National Library of Energy BETA

Sample records for tank closure alternative

  1. Tank Closure

    Office of Environmental Management (EM)

    of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act Three agency Federal...

  2. Tank Closure

    Office of Environmental Management (EM)

    Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2  Overview and Status of SRS Tank Closure Program  Issues/Challenges  Communications  Schedule Performance  Ceasing Waste Removal  Compliance with SC Water Protection Standards  Questions? Topics 3 Overview of SRS Tank Closure Program  Two Tank Farms - F Area and H Area  Permitted by SC as

  3. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... under the various Tank Closure, FFTF Decommissioning, and Waste Management alternatives. ... special status species that may occur at Hanford (see Chapter 3, Section 3.2.7.4). ...

  4. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decommissioning tasks under each of the alternatives presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington....

  5. SRS Reaches Significant Milestone with Waste Tank Closure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SRS Reaches Significant Milestone with Waste Tank Closure SRS Reaches Significant Milestone with Waste Tank Closure Addthis Description SRS Reaches Significant Milestone with Waste Tank Closure

  6. RECENT PROGRESS IN DOE WASTE TANK CLOSURE

    SciTech Connect (OSTI)

    Langton, C

    2008-02-01

    The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

  7. Environmental Assessment for the Accelerated Tank Closure Demonstration Project

    SciTech Connect (OSTI)

    N /A

    2003-06-16

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) needs to collect engineering and technical information on (1) the physical response and behavior of a Phase I grout fill in an actual tank, (2) field deployment of grout production equipment and (3) the conduct of component closure activities for single-shell tank (SST) 241-C-106 (C-106). Activities associated with this Accelerated Tank Closure Demonstration (ATCD) project include placement of grout in C-106 following retrieval, and associated component closure activities. The activities will provide information that will be used in determining future closure actions for the remaining SSTs and tank farms at the Hanford Site. This information may also support preparation of the Environmental Impact Statement (EIS) for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington (Tank Closure EIS). Information will be obtained from the various activities associated with the component closure activities for C-106 located in the 241-C tank farm (C tank farm) under the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989). The impacts of retrieving waste from C-106 are bounded by the analysis in the Tank Waste Remediation System (TWRS) EIS (DOE/EIS-0189), hereinafter referred to as the TWRS EIS. DOE has conducted and continues to conduct retrieval activities at C-106 in preparation for the ATCD Project. For major federal actions significantly affecting the quality of the human environment, the ''National Environmental Policy Act of 1969'' (NEPA) requires that federal agencies evaluate the environmental effects of their proposed and alternative actions before making decisions to take action. The President's Council on Environmental Quality (CEQ) has developed regulations for implementing NEPA. These regulations are found in Title 40 of the Code of Federal Regulations (CFR), Parts 1500-1508. They require the preparation of an Environmental Assessment (EA) that includes an evaluation of alternative means of addressing the problem and a discussion of the potential environmental impacts of a proposed federal action. An EA provides analysis to determine whether an EIS or a finding of no significant impact should be prepared.

  8. ICPP tank farm closure study. Volume 1

    SciTech Connect (OSTI)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  9. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 7 ENVIRONMENTAL CONSEQUENCES AND MITIGATION DISCUSSION Chapter 7 discusses environmental consequences that would occur due to implementation of the reasonable alternatives for each of the following: (1) tank waste retrieval, treatment, and disposal and single-shell tank system closure at the Hanford Site (i.e., tank closure); (2) decommissioning of the Fast Flux Test Facility and auxiliary facilities and disposition of the inventory of radioactively contaminated bulk sodium (i.e.,

  10. Permanent Closure of the TAN-664 Underground Storage Tank

    SciTech Connect (OSTI)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  11. Secretary's Honor Awards Recognize EM's Tank Cleanup, Closure |

    Energy Savers [EERE]

    Department of Energy Secretary's Honor Awards Recognize EM's Tank Cleanup, Closure Secretary's Honor Awards Recognize EM's Tank Cleanup, Closure April 8, 2014 - 12:00pm Addthis Energy Secretary Ernest Moniz, fourth from left, and Deputy Secretary Daniel Poneman, third from right, present the Secretary's Achievement Award to members of the Savannah River Site F-Tank Farm Closure Team. Team members pictured, left to right, are James Rush, William Levitan, Kathleen Martin, Linda Suttora, James

  12. PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS

    SciTech Connect (OSTI)

    MANN, F.M.; CRUMPLER, J.D.

    2005-09-30

    This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

  13. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOEEIS-0391 Final Tank Closure and Waste Management Environmental Impact Statement for ... Agency: U.S. Department of Energy (DOE) Cooperating Agencies: Washington State ...

  14. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 APPENDIX V RECHARGE SENSITIVITY ANALYSIS In the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM...

  15. Tank Closure & Waste Management (DOE/EIS-0391) FINAL - Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Environmental NEPA - Environmental Impact Statements Tank Closure & Waste Management EIS 2012 Documents CERCLA Five-Year Review NEPA - Categorical Exclusions NEPA -...

  16. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and tank farm closure, Fast Flux Test Facility (FFTF) ... be placed on top. Bulk sodium inventories would be ... Site and the cocooned reactors transported to the ...

  17. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for tank closure, Fast Flux Test Facility (FFTF) ... for disposition of bulk sodium, and Waste Management ... plants, production reactors, PUREX Plutonium-Uranium ...

  18. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Ecology) U.S. Environmental Protection Agency (EPA) Title: Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington...

  19. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect (OSTI)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  20. Progress Continues Toward Closure of Two Underground Waste Tanks at

    Energy Savers [EERE]

    Savannah River Site | Department of Energy Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site October 30, 2013 - 12:00pm Addthis Grouting of two Savannah River Site waste tanks began in August. Here, the first trucks with grout arrive at F Tank Farm. Grouting of two Savannah River Site waste tanks began in August. Here, the first trucks with grout arrive at F Tank

  1. Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone | Department of Energy Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone

  2. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  3. Closure Report for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-02-01

    CAU 127, Areas 25 and 26 Storage Tanks, consists of twelve CASs located in Areas 25 and 26 of the NTS. The closure alternatives included no further action, clean closure, and closure in place with administrative controls. The purpose of this Closure Report is to provide a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  4. Issuance of the Final Tank Closure and Waste Management Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact Statement | Department of Energy Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement December 5, 2012 - 12:00pm Addthis Media Contacts Carrie Meyer, DOE (509) 376-0810 Carrie_C_Meyer@orp.doe.gov Erika Holmes, Ecology (509) 372-7880 Erika.Holmes@ecy.wa.gov Richland, WA - The U.S. Department of Energy (DOE) is issuing its Final Tank Closure and Waste Management

  5. Underground storage tank 253-D1U1 Closure Plan

    SciTech Connect (OSTI)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

  6. Draft Tank Closure & Waste Management EIS - Summary

    Office of Environmental Management (EM)

    91 Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington Summary U.S. Department of Energy October 2009 Cover Sheet Responsible Agency: U.S. Department of Energy (DOE) Cooperating Agency: Washington State Department of Ecology (Ecology) Title: Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS) (DOE/EIS-0391) Location: Benton County, Washington Contacts: For

  7. Tank Closure & Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RODs: Tanks with leaks removed to get at leak contamination. Tank gear, pipes, valves, etc to be removed. RTD contaminated soils where necessary. Watch for...

  8. Joint Tank Closure News Release Final.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RIVER OPERATIONS OFFICE AIKEN, SC 29802 FOR IMMEDIATE RELEASE September 13, 2012 NEWS MEDIA CONTACTS: Amy Caver, (803) 952-7213 Dean Campbell, (803) 208-8270 Amy.Caver@srs.gov Dean.Campbell@srs.gov Robert Pope, (404) 562-8538 Mark Plowden, (803) 898-9518 pope.robert@epa.gov plowdemw@dhec.sc.gov Savannah River Site Reaches Significant Milestone with Waste Tank Closure AIKEN, S.C. - The Savannah River Site (SRS) achieved a significant milestone this week with the operational closure of tanks 18

  9. EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts for the following three key areas: (1) retrieval, treatment, and disposal of waste from 149 single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal of Hanfords waste and other DOE sites low-level and mixed low-level radioactive waste.

  10. Record of Decision Issued for the Hanford Tank Closure and Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Tank Closure and Waste Management EIS Record of Decision Issued for the Hanford Tank Closure and Waste Management EIS December 13, 2013 - 10:19am Addthis The U.S....

  11. DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National...

    Energy Savers [EERE]

    DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory November 20, 2006 -...

  12. Relationship Between Flowability And Tank Closure Grout Quality

    SciTech Connect (OSTI)

    Langton, C. A.; Stefanko, D. B.; Hay, M. S.

