National Library of Energy BETA

Sample records for tank farm closure

  1. ICPP tank farm closure study. Volume 1

    SciTech Connect (OSTI)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  2. PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS

    SciTech Connect (OSTI)

    MANN, F.M.; CRUMPLER, J.D.

    2005-09-30

    This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

  3. Tank Closure

    Office of Environmental Management (EM)

    of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act Three agency Federal...

  4. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  5. AX Tank farm closure settlement estimates and soil testing

    SciTech Connect (OSTI)

    BECKER, D.L.

    1999-03-25

    This study provides a conservative three-dimensional settlement study of the AX Tank Farm closure with fill materials and a surface barrier. The finite element settlement model constructed included the interaction of four tanks and the surface barrier with the site soil and bedrock. Also addressed are current soil testing techniques suitable for the site soil with recommendations applicable to the AX Tank Farm and the planned cone penetration testing.

  6. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect (OSTI)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  7. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  8. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Subramanian, K

    2007-10-01

    High level radioactive waste (HLW) is stored in underground storage tanks at the Savannah River Site. The SRS is proceeding with closure of the 22 tanks located in F-Area. Closure consists of removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. A performance assessment is being performed in support of closure of the F-Tank Farm. Initially, the carbon steel construction materials of the high level waste tanks will provide a barrier to the leaching of radionuclides into the soil. However, the carbon steel liners will degrade over time, most likely due to corrosion, and no longer provide a barrier. The tank life estimation in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. The tank life estimation in support of the F-Tank Farm closure performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. Consumption of the tank steel encased in grouted conditions was determined to occur either due to carbonation of the concrete leading to low pH conditions, or the chloride-induced de-passivation of the steel leading to accelerated corrosion. A deterministic approach was initially followed to estimate the life of the tank liner in grouted conditions or in soil conditions. The results of this life estimation are shown in Table 1 and Table 2 for grouted and soil conditions respectively. The tank life has been estimated under conservative assumptions of diffusion rates. However, the same process of

  9. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect (OSTI)

    Becker, D.L.

    1998-09-02

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  10. Tank Farm Closure & Waste Management Environmental Impact Statement <br>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DOE/EIS-0391) - Hanford Site Statements Tank Closure & WM EIS Info Documents CERCLA Five-Year Review NEPA - Categorical Exclusions NEPA - Environmental Assessments NEPA - Environmental Impact Statements Environmental Management Performance Reports Tank Farm Closure & Waste Management Environmental Impact Statement (DOE/EIS-0391) Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The U.S. Department of Energy (USDOE) has prepared a Final Environmental

  11. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of

  12. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    SciTech Connect (OSTI)

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures are different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose

  13. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  14. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  15. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    SciTech Connect (OSTI)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D; Falter, Diedre D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

  16. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  17. STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114

    SciTech Connect (OSTI)

    Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

    2008-12-31

    Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

  18. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect (OSTI)

    Jolly, R.C.Jr. [Washington Savannah River Company (United States); Martin, B. [Washington Savannah River Company, A Washington Group International Company (United States)

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra

  19. CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183

    SciTech Connect (OSTI)

    Thaxton, D; Timothy Baughman, T

    2008-01-16

    Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

  20. An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm

    SciTech Connect (OSTI)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-01-10

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  1. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 222-S Laboratory 242-A...

  2. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and tank farm closure, Fast Flux Test Facility (FFTF) ... be placed on top. Bulk sodium inventories would be ... Site and the cocooned reactors transported to the ...

  3. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT - 9310

    SciTech Connect (OSTI)

    Subramanian, K; Bruce Wiersma, B; Stephen Harris, S

    2009-01-12

    High level radioactive waste (HLW) is stored in underground carbon steel storage tanks at the Savannah River Site. The underground tanks will be closed by removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations, and severing/sealing external penetrations. The life of the carbon steel materials of construction in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to grouted conditions. A stochastic approach was followed to estimate the distributions of failures based upon mechanisms of corrosion accounting for variances in each of the independent variables. The methodology and results used for one-type of tank is presented.

  4. SRS F Tank Farm Performance Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Office Art SRS F Tank Farm Performance Assessment The Department of Energy (DOE) is providing the Savannah River Site (SRS) F Tank Farm Performance Assessment (FTF PA) for external review by the Nuclear Regulatory Commission (NRC), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency (EPA). This document provides information to support subsequent DOE, NRC, SCDHEC, and EPA F Area Tank Closure Program actions and decisions,

  5. Draft Tank Closure & Waste Management EIS - Summary

    Office of Environmental Management (EM)

    Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford ... (Ecology) Title: Draft Tank Closure and Waste Management Environmental Impact Statement ...

  6. H-Tank Farm Waste Determination

    Broader source: Energy.gov [DOE]

    On Dec. 19, 2014, the Energy Secretary signed a determination that allows the Savannah River Site (SRS) in South Carolina to complete cleanup and closure of the underground liquid waste tanks in the H Tank Farm as they are emptied and cleaned. The action marked a major milestone in efforts to clean up the Cold War legacy at SRS.

  7. An Initial Evaluation of Characterization and Closure Options for Underground Pipelines within a Hanford Site Single-Shell Tank Farm - 13210

    SciTech Connect (OSTI)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-07-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  8. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Disposal Facility FFTF Fast Flux Test Facility FY ... Sodium dichromate was used as a water treatment chemical for cooling water used in Hanford's production reactors. ...

  9. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Long-Term Stewardship Program to ensure continued ... U.S. Department of Energy, Environmental Protection ... f or the surrounding communities as they transition their ...

  10. Progress Continues Toward Closure of Two Underground Waste Tanks at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site | Department of Energy Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site October 30, 2013 - 12:00pm Addthis Grouting of two Savannah River Site waste tanks began in August. Here, the first trucks with grout arrive at F Tank Farm. Grouting of two Savannah River Site waste tanks began in August. Here, the first trucks with grout arrive at F Tank

  11. Hanford Tank Farm Workers Begin Tank Waste Retrieval Ahead of...

    Office of Environmental Management (EM)

    Tank Farm Workers Begin Tank Waste Retrieval Ahead of Schedule Hanford Tank Farm Workers Begin Tank Waste Retrieval Ahead of Schedule March 16, 2016 - 12:35pm Addthis Workers ...

  12. Progress Continues Toward Closure of Two Underground Waste Tanks...

    Office of Environmental Management (EM)

    Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site ...

  13. Tank Farm Area Cleanup Decision-Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

  14. Environmental Assessment for the Accelerated Tank Closure Demonstration Project

    SciTech Connect (OSTI)

    N /A

    2003-06-16

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) needs to collect engineering and technical information on (1) the physical response and behavior of a Phase I grout fill in an actual tank, (2) field deployment of grout production equipment and (3) the conduct of component closure activities for single-shell tank (SST) 241-C-106 (C-106). Activities associated with this Accelerated Tank Closure Demonstration (ATCD) project include placement of grout in C-106 following retrieval, and associated component closure activities. The activities will provide information that will be used in determining future closure actions for the remaining SSTs and tank farms at the Hanford Site. This information may also support preparation of the Environmental Impact Statement (EIS) for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington (Tank Closure EIS). Information will be obtained from the various activities associated with the component closure activities for C-106 located in the 241-C tank farm (C tank farm) under the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989). The impacts of retrieving waste from C-106 are bounded by the analysis in the Tank Waste Remediation System (TWRS) EIS (DOE/EIS-0189), hereinafter referred to as the TWRS EIS. DOE has conducted and continues to conduct retrieval activities at C-106 in preparation for the ATCD Project. For major federal actions significantly affecting the quality of the human environment, the ''National Environmental Policy Act of 1969'' (NEPA) requires that federal agencies evaluate the environmental effects of their proposed and alternative actions before making decisions to take action. The President's Council on Environmental Quality (CEQ) has developed regulations for implementing NEPA. These regulations are found in Title 40 of the Code

  15. EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

  16. RECENT PROGRESS IN DOE WASTE TANK CLOSURE

    SciTech Connect (OSTI)

    Langton, C

    2008-02-01

    The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

  17. Independent Oversight Review, Hanford Tank Farms- November 2011

    Broader source: Energy.gov [DOE]

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  18. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    4800 EDTECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 13 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory...

  19. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    EDTECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 16 Key Words: Waste Management Area C, Perfonnance Assessment, tank closure, waste inventory...

  20. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  1. Single-shell tank closure work plan. Revision A

    SciTech Connect (OSTI)

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

  2. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  3. Tank farms essential drawing plan

    SciTech Connect (OSTI)

    Domnoske-Rauch, L.A.

    1998-08-04

    The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

  4. Independent Activity Report, Hanford Tank Farms - April 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms HIAR-HANFORD-2013-04-15 The Office...

  5. Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  6. Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - May 2011 PDF icon Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary -...

  7. Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  8. Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  9. Permanent Closure of the TAN-664 Underground Storage Tank

    SciTech Connect (OSTI)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  10. Independent Oversight Activity Report, Hanford Waste Tank Farms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - October 28 - November 6, 2013 Independent Oversight Activity Report, Hanford Waste Tank Farms - October 28 - November 6, 2013 February 2014 Follow-up on Previously...

  11. Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...

    Office of Environmental Management (EM)

    February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site...

  12. Voluntary Protection Program Onsite Review, Tank Farm Operations...

    Office of Environmental Management (EM)

    Tank Farm Operations Contract - November 2010 Voluntary Protection Program Onsite Review, Tank Farm Operations Contract - November 2010 November 2010 Evaluation to determine ...

  13. Hanford Communities Issue Briefing on Tank Farms

    Broader source: Energy.gov [DOE]

    Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

  14. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 APPENDIX V RECHARGE SENSITIVITY ANALYSIS In the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM...

  15. Tank Closure & Waste Management (DOE/EIS-0391) FINAL - Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Environmental NEPA - Environmental Impact Statements Tank Closure & Waste Management EIS 2012 Documents CERCLA Five-Year Review NEPA - Categorical Exclusions NEPA -...

  16. SRS Reaches Significant Milestone with Waste Tank Closure

    Broader source: Energy.gov [DOE]

    The Savannah River Site (SRS) achieved a significant milestone with the operational closure of tanks 18 and 19, meeting a federal agreement before the December 31, 2012, deadline.

  17. 100-N Area underground storage tank closures

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  18. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect (OSTI)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  19. Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...

    Office of Environmental Management (EM)

    May 2009 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  20. Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...

    Office of Environmental Management (EM)

    July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  1. Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...

    Office of Environmental Management (EM)

    10 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  2. Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...

    Office of Environmental Management (EM)

    09 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  3. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    SciTech Connect (OSTI)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a

  4. Grouting at the Idaho National Laboratory Tank Farm Facility...

    Office of Environmental Management (EM)

    Small Tank Farm Facility * A system of 11 underground, 300,000-gallon stainless steel tanks - Tanks are fifty feet in diameter and twenty-five feet tall - Eight tanks have...

  5. F-Tank Farm Performance Assessment, Rev 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to

  6. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are

  7. Issuance of the Final Tank Closure and Waste Management Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Statement | Department of Energy Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement December 5, 2012 - 12:00pm Addthis Media Contacts Carrie Meyer, DOE (509) 376-0810 Carrie_C_Meyer@orp.doe.gov Erika Holmes, Ecology (509) 372-7880 Erika.Holmes@ecy.wa.gov Richland, WA - The U.S. Department of Energy (DOE) is issuing its Final Tank Closure and Waste Management

  8. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 TC & WM EIS Proposed Actions (1) Retrieve, treat, and dispose of waste in single-shell tank (SST) and double-shell tank (DST) farms and close the SST system. (2) Decommission the Fast Flux Test Facility, manage the resulting waste, and manage the disposition of the Hanford Site's (Hanford's) inventory of bulk sodium. (3) Manage waste from tank closure and other Hanford activities, as well as limited volumes received from U.S. Department of Energy sites. CHAPTER 2 PROPOSED ACTIONS AND

  9. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect (OSTI)

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  10. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of

  11. Toxic chemical considerations for tank farm releases

    SciTech Connect (OSTI)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  12. Underground storage tank 253-D1U1 Closure Plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

  13. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  14. Tank Closure & Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RODs: Tanks with leaks removed to get at leak contamination. Tank gear, pipes, valves, etc to be removed. RTD contaminated soils where necessary. Watch for...

  15. TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY

    SciTech Connect (OSTI)

    HOLM MJ

    2009-06-25

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  16. Independent Oversight Activity Report, Hanford Tank Farms - March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 10-12, 2014 Independent Oversight Activity Report, Hanford Tank Farms - March 10-12, 2014 March 10-12, 2014 Hanford Tank Farm Operations HIAR-HANFORD-2014-03-10 This...

  17. Hanford Site C Tank Farm Meeting Summary - October 2009 | Department...

    Office of Environmental Management (EM)

    October 2009 Hanford Site C Tank Farm Meeting Summary - October 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C...

  18. Hanford Site C Tank Farm Meeting Summary - March 2010 | Department...

    Office of Environmental Management (EM)

    March 2010 Hanford Site C Tank Farm Meeting Summary - March 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Meeting Summary for...

  19. Waste Treatment Plant and Tank Farm Program | Department of Energy

    Office of Environmental Management (EM)

    Treatment Plant and Tank Farm Program Waste Treatment Plant and Tank Farm Program This ... The Low-Activity Waste Facility is in the background. Click the link below for an overview ...

  20. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    SciTech Connect (OSTI)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or {open_quotes}REDOX{close_quotes} process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as {open_quotes}assumed leakers{close_quotes} and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report.

  1. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect (OSTI)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  2. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  3. Microsoft PowerPoint - HAB - Single-Shell Tank Closure April 27, 2016 Final.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jim Alzheimer Washington State Department of Ecology Single-Shell Tank Engineer April 27, 2016 Single-Shell Tank Closure Ecology Perspective Single-Shell Tank System Closure Pieces  Tank Waste Retrieval  Closure of each SST under a component closure plan (i.e., Tier 3)  Closure of all other waste management area (WMA) components  Mitigation of vadose zone contamination  Coordination with mitigation of groundwater contamination  Coordination with other interfacing and WMA

  4. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    SciTech Connect (OSTI)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  5. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect (OSTI)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  6. Idaho Nuclear Technology and Engineering Center Tank Farm Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility The Secretary of Energy signed Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 basis of determination for the disposal of grouted residual waste in the tank systems at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF) on November 19, 2006. Section 3116 of the

  7. Joint Tank Closure News Release Final.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RIVER OPERATIONS OFFICE AIKEN, SC 29802 FOR IMMEDIATE RELEASE September 13, 2012 NEWS MEDIA CONTACTS: Amy Caver, (803) 952-7213 Dean Campbell, (803) 208-8270 Amy.Caver@srs.gov Dean.Campbell@srs.gov Robert Pope, (404) 562-8538 Mark Plowden, (803) 898-9518 pope.robert@epa.gov plowdemw@dhec.sc.gov Savannah River Site Reaches Significant Milestone with Waste Tank Closure AIKEN, S.C. - The Savannah River Site (SRS) achieved a significant milestone this week with the operational closure of tanks 18

  8. Hanford Tank Farms Vadose Zone, Addendum to the BX Tank Farm Report

    SciTech Connect (OSTI)

    Pearson, A.W.

    2000-07-01

    This addendum to the BX Tank Farm Report (GJO-98-40-TARA, GJO-HAN-19) published in August 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the BX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the BX Tank Farm at the DOE Hanford Site in the state of Washington.

  9. Hanford Tank Farms Vadose Zone Addendum to the TY Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, Robert

    2000-08-01

    This addendum to the TY Tank Farm Report (GJO-97-30-TAR, GJO-HAN-16) published in January 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TY Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TY Tank Farm at the DOE Hanford Site in the state of Washington.

  10. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, R.

    2000-08-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

  11. Hanford Tank Farms Vadose Zone Addendum to the S Tank Farm Report

    SciTech Connect (OSTI)

    Pearson, A.

    2000-08-01

    This addendum to the S Tank Farm Report (GJO-97-31-TAR, GJO-HAN-17) published in February 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the S Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the S Tank Farm at the DOE Hanford Site in the state of Washington.

  12. Record of Decision Issued for the Hanford Tank Closure and Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS December 13, 2013 - ...

  13. DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National...

    Office of Environmental Management (EM)

    Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory November 20, 2006 - 9:25am ...

