will provide additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well casing interference and soil moisture content and may not be successful in some conditions. In some cases the level of interference must be estimated due to uncertainties regarding the materials used in well construction and soil conditions, Well casing deployment used for many in-situ geophysical methods is relatively expensive and geophysical methods do not generally provide real time values for contaminants. In addition, some of these methods are not practical within the boundaries of the tank farm due to physical constraints, such as underground piping and other hardware. The CP technologies could facilitate future characterization of vadose zone soils by providing vadose zone data in near real-time, reducing the number of soil samples and boreholes required, and reducing characterization costs.

  17. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment ... engineering programs and the pit manufacturing program. STUDENT RESOURCES Precollege ...

  18. K Basins sludge removal temporary sludge storage tank system

    SciTech Connect (OSTI)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  19. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Because of the stress on the tank due to it being bowed up in the middle (or "oil ... There would be no time for annulus pumping. The waste would almost instantly fill the leak ...

  20. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 9, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING June 9, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions .......................................................................................................................... 1 Waste Management Area C Performance Assessment ................................................................................. 1 Closure Schedule for WMA C

  1. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... close in C Farm, and there is 6.3 miles of contaminated pipeline to go with those tanks. ... (OU) decision, and are identified in the SST closure permit and the current Part B permit. ...

  2. Retooling Michigan: Tanks to Turbines

    Broader source: Energy.gov [DOE]

    A company that has manufactured geared systems for the M1 Abrams tank for more than 20 years is now part of the forces working toward energy security and independence.

  3. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect (OSTI)

    DODD RA

    2008-01-22

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner.

  4. Onboard Storage Tank Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial

  5. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT

    SciTech Connect (OSTI)

    LESKO KF; BERRIOCHOA MV

    2010-02-26

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business constructioin subcontractors while performing high hazard work in a safe and productive manner. Previous to the WRPS contract, construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper descirbes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method (John E Schaufelberger, Len Holm, "Management of Construction Projects, A Constructor's Perspective", University of Washington, Prentice Hall 2002). This method was implemented in the first quarter of Fiscal Year 2009 (FY2009), where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by URS personnel. Each small contractor is mentored and supported utilizing the principles of the Construction Industry Institute (CII) Partnering process. Some of the key mentoring and partnering areas that are explored in this paper are, internal and external safety professional support, subcontractor safety teams and the interface with project and site safety teams, quality assurance program support to facilitate compliance with NQA-1, construction, team roles and responsibilities, work definition for successful fixed price contracts, scheduling and interface with project schedules and cost projection/accruals. The practical application of the CII Partnering principles, with the Construction Management expertise of URS, has led to a highly successful construction model that also meets small business contracting goals.

  6. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  7. Tanks focus area site needs assessment FY 1997

    SciTech Connect (OSTI)

    1997-04-01

    The Tanks Focus Area`s (TFA`s) mission is to manage an integrated technology development program that results in the application of technology to safely and efficiently accomplish tank waste remediation across the U.S. Department of Energy (DOE) complex. The TFA uses a systematic process for developing its annual program that draws from the tanks technology development needs expressed by four DOE tank waste sites - Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). The process is iterative and involves six steps: (1) Site needs identification and documentation, (2) Site communication of priority needs, (3) Technical response development, (4) Review technical responses, (5) Develop program planning documents, and (6) Review planning documents. This document describes the outcomes of the first two steps: site needs identification and documentation, and site communication of priority needs. It also describes the initial phases of the third and fourth steps: technical response development and review technical responses. Each site`s Site Technology Coordination Group (STCG) was responsible for developing and delivering priority tank waste needs. This was accomplished using a standardized needs template developed by the National STCG. The standard template helped improve the needs submission process this year. The TFA received the site needs during December 1996 and January 1997.

  8. An assessment of the viability of storing FFTF sodium in tank cars

    SciTech Connect (OSTI)

    Young, M.W.; Burke, T.M.

    1995-01-27

    Current FFTF Transition Project plans call for construction of a Sodium Storage Facility to store the plant sodium until it is processed either as product or waste. This report evaluates an alternative concept which would store the sodium in rail tank cars. It is concluded that utilizing a simple facility for offloading the FFTF sodium to standard industrial tank cars is not technically viable. Mitigation of potential radioactive sodium spills requires that the offload facility incorporate many of the features of the sodium storage facility. With these mitigation features incorporated, there is no significant cost or schedule advantage for the option of storing the FFTF sodium in tank cars when compared to the currently planned SSF. In addition, it is believed that the tank car option results in higher risk to project success because of unknowns associated with technical, regulatory, and public perception issues. It is therefore recommended that the project proceed with definitive design of the SSF.

  9. Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent...

    Office of Environmental Management (EM)

    SRS Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then ...

  10. Relationships between Western Area Power Administration`s power marketing program and hydropower operations at Salt Lake City area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Folga, S.; Poch, L.A.