    2012-10-08

    After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediation's (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

  13. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPENDIX F DIRECT AND INDIRECT IMPACTS: ASSESSMENT METHODOLOGY This appendix briefly describes the methods used to assess the potential direct and indirect effects of the alternatives in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Included in this appendix are discussions of general impact assessment methodologies for land resources, infrastructure, noise and vibration, air quality, geology and soils, water resources,

  14. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-1 APPENDIX P ECOLOGICAL RESOURCES AND RISK ANALYSIS This appendix presents the ecological resources (see Section P.1) at the Hanford Site and lists the plants and animals evaluated in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Potential impacts of both airborne releases during operations and groundwater discharges under the various alternatives are evaluated in this appendix. The purpose of the risk analysis is to compare

  15. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  16. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

  17. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    SciTech Connect (OSTI)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.

  18. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E-1 APPENDIX E DESCRIPTIONS OF FACILITIES, OPERATIONS, AND TECHNOLOGIES Appendix E provides additional information about the technologies, processes, and facilities for the three key activities of this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington: tank closure, Fast Flux Test Facility decommissioning, and waste management. Section E.1 includes this information for tank closure; Section E.2, for Fast Flux Test Facility

  19. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg

  20. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    SciTech Connect (OSTI)

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures are different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.

  1. DOE Identifies its Preferred Alternative for Certain Hanford Tank Wastes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing its preferred alternative for wastes contained in underground radioactive waste storage tanks evaluated in the Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Final TC & WM EIS, DOE/EIS-0391, December 2012). With regard to those wastes that, in the future, may be properly and legally classified as mixed transuranic waste (mixed TRU waste). DOE's preferred alternative is to retrieve, treat, package, and characterize and certify the wastes for disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, a geologic repository for the disposal of mixed TRU waste generated by atomic energy defense activities.

  2. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    SciTech Connect (OSTI)

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  3. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

  4. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ▪ Public Comments and DOE Responses 3-1053 Campaign A March 16, 2010 As a resident of the Pacifc Northwest, I oppose the "preferred alternative" to ship nuclear waste from other Department of Energy sites to Hanford, as outlined in the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (DOE/EIS--0391). I vehemently oppose the plan to add more radioactive waste to the Hanford site. Shipping this waste along Northwest

  5. Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 |

    Energy Savers [EERE]

    Department of Energy Operation to Lead to First SRS Waste Tank Closures Since 1997 Grouting Operation to Lead to First SRS Waste Tank Closures Since 1997 April 1, 2012 - 12:00pm Addthis DOE and Savannah River Remediation team members gather in front of the first cement truck containing grout for Tank 18 at the Savannah River Site. DOE and Savannah River Remediation team members gather in front of the first cement truck containing grout for Tank 18 at the Savannah River Site. A specially

  6. Tank Farm Closure & Waste Management Environmental Impact Statement <br>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DOE/EIS-0391) - Hanford Site Statements Tank Closure & WM EIS Info Documents CERCLA Five-Year Review NEPA - Categorical Exclusions NEPA - Environmental Assessments NEPA - Environmental Impact Statements Environmental Management Performance Reports Tank Farm Closure & Waste Management Environmental Impact Statement (DOE/EIS-0391) Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The U.S. Department of Energy (USDOE) has prepared a Final Environmental

  7. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect (OSTI)

    Becker, D.L.

    1998-09-02

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  8. Ecological Data in Support of the Tank Closure and Waste Management Environmental Impact Statement. Part 2: Results of Spring 2007 Field Surveys

    SciTech Connect (OSTI)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2007-05-31

    This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.

  9. EIS-0303: Savannah River Site High-Level Waste Tank Closure

    Broader source: Energy.gov [DOE]

    This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE...

  10. Draft HAB Advice on Delaying Decisions Associated with the Final Tank Closure and Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee Draft Advice - TC&WM EIS Delayed Decisions v1 - Mattson, et.al. Page 1/1 Draft HAB Advice on Delaying Decisions Associated with the Final Tank Closure and Waste Management EIS Background: The Hanford Advisory Board (HAB or Board) spent a considerable amount of time developing advice on the Draft Tank Closure and Waste Management Environmental Impact Statement (TC&WM EIS, EIS). The U.S. Department of Energy (DOE) has spent over $80 million on the EIS, and thousands of people

  11. Progress Continues Toward Closure of Two Underground Waste Tanks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... produced over 3,700 canisters of molten glass encasing the sludge since starting ... front of the first cement truck containing grout for Tank 18 at the Savannah River Site. ...

  12. Completion of the Operational Closure of Tank 18F and Tank 19F at the Savannah River Site by Grouting - 13236

    SciTech Connect (OSTI)

    Tisler, Andrew J. [Savannah River Remediation, LLC, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Aiken, SC 29808 (United States)

    2013-07-01

    Radioactive waste is stored in underground waste tanks at the Savannah River Site (SRS). The low-level fraction of the waste is immobilized in a grout waste form, and the high level fraction is disposed of in a glass waste form. Once the waste is removed, the tanks are prepared for closure. Operational closure of the tanks consists of filling with grout for the purpose of chemically stabilizing residual material, filling the tank void space for long-term structural stability, and discouraging future intrusion. Two of the old-style single-shell tanks at the SRS have received regulatory approval confirming waste removal had been completed, and have been stabilized with grout as part of completing operational closure and removal from service. Consistent with the regulatory framework, two types of grout were used for the filling of Tanks 18F and 19F. Reducing grout was used to fill the entire volume of Tanks 18F and 19F (bulk fill grout) and a more flowable grout was used to fill equipment that was left in the tank (equipment fill grout). The reducing grout was added to the tanks using portable grout pumps filled from concrete trucks, and delivered the grout through slick lines to the center riser of each tank. Filling of the two tanks has been completed, and all equipment has been filled. The final capping of riser penetrations brings the operation closure of Tanks 18F and 19F to completion. (authors)

  13. EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

  14. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 TC & WM EIS Proposed Actions (1) Retrieve, treat, and dispose of waste in single-shell tank (SST) and double-shell tank (DST) farms and close the SST system. (2) Decommission the Fast Flux Test Facility, manage the resulting waste, and manage the disposition of the Hanford Site's (Hanford's) inventory of bulk sodium. (3) Manage waste from tank closure and other Hanford activities, as well as limited volumes received from U.S. Department of Energy sites. CHAPTER 2 PROPOSED ACTIONS AND

  15. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  16. Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: 01-02-01, Underground Storage Tank 07-02-01, Underground Storage Tanks 10-02-01, Underground Storage Tank 20-02-03, Underground Storage Tank 20-99-05, Tar Residue 22-02-02, Buried UST Piping 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: Reviewed the current site conditions, including the concentration and extent of contamination. Implemented any corrective actions necessary to protect human health and the environment. Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify COCs for CAU 130. Assessment of the data generated from closure activities indicates that no further action is necessary because no COCs were identified at any CAU 130 CAS. Debris removal from these CASs was considered a best management practice because no contamination was detected. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: No further corrective action is required at all CAU 130 CASs. A Notice of Completion to DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 130. Corrective Action Unit 130 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

  17. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  18. Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site.

    Office of Environmental Management (EM)

    SRS-WD-2010-001 Revision 0 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site September 30, 2010 Draft Basis for Section 3116 Determination DOE/SRS-WD-2010-001 for Closure of F-Tank Farm Revision 0 at the Savannah River Site September 30, 2010 Page ii REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0 Initial Issue 09/30/2010 Draft Basis for Section 3116 Determination DOE/SRS-WD-2010-001 for Closure of F-Tank Farm Revision 0 at the Savannah River

  19. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    SciTech Connect (OSTI)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  20. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    SciTech Connect (OSTI)

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D; Falter, Diedre D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

  1. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... would be higher under FFTF Decommissioning Alternative 3. Worker radiation doses ... FFTF could remain in surveillance and maintenance status with little environmental impact ...

  2. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternatives impacts analysis is thus five times greater than that in the cumulative impacts analysis inventory. For uranium-238, hydrogen-3 (tritium), and carbon-14, missing...

  3. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all 40 COPCs are provided in Appendices M, N, and O, but this discussion of long-term impacts associated with FFTF Decommissioning Alternative 1 is focused on the following COPC...