  14. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect (OSTI)

    DODD RA

    2008-01-22

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  15. Voluntary Protection Program Onsite Review, Tank Farm Operations Contract -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2010 | Department of Energy Tank Farm Operations Contract - November 2010 Voluntary Protection Program Onsite Review, Tank Farm Operations Contract - November 2010 November 2010 Evaluation to determine whether the Tank Farm Operations Contract is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during November 1 - 11, 2010 to determine whether Washington River Protection Solutions, LLC is continuing to perform at a level deserving

  16. Independent Oversight Review, Hanford Tank Farms - April 2013 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Tank Farms - April 2013 Independent Oversight Review, Hanford Tank Farms - April 2013 April 2013 Review of Management of Safety Systems at the Hanford Tank Farms The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the management of safety class or safety significant structures, systems and components (hereinafter referred to as safety systems) at

  17. Independent Oversight Review, Hanford Tank Farms - December 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - December 2012 December 2012 Review of the Hanford Tank Farms Radiological Controls Activity-Level Implementation This report documents an independent review by the Office of...

  18. Independent Oversight Activity Report, Hanford Tank Farms- June 2013

    Broader source: Energy.gov [DOE]

    Office of River Protection Assessment of Contractor Quality Assurance, Operational Awareness at the Hanford Tank Farms [HIAR NNSS-2012-12-03

  19. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  20. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  1. Underground storage tank 291-D1U1: Closure plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  2. Relationship Between Flowability And Tank Closure Grout Quality

    SciTech Connect (OSTI)

    Langton, C. A.; Stefanko, D. B.; Hay, M. S.

    2012-10-08

    After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediation's (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

  3. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  4. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    SciTech Connect (OSTI)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  5. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    SciTech Connect (OSTI)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was

  6. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E-1 APPENDIX E DESCRIPTIONS OF FACILITIES, OPERATIONS, AND TECHNOLOGIES Appendix E provides additional information about the technologies, processes, and facilities for the three key activities of this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington: tank closure, Fast Flux Test Facility decommissioning, and waste management. Section E.1 includes this information for tank closure; Section E.2, for Fast Flux Test Facility

  7. First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 2

    Office of Environmental Management (EM)

    8 of 864 1.0 EXECUTIVE SUMMARY This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the eventual removal from service of the H-Area Tank Farm (HTF) underground radioactive waste tanks and ancillary equipment. This PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for removal from service and eventual final closure of the HTF.  U.S. Department of Energy

  8. Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area.

  9. Supporting document for the historical tank content estimate for AN-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  10. Supporting document for the historical tank content estimate for C-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  11. Supporting document for the historical tank content estimate for BY-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  12. Supporting document for the historical tank content estimate for AP-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  13. Supporting document for the historical tank content estimate for AW-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  14. Supporting document for the historical tank content estimate for A-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  15. Supporting document for the historical tank content estimate for BX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  16. Supporting document for the historical tank content estimate for AY-tank farm

    SciTech Connect (OSTI)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  17. Supporting document for the historical tank content estimate for the S-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  18. Supporting document for the historical tank content estimate for B-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  19. Supporting document for the historical tank content estimate for AX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Westinghouse Hanford

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  20. Supporting document for the historical tank content estimate for the SX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  1. Tank Farms at the Savannah River Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. A Waste Determination Basis (WD Basis) provides the analysis to document the

  2. Technical Baseline Summary Description for the Tank Farm Contractor

    SciTech Connect (OSTI)

    TEDESCHI, A.R.

    2000-04-21

    This document is a revision of the document titled above, summarizing the technical baseline of the Tank Farm Contractor. It is one of several documents prepared by CH2M HILL Hanford Group, Inc. to support the U.S. Department of Energy Office of River Protection Tank Waste Retrieval and Disposal Mission at Hanford.

  3. HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2007-01-15

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

  4. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    ... different types of waste and the efficiency of each removal technology is a ... interior of the tanks and the contour map of residuals left in the tanks after retrieval. ...

  5. Record of Decision Tank Farm Soil and INTEC Groundwater

    SciTech Connect (OSTI)

    L. S. Cahn

    2007-05-01

    This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact of groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank far soil and groundwater at INTEC.

  6. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect (OSTI)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  7. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 7 ENVIRONMENTAL CONSEQUENCES AND MITIGATION DISCUSSION Chapter 7 discusses environmental consequences that would occur due to implementation of the reasonable alternatives for each of the following: (1) tank waste retrieval, treatment, and disposal and single-shell tank system closure at the Hanford Site (i.e., tank closure); (2) decommissioning of the Fast Flux Test Facility and auxiliary facilities and disposition of the inventory of radioactively contaminated bulk sodium (i.e.,

  8. Tank farm health and safety plan. Revision 2

    SciTech Connect (OSTI)

    Mickle, G.D.

    1995-03-29

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  9. Tank Farms Regulator Perspective Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decree compliant Identify areas of improvement Determine need for double shell tank space Case 1* Consent Decree Compliant Case 2* Direct Feed Low-Activity Waste and...

  10. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    o To avoid these problems, they will use a bounding max based on data since not enough data to figure central tendency. o C-200 tanks had big difference between estimated...

  11. PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE This Performance Assessment ...

  12. Draft Performance Assessment for the F-Tank Farm at the Savannah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Performance Assessment for the F-Tank Farm at the Savannah River Site Draft Performance Assessment for the F-Tank Farm at the Savannah River Site This Performance Assessment ...

  13. An Overview Comparison of Tank Closure Activities at Certain DOE Site

    SciTech Connect (OSTI)

    LUKE, J.J.

    2003-01-01

    This paper presents a summary-level comparison of the similarities and differences of tank closure programs at the four primary radioactive waste tank sites in the US Department of Energy (DOE) complex. The sites are Hanford, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and the Savannah River Site (SRS). The depth of our understanding of the closure programs varies with the amount of detailed information each of the four sites has provided to date. This paper was prepared using the best available information, including direct communications with key tank closure personnel at each of the sites. Many of the current schedules are under review for possible acceleration.

  14. Tank farms solid waste characterization guide with sampling and analysis plan attachment

    SciTech Connect (OSTI)

    Quigley, J.T.

    1997-04-02

    This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

  15. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm – January 2014

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations [HIAR-HANFORD-2014-01-13

  16. Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory – January 2014

    Broader source: Energy.gov [DOE]

    Review of the Hanford Tank Farms Safety Management Program Implementation Electrical Safety in the 222-S Laboratory

  17. Supporting document for the historical tank content estimate for S tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  18. Supporting document for the historical tank content estimate for BY Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  19. Supporting document for the historical tank content estimate for B Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  20. Supporting document for the historical tank content estimate for A Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  1. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    SciTech Connect (OSTI)

    Not Available

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  2. Tank farm stack NESHAP designation determinations. Revision 2

    SciTech Connect (OSTI)

    Crummel, G.M.

    1996-01-18

    This document provides a determination of the status of Tank Farm Exhausters as regulated by the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) specified in the 40 Series Code of Federal Regulations (CFRs), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides other than Radon from Department of Energy Facilities.``

  3. Operational test procedure for SY tank farm replacement exhauster unit

    SciTech Connect (OSTI)

    McClees, J.

    1995-09-26

    This operational test procedure will verify that the remaining functions not tested per WHC-SD-WM-ATP-080, or components disturbed during final installation, as well as interfaces with other tank farm equipment and remote monitoring stations are operating correctly.

  4. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect (OSTI)

    Thomas, Steve; Dickert, Ginger

    2013-07-01

    thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

  5. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  6. Hanford Single-Shell Tank Leak Causes and Locations - 241-B Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-11

    This document identifies 241-B Tank Farm (B Farm) leak cause and locations for the 100 series leaking tank (241-B-107) identified in RPP-RPT-49089, Hanford B-Farm Leak Inventory Assessments Report. This document satisfies the B Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  7. Tank farm waste characterization Technology Program Plan

    SciTech Connect (OSTI)

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved.

  8. AIR AND RADON PATHWAY MODELING FOR THE F AREA TANK FARM

    SciTech Connect (OSTI)

    Dixon, K.; Phifer, M.

    2010-07-30

    An air and radon pathways analysis was conducted for the F-Area Tank Farm (FTF) to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. Additionally, the dose to the MEI was estimated at a seepage outcrop located 1600 m from the facility. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent radionuclide was estimated for the simulation period of 10,100 years.

  9. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    SciTech Connect (OSTI)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore; Washenfelder, Dennis; Johnson, Jeremy

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  10. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    SciTech Connect (OSTI)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  11. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    SciTech Connect (OSTI)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.; Barnes, T. J.; Duncan, K. G.

    2015-01-07

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service following deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.

  12. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-09-04

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  13. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-11-19

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) leak causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105, and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  14. TECHNOLOGY NEEDS AND STATUS ON CLOSURE OF DOE RADIOACTIVE WASTE TANK ANCILLARY SYSTEMS

    SciTech Connect (OSTI)

    Burns, H; Sharon Marra, S; Christine Langton, C

    2009-01-21

    This paper summarizes the current state of art of sampling, characterizing, retrieving, transferring and treating the incidental waste and stabilizing the void space in tank ancillary systems and the needs involved with closure of these systems. The overall effort for closing tank and ancillary systems is very large and is in the initial stages of being addressed in a systematic manner. It was recognized in doing this effort, that gaps in both technology and material application for characterization and removal of residual waste and closure of ancillary systems would be identified. Great efficiencies are to be gained by defining the technology need areas early in the closure process and providing recommendations for technical programs to improve the closure strategies. Therefore, this paper will not only summarize the state of closure of ancillary systems but also provide recommendations to address the technology gaps identified in this assessment.

  15. PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment

    SciTech Connect (OSTI)

    Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

    2012-08-31

    Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.

  16. Configuration Management Plan for the Tank Farm Contractor

    SciTech Connect (OSTI)

    WEIR, W.R.

    2000-04-21

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.

  17. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number of workers required to perform construction, operations, deactivation, closure, ... For some activities, nonradiological worker FTEs are further subdivided into construction, ...

  18. CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS

    SciTech Connect (OSTI)

    BERRIOCHOA MV; ALCALA LJ

    2009-01-06

    In 2000 the Hanford Tank Farms had one of the worst safety records in the Department of Energy Complex. By the end of FY08 the safety performance of the workforce had turned completely around, resulting in one of the best safety records in the DOE complex for operations of its kind. This paper describes the variety of programs and changes that were put in place to accomplish such a dramatic turn-around. The U.S. Department of Energy's 586-square-mile Hanford Site in Washington State was established during World War II as part of the Manhattan Project to develop nuclear materials to end the war. For the next several decades it continued to produce plutonium for the nation's defense, leaving behind vast quantities of radioactive and chemical waste. Much of this waste, 53,000,000 gallons, remains stored in 149 aging single-shell tanks and 28 newer double-shell tanks. One of the primary objectives at Hanford is to safely manage this waste until it can be prepared for disposal, but this has not always been easy. These giant underground tanks, many of which date back to the beginning of the Manhattan Project, range in size from 55,000 gallons up to 1.1 million gallons, and are buried beneath 10 feet of soil near the center of the site. Up to 67 of the older single-shell tanks have leaked as much as one million gallons into the surrounding soil. Liquids from the single-shell tanks were removed by 2003 but solids remain in the form of saltcake, sludges and a hardened heel at the bottom of some tanks. The Department of Energy's Office of River Protection was established to safely manage this waste until it could be prepared for disposal. For most of the last seven years the focus has been on safely retrieving waste from the 149 aging single-shell and moving it to the newer double-shell tanks. Removing waste from the tanks is a difficult and complex task. The tanks were made to put waste in, not take it out. Because of the toxic nature of the waste, both chemically as well

  19. Supporting document for the north east quadrant historical tank content estimate report for AX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This Supporting Document provides historical in-depth characterization information gathered in AX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quadrant and the Hanford 200 East Areas.

  20. Supporting document for the North East Quandrant Historical Tank Content Estimate Report for BX-Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1994-06-01

    This supporting document provides historical in-depth characterization information gathered on BX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quandrant and the Hanford 200 East Areas.

  1. Supporting document for the north east quadrant historical tank content estimate report for C-Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This Supporting Document provides historical in-depth characterization information gathered on C-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quadrant and the Hanford 200 East Areas.

  2. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.1) at the Hanford Site and lists the plants and animals evaluated in this Tank ... Species Common Name Scientific Name Plants Alkali saltgrass Distichlis spicata Big ...

  3. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... These include additional tank waste storage capacity, dry storage of the cesium and ... For example, the roadmapping effort evaluated sending the scrubberoffgas treatment ...

  4. Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-02-01

    CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  5. First Draft Performance Assessment for the H-Area Tank Farm at...

    Office of Environmental Management (EM)

    ... H-Area Tank Farm at the Revision 0 Savannah River Site March 2011 Page xxx of 864 Figure 5.6-83: CZ (No Liner) Hydraulic Degradation - Type II Tank ...

  6. Draft HAB Advice on Delaying Decisions Associated with the Final Tank Closure and Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee Draft Advice - TC&WM EIS Delayed Decisions v1 - Mattson, et.al. Page 1/1 Draft HAB Advice on Delaying Decisions Associated with the Final Tank Closure and Waste Management EIS Background: The Hanford Advisory Board (HAB or Board) spent a considerable amount of time developing advice on the Draft Tank Closure and Waste Management Environmental Impact Statement (TC&WM EIS, EIS). The U.S. Department of Energy (DOE) has spent over $80 million on the EIS, and thousands of people

  7. PERFORMANCE ASSESSMENT TO SUPPORT CLOSURE OF SINGLE-SHELL TANK WASTE MANAGEMENT AREA C AT THE HANFORD SITE

    SciTech Connect (OSTI)

    BERGERON MP

    2010-01-14

    Current proposed regulatory agreements (Consent Decree) at the Hanford Site call for closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C in the year 2019. WMA C is part of the SST system in 200 East area ofthe Hanford Site and is one of the first tank farm areas built in mid-1940s. In order to close WMA C, both tank and facility closure activities and corrective actions associated with existing soil and groundwater contamination must be performed. Remedial activities for WMA C and corrective actions for soils and groundwater within that system will be supported by various types of risk assessments and interim performance assessments (PA). The U.S. Department of Energy, Office of River Protection (DOE-ORP) and the State ofWashington Department of Ecology (Ecology) are sponsoring a series of working sessions with regulators and stakeholders to solicit input and to obtain a common understanding concerning the scope, methods, and data to be used in the planned risk assessments and PAs to support closure of WMA C. In addition to DOE-ORP and Ecology staff and contractors, working session members include representatives from the U.S. Enviromnental Protection Agency, the U.S. Nuclear Regulatory Commission (NRC), interested tribal nations, other stakeholders groups, and members of the interested public. NRC staff involvement in the working sessions is as a technical resource to assess whether required waste determinations by DOE for waste incidental to reprocessing are based on sound technical assumptions, analyses, and conclusions relative to applicable incidental waste criteria.

  8. 3D Scanner to Help Boost Worker Safety in Hanford Tank Farms

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – A laser scanner is being tested in the Hanford tank farms as a mapping tool to help conduct virtual walk-downs.

  9. Project Design Concept for Transfer Piping For Project W-314 Tank Farm Restoration and Safe Operations

    SciTech Connect (OSTI)

    MCGREW, D.L.

    1999-09-28

    This Project Design Concept represents operational requirements for design of transfer piping system for Phase I of Project W-314, Tank Farm Restoration and Safe Operation Upgrades.

  10. Development of Occupational Exposure Limits for the Hanford Tank Farms

    SciTech Connect (OSTI)

    Still, Kenneth; Gardner, Donald; Snyder, Robert; Anderson, Thomas; Honeyman, James; Timchalk, Charles

    2010-04-01

    Production of plutonium for the United States nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is storedin 177 underground tanks at the Hanford Site in southeastern W 18 ashington State. Recent 19 attempts to begin the retrieval and treatment of these wastes require moving the waste to 20 more modern tanks results in potential exposure of the workers to unfamiliar odors 21 emanating from headspace in the tanks. Given the unknown risks involved, workers 22 were placed on supplied air respiratory protection. CH2M HILL, the managers of the 23 Hanford Site Tank Farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an Industrial Hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPC) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1,826 chemicals were inventoried and evaluated. Over 1,500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2M HILL industrial hygiene department to evaluate these COPCs.