    1995-03-01

    This technical memorandum provides background information on the Western Area Power Administration (Western) and the physical characteristics of the Salt Lake City Area Integrated Projects (SLCA/IP) hydropower plants, which include the Colorado River Storage Project, the Rio Grande Project, and the Collbran Project. In addition, the history, electrical capacity, storage capacity, and flow restrictions at each dam are presented. An overview of Western`s current programs and services, including a review of statutory authorities, agency discretion, and obligations, is also provided. The variability of SLCA/IP hourly generation under various alternative marketing strategies and purchasing programs is discussed. The effects of Western`s services, such as area load control, outage assistance, and transmission, on SLCA/IP power plant operations are analyzed.

  11. LONG-TERM GLOBAL WATER USE PROJECTIONS USING SIX SOCIOECONOMIC SCENARIOS IN AN INTEGRATED ASSESSMENT MODELING FRAMEWORK

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.; Moss, Richard H.; Kim, Son H.

    2014-01-19

    In this paper, we assess future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors, by incorporating water demands into a technologically-detailed global integrated assessment model of energy, agriculture, and climate change the Global Change Assessment Model (GCAM). Base-year water demandsboth gross withdrawals and net consumptive useare assigned to specific modeled activities in a way that maximizes consistency between bottom-up estimates of water demand intensities of specific technologies and practices, and top-down regional and sectoral estimates of water use. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. We assess future water demands representing six socioeconomic scenarios, with no constraints imposed by future water supplies. The scenarios observe increases in global water withdrawals from 3,578 km3 year-1 in 2005 to 5,987 8,374 km3 year-1 in 2050, and to 4,719 12,290 km3 year-1 in 2095. Comparing the projected total regional water withdrawals to the historical supply of renewable freshwater, the Middle East exhibits the highest levels of water scarcity throughout the century, followed by India; water scarcity increases over time in both of these regions. In contrast, water scarcity improves in some regions with large base-year electric sector withdrawals, such as the USA and Canada, due to capital stock turnover and the almost complete phase-out of once-through flow cooling systems. The scenarios indicate that: 1) water is likely a limiting factor in climate change mitigation policies, 2) many regions can be expected to increase reliance on non-renewable groundwater, water reuse, and desalinated water, but they also highlight an important role for development and deployment of water conservation technologies and practices.

  12. Tank Waste and Waste Processing | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled ...

  13. Tank Waste Remediation System (TWRS) Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor

    SciTech Connect (OSTI)

    BASCHE, A.D.

    2000-04-22

    The purpose of the Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor is to provide a third-party quantitative and qualitative cost and schedule risk analysis of HNF-1946. The purpose of this Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor (TFC) is to document the results of the risk-based financial analysis of HNF-1946, Programmatic Baseline Summary for Phase 1 Privatization f o r the Tank Farm Contractor (Diediker 2000). This analysis was performed to evaluate how well the proposed baseline meets the U. S. Department of Energy, Office of River Protection (ORP) Letter OO-MSO-009, ''Contract NO. DE-AC06-99RL14047--The US Department of Energy, Office of River Protection (ORP) Mission Planning Guidance for Fiscal Year (FY) 2002--Revision 1'' (Short 2000). The letter requires a confidence level in the baseline schedule that is consistent with the Phase 1A readiness-to-proceed (RTP) assessment conducted in fiscal year (FY) 1998. Because the success of the project depends not only on the budget but also on the schedule, this risk analysis addresses both components of the baseline.

  14. Evaluation of Tank 241-T-111 Level Data and In-Tank Video Inspection

    SciTech Connect (OSTI)

    Schofield, John S.; Feero, Amie J.

    2014-03-17

    This document summarizes the status of tank T-111 as of January 1, 2014 and estimates a leak rate and post-1994 leak volume for the tank.

  15. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  16. Address (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  17. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    SciTech Connect (OSTI)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  18. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  19. 2014 DEPARTMENT OF ENERGY PROJECT MANAGEMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    What:  2014 DOE Project Management Workshop (Meeting the Challenge—Integrated Acquisition & Project Management)

  20. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS WITH TANK 40 AND H CANYON NEPTUNIUM

    SciTech Connect (OSTI)

    Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M

    2009-04-28

    The Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 5 (SB5) from Tank 40. SB5 contains the contents of Tank 51 from November 2008, qualified by the Savannah River National Laboratory (SRNL) and the heel in Tank 40 remaining from Sludge Batch 4. Current Liquid Waste Operations (LWO) plans are to (1) decant supernatant from Tank 40 to remove excess liquid caused by a leaking slurry pump and (2) receive a Np stream from H Canyon It should be noted that the Np stream contains significant nitrate requiring addition of nitrite to Tank 40 to maintain a high nitrite to nitrate ratio for corrosion control. SRNL has been requested to qualify the proposed changes; determine the impact on DWPF processability in terms of hydrogen generation, rheology, etc.; evaluate antifoam addition strategy; and evaluate mercury stripping. Therefore, SRNL received a 3 L sample of Tank 40 following the transfer of Tank 51 to Tank 40 (Tank Farm Sample HTF-40-08-157 to be used in testing and to perform the required Waste Acceptance Product Specifications radionuclide analyses). Based on Tank Farm projections, SRNL decanted a portion* of the sample, added sodium nitrite, and added a Np solution from H Canyon representative of the Np to be dispositioned to Tank 40 (neutralized to 0.6 M excess hydroxide). The resulting material was used in a DWPF Chemical Process Cell (CPC) demonstration -- a Sludge Receipt and Adjustment Tank (SRAT) cycle and a Slurry Mix Evaporator (SME) cycle. Preliminary data from the demonstration has been reported previously. This report includes discussion of these results and additional results, including comparisons to Tank Farm projections and the SB5 demonstration.