  4. CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183

    SciTech Connect (OSTI)

    Thaxton, D; Timothy Baughman, T

    2008-01-16

    Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

  5. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L-1 APPENDIX L GROUNDWATER FLOW FIELD DEVELOPMENT This appendix describes the development of the regional-scale groundwater flow field used for the groundwater modeling that supports assessment of the groundwater quality impacts discussed in the Draft and Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS), Chapters 5 and 6 and Appendices O and V. Included are an overview of groundwater flow at the site; the purpose

  6. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q-1 APPENDIX Q LONG-TERM HUMAN HEALTH DOSE AND RISK ANALYSIS This appendix presents methods and results for assessment of potential human health impacts due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long periods of time following stabilization or closure. Q.1 INTRODUCTION Adverse impacts on human health and the environment may occur over long periods of time following

  7. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R-1 APPENDIX R CUMULATIVE IMPACTS: ASSESSMENT METHODOLOGY This appendix describes the cumulative impacts methodology for the U.S. Department of Energy's Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. The appendix is organized into sections on (1) regulations and guidance, (2) previous studies, (3) history of land use at the Hanford Site and in surrounding regions, (4) future land use at the Hanford Site, (5) future land use in

  8. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPENDIX S WASTE INVENTORIES FOR CUMULATIVE IMPACT ANALYSES Integral to development of the inventory data set for the cumulative impact analyses presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington was identification of those waste sites potentially contributing to cumulative impacts on groundwater. Their identification involved two semi-independent, convergent processes: a Waste Information Data System screen and a

  9. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T-1 Cumulative Impacts Effects on the environment that result from the proposed action when added to other past, present, and reasonably foreseeable future actions, regardless of what agency or person undertakes such other actions (40 CFR 1508.7). APPENDIX T SUPPORTING INFORMATION FOR THE SHORT-TERM CUMULATIVE IMPACT ANALYSES This appendix contains the detailed tables that support the short-term cumulative impacts presented in Chapter 6 of this Tank Closure and Waste Management Environmental

  10. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-1 APPENDIX X SUPPLEMENT ANALYSIS OF THE DRAFT TANK CLOSURE AND WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FOR THE HANFORD SITE, RICHLAND, WASHINGTON Consistent with U.S. Department of Energy (DOE) Regulations (10 CFR 1021.314(c)(3)), "DOE shall make the determination and the related Supplement Analysis available to the public for information. Copies of the determination and Supplement Analysis shall be provided upon written request. DOE shall make copies available for inspection in

  11. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 1 PROPOSED ACTIONS: BACKGROUND, PURPOSE AND NEED Chapter 1 describes the background, purpose and need for the agency action presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS). Section 1.1 provides summary information on the size and distribution of the waste inventory at the Hanford Site (Hanford), the specific objectives of this TC & WM EIS, and the regulatory basis for the proposed

  12. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 3, Book 1 Section 1: Overview Section 2: Topics of Interest Section 3: Individual Commentors U.S. Department of Energy November 2012 1 Cover Sheet Responsible Agency: U.S. Department of Energy (DOE) Cooperating Agencies: Washington State Department of Ecology (Ecology) U.S. Environmental Protection Agency (EPA) Title: Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS) (DOE/EIS-0391) Location: Benton County,

  13. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect (OSTI)

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The workshop was conducted by a trained facilitator using Value Engineering techniques to elicit the most technically sound solutions from the workshop participants. The path forward includes developing the OBA into a well engineered solution for achieving RCRA clean closure of the EBR-II Primary Reactor Tank system. Several high level tasks are also part of the path forward such as reassigning responsibility of the cleanup project to a dedicated project team that is funded by the DOE Office of Environmental Management, and making it a priority so that adequate funding is available to complete the project. Based on the experience of the sodium cleanup specialists, negotiations with the DEQ will be necessary to determine a risk-based de minimus quantity for acceptable amount of sodium that can be left in the reactor systems after cleanup has been completed.

  14. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots'' from the concrete vault, and the drilling removal of the cement-lined vault sump. Field activities began on November 28, 2000, and ended on December 4, 2000. After verification samples were collected, the vault was repaired with cement. The concrete vault sump, soil excavated beneath the sump, and compactable hot line trash were disposed at the Area 23 Sanitary Landfill. The vault interior was field surveyed following the removal of waste to verify that unrestricted release criteria had been achieved. Since the site is closed by unrestricted release decontamination and verification, post-closure care is not required.

  15. Alternative Inspection Methods for Single Shell Tanks

    SciTech Connect (OSTI)

    Peters, Timothy J.; Alzheimer, James M.; Hurley, David E.

    2010-01-19

    This document was prepared to provide evaluations and recommendations regarding nondestructive evaluation methods that might be used to determine cracks and bowing in the ceiling of waste storage tanks on the Hanford site. The goal was to determine cracks as small as 1/16 in. wide in the ceiling, and bowing as small as 0.25 in. This report describes digital video camera methods that can be used to detect a crack in the ceiling of the dome, and methods for determining the surface topography of the ceiling in the waste storage tanks to detect localized movements in the surface. A literature search, combined with laboratory testing, comprised this study.

  16. HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  17. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    SciTech Connect (OSTI)

    Rudisill, T.; King, W.; Hay, M.; Jones, D.

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the targeted dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  18. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 OVERVIEW OF THE PUBLIC COMMENT PROCESS 1-1 SECTION 1 OVERVIEW OF THE PUBLIC COMMENT PROCESS This section of this Comment-Response Document (CRD) describes the public comment process for the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM EIS) and the procedures used to respond to public comments. Section 1.1 summarizes the organization of this CRD. Section 1.2 discusses the public comment process and the means

  19. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    SciTech Connect (OSTI)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  20. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect (OSTI)

    Thomas, Steve; Dickert, Ginger

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

  1. TRA Closure Plan REV 0-9-20-06 HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007

    SciTech Connect (OSTI)

    Winterholler, K.

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump were characterized as having managed hazardous waste. The reactor drain tank and canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

  2. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect (OSTI)

    Jolly, R.C.Jr. [Washington Savannah River Company (United States); Martin, B. [Washington Savannah River Company, A Washington Group International Company (United States)

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra-area transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations. (authors)

  3. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  4. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  5. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  6. Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington--Frequent Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Final TC & WM EIS) (DOE/EIS-0391) Frequently Asked Questions What are the U.S. Department of Energy (DOE) proposed actions in the Final TC & WM EIS? The Final TC & WM EIS (DOE/EIS-0391) evaluates three sets of proposed actions, as follows: Retrieve and treat the waste remaining in 177 underground storage tanks; store the high-level radioactive waste (HLW); dispose of

  7. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  8. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  9. C-104 Solid Phase Characterization of Sample 4C-13-1 From Tank 241-C-104 Closure Sampling Event

    SciTech Connect (OSTI)

    Cooke, Gary A.; Pestovich, John A.

    2013-06-12

    One solid grab sample from closure sampling in Riser 7 of tank 214-C-I04 (C-I04) was examined to determine the solid phases that were present. The sample was analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The purpose of this analysis was to see if the presence of hydrated phases could provide a possible explanation for the high moisture content obtained from thermogravimetric analysis (TGA).

  10. An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm

    SciTech Connect (OSTI)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-01-10

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and pipeline removal or treatment technologies. The evaluation accounted for the potential high worker risk, high cost, and schedule impacts associated with characterization, removal, or treatment of pipelines within Waste Management Area C for closure. This assessment was compared to the unknown, but estimated low, long-term impacts to groundwater associated with remaining waste residuals should the pipelines be left "as is" and an engineered surface barrier or landfill cap be placed. This study also recommended that no characterization or closure actions be assumed or started for the pipelines within Waste Management Area C, likewise with the premise that a surface barrier or landfill cap be placed over the pipelines.

  11. TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY

    SciTech Connect (OSTI)

    HOLM MJ

    2009-06-25

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  12. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    SciTech Connect (OSTI)

    Wyrwas, R. B.

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  13. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT - 9310

    SciTech Connect (OSTI)

    Subramanian, K; Bruce Wiersma, B; Stephen Harris, S

    2009-01-12

    High level radioactive waste (HLW) is stored in underground carbon steel storage tanks at the Savannah River Site. The underground tanks will be closed by removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations, and severing/sealing external penetrations. The life of the carbon steel materials of construction in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to grouted conditions. A stochastic approach was followed to estimate the distributions of failures based upon mechanisms of corrosion accounting for variances in each of the independent variables. The methodology and results used for one-type of tank is presented.

  14. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-06-30

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Aboveground Storage Tanks and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: CAS 03-01-03, Aboveground Storage Tank CAS 03-01-04, Tank CAS 15-01-05, Aboveground Storage Tank CAS 29-01-01, Hydrocarbon Stain

  15. PERFORMANCE ASSESSMENT TO SUPPORT CLOSURE OF SINGLE-SHELL TANK WASTE MANAGEMENT AREA C AT THE HANFORD SITE

    SciTech Connect (OSTI)

    BERGERON MP

    2010-01-14

    Current proposed regulatory agreements (Consent Decree) at the Hanford Site call for closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C in the year 2019. WMA C is part of the SST system in 200 East area ofthe Hanford Site and is one of the first tank farm areas built in mid-1940s. In order to close WMA C, both tank and facility closure activities and corrective actions associated with existing soil and groundwater contamination must be performed. Remedial activities for WMA C and corrective actions for soils and groundwater within that system will be supported by various types of risk assessments and interim performance assessments (PA). The U.S. Department of Energy, Office of River Protection (DOE-ORP) and the State ofWashington Department of Ecology (Ecology) are sponsoring a series of working sessions with regulators and stakeholders to solicit input and to obtain a common understanding concerning the scope, methods, and data to be used in the planned risk assessments and PAs to support closure of WMA C. In addition to DOE-ORP and Ecology staff and contractors, working session members include representatives from the U.S. Enviromnental Protection Agency, the U.S. Nuclear Regulatory Commission (NRC), interested tribal nations, other stakeholders groups, and members of the interested public. NRC staff involvement in the working sessions is as a technical resource to assess whether required waste determinations by DOE for waste incidental to reprocessing are based on sound technical assumptions, analyses, and conclusions relative to applicable incidental waste criteria.