  11. Hanford Single-Shell Tank Leak Causes and Locations - 241-C Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-30

    This document identifies 241-C Tank Farm (C Farm) leak causes and locations for the 100 series leaking tanks (241-C-101 and 241-C-105) identified in RPP-RPT-33418, Rev. 2, Hanford C-Farm Leak Inventory Assessments Report. This document satisfies the C Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  12. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect (OSTI)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  13. Hanford Single-Shell Tank Leak Causes and Locations - 241-T Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-05-15

    This document identifies 241-T Tank Farm (T Farm) leak causes and locations for the 100 series leaking tanks (241-T-106 and 241-T-111) identified in RPP-RPT-55084, Rev. 0, Hanford 241-T Farm Leak Inventory Assessment Report. This document satisfies the T Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  14. Hanford Single-Shell Tank Leak Causes and Locations - 241-U Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-12-02

    This document identifies 241-U Tank Farm (U Farm) leak causes and locations for the 100 series leaking tanks (241-U-104, 241-U-110, and 241-U-112) identified in RPP-RPT-50097, Rev. 0, Hanford 241-U Farm Leak Inventory Assessment Report. This document satisfies the U-Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  15. Hanford Single-Shell Tank Leak Causes and Locations - 241-A Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-09-10

    This document identifies 241-A Tank Farm (A Farm) leak causes and locations for the 100 series leaking tanks (241-A-104 and 241-A-105) identified in RPP-ENV-37956, Hanford A and AX Farm Leak Assessment Report. This document satisfies the A Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  16. Tank Waste Remediation System (TWRS) Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor

    SciTech Connect (OSTI)

    BASCHE, A.D.

    2000-04-22

    The purpose of the Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor is to provide a third-party quantitative and qualitative cost and schedule risk analysis of HNF-1946. The purpose of this Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor (TFC) is to document the results of the risk-based financial analysis of HNF-1946, Programmatic Baseline Summary for Phase 1 Privatization f o r the Tank Farm Contractor (Diediker 2000). This analysis was performed to evaluate how well the proposed baseline meets the U. S. Department of Energy, Office of River Protection (ORP) Letter OO-MSO-009, ''Contract NO. DE-AC06-99RL14047--The US Department of Energy, Office of River Protection (ORP) Mission Planning Guidance for Fiscal Year (FY) 2002--Revision 1'' (Short 2000). The letter requires a confidence level in the baseline schedule that is consistent with the Phase 1A readiness-to-proceed (RTP) assessment conducted in fiscal year (FY) 1998. Because the success of the project depends not only on the budget but also on the schedule, this risk analysis addresses both components of the baseline.

  17. Radiation Control in Tank farms discussion with HAB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control in Tank Farms discussion with HAB Health, Safety, Environment Protection Brandon Williams February 14, 2012 Timeline * 2-23-10, ORP initiated an assessment of WRPS Rad Program * 6-9-10, ORP issues RadCon assessment report. - 1 Concern, 3 Level 1 findings, 12 level 2 findings * 11-5-10, WRPS submits a CAP, which ORP approved. - Based on Root causes - An end point/effectiveness review was required * 5-27-11, DOE Office of Enforcement issues a Consent Order based upon ORP identified

  18. Completion of the Operational Closure of Tank 18F and Tank 19F at the Savannah River Site by Grouting - 13236

    SciTech Connect (OSTI)

    Tisler, Andrew J. [Savannah River Remediation, LLC, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Aiken, SC 29808 (United States)

    2013-07-01

    Radioactive waste is stored in underground waste tanks at the Savannah River Site (SRS). The low-level fraction of the waste is immobilized in a grout waste form, and the high level fraction is disposed of in a glass waste form. Once the waste is removed, the tanks are prepared for closure. Operational closure of the tanks consists of filling with grout for the purpose of chemically stabilizing residual material, filling the tank void space for long-term structural stability, and discouraging future intrusion. Two of the old-style single-shell tanks at the SRS have received regulatory approval confirming waste removal had been completed, and have been stabilized with grout as part of completing operational closure and removal from service. Consistent with the regulatory framework, two types of grout were used for the filling of Tanks 18F and 19F. Reducing grout was used to fill the entire volume of Tanks 18F and 19F (bulk fill grout) and a more flowable grout was used to fill equipment that was left in the tank (equipment fill grout). The reducing grout was added to the tanks using portable grout pumps filled from concrete trucks, and delivered the grout through slick lines to the center riser of each tank. Filling of the two tanks has been completed, and all equipment has been filled. The final capping of riser penetrations brings the operation closure of Tanks 18F and 19F to completion. (authors)

  19. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    SciTech Connect (OSTI)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  20. F-Tank Farm Performance Assessment Updates through the Special Analysis Process at Savannah River Site - 12169

    SciTech Connect (OSTI)

    Layton, Mark H.

    2012-07-01

    The F-Area Tank Farm (FTF) is owned by the U.S. Department of Energy and operated by Savannah River Remediation, LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF is in the north-central portion of the SRS and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. An FTF Performance Assessment (PA) was prepared to support the eventual closure of the FTF underground radioactive waste tanks and ancillary equipment. The PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for final closure of FTF. The FTank Farm is subject to a state industrial waste water permit and Federal Facility Agreement. Closure documentation will include an F-Tank Farm Closure Plan and tank-specific closure modules utilizing information from the performance assessment. For this reason, the State of South Carolina and the Environmental Protection Agency must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. The projected waste tank inventories in the FTF PA provide reasonably bounding FTF inventory projections while taking into account uncertainties in the effectiveness of future tank cleaning technologies. As waste is removed from the FTF waste tanks, the residual contaminants will be sampled and the remaining residual inventory is characterized. In this manner, tank specific data for the tank inventories at closure will be available to supplement the waste tank inventory projections currently used in the FTF PA. For FTF, the new tank specific data will

  1. Sampling and analysis plan for site assessment during the closure or replacement of nonradioactive underground storage tanks

    SciTech Connect (OSTI)

    Gitt, M.J.

    1990-08-01

    The Tank Management Program is responsible for closure or replacement of nonradioactive underground storage tanks throughout the Idaho National Engineering Laboratory (INEL). A Sampling and Analysis Plan (SAP) has been developed that complies with EPA regulations and with INEL Tank Removal Procedures for sampling activities associated with site assessment during these closure or replacement activities. The SAP will ensure that all data are valid, and it also will function as a Quality Assurance Project Plan. 18 refs., 8 figs., 11 tabs.

  2. AIR AND RADON PATHWAY MODELING FOR THE F-AREA TANK FARM

    SciTech Connect (OSTI)

    Dixon, K; Mark Phifer, M

    2007-09-17

    The F-Area Tank Farm (FTF) is located within F-Area in the General Separations Area (GSA) of the Savannah River Site (SRS) as seen in Figure 1. The GSA contains the F and H Area Separations Facilities, the S-Area Defense Waste Processing Facility, the Z-Area Saltstone Facility, and the E-Area Low-Level Waste Disposal Facilities. The FTF is a nearly rectangular shaped area and comprises approximately 20 acres, which is bounded by SRS coordinates N 76,604.5 to N 77,560.0 and E 52,435.0 to E 53,369.0. SRS is in the process of preparing a Performance Assessment (PA) to support FTF closure. As part of the PA process, an analysis was conducted to evaluate the potential magnitude of gaseous release of radionuclides from the FTF over the 100-year institutional control period and 10,000-year post-closure compliance period. Specifically, an air and radon pathways analysis has been conducted to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent

  3. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect (OSTI)

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  4. Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: • Reviewed the current site conditions, including the concentration and extent of contamination. • Implemented any corrective actions necessary to protect human health and the environment. • Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify

  5. ATMOSPHERIC DISPERSION COEFFICIENTS AND RADIOLOGICAL AND TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS

    SciTech Connect (OSTI)

    GRIGSBY KM

    2011-04-07

    This report presents the atmospheric dispersion coefficients used in Tank Farms safety analysis. The basis equations for calculating radiological and toxicological exposures are also included. In this revision, the time averaging for toxicological consequence evaluations is clarified based on a review of DOE complex guidance and a review of tank farm chemicals.

  6. Design review report: AN valve pit upgrades for Project W-314, tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Boes, K.A.

    1998-01-13

    This Design Review Report (DRR) documents the contractor design verification methodology and records associated with project W-314`s AN Valve Pit Upgrades design package. The DRR includes the documented comments and their respective dispositions for this design. Acceptance of the comment dispositions and closure of the review comments is indicated by the signatures of the participating reviewers. Project W-314, Tank Farm Restoration and Safe Operations, is a project within the Tank Waste Remediation System (TWRS) Tank Waste Retrieval Program. This project provides capital upgrades for the existing Hanford tank farms` waste transfer, instrumentation, ventilation, and electrical infrastructure systems. To support established TWRS programmatic objectives, the project is organized into two distinct phases. The initial focus of the project (i.e., Phase 1) is on waste transfer system upgrades needed to support the TWRS Privatization waste feed delivery system. Phase 2 of the project will provide upgrades to support resolution of regulatory compliance issues, improve tank infrastructure reliability, and reduce overall plant operating/maintenance costs. Within Phase 1 of the W-314 project, the waste transfer system upgrades are further broken down into six major packages which align with the project`s work breakdown structure. Each of these six sub-elements includes the design, procurement, and construction activities necessary to accomplish the specific tank farm upgrades contained within the package. The first package to be performed is the AN Valve Pit Upgrades package. The scope of the modifications includes new pit cover blocks, valve manifolds, leak detectors, transfer line connections (for future planned transfer lines), and special protective coating for the 241-AN-A and 241-AN-B valve pits.

  7. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect (OSTI)

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  8. Three-Dimensional Surface Geophysical Exploration of the 200-Series Tanks at the 241-C Tank Farm

    SciTech Connect (OSTI)

    Crook, N.; McNeill, M.; Dunham, Ralph; Glaser, Danney R.

    2014-02-26

    A surface geophysical exploration (SGE) survey using direct current electrical resistivity was conducted within the C Tank Farm in the vicinity of the 200-Series tanks at the Hanford Site near Richland, Washington. This survey was the second successful SGE survey to utilize the Geotection(TM)-180 Resistivity Monitoring System which facilitated a much larger survey size and faster data acquisition rate. The primary objective of the C Tank Farm SGE survey was to provide geophysical data and subsurface imaging results to support the Phase 2 RCRA Facility Investigation, as outlined in the Phase 2 RCRA Facility Investigation / Corrective Measures work plan RPP-PLAN-39114.

  9. High-level waste tank farm set point document

    SciTech Connect (OSTI)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  10. Science Road Map for Phase 2 of the Tank-Farm Vadose Zone Program

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Mann, Frederick M.

    2008-08-18

    Phase 1 of the Tank-Farm Vadose Zone Program (TFVZP) developed information on the nature and extent of vadose zone contamination in the tank farms through field studies, laboratory analyses and experiments, and historical data searches; assembled data and performed tank-farm risk analysis; and initiated interim corrective actions to lessen the impacts of tank leak contaminants. Pacific Northwest National Laboratory scientists and external collaborators at universities and U.S. Department of Energy user facilities sampled and analyzed contaminant plumes. These types of activities will continue during Phase 2 of the TFVZP to refine and expand scientific understanding of the subsurface beneath tank farms, especially of water movement, residual waste leaching, and contaminant transport.

  11. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F-1 APPENDIX F DIRECT AND INDIRECT IMPACTS: ASSESSMENT METHODOLOGY This appendix briefly describes the methods used to assess the potential direct and indirect effects of the alternatives in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Included in this appendix are discussions of general impact assessment methodologies for land resources, infrastructure, noise and vibration, air quality, geology and soils, water resources,

  12. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L-1 APPENDIX L GROUNDWATER FLOW FIELD DEVELOPMENT This appendix describes the development of the regional-scale groundwater flow field used for the groundwater modeling that supports assessment of the groundwater quality impacts discussed in the Draft and Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS), Chapters 5 and 6 and Appendices O and V. Included are an overview of groundwater flow at the site; the purpose

  13. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-1 APPENDIX P ECOLOGICAL RESOURCES AND RISK ANALYSIS This appendix presents the ecological resources (see Section P.1) at the Hanford Site and lists the plants and animals evaluated in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Potential impacts of both airborne releases during operations and groundwater discharges under the various alternatives are evaluated in this appendix. The purpose of the risk analysis is to compare

  14. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q-1 APPENDIX Q LONG-TERM HUMAN HEALTH DOSE AND RISK ANALYSIS This appendix presents methods and results for assessment of potential human health impacts due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long periods of time following stabilization or closure. Q.1 INTRODUCTION Adverse impacts on human health and the environment may occur over long periods of time following

  15. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R-1 APPENDIX R CUMULATIVE IMPACTS: ASSESSMENT METHODOLOGY This appendix describes the cumulative impacts methodology for the U.S. Department of Energy's Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. The appendix is organized into sections on (1) regulations and guidance, (2) previous studies, (3) history of land use at the Hanford Site and in surrounding regions, (4) future land use at the Hanford Site, (5) future land use in

  16. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPENDIX S WASTE INVENTORIES FOR CUMULATIVE IMPACT ANALYSES Integral to development of the inventory data set for the cumulative impact analyses presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington was identification of those waste sites potentially contributing to cumulative impacts on groundwater. Their identification involved two semi-independent, convergent processes: a Waste Information Data System screen and a

  17. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T-1 Cumulative Impacts Effects on the environment that result from the proposed action when added to other past, present, and reasonably foreseeable future actions, regardless of what agency or person undertakes such other actions (40 CFR 1508.7). APPENDIX T SUPPORTING INFORMATION FOR THE SHORT-TERM CUMULATIVE IMPACT ANALYSES This appendix contains the detailed tables that support the short-term cumulative impacts presented in Chapter 6 of this Tank Closure and Waste Management Environmental

  18. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-1 APPENDIX X SUPPLEMENT ANALYSIS OF THE DRAFT TANK CLOSURE AND WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FOR THE HANFORD SITE, RICHLAND, WASHINGTON Consistent with U.S. Department of Energy (DOE) Regulations (10 CFR 1021.314(c)(3)), "DOE shall make the determination and the related Supplement Analysis available to the public for information. Copies of the determination and Supplement Analysis shall be provided upon written request. DOE shall make copies available for inspection in

  19. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 1 PROPOSED ACTIONS: BACKGROUND, PURPOSE AND NEED Chapter 1 describes the background, purpose and need for the agency action presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS). Section 1.1 provides summary information on the size and distribution of the waste inventory at the Hanford Site (Hanford), the specific objectives of this TC & WM EIS, and the regulatory basis for the proposed

  20. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 3, Book 1 Section 1: Overview Section 2: Topics of Interest Section 3: Individual Commentors U.S. Department of Energy November 2012 1 Cover Sheet Responsible Agency: U.S. Department of Energy (DOE) Cooperating Agencies: Washington State Department of Ecology (Ecology) U.S. Environmental Protection Agency (EPA) Title: Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS) (DOE/EIS-0391) Location: Benton County,

  1. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots'' from the concrete vault, and the drilling

  2. Supplement analysis for the proposed upgrades to the tank farm ventilation, instrumentation, and electrical systems under Project W-314 in support of tank farm restoration and safe operations

    SciTech Connect (OSTI)

    1997-05-01

    The mission of the TWRS program is to store, treat, and immobilize highly radioactive tank waste in an environmentally sound, safe, and cost-effective manner. Within this program, Project W-314, Tank Farm Restoration and Safe Operations, has been established to provide upgrades in the areas of instrumentation and control, tank ventilation, waste transfer, and electrical distribution for existing tank farm facilities. Requirements for tank farm infrastructure upgrades to support safe storage were being developed under Project W-314 at the same time that the TWRS EIS alternative analysis was being performed. Project W-314 provides essential tank farm infrastructure upgrades to support continued safe storage of existing tank wastes until the wastes can be retrieved and disposed of through follow-on TWRS program efforts. Section4.0 provides a description of actions associated with Project W-314. The TWRS EIS analyzes the environmental consequences form the entire TWRS program, including actions similar to those described for Project W-314 as a part of continued tank farm operations. The TWRS EIS preferred alternative was developed to a conceptual level of detail to assess bounding impact areas. For this Supplement Analysis, in each of the potential impact areas for Project W-314, the proposed action was evaluated and compared to the TWRS EIS evaluation of the preferred alternative (Section 5.0). Qualitative and/or quantitative comparisons are then provided in this Supplement Analysis to support a determination on the need for additional National Environmental Policy Act (NEPA) analysis. Based on this Supplement Analysis, the potential impacts for Project W-314 would be small in comparison to and are bounded by the impacts assessed for the TWRS EIS preferred alternative, and therefore no additional NEPA analysis is required (Section 7.0).