  1. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect (OSTI)

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  2. TANK48 CFD MODELING ANALYSIS

    SciTech Connect (OSTI)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

  3. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  4. Tank Waste Retrieval Lessons Learned at the Hanford Site

    SciTech Connect (OSTI)

    Dodd, R.A.

    2008-07-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner. Retrieval of SST waste in accordance with HFFACO requirements was initiated at the Hanford Site in April 2003. New and innovative tank waste retrieval methods that minimize and control the use of liquids are being implemented for the first time. These tank waste retrieval methods replace Past Practice Hydraulic Sluicing and employ modified sluicing, vacuum retrieval, and in-tank vehicle techniques. Waste retrieval has been completed in seven Hanford Site SSTs (C-106, C-103, C-201, C-202, C-203, C-204, and S-112) in accordance with HFFACO requirements. Three additional tanks are currently in the process of being retrieved (C-108, C-109 and S-102) Preparation for retrieval of two additional SSTs (C-104 and C-110) is ongoing with retrieval operations forecasted to start in calendar year 2008. Tank C-106 was retrieved to a residual waste volume of 470 ft{sup 3} using oxalic acid dissolution and modified sluicing. An Appendix H exception request for Tank C-106 is undergoing review. Tank C-103 was retrieved to a residual volume of 351 ft{sup 3} using a modified sluicing technology. This approach was successful at reaching the TPA limits for this tank of less than 360 ft{sup 3}and the limits of the technology. Tanks C-201, C-202, C-203, and C-204 are smaller (55,000 gallon) tanks and waste removal was completed in accordance with HFFACO requirements using a vacuum retrieval system. Residual waste volumes in each of these four tanks were less than 25 ft{sup 3}. Tank S-112 retrieval was completed February 28, 2007, meeting the TPA Limits of less than

  5. Grouting at the Idaho National Laboratory Tank Farm Facility...

    Office of Environmental Management (EM)

    Small Tank Farm Facility * A system of 11 underground, 300,000-gallon stainless steel tanks - Tanks are fifty feet in diameter and twenty-five feet tall - Eight tanks have...

  6. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  7. Tank Stabilization September 30, 1999 Summary

    Office of Environmental Management (EM)

    Type Consent Decree Legal Driver(s) RCRA Scope Summary Renegotiate a schedule to pump liquid radioactive hazardous waste from single-shell tanks to double-shell tanks ...

  8. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  9. Ohmsett Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing...

  10. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    ... different types of waste and the efficiency of each removal technology is a ... interior of the tanks and the contour map of residuals left in the tanks after retrieval. ...

  11. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  12. Tank waste remediation system tank waste retrieval risk management plan

    SciTech Connect (OSTI)

    Klimper, S.C.

    1997-11-07

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.

  13. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    SciTech Connect (OSTI)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North and South hemispheres is currently supported by a single Mantis rover sample in each hemisphere. A floor scrape sample was obtained from a compact region near the center riser slightly in the South hemisphere and has been analyzed for a shortened list of key analytes. There is not enough additional material from the floor scrape sample material for completing the full suite of constituents. No floor scrape samples have been previously taken from the North hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 19 residual floor material, four additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Three of the four additional samples from each hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape sample results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in t

  14. Results Of Initial Analyses Of The Salt (Macro) Batch 9 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics. Further results on the chemistry and other tests will be issued in the future.

  15. Results of initial analyses of the salt (macro) batch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-10-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further results on the chemistry and other tests will be issued in the future.

  16. Savannah River Site- Tank 48 Briefing on SRS Tank 48 Independent Technical Review

    Broader source: Energy.gov [DOE]

    This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing.

  17. Tank waste remediation system engineering plan

    SciTech Connect (OSTI)

    Rifaey, S.H.

    1998-01-09

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

  18. Shark Tank: Residential Energy Efficiency Edition

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, call slides and discussion summary.

  19. Estimating Waste Inventory and Waste Tank Characterization

    Broader source: Energy.gov [DOE]

    Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

  20. Project Submission Template

    Energy Savers [EERE]

    Department of Energy Stockbridge-Munsee Community - 2012 Project Project Reports for Stockbridge-Munsee Community - 2012 Project The ends to investigate the feasibility of utilizing renewable energy resources on- site in order to provide electric power as well as heating and cooling energy for the Stockbridge-Munsee Health and Wellness Center (SMHWC) as well as two support buildings that house an emergency diesel generator, a fuel storage tank, a workshop, and garage space for vehicles and