  16. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.

  17. Hanford tanks initiative work plan -- subsurface characterization to support the closure-readiness demonstration for tank 241-AX-104

    SciTech Connect (OSTI)

    Barnett, D.B.

    1996-09-27

    This document presents a plan for subsurface investigation near 241-AX-104 Single-Shell tank. Objectives of the investigation are soil sampling and analyses (physical and chemical), local stratigraphic correlation, groundwater background characterization, and geophysical surveys. The primary purpose of the investigation is to supply physical and hydraulic properties for numerical modeling of vadose zone flow and transport.

  18. Basis for Section 3116 Determination for Closure of F-Tank Farm...

    Office of Environmental Management (EM)

    ... This facility utilizes fast-response sonic anemometers, ... nuclear production reactors. Before transfer of the waste from the F Canyon to the tank farms, sodium hydroxide was ...

  19. Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure

    SciTech Connect (OSTI)

    Boston, H. L.; Cruz, E. J.; Coleman, S. J.

    2002-02-25

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

  20. Turning the Corner on Hanford Tank Waste Cleanup from Safe Storage to Closure

    SciTech Connect (OSTI)

    CRUZ, E.J.; BOSTON, H.L.

    2002-02-04

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the cornerstone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these Initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup. The goal of these efforts is to keep the RPP on a success path for completing cleanup of Hanford tank waste. While all parties are aggressively moving forward to provide vitrification facilities with enhanced capabilities, work continues toward a credible plan for completing waste treatment and accelerating risk reduction. In all of these efforts two principles are paramount; (1) all actions are focused on protecting worker health and the environment and complying with laws and regulations, and (2) open discussion, involvement, and cooperation of regulators and stakeholders is fundamental to any decision making.

  1. Alternative washing strategy during in-tank precipitation processing

    SciTech Connect (OSTI)

    Walker, D.D.; Hobbs, D.T.

    1992-10-30

    If late washing of precipitate is available, it is possible to modify the normal washing phase of the ITP process so that tank corrosion is prevented by inhibiting with sodium hydroxide rather than sodium nitrite. Hydroxide inhibition has numerous advantages to a hydroxide/nitrite flowsheet.1 However, the rate of hydroxide depletion due to radiolysis and C0{sub 2} absorption were uncertainties. Based on recent experiments and calculations: hydroxide consumption by radiolysis will be 0.01 molar per month during Tank 49 storage, hydroxide depletion due to C0{sub 2} absorption will vary from 0.0006 to 0.025 molar per month for waste volumes between 50,000 and 1 million gallons and air flowrates between 100 and 200 cfm. A nominal rate of 0.006 molar/month (or less) is expected in Tank 49 after the first two ITP cycles have been completed. A material balance for the ITP process based on hydroxide inhibition has been calculated and the potential savings have been estimated.

  2. Alternative washing strategy during in-tank precipitation processing

    SciTech Connect (OSTI)

    Walker, D.D.; Hobbs, D.T.

    1992-10-30

    If late washing of precipitate is available, it is possible to modify the normal washing phase of the ITP process so that tank corrosion is prevented by inhibiting with sodium hydroxide rather than sodium nitrite. Hydroxide inhibition has numerous advantages to a hydroxide/nitrite flowsheet.1 However, the rate of hydroxide depletion due to radiolysis and C0[sub 2] absorption were uncertainties. Based on recent experiments and calculations: hydroxide consumption by radiolysis will be 0.01 molar per month during Tank 49 storage, hydroxide depletion due to C0[sub 2] absorption will vary from 0.0006 to 0.025 molar per month for waste volumes between 50,000 and 1 million gallons and air flowrates between 100 and 200 cfm. A nominal rate of 0.006 molar/month (or less) is expected in Tank 49 after the first two ITP cycles have been completed. A material balance for the ITP process based on hydroxide inhibition has been calculated and the potential savings have been estimated.

  3. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    SciTech Connect (OSTI)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  4. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOEs Waste Disposal/Tank Closure Efforts 15436

    SciTech Connect (OSTI)

    Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Mallick, Pramod

    2015-01-27

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox Version 2.0 which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance assessments, and Nuclear Regulatory Commission reviews of commercial nuclear power plant (NPP) structures which are part of the overall US Energy Security program to extend the service life of NPPs. In addition, the CBP experimental programs have had a significant impact on the DOE complex by providing specific data unique to DOE sodium salt wastes at Hanford and SRS which are not readily available in the literature. Two recent experimental programs on cementitious phase characterization and on technetium (Tc) mobility have provided significant conclusions as follows: recent mineralogy characterization discussed in this paper illustrates that sodium salt waste form matrices are somewhat similar to but not the same as those found in blended cement matrices which to date have been used in long-term thermodynamic modeling and contaminant sequestration as a first approximation. Utilizing the CBP generated data in long-term performance predictions provides for a more defensible technical basis in performance evaluations. In addition, recent experimental studies related to technetium mobility indicate that conventional leaching protocols may not be conservative for direct disposal of Tc-containing waste forms in vadose zone environments. These results have the potential to influence the current Hanford supplemental waste treatment flow sheet and disposal conceptual design.

  5. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Hanford Site, Richland, Washington 5-394 5.2 FFTF DECOMMISSIONING ALTERNATIVES This section describes the potential long-term environmental and human health impacts associated with implementation of alternatives considered to decommission FFTF and auxiliary facilities at Hanford; to manage waste from the decommissioning process, including waste designated as remote-handled special components (RH-SCs); and to manage the disposition of the Hanford inventory of radioactively contaminated

  6. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 8 POTENTIALLY APPLICABLE LAWS, REGULATIONS, AND OTHER REQUIREMENTS Chapter 8 presents the laws, regulations, and other requirements that apply to the alternatives. Federal, state, and U.S. Department of Energy environmental, safety, and health requirements are summarized in Section 8.1. Permits or licenses that may be required to implement the alternatives are discussed in Section 8.2. Consultations with Federal, state, and local agencies and federally recognized American Indian

  7. An Initial Evaluation of Characterization and Closure Options for Underground Pipelines within a Hanford Site Single-Shell Tank Farm - 13210

    SciTech Connect (OSTI)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-07-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and pipeline removal or treatment technologies. The evaluation accounted for the potential high worker risk, high cost, and schedule impacts associated with characterization, removal, or treatment of pipelines within Waste Management Area C for closure. This assessment was compared to the unknown, but estimated low, long-term impacts to groundwater associated with remaining waste residuals should the pipelines be left 'as is' and an engineered surface barrier or landfill cap be placed. This study also recommended that no characterization or closure actions be assumed or started for the pipelines within Waste Management Area C, likewise with the premise that a surface barrier or landfill cap be placed over the pipelines. (authors)

  8. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 5 ▪ Long-Term Environmental Consequences 5-1163 5.3.3 Ecological Risk This section presents the results of the evaluation of long-term impacts on ecological resources of releases to air and groundwater under the Waste Management alternatives. Risk indices-Hazard Quotient and Hazard Index-were calculated by comparing the predicted dose to the benchmark dose (see Appendix P). Risk indices could not be calculated for soil-dwelling invertebrates, lizards, toads, or birds exposed to organic

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 557, Spills and Tank Sites, in Areas 1, 3, 6, and 25 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order. Corrective Action Unit 557 comprises the following corrective action sites (CASs): 01-25-02, Fuel Spill 03-02-02, Area 3 Subdock UST 06-99-10, Tar Spills 25-25-18, Train Maintenance Bldg 3901 Spill Site The purpose of this Corrective Action Decision Document/Closure Report is to identify and provide the justification and documentation that supports the recommendation for closure of the CAU 557 CASs with no further corrective action. To achieve this, a corrective action investigation (CAI) was conducted from May 5 through November 24, 2008. The CAI activities were performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada.

  10. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    SciTech Connect (OSTI)

    1997-01-01

    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  11. EIS-0391: Notice of Modification of Preferred Alternatives |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closure and Waste Management for the Hanford Site, Richland, WA The U.S. Department of Energy (DOE) is modifying its preferred alternatives for tank waste treatment and also for...