  3. Hanford Single-Shell Tank Leak Causes and Locations - 241-SX Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-01-08

    This document identifies 241-SX Tank Farm (SX Farm) leak causes and locations for the 100 series leaking tanks (241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114, and 241-SX-115) identified in RPP-ENV-39658, Rev. 0, Hanford SX-Farm Leak Assessments Report. This document satisfies the SX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  4. HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  5. Preparation plan, preliminary safety documentation, tank farm restoration and safe operations, Project W-314

    SciTech Connect (OSTI)

    Kidder, R.J.

    1994-10-20

    This preparation plan is developed to establish planning for the preliminary safety documentation for Project W-314, {open_quotes}Tank Farm Restoration and Safe Operations.{close_quotes}

  6. Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013

    Broader source: Energy.gov [DOE]

    Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

  7. Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure

    SciTech Connect (OSTI)

    Boston, H. L.; Cruz, E. J.; Coleman, S. J.

    2002-02-25

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

  8. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect (OSTI)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  9. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 OVERVIEW OF THE PUBLIC COMMENT PROCESS 1-1 SECTION 1 OVERVIEW OF THE PUBLIC COMMENT PROCESS This section of this Comment-Response Document (CRD) describes the public comment process for the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM EIS) and the procedures used to respond to public comments. Section 1.1 summarizes the organization of this CRD. Section 1.2 discusses the public comment process and the means

  10. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ▪ Public Comments and DOE Responses 3-1053 Campaign A March 16, 2010 As a resident of the Pacifc Northwest, I oppose the "preferred alternative" to ship nuclear waste from other Department of Energy sites to Hanford, as outlined in the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (DOE/EIS--0391). I vehemently oppose the plan to add more radioactive waste to the Hanford site. Shipping this waste along Northwest

  11. Tank farm surveillance and waste status summary report for January 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-03-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  12. Tank Farm surveillance and waste status summary report for July 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-11-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vesseL integrity are contained within the report. This report provides data on each of the existing 177 Large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  13. Tank farm surveillance and waste status summary report for May 1994

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1994-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  14. Tank Farm surveillance and waste status summary report for February 1994

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1994-07-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is Intended to meet the requirement of US Department of Energy Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  15. Tank farm surveillance and waste status summary report for December 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1994-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special 9 surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, U.S. Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  16. T-TY Tank Farm Interim Surface Barrier Demonstration—Vadose Zone Monitoring Plan

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-09-27

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy’s Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

  17. Turning the Corner on Hanford Tank Waste Cleanup from Safe Storage to Closure

    SciTech Connect (OSTI)

    CRUZ, E.J.; BOSTON, H.L.

    2002-02-04

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the cornerstone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these Initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup. The goal of these efforts is to keep the RPP on a success path for completing cleanup of Hanford tank waste. While all parties are aggressively moving

  18. Tank Farm surveillance and waste status summary report for March 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are Contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding flank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  19. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    SciTech Connect (OSTI)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  20. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  1. Developmental test report, assessment of XT-70E percussion drill rig operation in tank farms

    SciTech Connect (OSTI)

    Dougherty, L.F., Westinghouse Hanford

    1996-09-10

    The following report documents the testing of the XT-70E percussion drill rig for use in the 241-SX Tank Farm. The test is necessary to support evaluation of the safety and authorization level of the proposed activity of installing up to three new drywells in the 241- SX Tank Farm. The proposed activity plans to install drywells by percussion drilling 7 inch O.D./6 inch I.D. pipe in close proximity of underground storage tanks and associated equipment. The load transmitted from the drill rig`s percussion hammer through the ground to the tank structure and equipment is not known and therefore testing is required to ensure the activity is safe and authorized.

  2. HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)

    SciTech Connect (OSTI)

    S. K. Evans

    2006-08-15

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

  3. Analysis of NaOH releases for Hanford tank farms

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-09-12

    The information contained in the canceled document is now located in the document: Consequence Analysis of a NaOH Solution Spray Release During Addition to Waste Tank, WHC-SD-WM-CN-065.

  4. Tank Farms Technical Safety Requirements [VOL 1 and 2

    SciTech Connect (OSTI)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  5. Closure Report for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-09-01

    Corrective Action Unit (CAU) 121 is identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008) as Storage Tanks and Miscellaneous Sites. CAU 121 consists of the following three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 12-01-01, Aboveground Storage Tank; (2) CAS 12-01-02, Aboveground Storage Tank; and (3) CAS 12-22-26, Drums; 2 AST's. CAU 121 closure activities were conducted according to the FFACO and the Streamlined Approach for Environmental Restoration Plan for CAU 121 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007). Field work took place from February through September 2008. Samples were collected to determine the path forward to close each site. Closure activities were completed as defined in the plan based on sample analytical results and site conditions. No contaminants of concern (COCs) were present at CAS 12-01-01; therefore, no further action was chosen as the corrective action alternative. As a best management practice (BMP), the empty aboveground storage tank (AST) was removed and disposed as sanitary waste. At CAS 12-01-02, polychlorinated biphenyls (PCBs) were present above the preliminary action level (PAL) in the soil beneath the AST that could possibly have originated from the AST contents. Therefore, PCBs were considered COCs, and the site was clean closed by excavating and disposing of soil containing PCBs. Approximately 5 cubic yards (yd{sup 3}) of soil were excavated and disposed as petroleum hydrocarbon PCB remediation waste, and approximately 13 yd3 of soil were excavated and disposed as PCB remediation waste. Cleanup samples were collected to confirm that the remaining soil did not contain PCBs above the PAL. Other compounds detected in the soil above PALs (i.e., total petroleum hydrocarbons [TPH] and semi-volatile organic compounds [SVOCs]) were

  6. TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    Winterholler, K.

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  7. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  8. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    SciTech Connect (OSTI)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  9. River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description

    SciTech Connect (OSTI)

    DOVALLE, O.R.

    1999-12-29

    This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

  10. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    SciTech Connect (OSTI)

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of the Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.

  11. Supporting document for the historical tank content estimate for SY-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  12. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  13. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  14. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  15. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Hays, W.H.

    1998-06-25

    The ``Tank Farm Restoration and Safe Operations`` (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization`s waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ``Test and Evaluation,`` which is derived from DOE Order 430.1, ``Life Cycle Asset Management.`` It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  16. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect (OSTI)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was

  17. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  18. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  19. C-104 Solid Phase Characterization of Sample 4C-13-1 From Tank 241-C-104 Closure Sampling Event

    SciTech Connect (OSTI)

    Cooke, Gary A.; Pestovich, John A.

    2013-06-12

    One solid grab sample from closure sampling in Riser 7 of tank 214-C-I04 (C-I04) was examined to determine the solid phases that were present. The sample was analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The purpose of this analysis was to see if the presence of hydrated phases could provide a possible explanation for the high moisture content obtained from thermogravimetric analysis (TGA).

  20. SURFACE GEOPHYSICAL EXPLORATION OF SX TANK FARM AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    SciTech Connect (OSTI)

    MYERS DA; RUCKER D; LEVIT M; CUBBAGE B; HENDERSON C

    2009-09-24

    This report presents the results of the background characterization of the cribs and trenches surrounding the SX tank farm prepared by HydroGEOPHYSICS Inc, Columbia Energy & Environmental Services Inc and Washington River Protection Solutions.

  1. 2006 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    SciTech Connect (OSTI)

    D. E. Shanklin

    2007-02-14

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report covers the time period from January 1 through December 31, 2006, and describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action (DOE/ID-10660) as described in the Group 1 Remedial Design/Remedial Action Work Plan (DOE/ID-10772).

  2. High Performance Zero-Bleed CLSM/Grout Mixes for High-Level Waste Tank Closures Strategic Research and Development - FY99 Report

    SciTech Connect (OSTI)

    Langton, C.A.

    2000-08-11

    The overall objective of this program, SRD-99-08, was to design and test suitable materials, which can be used to close high-level waste tanks at SRS. Fill materials can be designed to perform several functions including chemical stabilization and/or physical encapsulation of incidental waste so that the potential for transport of contaminants into the environment is reduced. Also they are needed to physically stabilize the void volume in the tanks to prevent/minimize future subsidence and inadvertent intrusion. The intent of this work was to develop a zero-bleed soil CLSM (ZBS-CLSM) and a zero-bleed concrete mix (ZBC) which meet the unique placement and stabilization/encapsulation requirements for high-level waste tank closures. These mixes in addition to the zero-bleed CLSM mixes formulated for closure of Tanks 17-F and 20-F provide design engineers with a suite of options for specifying materials for future tank closures.

  3. In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 4

    SciTech Connect (OSTI)

    1995-11-01

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 4) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.

  4. Operational Safety Requirements and Operating Specification Documentation compliance instrumentation matrices: 200 East Area Tank Farms

    SciTech Connect (OSTI)

    Story, D.R.

    1995-03-01

    This document contains information about matrices complied of instrumentation used to comply with the existing Operational Safety Requirements from Safety Analysis Reports and Operating, Specification Documentation requirements for 200 East Area Tank Farms. These matrices contain the primary instrumentation needed to comply with each OSR and/or OSD requirement as well as any backup instrumentation that may be used should the primary device be out of service. The referenced matrices are provided as attachments to this document.

  5. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm

    SciTech Connect (OSTI)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-10

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit.

  6. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  7. Record of Decision for Tank Farm Soil and INTEC Groundwater, Operable Unit 3-14

    SciTech Connect (OSTI)

    L. S. Cahn

    2007-05-16

    This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact to groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank farm soil and groundwater at INTEC. The response action selected in this ROD is necessary to protect the public health, welfare, or the environment from actual or threatened releases of hazardous substances into the environment. Such a release or threat of release may present an imminent and substantial endangerment to public health, welfare, or the environment. The remedial actions selected in this ROD are designed to reduce the potential threats to human health and the environment to acceptable levels. In addition, DOE-ID, EPA, and DEQ (the Agencies) have determined that no action is necessary under CERCLA to protect public health, welfare, or the environment at 16 sites located outside the tank farm boundary. The purposes of the selected remedy are to (1) contain contaminated soil as the radionuclides decay in place, (2) isolate current and future workers and biological receptors from contact with contaminated soil, and (3) restore the portion of Snake River Plain Aquifer contaminated by INTEC releases to Idaho Ground Water Quality

  8. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY2001 THRU CY2004

    SciTech Connect (OSTI)

    FAUROTE, J.M.

    2004-09-30

    Investigation into the meteorological influences on vapor incidents in the tank farms to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems.

  9. LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS

    SciTech Connect (OSTI)

    BAKER, D.M.

    2004-08-03

    This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

  10. Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1

    SciTech Connect (OSTI)

    Lenseigne, D. L.

    1997-09-15

    The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

  11. Final alternatives assessment: Other contamination sources: Interim response action, South Tank Farm Plume. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The South Tank Farm Plume (STFP) is located in the southern half of sections 1 and 2. It is a composite plume of C6H6, MEC6H5, XYLEN, DCPD, and BCHPD which is migrating from the area of tank 464A. Recent investigations have shown that the STFP is being biodegraded naturally and will not migrate into either Lake Ladora or Lower Derby Lake prior to implementation of the final remedy. Monitoring with the specific objectives of (1) Verifying the rate of migration and (2) Locating the leading edge of the plume over the time frame of the IRA is proposed as the preferred alternative action. Sections of this assessment provide information on: (1) Site description-history, previous investigations, hydrogeology, LNAPL plume; (2) IRA objectives and evaluation; and (3) Work plan of the IRA-well network, sampling frequency. Appendices include comments and responses.

  12. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    SciTech Connect (OSTI)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-04-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  13. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    SciTech Connect (OSTI)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  14. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-06-30

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Aboveground Storage Tanks” and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: · CAS 03-01-03, Aboveground Storage Tank · CAS 03-01-04, Tank · CAS 15-01-05, Aboveground Storage Tank · CAS 29-01-01, Hydrocarbon Stain

  15. EIS-0303: Savannah River Site High-Level Waste Tank Closure

    Broader source: Energy.gov [DOE]

    This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE...

  16. Grouting Operation to Lead to First SRS Waste Tank Closures Since...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... this accomplishment," said Terry Spears, Assistant Manager for Waste Disposition Project. ... Lindsey Graham (R-SC) unveil a marker to commemorate the closing of waste tanks at the ...

  17. Hanford tanks initiative work plan -- subsurface characterization to support the closure-readiness demonstration for tank 241-AX-104

    SciTech Connect (OSTI)

    Barnett, D.B.

    1996-09-27

    This document presents a plan for subsurface investigation near 241-AX-104 Single-Shell tank. Objectives of the investigation are soil sampling and analyses (physical and chemical), local stratigraphic correlation, groundwater background characterization, and geophysical surveys. The primary purpose of the investigation is to supply physical and hydraulic properties for numerical modeling of vadose zone flow and transport.

  18. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  19. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY08 Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2009-02-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to minimize the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint and serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier.

  20. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    SciTech Connect (OSTI)

    Reboul, S.

    2012-08-29

    The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from one another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF

  1. Ecological Data in Support of the Tank Closure and Waste Management Environmental Impact Statement. Part 2: Results of Spring 2007 Field Surveys

    SciTech Connect (OSTI)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2007-05-31

    This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.

  2. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect (OSTI)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energys goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (rebar). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective

  3. Secretary’s Honor Awards Recognize EM’s Tank Cleanup, Closure

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – The Energy Department honored EM for achievements in its work to close high-level radioactive waste tanks as part of the annual Secretarial Honor Awards Ceremony Monday.

  4. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  5. Fiscal Year 2009 Annual Report for Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater

    SciTech Connect (OSTI)

    Forsythe, Howard S.

    2010-04-10

    This annual report summarizes maintenance, monitoring, and inspection activities performed to implement the selected remedy for Waste Area Group 3, Operable Unit 3-14, Tank Farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Results from monitoring perched water and groundwater at the Idaho Nuclear Technology and Engineering Center are also presented.

  6. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  7. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections.

  8. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    SciTech Connect (OSTI)

    Wells, Beric E.

    2012-12-21

    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  9. Proposed decision document, other contamination sources, interim response action, South Tank Farm Plume

    SciTech Connect (OSTI)

    Not Available

    1990-08-23

    The South Tank Farm Plume (STFP) is listed under the 'Remediation of Other Contamination Sources' Interim Response Action (IRA) sites under the Final Technical Program Plan FY88-FY92 and the Federal Facility Agreement. The process and guidelines used to assess alternatives, produce this Proposed Decision Document, and implement this IRA are specified in and conducted in accordance with the Federal Facility Agreement. The purposes of the Proposed Decision Document for Other Contamination Sources IRAs are to: (a) state the objective of the IRA; (b) discuss Interim Response Action alternatives, if any, that were considered; (c) provide the rationale for the alternative selected; (d) present the final ARAR decision; (e) summarize the significant comments received regarding the IRA and responses to those comments; and (f) establish an IRA Deadline for completion of the IRA, if appropriate. Each of the above mentioned issues is addressed in this document.

  10. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect (OSTI)

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  11. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY10 Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2011-01-01

    The U.S. Department of Energy’s Office of River Protection has constructed interim surface barriers over a portion of the T and TY tank farms as part of the Interim Surface Barrier Demonstration Project. The interim surface barriers (hereafter referred to as the surface barriers or barriers) are designed to minimize the infiltration of precipitation into the soil zones containing radioactive contaminants and minimize the movement of the contaminants. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barriers at reducing soil moisture. Solar-powered systems were installed to continuously monitor soil water conditions at four locations in the T (i.e., instrument Nests TA, TB, TC, and TD) and the TY (i.e., instrument Nests TYA and TYB) Farms beneath the barriers and outside the barrier footprint as well as site meteorological conditions. Nests TA and TYA are placed in the area outside the barrier footprint and serve as controls, providing subsurface conditions outside the influence of the surface barriers. Nest TB provides subsurface measurements to assess surface-barrier edge effects. Nests TC, TD, and TYB are used to assess changes in soil-moisture conditions beneath the interim surface barriers.

  12. In-tank Precipitation Facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 1

    SciTech Connect (OSTI)

    1995-01-01

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies.

  13. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  14. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect (OSTI)

    TC MACKEY; JE DEIBLER; MW RINKER; KI JOHNSON; SP PILLI; NK KARRI; FG ABATT; KL STOOPS

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is the analysis of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. The reevaluation of the AP anchor bolts showed that (for a given temperature increase) the anchor shear load distribution did not change significantly from the initially higher stiffness to the new secant shear stiffness. Therefore, the forces and displacements of the other tank components such as the primary tanks stresses, secondary liner strains, and concrete tank forces and moments also did not change significantly. Consequently, the revised work in Revision 1 focused on the changes in the anchor bolt responses and a full reevaluation of all tank components was judged to be unnecessary.

  15. Transition from Consultation to Monitoring-NRC's Increasingly Focused Review of Factors Important to F-Area Tank Farm Facility Performance - 13153

    SciTech Connect (OSTI)

    Barr, Cynthia; Grossman, Christopher; Alexander, George; Parks, Leah; Fuhrmann, Mark; Shaffner, James; McKenney, Christepher; Pabalan, Roberto; Pickett, David; Dinwiddie, Cynthia

    2013-07-01

    In consultation with the NRC, DOE issued a waste determination for the F-Area Tank Farm (FTF) facility in March 2012. The FTF consists of 22 underground tanks, each 2.8 to 4.9 million liters in capacity, used to store liquid high-level waste generated as a result of spent fuel reprocessing. The waste determination concluded stabilized waste residuals and associated tanks and auxiliary components at the time of closure are not high-level and can be disposed of as LLW. Prior to issuance of the final waste determination, during the consultation phase, NRC staff reviewed and provided comments on DOE's revision 0 and revision 1 FTF PAs that supported the waste determination and produced a technical evaluation report documenting the results of its multi-year review in October 2011. Following issuance of the waste determination, NRC began to monitor DOE disposal actions to assess compliance with the performance objectives in 10 CFR Part 61, Subpart C. To facilitate its monitoring responsibilities, NRC developed a plan to monitor DOE disposal actions. NRC staff was challenged in developing a focused monitoring plan to ensure limited resources are spent in the most cost-effective manner practical. To address this challenge, NRC prioritized monitoring areas and factors in terms of risk significance and timing. This prioritization was informed by NRC staff's review of DOE's PA documentation, independent probabilistic modeling conducted by NRC staff, and NRC-sponsored research conducted by the Center for Nuclear Waste Regulatory Analyses in San Antonio, TX. (authors)

  16. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-07-31

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline.

  17. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management ...

  18. Savannah River Site Celebrates Historic Closure of Radioactive...

    Office of Environmental Management (EM)

    Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South ... Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE ...

  19. SURFACE GEOPHYSICAL EXPLORATION DEVELOPING NONINVASIVE TOOLS TO MONITOR PAST LEAKS AROUND HANFORD TANK FARMS

    SciTech Connect (OSTI)

    MYERS DA; RUCKER DF; LEVITT MT; CUBBAGE B; NOONAN GE; MCNEILL M; HENDERSON C

    2011-06-17

    A characterization program has been developed at Hanford to image past leaks in and around the underground storage tank facilities. The program is based on electrical resistivity, a geophysical technique that maps the distribution of electrical properties of the subsurface. The method was shown to be immediately successful in open areas devoid of underground metallic infrastructure, due to the large contrast in material properties between the highly saline waste and the dry sandy host environment. The results in these areas, confirmed by a limited number of boreholes, demonstrate a tendency for the lateral extent of the underground waste plume to remain within the approximate footprint of the disposal facility. In infrastructure-rich areas, such as tank farms, the conventional application of electrical resistivity using small point-source surface electrodes initially presented a challenge for the resistivity method. The method was then adapted to directly use the buried infrastructure as electrodes for both transmission of electrical current and measurements of voltage. For example, steel-cased wells that surround the tanks were used as long electrodes, which helped to avoid much of the infrastructure problems. Overcoming the drawbacks of the long electrode method has been the focus of our work over the past seven years. The drawbacks include low vertical resolution and limited lateral coverage. The lateral coverage issue has been improved by supplementing the long electrodes with surface electrodes in areas devoid of infrastructure. The vertical resolution has been increased by developing borehole electrode arrays that can fit within the small-diameter drive casing of a direct push rig. The evolution of the program has led to some exceptional advances in the application of geophysical methods, including logistical deployment of the technology in hazardous areas, development of parallel processing resistivity inversion algorithms, and adapting the processing tools

  20. Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work

    SciTech Connect (OSTI)

    D. E. Shanklin

    2007-07-25

    This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

  1. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE’s Waste Disposal/Tank Closure Efforts – 15436

    SciTech Connect (OSTI)

    Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Mallick, Pramod

    2015-01-27

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance

  2. Tank farm surveillance and waste status summary report for May 1993

    SciTech Connect (OSTI)

    Hanlon, B.M.

    1993-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations.

  3. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 1

    SciTech Connect (OSTI)

    Olsen, P.A.

    1994-09-21

    WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE N 5480.6 ``US Department of Energy Radiological Control Manual`` as it applies to programs at Hanford which are now overseen by WHC. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ``Hanford Site Radiological Control Manual`` and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of Tank Farms` workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  4. Process Options Description for Steam Reforming Flowsheet Model of INEEL Tank Farm Waste

    SciTech Connect (OSTI)

    Taylor, D.D.; Barnes, C.M.; Nichols, T.T.

    2002-05-21

    Technical information is provided herein that is required for development of a steady-state process simulation of a baseline steam reforming treatment train for Tank Farm waste at the Idaho National Engineering and Environmental Laboratory (INEEL). This document supercedes INEEL/EXT-2001-173, produced in FY2001 to support simulation of the direct vitrification treatment train which was the previous process baseline. A process block flow diagram for steam reforming is provided, together with a list of unit operations which constitute the process. A detailed description of each unit operation is given which includes its purpose, principal phenomena present, expected pressure and temperature ranges, key chemical species in the inlet steam, and the proposed manner in which the unit operation is to be modeled in the steady state process simulation. Models for the unit operations may be mechanistic (based on first principles), empirical (based solely on pilot test data without extrapolation) , or by correlations (based on extrapolative or statistical schemes applied to pilot test data). Composition data for the expected process feed streams is provided.

  5. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Allison Urban

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site.

  6. Waste analysis plan for confirmation or completion of Tank Farms backlog waste designation. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    On January 23, 1992, waste management problems in the Tank Farms were acknowledged through an Unusual Occurrence (UO) Report No. RL-WHC-TANKFARM-19920007 (DOE-RL 1992). On March 10, 1993, the Washington State Department of Ecology (Ecology) issued Order 93NM-201 (Order) to the US Department of Energy, Richland Operations Office (DOE-RL) and the Westinghouse Hanford Company (Westinghouse Hanford) asserting that ``DOE-RL and Westinghouse Hanford have failed to designate approximately 2,000 containers of solid waste in violation of WAC 173-303170(l)(a) and the procedures of WAC 173-303-070`` (Ecology 1993). On June 30, 1993, a Settlement Agreement and Order Thereon (Settlement Agreement) among Ecology, DOE-RL, and Westinghouse Hanford was approved by the Pollution Control Hearings Board (PCHB). Item 3 of the Settlement Agreement requires that DOE-RL and Westinghouse Hanford submit a waste analysis plan (WAP) for the waste subject to the Order by September 1, 1993 (PCHB 1993). This WAP satisfies the requirements of Item 3 of the Order as amended per the Settlement Agreement. Item 3 states: ``Within forty (40) calendar days of receipt of this Order, DOE-RL and WHC provide Ecology with a waste analysis plan for review and approval detailing the established criteria and procedures for waste inspection, segregation, sampling, designation, and repackaging of all containers reported in item No. 1. The report shall include sampling plan criteria for different contaminated media, i.e., soils, compactable waste, high-efficiency particular air (HEPA) filters, etc., and a schedule for completing the work within the time allowed under this Order.``

  7. Waste analysis plan for confirmation or completion of Tank Farms backlog waste designation

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This waste analysis plan satisfies the requirements of Item 3 of Ecology Order 93NM-201 as amended per the Settlement Agreement. Item 3 states: ``Within forty (40) calendar days of receipt of this Order, the US Department of Energy Richland Operations (DOE-RL) and Westinghouse Hanford Company (WHC) shall provide Ecology with a plan for review and approval detailing the established criteria and procedures for waste inspection, segregation, sampling, designation, and repackaging of all containers reported in item {number_sign}1. The report shall include sampling plan criteria for different contaminated media, i.e., soils, compactable waste, high-efficiency particular air (HEPA) filters, etc., and a schedule for completing the work within the time allowed under this Order.`` Item 3 was amended per the Settlement Agreement as follows: ``In addition to the waste inspection plans for the ``unknowns`` previously provided and currently being supplemented, DOE-RL and WHC shall provide a draft waste analysis plan for the containers reported in Item 1 of the Order to Ecology by July 12, 1993. A final, DOE-RL approved waste analysis plan shall be submitted to Ecology by September 1, 1993, for Ecology`s written approval by September 15, 1993.`` Containers covered by the Order, Settlement Agreement, and this waste analysis plan consist of all those reported under Item 1 of the Order, less any containers that have been identified in unusual occurrences reported by Tank Farms. This waste analysis plan describes the procedures that will be undertaken to confirm or to complete designation of the solid waste identified in the Order.

  8. Tank Farm Contractor Operation and Utilization Plan [SEC 1 Thru 3

    SciTech Connect (OSTI)

    KIRKBRIDE, R.A.

    1999-05-04

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect (OSTI)

    MACKEY TC; DEIBLER JE; JOHNSON KI; PILLI SP; KARRI NK; RINKER MW; ABATT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the SDT System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  10. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    SciTech Connect (OSTI)

    1997-01-01

    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  11. Corrective Action Decision Document/Closure Report for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 557, Spills and Tank Sites, in Areas 1, 3, 6, and 25 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order. Corrective Action Unit 557 comprises the following corrective action sites (CASs): • 01-25-02, Fuel Spill • 03-02-02, Area 3 Subdock UST • 06-99-10, Tar Spills • 25-25-18, Train Maintenance Bldg 3901 Spill Site The purpose of this Corrective Action Decision Document/Closure Report is to identify and provide the justification and documentation that supports the recommendation for closure of the CAU 557 CASs with no further corrective action. To achieve this, a corrective action investigation (CAI) was conducted from May 5 through November 24, 2008. The CAI activities were performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada.

  12. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    DOEs Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint and serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements (i

  13. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    SciTech Connect (OSTI)

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  14. Tank Farm Contractor Operation and Utilization Plan [SEC 1 Thru 3

    SciTech Connect (OSTI)

    KIRKBRIDE, R.A.

    2000-04-19

    This document updates the operating scenario and plans for feed delivery to BNFL Inc. of retrieval and waste from single-shell tanks, and the overall process flowsheets for Phases 1 and 2 of the River Protection Project. The plans and flowsheets are updated with the most recent guidance from ORP and tank-by-tank inventory. The results provide the technical basis for the RTP-2 planning effort. Sensitivity cases were run to evaluate the effect of changes on key parameters.

  15. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

  16. Independent Oversight Activity Report, Hanford Waste Tank Farms – October 28 – November 6, 2013

    Broader source: Energy.gov [DOE]

    Follow-up on Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks [HIAR-HANFORD-2013-10-28

  17. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS.

  18. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  19. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 2

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Quality Assurance Functional Area Requirements Identification Document (RID), addresses the programmatic requirements that ensure risks and environmental impacts are minimized, ensure safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the Tank Farm Facility and its operation. This RID incorporates guidance intended to provide Tank Farms management with the necessary requirements information to develop, upgrade, or assess the effectiveness of a Quality Assurance Program in the performance of organizational and functional activities. Quality Assurance is defined as all those planned and systematic actions necessary to provide adequate confidence that a facility, structure, system, or component will perform satisfactorily and safely in service. This document will provide the specific requirements to meet DNFSB recommendations and the guidance provided in DOE Order 5700.6C, utilizing industry codes, standards, regulatory guidelines, and industry good practices that have proven to be essential elements for an effective and efficient Quality Assurance Program as the nuclear industry has matured over the last thirty years.

  20. Descriptions and diagrams of the primary and annulus ventilation systems of the double-shell tank farms as of January 1988

    SciTech Connect (OSTI)

    Blackman, A.E.; Waters, E.D.

    1994-12-28

    This document is a compilation of information describing the ventilation systems of the Double-Shell Tank farms (214-AN, -AP, -AW, -AW, -AY, -AZ, and -SY). A general description of the primary tank and annulus ventilation systems is given along with specific information on the high efficiency particulate air (HEPA) filters, condensers, preheaters, exhaust fans, and piping. This information is considered to be current as of January 1988. 38 refs, 20 figs, 30 tabs.

  1. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  2. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  3. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    SciTech Connect (OSTI)

    Gee, Glendon W. ); Ward, Anderson L. ); Ritter, Jason C. ); Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-10-30

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001).

  4. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect (OSTI)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure

  5. Type A Investigation of Hanford Tank Farm on September 20, 2007- Memorandum

    Broader source: Energy.gov [DOE]

    On July 27, 2007, there was a spill of highly radioactive mixed waste from the S-102 Tank waste retrieval pumping system. The cause of the accident was an overpressure of a hose in the dilution line.

  6. Laboratory and Field Testing of High Performance-Zero Bleed CLSM Mixes for Future Tank Closure Applications

    SciTech Connect (OSTI)

    Langton, C.A.

    1998-10-26

    This work performed in this project is intended to support the SRS and DOE complex effort to close high-level waste tanks.

  7. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    SciTech Connect (OSTI)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  8. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  9. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

  10. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    SciTech Connect (OSTI)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

  11. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    SciTech Connect (OSTI)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-21

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  12. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    SciTech Connect (OSTI)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  13. Single-shell tank retrieval program mission analysis report

    SciTech Connect (OSTI)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  14. Sensitivity analysis of sluicing-leak parameters for the 241-AX tank farm

    SciTech Connect (OSTI)

    Davis, J.D., Westinghouse Hanford

    1996-12-12

    The scope of this work was to analyze the sensitivity of contaminant fluxes from the vadose zone to the water table, to several parameters. Some of these parameters are controllable. The results were evaluated with respect to their sensitivity to the following types of parameters: hydrostratigraphy and hydraulic properties; volume, duration, and source area of leakage; simultaneous leakage from multiple tanks; pre-existing leaks; barriers to infiltration of meteoric water; and contaminant concentrations and geochemistry.

  15. EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED SOLUBILITY CONTROLS ON RADIONUCLIDES IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF HIGH-LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Denham, M.; Millings, M.

    2012-08-28

    This document provides information specific to H-Area waste tanks that enables a flow and transport model with limited chemical capabilities to account for varying waste release from the tanks through time. The basis for varying waste release is solubilities of radionuclides that change as pore fluids passing through the waste change in composition. Pore fluid compositions in various stages were generated by simulations of tank grout degradation. The first part of the document describes simulations of the degradation of the reducing grout in post-closure tanks. These simulations assume flow is predominantly through a water saturated porous medium. The infiltrating fluid that reacts with the grout is assumed to be fluid that has passed through the closure cap and into the tank. The results are three stages of degradation referred to as Reduced Region II, Oxidized Region II, and Oxidized Region III. A reaction path model was used so that the transitions between each stage are noted by numbers of pore volumes of infiltrating fluid reacted. The number of pore volumes to each transition can then be converted to time within a flow and transport model. The bottoms of some tanks in H-Area are below the water table requiring a different conceptual model for grout degradation. For these simulations the reacting fluid was assumed to be 10% infiltrate through the closure cap and 90% groundwater. These simulations produce an additional four pore fluid compositions referred to as Conditions A through D and were intended to simulate varying degrees of groundwater influence. The most probable degradation path for the submerged tanks is Condition C to Condition D to Oxidized Region III and eventually to Condition A. Solubilities for Condition A are estimated in the text for use in sensitivity analyses if needed. However, the grout degradation simulations did not include sufficient pore volumes of infiltrating fluid for the grout to evolve to Condition A. Solubility controls for use

  16. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect (OSTI)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  17. Tank 241-U-204 tank characterization plan

    SciTech Connect (OSTI)

    Bell, K.E.