  12. Streamlined approach for environmental restoration closure report for Corrective Action Unit 120: Areas 5 and 6 aboveground storage tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit (CAU) 120 of the Federal Facilities Agreement and Consent Order (FFACO). CAU 120 consists of two Corrective Action Sites (CASs) located in Areas 5 and 6 of the Nevada Test Site (NTS), which are approximately 130 kilometers (80 miles) northwest of Las Vegas, Nevada. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter (12,100-gallon) aboveground storage tanks (ASTs), piping, and debris associated with Well RNM-1. CAS 06-01-01 consists of two ASTs and two tanker trailers (all portable) that were originally located at the Area 6 Cp-50 Hot Park and which had been moved to the Area 6 Waste Handling Facility. All of the items in CAU 120 have been used to contain or convey radiologically contaminated fluid that was generated during post-nuclear event activities at the NTS.

  13. Development of Chemical Treatment Alternatives for Tetraphenylborate Destruction in Tank 48H

    SciTech Connect (OSTI)

    LAMBERT, DANIELP.

    2004-05-04

    This study assessed chemical treatment options for decomposing the tetraphenylborate in High Level Waste (HLW) Tank 48H. Tank 48H, located at the Savannah River Site in Aiken, SC, contains approximately one million liters of HLW. The tetraphenylborate slurry represents legacy material from commissioning of an In Tank Precipitation process to separate radioactive cesium and actinides from the non radioactive chemicals. During early operations, the process encountered an unplanned chemical reaction that catalytically decomposed the excess tetraphenylborate producing benzene. Subsequent research indicated that personnel could not control the operations within the existing equipment to both meet the desired treatment rate for the waste and maintain the benzene concentration within allowable concentrations. Since then, the Department of Energy selected an alternate treatment process for handling high-level waste at the site. However, the site must destroy the tetraphenylborate before returning the tank to HLW service. The research focuses on identifying treatments to decompose tetraphenylborate to the maximum extent feasible, with a preference for decomposition methods that produce carbon dioxide rather than benzene. A number of experiments examined whether the use of oxidants, catalysts or acids proved effective in decomposing the tetraphenylborate. Additional experiments developed an understanding of the solid, liquid and gas decomposition products. The testing identified several successful treatment options including: an iron catalyst combined with hydrogen peroxide (Fenton's reagent) with added acid; sodium permanganate with added acid; and copper catalyst with added acid. A mistake occurred in the selection and make-up of the Tank 48H simulant recipe which led to an under representation of the amount of monosodium titanate and insoluble sludge solids compared to the simulant target. The amount of added MST and sludge proved about a factor of 40 low relative to the measured Tank 48H values. The MST and sludge are insoluble solids that were likely inert in the testing completed. As a result, the mistake had no impact on the testing. Any future Tank 48H research should be completed using the latest Tank 48H simulant recipe.

  14. Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment Alternatives March 2000

    SciTech Connect (OSTI)

    WODRICH, D.D.

    2000-03-24

    The U.S. Department of Energy (DOE) is currently planning to retrieve, pretreat, immobilize and safely dispose of 53 million gallons of highly radioactive waste currently stored in underground tanks at Hanford Site. The DOE plan is a two-phased approach to privatizing the processing of hazardous and radioactive waste. Phase 1 is a proof-of-concept/commercial demonstration-scale effort whose objectives are to: demonstrate, the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. The Phase 1 effort consists of Part A and Part B. On September 25, 1996 (Reference 1), DOE signed a contract with BNFL, Inc. (BNFL) to commence with Phase 1, Part A. In August 1998, BNFL was authorized to proceed with Phase I, Part 6-1, a 24-month design phase that will-provide sufficient engineering and financial maturity to establish fixed-unit prices and financing terms for tank waste processing services in privately-owned and -operated facilities. By August 2000, DOE will decide whether to authorize BNFL to proceed with construction and operation of the proposed processing facilities, or pursue a different path. To support of the decision, DOE is evaluating alternatives to potentially enhance the BNFL tank waste processing contract, as well as, developing an alternate path forward should DOE decide to not continue the BNFL contract. The decision on whether to continue with the current privatization strategy (BNFL contract) or to pursue an alternate can not be made until the evaluation process leading up to the decision on whether to authorize BNFL to proceed with construction and operation (known as the Part 8-2 decision) is completed. The evaluation process includes reviewing and evaluating the information BNFL is scheduled to submit in April 2000, and negotiating the best mutually acceptable contract terms. The alternatives studies completed to-date are summarized in Reference 2.

  15. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Final Disposition Reactor Current Status (a) Decision Area Final Disposition B National Historic Landmark (2008) 100-BC ROD for Decommissioning of Eight Surplus Production ...

  16. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Disposal Facility FFTF Fast Flux Test Facility FY ... Sodium dichromate was used as a water treatment chemical for cooling water used in Hanford's production reactors. ...

  17. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect (OSTI)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energys goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (rebar). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective, but about equal to each other. The reactivity of pyrite, compared to olivine and garnet, was studied in high-pH, simulated tank waste solutions in a series of bench-top experiments. Variations in temperature, degree of agitation, grain size, exposure to air, and presence of nitrate and nitrite were also studied. Olivine and garnet showed no sign of dissolution or other reaction. Pyrite was shown to react with the fluids in even its coarsest variation (150?1000 ?m). Projected times to total dissolution for most experiments range from months to ca. 12 years, and the strongest control on reaction rate is the grain size.

  18. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievable storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered.

  19. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    SciTech Connect (OSTI)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned motor pumps designed to fit within available risers and have significant agitation capabilities to suspend waste solids. Waste removal and closure of two tanks has been accomplished with agitation provided by 3 SMPs installed within the tanks. In 2012, a team was assembled to investigate alternative solids removal technologies to support waste removal for closing tanks. The goal of the team was to find a more cost effective approach that could be used to replace the current mixing pump technology. This team was unable to identify an alternative technology outside of mixing pumps to support waste agitation and removal from SRS waste tanks. However, the team did identify a potentially lower cost mixing pump compared to the baseline SLPs and SMPs. Rather than using the traditional procurement using an engineering specification, the team proposed to seek commercially available submersible mixer pumps (CSMP) as alternatives to SLPs and SMPs. SLPs and SMPs have a high procurement cost and the actual cost of moving pumps between tanks has shown to be significantly higher than the original estimates that justified the reuse of SMPs and SLPs. The team recommended procurement of “off-the-shelf” industry pumps which may be available for significant savings, but at an increased risk of failure and reduced operating life in the waste tank. The goal of the CSMP program is to obtain mixing pumps that could mix from bulk waste removal through tank closure and then be abandoned in place as part of tank closure. This paper will present the development, progress and relative advantages of the CSMP.

  20. Tank Farm Area Cleanup Decision-Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

  1. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    SciTech Connect (OSTI)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that scored highly in the SEE should be studied to evaluate long term potential. One of the AOP's (UV/O{sub 3}/Solids Separator) is currently being implemented by the SRS liquid waste organization for use in tank heel chemical cleaning. (4) Corrosion Issues: A program will be needed to address potential corrosion issues from the use of low molarity mineral acids and mixtures of oxalic/mineral acids in the waste tanks for short durations. The addition of corrosion inhibitors to the acids to reduce corrosion rates should be investigated.

  2. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    SciTech Connect (OSTI)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  3. EIS-0391: Notice of Preferred Alternative

    Broader source: Energy.gov [DOE]

    Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

  4. Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James; McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

    2003-06-01

    An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

  5. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design

  6. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  7. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  8. Single-shell tank retrieval program mission analysis report

    SciTech Connect (OSTI)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  9. Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: 25-25-09, Spill H940825C (from UST 25-3101-1) 25-25-14, Spill H940314E (from UST 25-3102-3) 25-25-15, Spill H941020E (from UST 25-3152-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

  10. Addendum 2 to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: 12-25-08, Spill H950524F (from UST 12-B-1) 12-25-10, Spill H950919A (from UST 12-COMM-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

  11. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  12. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  13. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  14. Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-02-01

    Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): {sm_bullet} CAS 03-59-01, Bldg 3C-36 Septic System {sm_bullet} CAS 03-59-02, Bldg 3C-45 Septic System {sm_bullet} CAS 06-51-01, Sump and Piping {sm_bullet} CAS 06-51-02, Clay Pipe and Debris {sm_bullet} CAS 06-51-03, Clean Out Box and Piping {sm_bullet} CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work.

  15. Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-02-28

    Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives included No Further Action and Clean Closure.

  16. Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-10-01

    Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal waste in the form of fluorescent light bulbs; and approximately 0.5 yd{sup 3} of low-level waste in the form of a radiologically impacted fire hose rack were generated, managed, and disposed of appropriately. Waste minimization techniques, such as the utilization of laboratory analysis and field screening to guide the extent of excavations, were employed during the performance of closure work.