    1995-03-23

    This document is the tank characterization plan for Tank 241-U-204 located in the 200 Area Tank Farm on the Hanford Reservation in Richland, Washington. This plan describes Data Quality Objectives (DQO) and presents historical information and scheduled sampling events for tank 241-U-204.

  18. Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site

    Office of Environmental Management (EM)

    Enter Contractor name] FY 20XX [Enter year] Specific Plan for Workforce Restructuring: Involuntary Separation Program for the U.S. Department of Energy or National Nuclear Security Administration [Enter name of DOE or NNSA] Effective: [Enter Month and Year] May be exempt from public release under the Freedom of Information Act (5 USC 552) exemption number and category: #5, Privileged Information. Department of Energy review required before public release. Executive Summary During fiscal year

  19. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    SciTech Connect (OSTI)

    Joyner, William Scott; Knight, Mark A.

    2013-11-14

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

  20. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  1. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    SciTech Connect (OSTI)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  2. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    SciTech Connect (OSTI)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    2012-10-04

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes. The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron, calcium

  3. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  4. INITIAL SINGLE SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    SciTech Connect (OSTI)

    JARAYSI, M.N.

    2007-01-08

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  5. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect (OSTI)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  6. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  7. Mixing in SRS Closure Business Unit Applications

    SciTech Connect (OSTI)

    POIRIER, MICHAELR.

    2004-06-23

    The following equipment is commonly used to mix fluids: mechanical agitators, jets (pumps), shrouded axial impeller mixers (Flygt mixers), spargers, pulsed jet mixers, boiling, static mixers, falling films, liquid sprays, and thermal convection. This discussion will focus on mechanical agitators, jets, shrouded axial impeller mixers, spargers, and pulsed jet mixers, as these devices are most likely to be employed in Savannah River Site (SRS) Closure Business applications. In addressing mixing problems in the SRS Tank Farm, one must distinguish between different mixing objectives. These objectives include sludge mixing (e.g., Extended Sludge Processing), sludge retrieval (e.g., sludge transfers between tanks), heel retrieval (e.g., Tanks 18F and 19F), chemical reactions (e.g., oxalic acid neutralization) and salt dissolution. For example, one should not apply sludge mixing guidelines to heel removal applications. Mixing effectiveness is a function of both the mixing device (e.g., slurry pump, agitator, air sparger) and the properties of the material to be mixed (e.g., yield stress, viscosity, density, and particle size). The objective of this document is to provide background mixing knowledge for the SRS Closure Business Unit personnel and to provide general recommendations for mixing in SRS applications.

  8. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    SciTech Connect (OSTI)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will provide additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well

  9. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  10. SURFACE GEOPHYSICAL EXPLORATION OF B & BX & BY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    SciTech Connect (OSTI)

    MYERS DA

    2007-09-28

    This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around the site with large metallic subsurface debris or metallic infrastructure.

  11. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect (OSTI)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  12. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  13. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  14. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  15. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  16. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect (OSTI)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  17. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect (OSTI)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  18. Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 25-25-09, Spill H940825C (from UST 25-3101-1) • 25-25-14, Spill H940314E (from UST 25-3102-3) • 25-25-15, Spill H941020E (from UST 25-3152-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs

  19. Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Undrground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the April 1998, Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-25-09, Spill 960722-02 (from UST 12-B-3). This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a

  20. Addendum 2 to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 12-25-08, Spill H950524F (from UST 12-B-1) • 12-25-10, Spill H950919A (from UST 12-COMM-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be

  1. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    SciTech Connect (OSTI)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  2. First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 4

    Office of Environmental Management (EM)

    238 of 864 4.0 ANALYSIS OF PERFORMANCE The purpose of this section is to provide the technical basis for the analyses of performance for the closed HTF facilities over time based on the total remaining inventory. Section 4.1 provides an overview of the ICM comprised of three components: 1) closure cap, 2) vadose zone, and 3) saturated zone. Section 4.2 describes the ICM approach for contaminant release.  4.2.1 presents details of the source term release, the analyses performed to estimate the

  3. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    SciTech Connect (OSTI)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  4. Calcined solids storage facility closure study

    SciTech Connect (OSTI)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  5. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nuclear waste legacyapproximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. ...

  6. An Alternative Treatment of Trace Chemical Constituents in Calculated Chemical Source Terms for Hanford Tank Farms Safety Analsyes

    SciTech Connect (OSTI)

    Huckaby, James L.

    2006-09-26

    Hanford Site high-level radioactive waste tank accident analyses require chemical waste toxicity source terms to assess potential accident consequences. Recent reviews of the current methodology used to generate source terms and the need to periodically update the sources terms has brought scrutiny to the manner in which trace waste constituents are included in the source terms. This report examines the importance of trace constituents to the chemical waste source terms, which are calculated as sums of fractions (SOFs), and recommends three changes to the manner in which trace constituents are included in the calculation SOFs.

  7. High performance zero-bleed CLSM/grout mixes for high-level waste tank closures strategic research and development - FY98

    SciTech Connect (OSTI)

    Langton, C.A.

    2000-02-17

    The overall objective of this program, SRD-98-08, is to design and test suitable materials, which can be used to close high-level waste tanks at the Savannah River Site. Fill materials can be designed to perform several functions. They can be designed to chemically stabilize and/or physically encapsulate incidental waste so that the potential for transport of contaminants into the environment is reduced. Also they are needed to physically stabilize the void volume in the tanks to prevent/minimize future subsidence and inadvertent intrusion.

  8. Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This 3116 Basis Document addresses the disposal of stabilized residuals in the TFF, and the TFF tank system, and disposal of the tanks, vaults, and associated piping and ancillary equipment at...

  9. Hanford Single-Shell Tank Integrity Program

    Office of Environmental Management (EM)

    production reactors to irradiate fuel and produce plutonium. * Four large ... Type III 100 Series Tanks 241-BY, S, TX, and TY Farms, 48 Tanks 758,000 gallon capacity ...

  10. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-12-15

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and

  11. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks

    SciTech Connect (OSTI)

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-11-10

    ABSTRACT Several tanks at the Hanford Site (in Washington State, USA) belong to the first generation of underground nuclear waste storage tanks known as single shell tanks (SSTs). These tanks were constructed between 1943 and 1964 and are well beyond their design life. This article discusses the structural analysis approach and modeling challenges encountered during the ongoing analysis of record (AOR) for evaluating the structural integrity of the SSTs. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads of these tanks for proper estimation of creep strains and thermal degradation of material properties. The loads prescribed in the AOR models also include anticipated loads that these tanks may see during waste retrieval and closure. Due to uncertainty in a number of inputs to the models, sensitivity studies were conducted to address questions related to the boundary conditions to realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed soil surrounding the backfill. Because of the limited availability of data on the thermal and operating history for many of the individual tanks, some of the data was assumed or interpolated. However, the models developed for the analysis of record represent the bounding scenarios and include the loading conditions that the tanks were subjected to or anticipated. The modeling refinement techniques followed in the AOR resulted in conservative estimates for force and moment demands at various sections in the concrete tanks. This article discusses the modeling aspects related to Type-II and Type-III SSTs. The modeling techniques, methodology and evaluation criteria developed for

  12. EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED PLUTONIUM SOLUBILITY IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF TANK 18

    SciTech Connect (OSTI)

    Denham, M.

    2012-02-29

    This document updates the Eh-pH transitions from grout aging simulations and the plutonium waste release model of Denham (2007, Rev. 1) based on new data. New thermodynamic data for cementitious minerals are used for the grout simulations. Newer thermodynamic data, recommended by plutonium experts (Plutonium Solubility Peer Review Report, LA-UR-12-00079), are used to estimate solubilities of plutonium at various pore water compositions expected during grout aging. In addition, a new grout formula is used in the grout aging simulations and apparent solubilities of coprecipitated plutonium are estimated using data from analysis of Tank 18 residual waste. The conceptual model of waste release and the grout aging simulations are done in a manner similar to that of Denham (2007, Rev. 1). It is assumed that the pore fluid composition passing from the tank grout into the residual waste layer controls the solubility, and hence the waste release concentration of plutonium. Pore volumes of infiltrating fluid of an assumed composition are reacted with a hypothetical grout block using The Geochemist's Workbench{reg_sign} and changes in pore fluid chemistry correspond to the number of pore fluid volumes reacted. As in the earlier document, this results in three states of grout pore fluid composition throughout the simulation period that are termed Reduced Region II, Oxidized Region II, and Oxidized Region III. The one major difference from the earlier document is that pyrite is used to account for reducing capacity of the tank grout rather than pyrrhotite. This poises Eh at -0.47 volts during Reduced Region II. The major transitions in pore fluid composition are shown. Plutonium solubilities are estimated for discrete PuO2(am,hyd) particles and for plutonium coprecipitated with iron phases in the residual waste. Thermodynamic data for plutonium from the Nuclear Energy Agency are used to estimate the solubilities of the discrete particles for the three stages of pore fluid

  13. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    SciTech Connect (OSTI)

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    ) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). 5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP#8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12. Mix, LP#8-16 is recommended for inclusion in the specification for furnishing and delivering tank closure grout for Tanks 18-F and 19-F [Forty, 2011 c]. A shrinkage compensating variation of this mix, LP#16C, has not been fully developed and characterized at this time.

  14. Workers Complete Retrieval of 11th Single-Shell Tank at EM's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RICHLAND, Wash. - EM's Office of River Protection and its tank farm contractor, Washington ... An engineering evaluation of Tank C-110 determined the waste volume is below the ...

  15. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    SciTech Connect (OSTI)

    McLaughlin, T.J.

    1998-01-06

    This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

  16. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... He said the genesis of this cycle was in 2006 when C Farm demolition plans were approved ... Tank Waste Committee Page 9 Final Meeting Summary June 9, 2011 Chris said the pipeline ...

  17. Cementitious Grout for Closing SRS High Level Waste Tanks - 12315

    SciTech Connect (OSTI)

    Langton, C.A.; Stefanko, D.B.; Burns, H.H.; Waymer, J.; Mhyre, W.B.; Herbert, J.E.; Jolly, J.C. Jr.

    2012-07-01

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. Ancillary equipment abandoned in the tanks will also be filled to the extent practical. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and to be chemically reducing with a reduction potential (Eh) of -200 to -400. Grouts with this chemistry stabilize potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted to support the mass placement strategy developed by

  18. Duct closure

    DOE Patents [OSTI]

    Vowell, Kennison L.

    1987-01-01

    A closure for an inclined duct having an open upper end and defining downwardly extending passageway. The closure includes a cap for sealing engagement with the open upper end of the duct. Associated with the cap are an array of vertically aligned plug members, each of which has a cross-sectional area substantially conforming to the cross-sectional area of the passageway at least adjacent the upper end of the passageway. The plug members are interconnected in a manner to provide for free movement only in the plane in which the duct is inclined. The uppermost plug member is attached to the cap means and the cap means is in turn connected to a hoist means which is located directly over the open end of the duct.

  19. RCRA Assessment Plan for Single-Shell Tank Waste Management Area B-BX-BY at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.

    2006-09-29

    This document was prepared as a groundwater quality assessment plan revision for the single-shell tank systems in Waste Management Area B-BX-BY at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with 40 CFR Part 265, Subpart F. In FY 1996, the groundwater monitoring program was changed from detection-level indicator evaluation to a groundwater quality assessment program when elevated specific conductance in downgradient monitoring well 299 E33-32 was confirmed by verification sampling. During the course of the ensuing investigation, elevated technetium-99 and nitrate were observed above the drinking water standard at well 299-E33-41, a well located between 241-B and 241-BX Tank Farms. Earlier observations of the groundwater contamination and tank farm leak occurrences combined with a qualitative analysis of possible solutions, led to the conclusion that waste from the waste management area had entered the groundwater and were observed in this well. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  20. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  1. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

  2. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  3. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix

  4. Retrieval Of Hanford's Single Shell Nuclear Waste Tanks Using Technologies Foreign And Domestic

    SciTech Connect (OSTI)

    Eacker, J. A.; Thompson, W. T.; Gibbons, P. W.

    2003-02-26

    Significant progress has been made on the Hanford single shell tank (SST) retrieval projects since they were initiated as part of the modified Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) in 2000. Four of the 149 SSTs at the U.S. Department of Energy (DOE) Office of River Protection (ORP) Hanford facility are being retrieved to meet Tri-Party Agreement commitments. An additional tank is being retrieved to demonstrate an alternate technical approach. As the Hanford Site transitions to an accelerated retrieval and closure mission, these methods will be the baseline methods for SST retrieval. The five SSTs are located within the Hanford 200- Area tank farms operated by CH2M HILL Hanford Group (CH2M HILL) for ORP. Included in this paper will be discussions on the technologies selected for retrieval of each tank; electrical resistance technologies that are being evaluated for ex-tank leak detection and monitoring; and the Cold Test Training Facility (CTTF) used for testing of and training on the different retrieval systems.

  5. EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report

    SciTech Connect (OSTI)

    Rinker, M.W.; Bamberger, J.A.; Alberts, D.G.

    1997-09-01

    The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT).

  6. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  7. CLOSURE DEVICE

    DOE Patents [OSTI]

    Linzell, S.M.; Dorcy, D.J.

    1958-08-26

    A quick opening type of stuffing box employing two banks of rotatable shoes, each of which has a caraming action that forces a neoprene sealing surface against a pipe or rod where it passes through a wall is presented. A ring having a handle or wrench attached is placed eccentric to and between the two banks of shoes. Head bolts from the shoes fit into slots in this ring, which are so arranged that when the ring is rotated a quarter turn in one direction the shoes are thrust inwardly to cramp the neopnrene about the pipe, malting a tight seal. Moving the ring in the reverse direction moves the shoes outwardly and frees the pipe which then may be readily removed from the stuffing box. This device has particular application as a closure for the end of a coolant tube of a neutronic reactor.

  8. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 ... Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management ...

  9. Tank characterization technical sampling basis

    SciTech Connect (OSTI)

    Brown, T.M.

    1998-04-28

    Tank Characterization Technical Sampling Basis (this document) is the first step of an in place working process to plan characterization activities in an optimal manner. This document will be used to develop the revision of the Waste Information Requirements Document (WIRD) (Winkelman et al. 1997) and ultimately, to create sampling schedules. The revised WIRD will define all Characterization Project activities over the course of subsequent fiscal years 1999 through 2002. This document establishes priorities for sampling and characterization activities conducted under the Tank Waste Remediation System (TWRS) Tank Waste Characterization Project. The Tank Waste Characterization Project is designed to provide all TWRS programs with information describing the physical, chemical, and radiological properties of the contents of waste storage tanks at the Hanford Site. These tanks contain radioactive waste generated from the production of nuclear weapons materials at the Hanford Site. The waste composition varies from tank to tank because of the large number of chemical processes that were used when producing nuclear weapons materials over the years and because the wastes were mixed during efforts to better use tank storage space. The Tank Waste Characterization Project mission is to provide information and waste sample material necessary for TWRS to define and maintain safe interim storage and to process waste fractions into stable forms for ultimate disposal. This document integrates the information needed to address safety issues, regulatory requirements, and retrieval, treatment, and immobilization requirements. Characterization sampling to support tank farm operational needs is also discussed.

  10. Post-Closure Benefits: DOE Complex vs Closure Sites | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post-Closure Benefits Post-Closure Benefits: DOE Complex vs Closure Sites Post-Closure Benefits: DOE Complex vs Closure Sites Status of Contractor Pension and PRB Benefit ...

  11. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks

    SciTech Connect (OSTI)

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-03-01

    Abstract: A total of 149 tanks out of 177 at the Hanford Site (in Washington State, USA) belong to the first generation of underground nuclear waste storage tanks known as single shell tanks (SSTs). These tanks were constructed between 1943 and 1964 and are well beyond their design life. All the SSTs had been removed from active service by November 1980 and have been later interim stabilized by removing the pumpable liquids. The remaining waste in the tanks is in the form of salt cake and sludge awaiting r permanent disposal.. The evaluation of the structural integrity of these tanks is of utmost importance not only for the continued safe storage of the waste until waste retrieval and closure, but also to assure safe retrieval and closure operations. This article discusses the structural analysis approach, modeling challenges and issues encountered during the ongoing analysis of record (AOR) for evaluating the structural integrity of the SSTs. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. Several studies were conducted to refine the models in order to minimize modeling artifacts introduced by soil arching, boundary effects, concrete cracking, and concrete-soil interface behavior. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads of these tanks for proper estimation of creep strains and thermal degradation of material properties. The loads imposed in the AOR models also include anticipated loads that these tanks may see during waste retrieval and closure. Due to uncertainty in a number of inputs to the models, sensitivity studies were conducted to address questions related to the boundary conditions to realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed

  12. Hanford A and AX-Farm Leak Assessments Report: 241-A-103, 241-A-104, 241-A-105, 241-AX-102, 241-AX-104 and Unplanned Waste Releases

    SciTech Connect (OSTI)

    Johnson, Michael E.; Field, Jim G.

    2008-08-26

    This report summarizes information on historical waste loss events associated with tanks and piplines in the 241-A and 241-AX tank farms.

  13. The Hanford Story: Tank Waste Cleanup

    Broader source: Energy.gov [DOE]

    This fourth chapter of The Hanford Story explains how the DOE Office of River Protection will use the Waste Treatment Plant to treat the 56 million gallons of radioactive waste in the Tank Farms.

  14. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  15. Baseline Risk Assessment Supporting Closure at Waste Management Area C at the Hanford Site Washington

    SciTech Connect (OSTI)

    Singleton, Kristin M.

    2015-01-07

    contamination impacts on groundwater. Waste Management Area C is the first of the Hanford tank farms to begin the closure planning process. The current baseline risk assessment will provide valuable information for making corrective actions and closure decisions for WMA C, and will also support the planning for future tank farm soil investigation and baseline risk assessments.

  16. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect (OSTI)

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department

  17. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energys (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRCs ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the

  18. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of

  19. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  20. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Reidel, Stephen P.; Chamness, Mickie A.

    2007-12-14

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The purpose of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  1. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  2. Double-Shell Tank Construction: Extent of Condition

    SciTech Connect (OSTI)

    Venetz, Theodore J.; Gunter, Jason R.

    2014-05-13

    This presentation covers: quick recap of Hanford DSTs and the contribution of construction difficulties which led to the leak in tank AY-102; approach to Extent of Condition reviews; typical DST construction sequence; presentation of construction information resulting from extent of condition reviews of other DST farms with comparison to tank AY-102; and overall conclusion and impact of issues on the other DST tank farms.

  3. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  4. Appendices for the Basis Document

    Broader source: Energy.gov [DOE]

    INTEC Tank Farm Facility Closure Supporting Tables and Photographs - In support of the Tank Farm Facility (TFF) closure, inventory tables were generated for all tanks that have been cleaned up to...

  5. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank...

    Office of Scientific and Technical Information (OSTI)

    Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm Citation Details In-Document Search Title: Testing of Alternative Abrasives for Water-Jet Cutting at C Tank ...

  6. Safety evaluation for packaging transport of LSA-II liquids in MC-312 cargo tanks

    SciTech Connect (OSTI)

    Carlstrom, R.F.

    1996-09-11

    This safety evaluation for packaging authorizes the onsite transfer of bulk LSA-II radioactive liquids in the 222-S Laboratory Cargo Tank and Liquid Effluent Treatment Facility Cargo Tanks (which are U.S. Department of Transportation MC-312 specification cargo tanks) from their operating facilities to tank farm facilities.

  7. EM’s Office of River Protection Completes Waste Retrieval in Another Hanford Tank

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The EM Office of River Protection (ORP) and its tank operations contractor Washington River Protection Solutions completed waste retrieval activities in tank C-102, marking the 14th single-shell tank retrieved at C tank farm at the Hanford Site.

  8. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the Hanford Site has yielded a challenging nuclear waste legacy approximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. The mission of the U.S. Department of Energy (DOE) Office of River Protection (ORP) is

  9. Retrieval of the Tenth Single-Shell Tank Complete at Hanford: Third

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-Shell Tank Emptied at Hanford's C Farm This Year | Department of Energy the Tenth Single-Shell Tank Complete at Hanford: Third Single-Shell Tank Emptied at Hanford's C Farm This Year Retrieval of the Tenth Single-Shell Tank Complete at Hanford: Third Single-Shell Tank Emptied at Hanford's C Farm This Year September 17, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 Rob Roxburgh, WRPS 509-376-5188 RICHLAND - Washington River Protection Solutions (WRPS) has advised

  10. Tank Waste Retrieval Lessons Learned at the Hanford Site

    SciTech Connect (OSTI)

    Dodd, R.A.

    2008-07-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA

  11. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks - 12288

    SciTech Connect (OSTI)

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-07-01

    The single-shell tanks at the Hanford Site (in Washington State, USA) were constructed between 1943 and 1964 and are well beyond their estimated 25 year design life. This article discusses the structural analysis approach and modeling challenges encountered during the ongoing analysis of record for evaluating the structural integrity of the single-shell tanks. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads for proper estimation of creep strains and thermal degradation of material properties. The loads prescribed in the analysis of record models also include anticipated loads that may occur during waste retrieval and closure. Due to uncertainty in a number of modeling details, sensitivity studies were conducted to address questions related to boundary conditions that realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed soil surrounding the backfill. Because of the limited availability of data on the thermal and operating history for many of the individual tanks, some of the data was assumed or interpolated. However, the models developed for the analysis of record represent the bounding scenarios and include the loading conditions that the tanks were subjected to or anticipated. The modeling refinement techniques followed in the analysis of record resulted in conservative estimates for force and moment demands at various sections in the concrete tanks. This article discusses the modeling aspects related to Type-II and Type-III single-shell tanks. The modeling techniques, methodology and evaluation criteria developed for evaluating the structural integrity of single-shell tanks at Hanford are in general

  12. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    danl@nezperce.org Sobczyk, Stan NPT (208) 621-3751 stans@nezperce.org Lowman, Don NRC (301) 415-5452 Donald.lowman@nrc.gov Schwartzman, Adam NRC (301) 415-8172...

  13. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    davidb@nezperce.org Sobczyk, Stan NPT-ERWM 208-621-3751 stans@nezperce.org Lowman, Don NRC 301-415-5452 donald.lowman@nrc.com McKenney, Chris NRC 301-415-6663...

  14. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    378-3187 Dirk.a.dunning@state.or.us Arlt, Hans NRC (301) 415-5845 hda@urc.gov Lowman, Don NRC (301) 415-2026 Donald.Lowman@nrc.gov McKenney, Chris NRC (301) 415-6663...

  15. Tank Farms Regulator Perspective Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permit Modifications a graded approach Class 1 Example: fixing typos, increasing monitoring or sampling Permittee notifies Ecology and public. Class 1 prime - ...

  16. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    ... in WMA C for radionuclides, volatile chemicals, non-volatile chemicals, and polychlorinated biphenyls. These are the results from the Phase 1 and Phase 2 characterization efforts. ...

  17. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    Location: (c) Building Number: Structure, System, and Component NNA (SSC) and Building ... EDTECN: DRF UC: Cost Center: Charge Code: ... Office DQO data quality objective ...

  18. Tank farms compacted low-level waste

    SciTech Connect (OSTI)

    Hetzer, D.C.

    1997-08-01

    This report describes the process of Low-Level Waste (LLW) volume reduction by compaction. Also included is the data used for characterization of LLW destined for compaction. Scaling factors (ratios) are formed based on data contained in this report.

  19. Tank farms compacted low level waste

    SciTech Connect (OSTI)

    Waters, M.S., Westinghouse Hanford

    1996-07-01

    This report describes the process of Low Level Waste (LLW) volume reduction by compaction. Also included is the data used for characterization of LLW destined for compaction. Scaling factors (ratios) are formed based on data contained in this report.

  20. Tank Farms Regulator Perspective Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lyon Nuclear Waste Program Washington State Department of Ecology January 8, 2014 Status on C-110 Completion Ecology agrees that good efforts were made to remove as much waste...

  1. Tank Farms Regulator Perspective Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    document for the draft permit (for 2 nd comment period) Permittee and public may appeal - or - Permit becomes effective Why Two Comment Periods? The comment periods ...

  2. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    Summary Notes from 24- 25 February 2009 Office of River Protection Waste Management Area C Performance Assessment Input Meeting Attendees: Representatives from Department of...

  3. ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2010-02-02

    Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank

  4. Tank monitor and control system sensor acceptance test report

    SciTech Connect (OSTI)

    Willingham, W.E.

    1997-09-26

    This ATR documents the testing of sensors connected to the TMACS. This revision adds test data sheets for 241-TX farm and individual tanks 241-A-101, 241-AX-102 and 241-B-103.

  5. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  6. EA-0881: Tank 241-c-103 Organic Vapor and Liquid Characterization and Supporting Activities, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the...

  7. Hanford Story: Tank Waste Cleanup - Questions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Hanford Story Hanford Story: Tank Waste Cleanup - Questions The Hanford Story Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Why is the Waste Treatment Plant being built? Where did the waste in the Tank Farms come from? How many gallons of waste are contained in the tanks? Why is removing the waste from the tanks so challenging? What is the Mobile Arm Retrieval System (MARS)? How will the tank waste be delivered to the Waste Treatment Plant? The Waste

  8. Draft Closure Plan

    Office of Environmental Management (EM)

    ATTACHMENT G.15 TECHNICAL AREA 54, AREA L OUTDOOR CONTAINER STORAGE UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit December 2014 TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... iv LIST OF FIGURES ..................................................................................................................................... v 1.0 INTRODUCTION

  9. RCRA corrective action and closure

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators` interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE`s permitted facilities and interim status facilities.

  10. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  11. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  12. 241-AN Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect (OSTI)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  13. SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION

    SciTech Connect (OSTI)

    Bannochie, C.; Click, D.; Pareizs, J.

    2010-05-21

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  14. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  15. Dual Tank Fuel System

    SciTech Connect (OSTI)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  16. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  17. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  18. Achieving closure at Fernald

    SciTech Connect (OSTI)

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  19. Karen Avenue Wind Farm II (San Gorgonio Farms) | Open Energy...

    Open Energy Info (EERE)

    Farm II (San Gorgonio Farms) Jump to: navigation, search Name Karen Avenue Wind Farm II (San Gorgonio Farms) Facility Karen Avenue Windfarm II (San Gorgonio Farms) Sector Wind...

  20. Waste Tank Summary Report for Month ending March 31 2003

    SciTech Connect (OSTI)

    HANLON, B.M.

    2003-05-05

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  1. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 01/2004

    SciTech Connect (OSTI)

    HANLON, B.M.

    2004-03-02

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28,2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  2. EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)

    Broader source: Energy.gov [DOE]

    This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

  3. EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste...

    Office of Environmental Management (EM)

    Tank Waste Subcommittee Report for SRS Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS Hanford Tank Waste Review Environmental Management Advisory Board EM ...

  4. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  5. CHARACTERIZATION OF THE TANK 18F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Click, D.; Diprete, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 18F closure samples. Tank 18F slurry samples analyzed included the liquid and solid fractions derived from the 'as-received' slurry materials along with the floor scrape bottom Tank 18F wet solids. These samples were taken from Tank 18F in March 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 18F samples, the samples from the north quadrants of the tank were combined into one North Tank 18F Hemisphere sample and similarly the south quadrant samples were combined into one South Tank 18F Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 18F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the minimum detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 18F, some were not met due to spectral interferences. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  6. Analysis of vehicle fuel release resulting in waste tank fire

    SciTech Connect (OSTI)

    STEPHENS, L.S.

    2003-03-21

    This document reevaluates several aspects of the in-tank vehicle fuel fire/deflagration accident formally documented as an independent accident (representative accident [rep acc] 2). This reevaluation includes frequencies for the accidents and incorporates the behavior of gasoline and diesel fuel in more detail than previous analysis. This reevaluation uses data from RPP-13121, ''Historical Summary of Occurrences from the Tank Farm Safety Analysis Report'', Table B-1, ''Tank Farm Events, Off-Normal and Critiques,'' and B-2, ''Summary of Occurrences,'' and from the River Protection Project--Occurrence Reporting & Processing System (ORPS) reports as a basis for changing some of the conclusions formally reported in HNF-SD-WM-CN-037, ''Frequency Analysis of Vehicle Fuel Releases Resulting in Waste Tank Fire''. This calculation note will demonstrate that the in-tank vehicle fuel fire/deflagration accident event may be relocated to other, more bounding accidents.

  7. Program plan for the resolution of tank vapor issues

    SciTech Connect (OSTI)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

  8. wave tank

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tank - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. ROCKET PORT CLOSURE

    DOE Patents [OSTI]

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  10. Washington Closure Hanford: Cleanup Progress Along Hanford's...

    Broader source: Energy.gov (indexed) [DOE]

    Sax, President, Washington Closure Hanford. Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor More Documents & Publications 2014 Congressional Nuclear...

  11. Tank waste remediation system heat stress control program report, 1995

    SciTech Connect (OSTI)

    Carls, D.R.

    1995-09-28

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it`s inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  12. Tank characterization report for single-shell tank 241-C-109

    SciTech Connect (OSTI)

    DiCenso, A.T.; Amato, L.C.; Lambie, R.W.; Franklin, J.D.; Seymour, B.J.; Johnson, K.W.; Stevens, R.H.; Remund, K.M.; Sasaki, L.M.; Simpson, B.C.

    1995-02-01

    This document provides the characterization information and interprets the data for Single-Shell Tank 241-C-109. Single-Shell Tank 241-C-109 is an underground storage tank containing high-level radioactive waste. It is located in the C Tank Farm in the Hanford Site`s 200 East Area. The tank was sampled in September of 1992 to address the Ferrocyanide Unreviewed Safety Question. Analyses of tank waste were also performed to support Hanford Federal Facility Agreement and Consent Order Milestone M-44-08. Tank 241-C-109 went into service in 1946 and received first-cycle decontamination waste from bismuth phosphate process operations at B Plant in 1948. Other waste types added that are expected to contribute to the current contents include ferrocyanide scavenging waste and Strontium Semiworks waste. It is the last tank in a cascade with Tanks 241-C-107 and 241-C-108. The tank has a capacity of 2,010 kL (530 kgal) and currently contains 250 kL (66 kgal) of waste, existing primarily of sludge. Approximately 9.15 kL (4 kgal) of supernate remain. The sludge is heterogeneous, with significantly different chemical compositions depending on waste depth. The major waste constituents include aluminum, calcium, iron, nickel, nitrate, nitrite, phosphate, sodium, sulfate and uranium. The major radionuclides present are Cesium 137 and Strontium 90. The results of this characterization indicate that the waste in this tank is adequately described in the Dangerous Waste Permit Application of the Single-Shell Tank System.

  13. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    SciTech Connect (OSTI)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-06-03

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.

  14. Tank waste remediation system dangerous waste training plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-05-13

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  15. Microsoft Word - TOC_Section_J.12_Model.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract (MSC), River Corridor Closure Contract (RCCC) and Tank Operations Contract (TOC)Tank Farm Management Contract (TFC) contractors to assign existing subcontracts upon...

  16. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cadmium Strontium (stable) Thorium-232 Carbon tetrachloride Total uranium ... 5 b Gadolinium-152 5 c Potassium-40 15 b Thorium-232 3,200 b Strontium-90 15 b Uranium-238 ...

  17. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... radionuclide concentrations from other sources, the concentrations of technetium-99 and ... - 2.0010 -2 Cesium-137 3.70 1.5510 4 Thorium-232 1.4010 -1 1.03 Uranium isotopes ...

  18. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Section 4 References 4-7 10 CFR 830, U.S. Department of Energy, "Nuclear Safety Management." 10 CFR 835, U.S. Department of Energy, "Occupational Radiation Protection." 10 CFR ...

  19. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 5-797, 5-800, 5-802, 5-804, 5-810-5-812, 5-815-5-819, 5-821- 5-827, 5-829-5-831, 5-842-5-848, ... 7-36 Code of Federal Regulations (CFR), 1-2, 1-4, 1-7, 1-18, 1-25, 1-26, ...

  20. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 3. 3. Certified Certified by: by: Wzk"J Wz Signature Signature Robert Robert L. L. Erikson Erikson Name Name Principal Principal Title Title Columbia Columbia Environmental...

  1. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and decommissioning of the Fast Flux Test Facility (FFTF), ... Bulk sodium inventories would be processed at Hanford for ... Site and the cocooned reactors transported to the ...