  17. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    SciTech Connect (OSTI)

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

  18. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    SciTech Connect (OSTI)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process using SRS sludge tank sample material. A Task Technical and Quality Assurance Plan (TTQAP) details the experimental plan as outlined by the Technical Task Request (TTR). The TTR identifies that the data produced by this testing and results included in this report will support the technical baseline with portions having a safety class functional classification. The primary goals for SRNL RWT are as follows: (1) to confirm ECC performance with real tank sludge samples, (2) to determine the impact of ECC on fate of actinides and the other sludge metals, and (3) to determine changes, if any, in solids flow and settling behavior.

  19. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    SciTech Connect (OSTI)

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-02-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the closure cover provide soil water content data, whereas sensors installed in the lysimeters provide soil water content, soil water potential, soil temperature, and drainage data for a detailed evaluation of the cover performance. Revegetation establishes a stable plant community that maximizes water loss through transpiration and reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment.

  20. Closure Report for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-04-01

    Corrective Action Unit (CAU) 151 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Septic Systems and Discharge Area. CAU 151 consists of the following eight Corrective Action Sites (CASs), located in Areas 2, 12, and 18 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). CAU 151 closure activities were conducted according to the FFACO (FFACO, 1996; as amended February 2008) and the Corrective Action Plan for CAU 151 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007) from October 2007 to January 2008. The corrective action alternatives included no further action, clean closure, and closure in place with administrative controls. CAU 151 closure activities are summarized in Table 1. Closure activities generated liquid remediation waste, sanitary waste, hydrocarbon waste, and mixed waste. Waste generated was appropriately managed and disposed. Waste that is currently staged onsite is being appropriately managed and will be disposed under approved waste profiles in permitted landfills. Waste minimization activities included waste characterization sampling and segregation of waste streams. Some waste exceeded land disposal restriction limits and required offsite treatment prior to disposal. Other waste meeting land disposal restrictions was disposed of in appropriate onsite or offsite landfills. Waste disposition documentation is included as Appendix C.

  1. Grouting at the Idaho National Laboratory Tank Farm Facility, R. Mark Shaw

    Office of Environmental Management (EM)

    Grouting at the Idaho National Laboratory Tank Farm Facility R. Mark Shaw, U. S. Department of Energy safety v performance v cleanup v closure M E Environmental Management Environmental Management 2 Topics/Agenda * Tank Farm Overview * Tank and Vault Grouting * Cooling Coil and Transfer Line Grouting safety v performance v cleanup v closure M E Environmental Management Environmental Management 3 INTEC TANK FARM CLOSURE INTEC TANK FARM CLOSURE VES-WM-103 VES-WM-104 VES-WM-105 VES-WM-106 182 183

  2. Duct closure

    DOE Patents [OSTI]

    Vowell, Kennison L. (Canoga Park, CA)

    1987-01-01

    A closure for an inclined duct having an open upper end and defining downwardly extending passageway. The closure includes a cap for sealing engagement with the open upper end of the duct. Associated with the cap are an array of vertically aligned plug members, each of which has a cross-sectional area substantially conforming to the cross-sectional area of the passageway at least adjacent the upper end of the passageway. The plug members are interconnected in a manner to provide for free movement only in the plane in which the duct is inclined. The uppermost plug member is attached to the cap means and the cap means is in turn connected to a hoist means which is located directly over the open end of the duct.

  3. Post-Closure Benefits: DOE Complex vs Closure Sites | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closure Sites Post-Closure Benefits: DOE Complex vs Closure Sites Status of Contractor Pension and PRB Benefit Programs - September 30, 2013 DOE Wide Closure Sites Defined Benefit...

  4. H-Tank Farm Waste Determination | Department of Energy

    Energy Savers [EERE]

    H-Tank Farm Waste Determination H-Tank Farm Waste Determination On Dec. 19, 2014, the Energy Secretary signed a determination that allows the Savannah River Site (SRS) in South Carolina to complete cleanup and closure of the underground liquid waste tanks in the H Tank Farm as they are emptied and cleaned. The action marked a major milestone in efforts to clean up the Cold War legacy at SRS. PDF icon Basis for Section 3116 Determination for Closure of H-Tank Farm at the Savannah River Site PDF

  5. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  6. CLOSURE DEVICE

    DOE Patents [OSTI]

    Linzell, S.M.; Dorcy, D.J.

    1958-08-26

    A quick opening type of stuffing box employing two banks of rotatable shoes, each of which has a caraming action that forces a neoprene sealing surface against a pipe or rod where it passes through a wall is presented. A ring having a handle or wrench attached is placed eccentric to and between the two banks of shoes. Head bolts from the shoes fit into slots in this ring, which are so arranged that when the ring is rotated a quarter turn in one direction the shoes are thrust inwardly to cramp the neopnrene about the pipe, malting a tight seal. Moving the ring in the reverse direction moves the shoes outwardly and frees the pipe which then may be readily removed from the stuffing box. This device has particular application as a closure for the end of a coolant tube of a neutronic reactor.

  7. River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description

    SciTech Connect (OSTI)

    DOVALLE, O.R.

    1999-12-29

    This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

  8. Closure Report for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-02-01

    The purpose of this Closure Report is to provide a summary of the completed closure activities, to document waste disposal, and to present information confirming that the remediation goals were met. The closure alternatives consisted of closure in place with administrative controls for one CAS, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  9. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 214: BUNKERS AND STORAGE AREAS NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    2006-09-01

    The purpose of this Closure Report is to document that the closure of CAU 214 complied with the Nevada Division of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 214 Corrective Action Decision Document.

  10. SRS Waste Tanks 5 and 6 Are Operationally Closed | Department of Energy

    Office of Environmental Management (EM)

    Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed December 19, 2013 - 12:00pm Addthis The final amount of grout is poured into Tank 6, marking the operational closure of Tanks 5 and 6. The final amount of grout is poured into Tank 6, marking the operational closure of Tanks 5 and 6. Media Contacts Amy Caver, Amy.Caver@srs.gov, 803-952-7213 Rick Kelley, Rick.Kelley@srs.gov, 803-208-0198 AIKEN, S.C. - Savannah River Remediation (SRR), the liquid waste

  11. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect (OSTI)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  12. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2006-09-01

    This Closure Report (CR) describes the closure activities performed at CAU 528, Polychlorinated Biphenyls Contamination, as presented in the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) (US. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSAINSO], 2005). The approved closure alternative was closure in place with administrative controls. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical data to confirm that the remediation goals were met.

  13. Retrieval Of Hanford's Single Shell Nuclear Waste Tanks Using Technologies Foreign And Domestic

    SciTech Connect (OSTI)

    Eacker, J. A.; Thompson, W. T.; Gibbons, P. W.

    2003-02-26

    Significant progress has been made on the Hanford single shell tank (SST) retrieval projects since they were initiated as part of the modified Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) in 2000. Four of the 149 SSTs at the U.S. Department of Energy (DOE) Office of River Protection (ORP) Hanford facility are being retrieved to meet Tri-Party Agreement commitments. An additional tank is being retrieved to demonstrate an alternate technical approach. As the Hanford Site transitions to an accelerated retrieval and closure mission, these methods will be the baseline methods for SST retrieval. The five SSTs are located within the Hanford 200- Area tank farms operated by CH2M HILL Hanford Group (CH2M HILL) for ORP. Included in this paper will be discussions on the technologies selected for retrieval of each tank; electrical resistance technologies that are being evaluated for ex-tank leak detection and monitoring; and the Cold Test Training Facility (CTTF) used for testing of and training on the different retrieval systems.

  14. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    SciTech Connect (OSTI)

    Berglin, E.J.

    1998-02-05

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report analyzes the retrieval testing issues and describes what has been learned and issues that need further resolution. As such, it can serve as a guide to additional testing that must be performed before the systems are used in-tank. The major issues discussed are tank access, deployment, mining strategy, waste retrieval, liquid scavenging (liquid usage), maneuverability, positioning, static and dynamic performance, remote operations, reliability, availability, maintenance, tank safety, and cost.

  15. Closure Report for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-06-01

    The purpose of this closure report is to document that the closure of CAU 322 complied with the Nevada Department of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 322 Corrective Action Decision Document.