  2. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Eight Surplus Production Reactors at the Hanford Site, ... Assessment, Sodium Residuals ReactionRemoval and Other Deactivation Work Activities, Fast Flux Test Facility ...

  3. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The CEQ recommends that poverty thresholds be used to identify low-income individuals (CEQ ... identified with the annual statistical poverty thresholds from the Bureau of Census' ...

  4. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... During the Manhattan Project and Cold War era, numerous nuclear reactors and associated reprocessing facilities were constructed at Hanford. The reactor sites cover over 930 ...

  5. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Education: B.S., Environmental Science; Minor: Geology, Eastern Washington University B.S., Biology; Minor: Urban and Regional Planning, Eastern Washington University ...

  6. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    noise, air quality, geology and soils, water resources, ecological resources, cultural resources, socioeconomics (e.g., employment, regional demographics, housing and ...

  7. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Bunker pipeline No, if it is a petroleum-carrying pipeline. ... (stable) Thorium-232 Carbon tetrachloride Total uranium ... NO 2 nitrogen dioxide; WIDSWaste Information Data System. ...

  8. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... tritium, carbon dioxide, nitrate, mercury, and ... 1 8.9910 5 Key: Ccarbon; Cocobalt; Momolybdenum; ... and "disposition maps" were developed for the EM ...

  9. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with a specific identification number (comment document number) in chronologic order. ... Washington February 23, 2010 65 22 421 - 442 Eugene, Oregon March 1, 2010 75 30 ...

  10. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... not preclude the use of rare or otherwise valuable ... would reduce the demand for clean soil and sand, ... Solid waste such as office paper, metal cans, and plastic ...

  11. EIS-0391: Hanford Tank Closure and Waste Management, Richland...

    Broader source: Energy.gov (indexed) [DOE]

    decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal of Hanford's waste and other DOE sites' low-level and mixed low-level radioactive waste. ...

  12. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NEPA National Environmental Policy Act NFPA National Fire Protection Association NI ... that are less than 0.001 or greater than 9,999 are generally expressed in scientific ...

  13. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (100-42-5) 15.46 2 QH Tetrahydrofuran (109-99-9) 2.98 2 QH Uranium oxide (1344-57-6) ... 2 QH Zirconium (7440-67-7) 1,168.4 2 H a NFPA health hazard ratings were obtained from ...

  14. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secondary-waste-form performance High-level radioactive waste (HLW) disposition (Yucca Mountain issue) Mitigation Exclusion of greater-than-Class C (GTCC) waste in cumulative ...

  15. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    justice, waste management, and spent nuclear fuel. 3.1 APPROACH TO DEFINING THE AFFECTED ... machinery, photographs and graphs, publications, control room panels, and models. ...

  16. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... instillation of solar panels and wind turbines on the ... The disposal of the spent fuel will always be a hazardous ... of waste generated from nuclear energy production, the ...

  17. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... included air, soil, and Columbia River surface water. ... and estimation of atmospheric concentrations and ... fuel use (for diesel generators and boilers, for ...

  18. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site, Richland, Washington (Final TC & WM EIS) U.S. Department of Energy (DOE) Foreword DOE appreciates the efforts of the Washington State Department of Ecology (Ecology)...

  19. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Subcommittee on Energy and Environment The ... Laboratory Oversight Program Susan Burke, Idaho ... Graw League of Oregon Cities Jane Cummins Leon Sproule ...

  20. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and locations of the cities and counties surrounding Hanford) ... line projects Wind energy projects Pipeline ... it existing cleanup program at Hanford by ...

  1. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Issue: Preserve FFTF for potential future uses such as medical isotope production. Response: FFTF is not being considered for medical isotope production at this time. DOE has ...

  2. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... under CERCLA. The EPA"s comments on the preliminary final EIS addressed the relationship of this EIS to permitting requirements of Ecology"s authorized dangerous waste program. ...

  3. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and low-activity waste (LAW) fractions. HLW would be treated in the WTP and stored at Hanford until disposition decisions are made and implemented. LAW would be treated in the ...

  4. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Post Office Box 1178 Richland, WA 99352 Attention: TC & WM EIS Email: TC&WMEIS@saic.com Fax: 1-888-785-2865 Telephone and voicemail: 1-888-829-6347 For general information ...

  5. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... as shown in Table 5-192; toluene (339); formaldehyde (80); and benzene (17) (SAIC 2011a). ... and 3, which are included, respectively, in Alternative Combinations 2 and 3 (SAIC 2011a). ...

  6. Final Tank Closure and Waste Management Environmental Impact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Mary Beth Burandt, Document Manager U.S. Department of Energy, Office of River Protection P.O. Box 450, Mail Stop H6-60 Richland, WA 99352 TC&WMEIS@saic.com Fax: 1-888-785-2865 - ...

  7. Translation--Final Tank Closure and Waste Management Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... de Proteccin de Ro P.O. Box 450, Mail Stop H6-60 Richland, WA 99352 TC&WMEIS@saic.com Fax: 509-376-7701 - Telfono: 888-829-6347 Para ver documentos relacionados con el ...

  8. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the potential long-term environmental and human health impacts associated with ... 3 above de minimis values. 5.2.2 Human Health Impacts Potential human health ...

  9. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... noise impacts on residential developments and other ... and applying protective coverings to denuded areas during ... Low-discharge sites may have a longer window of opportunity ...

  10. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Liquid waste sources could include process condensates, scrubber wastes, spent reagents ... fly ash, slag, and stabilizing chemicals if the dry blend mixture cannot be procured. ...

  11. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For example, the roadmapping effort focused on the scrubberoffgas treatment process, ... the mixing plant, and dry-grout mix components would be trucked in from offsite suppliers. ...

  12. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Liquid-waste sources could include process condensates, scrubber wastes, spent reagents ... It uses the moisture retention capability of the relatively dry soils above the ...

  13. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Source Categories 40 CFR 63 Washington Clean Air Act RCW 70.94 Washington State Air Pollution Control Regulations WAC 173-400 through 173-495 -Ambient Air Quality Standards and ...

  14. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Richland, Washington F-6 F.4 AIR QUALITY F.4.1 Description of Affected Resources Air pollution refers to the direct or indirect introduction of any substance into the air that ...

  15. Rethinking the Hanford Tank Waste Program

    SciTech Connect (OSTI)

    Parker, F. L.; Clark, D. E.; Morcos, N.

    2002-02-26

    The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

  16. Calculation notes that support accident scenario and consequence of the in-tank fuel fire/deflageration

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-09-09

    The purpose of this calculation note is to provide the basis for In-Tank Fuel fire/Deflageration consequence for the Tank Farm Safety Analysis Report (FSAR). Tank Fuel Fire/Deflageration scenario is developed and details and description of the analysis methods are provided.

  17. Calculation notes that support accident scenario and consequence of the in-tank fuel fire/deflagration

    SciTech Connect (OSTI)

    Crowe, R.D.

    1996-09-27

    The purpose of this calculation note is to provide the basis for In-Tank Fuel Fire/Deflageration consequence for the Tank Farm Safety Analysis Report (FSAR). Tank Fuel Fire/Deflageration scenario is developed and details and description of the analysis methods are provided.

  18. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  19. Status of tank 241-SY-101 data analyses

    SciTech Connect (OSTI)

    Anantatmula, R.P.

    1992-09-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. The safety issue involves the production, accumulation, and periodic release from these tanks of flammable gases in concentrations exceeding the lower flammability limits. This document deals primarily with tank 241-SY-101 from the SY Tank Farm. The flammable gas condition has existed for this tank since the tank was first filled in the time period from 1977 to 1980. During a general review of waste tank chemical stability in 1988--1989, this situation was re-examined and, in March 1990, the condition was declared to be an unreviewed safety question. Tank 241-SY-101 was placed under special operating restrictions, and a program of investigation was begun to evaluate the condition and determine appropriate courses of action. This report summarizes the data that have become available on tank 241-SY-101 since it was declared as an unreviewed safety question and updates the information reported in an earlier document (WHC-EP-0517). The report provides a technical basis for use in the evaluation of safety risks of the tank and subsequent resolution of the unreviewed safety question.

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kemp, Acting Federal Project Director April 15, 2015 C-Farm Closure 2 subsequent migration of mobile tank waste contaminants after leak event C Farm Conceptual Drawing...

  1. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  2. Life-cycle cost analysis 200-West Weather Enclosure: Multi-function Waste Tank Facility

    SciTech Connect (OSTI)

    Umphrey, M.R.

    1995-01-16

    The Multi-Function Waste Tank Facility (MWTF)will provide environmentally safe and acceptable storage capacity for handling wastes resulting from the remediation of existing single-shell and double-shell tanks on the Hanford Site. The MWTF will construct two tank farm facilities at two separate locations. A four-tank complex will be constructed in the 200-East Area of the Hanford Site; a two-tank complex will be constructed in the 200-West Area. This report documents the results of a life-cycle cost analysis performed by ICF Kaiser Hanford Company (ICF KH) for the Weather Enclosure proposed to be constructed over the 200-West tanks. Currently, all tank farm operations on the Hanford Site are conducted in an open environment, with weather often affecting tank farm maintenance activities. The Weather Enclosure is being proposed to allow year-round tank farm operation and maintenance activities unconstrained by weather conditions. Elimination of weather-related delays at the MWTF and associated facilities will reduce operational costs. The life-cycle cost analysis contained in this report analyzes potential cost savings based on historical weather information, operational and maintenance costs, construction cost estimates, and other various assumptions.

  3. Evaluation of potential releases from single-shell tanks

    SciTech Connect (OSTI)

    Ramsdell, J.V. Jr.

    1992-03-01

    Potential toxic chemical concentrations in the air near vents of single-shell tanks have been evaluated using three scenarios. The first scenario duplicates the conditions existing the morning of January 28, 1992, when several workers reported exposure to toxic or irritating gases near the BX and BY tank farms in the 200-East Area at Hanford. The results of this scenario indicate that it is unlikely that a tank in either tank farm could have been the source of the gases associated with the incident. In the other two scenarios, maximum potential concentrations under worst-cast and bounding conditions were examined. The results of theses scenario show that air concentrations of all toxic gases reported to be in the tanks fall below their time-weighted average, threshold limiting values within 5 m of tank vents under worst-case conditions involving a restricted air flow to the tanks. When unrestricted air flow to the tanks and worst-case conditions are assumed, the maximum gas concentrations fall below time-weighted average, threshold limiting values within 15 m of vents.

  4. Nevada Test Site closure program

    SciTech Connect (OSTI)

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.

  5. Calculation notes that support accident scenario and consequence determination of a waste tank criticality

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-08-02

    The purpose of this calculation note is to provide the basis forcriticality consequences for the Tank Farm Safety Analysis Report(FSAR). Criticality scenario is developed and details and description of the analysis methods are provided.

  6. Calculation notes that support accident scenario and consequence determination of a waste tank criticality

    SciTech Connect (OSTI)

    Crowe, R.D.

    1996-09-27

    The purpose of this calculation note is to provide the basis for criticality consequences for the Tank Farm Safety Analysis Report (FSAR). Criticality scenario is developed and details and description of the analysis methods are provided.

  7. Washington Closure Hanford - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM...

  8. F tank draft basis determination press release 092910 _2_....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR IMMEDIATE RELEASE Jim Giusti, DOE-SRS, (803)952-7697 Friday, October 01, 2010 james-r.giusti@srs.gov DOE Seeks Comment on Waste Determination for F-Tank Farm The Department of Energy (DOE) Savannah River Operations Office (SR) is seeking public comment on a draft waste determination for wastes from reprocessing of spent nuclear fuel from F-Tank Farm (FTF) at the Savannah River Site. Secretary of Energy, in consultation with the U.S. Nuclear Regulatory Commission, has authority under Section

  9. System for closure of a physical anomaly

    DOE Patents [OSTI]

    Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S

    2014-11-11

    Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.

  10. HANFORD TANK CLEANUP UPDATE

    SciTech Connect (OSTI)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  11. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    SciTech Connect (OSTI)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.

  12. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    SciTech Connect (OSTI)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

  13. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  14. T Farm Interim Surface Barrier Vadose Zone Monitoring FY08 Fourth-Quarter Status Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.

    2008-09-30

    This report briefly summarizes the system status and monitoring results of Nests A, B, C and D and the Meteorological Station in the T Tank Farm from July to September, 2008.

  15. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  16. Functional design criteria, Project W-211, Initial Tank Retrieval Systems. Revision 1

    SciTech Connect (OSTI)

    Rieck, C.A.

    1995-02-07

    This document provides the technical baseline for retrieval of waste from ten double-shell tanks in the SY, AN, AP, AW, AY, and AZ tank farms. In order to retrieve waste from these tanks, systems are needed to mix the sludge with the supernate and pump the waste mixture from the tank. For 101-SY, the existing mitigation pump will be used to mix the waste and Project W-211 will provide for waste removal. The retrieval scope for the other nine tanks includes both the waste mixing and removal functions.

  17. Chemical information on tank supernatants, Cs adsorption from tank liquids onto Hanford sediments, and field observations of Cs migration from past tank leaks

    SciTech Connect (OSTI)

    Serne, R.J.; Zachara, J.M.; Burke, D.S.

    1998-01-01

    Borehole gamma-logging profiles beneath the SX-Tank Farm suggest that contamination from Cs-137 extends to at least a depth of 40 m (130 ft), and may extend even deeper. What is presently not known is the pathway that Cs-137 has taken to reach these depths. In this report we provide an analysis of the chemistry of tank supernates with emphasis on the REDOX waste stream disposed in SX tanks, Cs chemistry in aqueous solutions and adsorption properties onto minerals, available data on Cs adsorption onto Hanford sediments, and information on Cs migration from other Hanford tank leaks that have been studied. The data in this report was used to help guide the vadose zone transport analysis of the SX Tank Farm presented in a companion report. The goal of the vadose zone transport modelling is to attempt to explain the depth and extent of the Cs-137 plume under the SX Tank farm, specifically in the vicinity of the greatest leak, near the SX-109 Tank as inferred from the gamma logs (DOE 1996). In solution Cs is present as the monovalent cation and shows very little tendency to form aqueous complexes with inorganic or organic ligands. Cs is expected to adsorb primarily onto selective minerals that have unique adsorption sites. The small Cs{sup +} ion is accommodated on these frayed edge and interlayer sites. Adsorption within the interlayers often leads to collapse of the layers such that the Cs{sup +} ion is effectively trapped and not readily exchangeable by all other common cations. The degree of adsorption is thus only moderately dependent on the types and high concentrations of other cations in leaking tank liquors.

  18. Laboratory Delayed Opening, Closure or Emergency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Closure Laboratory Delayed Opening, Closure or Emergency What to do and where to get information about delays, closures and emergencies Contact (505) 667-4451, Option 5 Email Los Alamos National Laboratory may at times experience a work delay or closure due to inclement weather or unexpected Laboratory emergencies. In the event of a delay, closure or emergency, Laboratory new hires should call the following number to receive information regarding the delay or closure: Lab Update Hotline:

  19. Performance requirements for the double-shell tank system: Phase 1

    SciTech Connect (OSTI)

    Claghorn, R.D.

    1998-03-05

    This document establishes performance requirements for the double-shell tank system. These requirements, in turn, will be incorporated in the System Specification for the Double-Shell Tank System (Grenard and Claghorn 1998). This version of the document establishes requirements that are applicable to the first phase (Phase 1) of the Tank Waste Remediation System (TWRS) mission described in the TWRS Mission Analysis Report (Acree 1998). It does not specify requirements for either the Phase 2 mission or the double-shell tank system closure period.

  20. Sampling and Analysis Plan for Old Solvent Tanks S1-S22 to Address Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Filpus-Luyckx, P.E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-10-02

    The Environmental Restoration Department (ERD) assumed custody of the Old Solvent Tanks (Tanks S1-S22) in the Old Radioactive Waste Burial Ground (ORWBG, 643-E) from Waste Management in January 1991. The purpose of this Sampling and Analysis Plan (SAP) is to collect and analyze samples of the sludge solids, organic and aqueous phases to determine the level of radioactivity, the isotopic constituents, the specific gravity, and other physical parameters. These data must be obtained to evaluate the process safety of remediating the tanks, to determine the disposal path for the material in the tanks, and to determine the most viable closure technology for the tanks.