  16. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect (OSTI)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

  17. ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER

    SciTech Connect (OSTI)

    Minichan, R; Russell Eibling, R; James Elder, J; Kevin Kane, K; Daniel Krementz, D; Rodney Vandekamp, R; Nicholas Vrettos, N

    2008-06-01

    The Liquid Waste Technology Development organization is investigating technologies to support closure of radioactive waste tanks at the Savannah River Site (SRS). Tank closure includes removal of the wastes that have propagated to the tank annulus. Although amounts and types of residual waste materials in the annuli of SRS tanks vary, simple salt deposits are predominant on tanks with known leak sites. This task focused on developing and demonstrating a technology to inspect and spot clean salt deposits from the outer primary tank wall located in the annulus of an SRS Type I tank. The Robotics, Remote and Specialty Equipment (RRSE) and Materials Science and Technology (MS&T) Sections of the Savannah River National Laboratory (SRNL) collaborated to modify and equip a Force Institute magnetic wall crawler with the tools necessary to demonstrate the inspection and spot cleaning in a mock-up of a Type I tank annulus. A remote control camera arm and cleaning head were developed, fabricated and mounted on the crawler. The crawler was then tested and demonstrated on a salt simulant also developed in this task. The demonstration showed that the camera is capable of being deployed in all specified locations and provided the views needed for the planned inspection. It also showed that the salt simulant readily dissolves with water. The crawler features two different techniques for delivering water to dissolve the salt deposits. Both water spay nozzles were able to dissolve the simulated salt, one is more controllable and the other delivers a larger water volume. The cleaning head also includes a rotary brush to mechanically remove the simulated salt nodules in the event insoluble material is encountered. The rotary brush proved to be effective in removing the salt nodules, although some fine tuning may be required to achieve the best results. This report describes the design process for developing technology to add features to a commercial wall crawler and the results of the demonstration testing performed on the integrated system. The crawler was modified to address the two primary objectives of the task (inspection and spot cleaning). SRNL recommends this technology as a viable option for annulus inspection and salt removal in tanks with minimal salt deposits (such as Tanks 5 and 6.) This report further recommends that the technology be prepared for field deployment by: (1) developing an improved mounting system for the magnetic idler wheel, (2) improving the robustness of the cleaning tool mounting, (3) resolving the nozzle selection valve connections, (4) determining alternatives for the brush and bristle assembly, and (5) adding a protective housing around the motors to shield them from water splash. In addition, SRNL suggests further technology development to address annulus cleaning issues that are apparent on other tanks that will also require salt removal in the future such as: (1) Developing a duct drilling device to facilitate dissolving salt inside ventilation ducts and draining the solution out the bottom of the ducts. (2) Investigating technologies to inspect inside the vertical annulus ventilation duct.

  18. Mixing in SRS Closure Business Unit Applications

    SciTech Connect (OSTI)

    POIRIER, MICHAELR.

    2004-06-23

    The following equipment is commonly used to mix fluids: mechanical agitators, jets (pumps), shrouded axial impeller mixers (Flygt mixers), spargers, pulsed jet mixers, boiling, static mixers, falling films, liquid sprays, and thermal convection. This discussion will focus on mechanical agitators, jets, shrouded axial impeller mixers, spargers, and pulsed jet mixers, as these devices are most likely to be employed in Savannah River Site (SRS) Closure Business applications. In addressing mixing problems in the SRS Tank Farm, one must distinguish between different mixing objectives. These objectives include sludge mixing (e.g., Extended Sludge Processing), sludge retrieval (e.g., sludge transfers between tanks), heel retrieval (e.g., Tanks 18F and 19F), chemical reactions (e.g., oxalic acid neutralization) and salt dissolution. For example, one should not apply sludge mixing guidelines to heel removal applications. Mixing effectiveness is a function of both the mixing device (e.g., slurry pump, agitator, air sparger) and the properties of the material to be mixed (e.g., yield stress, viscosity, density, and particle size). The objective of this document is to provide background mixing knowledge for the SRS Closure Business Unit personnel and to provide general recommendations for mixing in SRS applications.

  19. ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2010-02-02

    Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank walls. The Acid Spray Wash was followed by a Water Spray Wash to remove oxalic acid from the tank internals. SRR conducted the Spray Wash as follows. Personnel added 4,802 gallons of 8 wt % oxalic acid to Tank 6F through the spray mast installed in Riser 2, added 4,875 gallons of oxalic acid through Riser 7, added 5,000 gallons of deionized water into the tank via Riser 2, and 5,000 gallons of deionized water into the tank via Riser 7. Following the Spray Wash, they visually inspected the tank and transferred 22,430 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Following the Spray Wash and transfer, Savannah River Site (SRS) added 113,935 gallons of well water to Tank 6F. They mixed the tank contents with a single SMP and transferred 112,699 gallons from Tank 6F to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,488 gallons of solids remained in the tank. Following the Water Wash, SRR personnel collected a solid sample and submitted it to SRNL for analysis to assess the effectiveness of the chemical cleaning and to provide a preliminary indication of the composition of the material remaining in the tank.

  20. CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES

    SciTech Connect (OSTI)

    Hay, M.; Reboul, S.

    2012-04-16

    The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitrate, sodium nitrite, gibbsite, hydrated sodium bicarbonate, and muscovite. Based on the weight of solids remaining at the end of the test, the water leaching test results indicate approximately 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and {approx}1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The preliminary data on the oxalic acid leaching test indicate the three acid contacts at 45 C dissolved from {approx}34-47% of the solids. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.

  1. 324 Building special-case waste assessment in support of the 324 Building closure (TPA milestone M-89-05)

    SciTech Connect (OSTI)

    Hobart, R.L.

    1998-05-12

    Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement Milestone M-89-05 requires US Department of Energy, Richland Operations Office to complete a 324 Building Special Case Waste Assessment in Support of the 324 Building Closure. This document has been prepared with the intent of meeting this regulatory commitment. Alternatives for the Special Case Wastes located in the 324 Building were defined and analyzed. Based on the criteria of safety, environmental, complexity of interfaces, risk, cost, schedule, and long-term operability and maintainability, the best alternative was chosen. Waste packaging and transportation options are also included in the recommendations. The waste disposition recommendations for the B-Cell dispersibles/tank heels and High-Level Vault packaged residuals are to direct them to the Plutonium Uranium Extraction Facility (PUREX) Number 2 storage tunnel.

  2. 324 Facility special-case waste assessment in support of 324 closure (TPA milestone M-89-05)

    SciTech Connect (OSTI)

    Hobart, R.L.

    1998-06-25

    Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement Milestone M-89-05, requires US Department of Energy, Richland Operations Office to complete a 324 Facility Special-Case Waste Assessment in Support of 324 Closure. This document, HNF-1270, has been prepared with the intent of meeting this regulatory commitment. Alternatives for the special-case wastes located in the 324 Building were defined and analyzed. Based on the criteria of safety, environmental, complexity of interfaces, risk, cost, schedule, and long-term operability and maintainability, the best alternative was chosen. Waste packaging and transportation options are also included in the recommendations. The waste disposition recommendations for the B-Cell dispersibles/tank heels and High-Level Vault packaged residuals are to direct them to the Plutonium Uranium Extraction Facility (PUREX) Number 2 storage tunnel.

  3. Draft Performance Assessment for the F-Tank Farm at the Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Draft Performance Assessment for the F-Tank Farm at the Savannah River Site Draft Performance Assessment for the F-Tank Farm at the Savannah River Site This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the eventual operational closure of the F-Tank Farm (FTF) underground radioactive waste tanks and ancillary equipment. This PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance

  4. Tank Waste Corporate Board Meeting 07/29/09 | Department of Energy

    Energy Savers [EERE]

    9/09 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board Meeting held on July 29th, 2009. PDF icon Fuel Cycle Research and Development Program PDF icon Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology PDF icon Tank Waste System Integrated Project Team PDF icon Gunite Tanks Waste Retrieval and Closure Operations at Oak Ridge Nattional Laboratory PDF icon Integrated Facilities Disposition

  5. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect (OSTI)

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Desk-book. The TRA consists of three parts: - Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. - Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. - Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy. (authors)

  6. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energys (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRCs ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  7. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: (1) Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. (2) Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. (3) Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  8. RCRA corrective action and closure

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators` interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE`s permitted facilities and interim status facilities.

  9. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and accumulators, gas cylinders, and associated debris were removed and are currently pending treatment and disposal as MW. (3) At CAS 05-19-02, Contaminated Soil and Drum, as a BMP, an empty drum was removed and disposed as sanitary waste. (4) At CAS 18-01-01, Aboveground Storage Tank, approximately 165 gal of lead-impacted liquid were removed and are currently pending disposal as HW, and approximately 10 gal of lead shot and 6 yd{sup 3} of wax embedded with lead shot were removed and are currently pending treatment and disposal as MW. As a BMP, approximately 0.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, approximately 55 gal of liquid were removed and disposed as sanitary waste, and two metal containers were grouted in place. (5) At CAS 18-99-03, Wax Piles/Oil Stain, no further action was required; however, as a BMP, approximately l.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, and one metal container was grouted in place.

  10. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  11. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  12. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    1878, Rev. 0 Summary Notes from 5 - 7 May 2009 Office of River Protection Waste Management Area C Tank Farm Performance Assessment Input Meeting MP Connelly Washington River Protection Solutions LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV14800 EDT/EON: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 15 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory Abstract: Summary of meeting between DOE-ORP and Hanford Site

  13. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    3622, Rev. 0 Summary Notes from 1 - 3 September 2009 Office of River Protection Waste Management Area C Tank Farm Performance Assessment Input Meeting MP Connelly Washington River Protection Solutions LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV1 4800 EDT/ECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 13 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory Abstract: Summary of meeting between DOE-ORP and Hanford

  14. Tank 241-U-204 tank characterization plan

    SciTech Connect (OSTI)

    Bell, K.E.

    1995-03-23

    This document is the tank characterization plan for Tank 241-U-204 located in the 200 Area Tank Farm on the Hanford Reservation in Richland, Washington. This plan describes Data Quality Objectives (DQO) and presents historical information and scheduled sampling events for tank 241-U-204.

  15. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  16. CHARACTERIZATION OF THE TANK 18F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Click, D.; Diprete, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 18F closure samples. Tank 18F slurry samples analyzed included the liquid and solid fractions derived from the 'as-received' slurry materials along with the floor scrape bottom Tank 18F wet solids. These samples were taken from Tank 18F in March 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 18F samples, the samples from the north quadrants of the tank were combined into one North Tank 18F Hemisphere sample and similarly the south quadrant samples were combined into one South Tank 18F Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 18F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the minimum detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 18F, some were not met due to spectral interferences. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  17. Calcined solids storage facility closure study

    SciTech Connect (OSTI)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  18. ROCKET PORT CLOSURE

    DOE Patents [OSTI]

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  19. Underground Storage Tanks: New Fuels and Compatibility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Underground Storage Tanks: New Fuels and Compatibility Underground Storage Tanks: New Fuels and Compatibility Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency PDF icon haerer_biomass_2014.pdf More Documents & Publications Regulatory and Commercial

  20. Washington Closure Hanford: Cleanup Progress Along Hanford's...

    Broader source: Energy.gov (indexed) [DOE]

    Sax, President, Washington Closure Hanford. Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor More Documents & Publications 2014 Congressional Nuclear...

  1. Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop In 1994 Congress ordered the shutdown of the Experimental Breeder Reactor-II (EBR-II) and a closure project was initiated. PDF icon Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop More Documents & Publications CX-000681: Categorical Exclusion Determination EA-1148: Final Environmental Assessment Idaho

  2. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and transcribed oral comments made at public hearings are included as part of the administrative record for this TC & WM EIS. Figure 1-1 illustrates the process used to...

  3. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Prevent nuclear criticality (an unplanned nuclear chain reaction that may occur as a result of concentrating too much fissile material in one place). Provide physical protection ...

  4. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information System (IRIS), accessed through http:www.epa.goviris, March 5. FDH (Fluor Daniel Hanford, Inc.), 1998, Analysis of SX Farm Leak Histories-Historical Leak Model,...

  5. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1 Comments from the Hood River, Oregon, Public Hearing (February 9, 2010) God for that. ... want to just throw up your hands and say, "Oh, 100 percent cleanup is just too big of a job. ...

  6. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site, Richland, Washington (Final TC & WM EIS) U.S. Environmental Protection Agency (EPA), Region 10 Foreword After receiving the EPA comments on the Draft TC & WM EIS,...

  7. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... B Babitz, Arthur, Mayor City of Hood River, Oregon... John Atshuler Dorothy Attneave Mary E Aubert Nicole Aue A Aurora Jan Aust Jamie ...

  8. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... system operating at low pressure (approximately 8,000 ... the reboiler, evaporator vessel C-A-1, recirculation pump, ... The emergency diesel generator and the package boiler units ...

  9. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of contents of this storage vessel have been identified. ... Parameters used in developing inputs for the dispersion code ... day and yields a conservative value for vapor pressure. ...

  10. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... solution using a reaction vessel consisting of a ... II (EBR-II) sodium boiler building, and the sodium ... Washington Administrative Code (WAC) 173-303 and DOE Order ...

  11. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... E-214 E.2.4.4 Remote-Handled Special Components ... G-18 G.2.4 Employee Vehicle Emissions ......H-20 H.5.3 Maximally Exposed Individual Exposure Scenarios ...

  12. Translation--Final Tank Closure and Waste Management Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertederos y cierre limpio, para reducir permanentemente el potencial de riesgo a la salud humana y al medio ambiente en el futuro. Alternativas Preferidas para el Cierre de...

  13. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.6310 -9 NA 1.6110 -4 5.7810 -9 NA 1.2510 -2 6.0810 -7 Year of peak impact 2189 2189 2189 2186 2186 2191 2317 2317 2317 Chemical Constituent Resident Farmer American...

  14. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 3. 3. Certified Certified by: by: Wzk"J Wz Signature Signature Robert Robert L. L. Erikson Erikson Name Name Principal Principal Title Title Columbia Columbia Environmental...

  15. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Hanford Site (Hanford); (2) decommissioning of the Fast Flux Test Facility and ... Thus, the present industrial status of the 200 Areas would remain unchanged, as would its ...

  16. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and decommissioning of the Fast Flux Test Facility (FFTF), ... Bulk sodium inventories would be processed at Hanford for ... Site and the cocooned reactors transported to the ...

  17. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Fast Flux Test Facility (FFTF) remote-handled special components (Idaho Option) and bulk sodium (Idaho ... War era, numerous nuclear reactors and associated ...

  18. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the decommissioning of the Fast Flux Test Facility; and (3) ... uranium fuel in nuclear reactors at the Hanford Site ... achieve either a 5-molar sodium solution or a 10 ...

  19. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Eight Surplus Production Reactors at the Hanford Site, ... Assessment, Sodium Residuals ReactionRemoval and Other Deactivation Work Activities, Fast Flux Test Facility ...

  20. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to decommission the Fast Flux Test Facility (FFTF), ... bulk sodium from FFTF and other onsite facilities. ... complex with nine nuclear reactors and associated processing ...

  1. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... plutonium production reactors and the dual-purpose N ... Affected Environment 3-5 (sodium)-cooled reactor, FFTF was ... for DOE's liquid-metal fast-breeder reactor programs. ...

  2. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G-1 APPENDIX G AIR QUALITY ANALYSIS This appendix presents information on the nonradiological air quality impacts that could result from emissions associated with construction,...

  3. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Energy and Commerce, Subcommittee on Environment and the Economy The Honorable John Shimkus, Chairman The Honorable Gene Green, Ranking Member Committee on Science, Space,...

  4. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 5 Long-Term Environmental Consequences 5-1163 5.3.3 Ecological Risk This section presents the results of the evaluation of long-term impacts on ecological resources of...

  5. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 12 INDEX 10-county area, 3-96-3-98, 3-105, 3-106 15-county area, 3-169, 3-171, 3-178 200 Areas, 1-2, 1-14, 1-15, 1-37, 1-38, 1-40, 1-42, 1-44, 2-5, 2-59, 2-62, 2-145,...

  6. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site, Richland, Washington (Final TC & WM EIS) U.S. Department of Energy (DOE) Foreword DOE appreciates the efforts of the Washington State Department of Ecology (Ecology)...

  7. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Source Categories 40 CFR 63 Washington Clean Air Act RCW 70.94 Washington State Air Pollution Control Regulations WAC 173-400 through 173-495 -Ambient Air Quality Standards and ...

  8. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... human health and welfare. air quality control region - Geographic subdivisions of the United States that were established to deal with pollution on a regional or local level. ...

  9. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Limit the amount of disturbed land areas and revegetate land as soon as possible. Incorporate best available air pollution control technologies into design of new facilities. Use ...

  10. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... using the annual statistical poverty thresholds from the Census Bureau's Current Population Reports, Consumer Income, Series P60-239, Income, Poverty, and Health Insurance ...

  11. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The CEQ recommends that poverty thresholds be used to identify low-income individuals (CEQ ... identified with the annual statistical poverty thresholds from the Bureau of Census' ...

  12. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for existing subsurface contamination The Oregon proposal Regulatory compliance Climate change Secondary-waste-form performance High-level radioactive waste (HLW)...

  13. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Accounting, Syracuse University B.S., Finance, Syracuse University Experience: 28 years ... Lead Project Engineer; Data Development; Waste Management; Co-Manager-Appendix ...

  14. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    through groundwater. This TC & WM EIS quantifies impacts on the human and natural environment to the extent practicable, consistent with DOE's sliding-scale approach, taking...

  15. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 Prepared by Under Contract No. DE-AC52-06NA25946 March 2007 DISCLAIMER Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Available for sale to the public,

  16. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  17. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 222-S Laboratory 242-A...

  18. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  19. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  20. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and Disposition Framework This page intentionally left blank. ii Hanford Tank Waste Retrieval, Treatment, and Disposition Framework CONTENTS 1. Introduction ............................................................................................................................................. 1 Immobilizing Radioactive Tank

  1. Small Site Closures

    Office of Environmental Management (EM)

    Site Closures This table lists the 85 small sites closed as of 2012 in chronological order of completion. 1 A number of these sites were cleaned up under the Formerly Utilized Remedial Action Program (FUSRAP), for which the U.S. Army Corps of Engineers is responsible for site surveys and remediation. Uranium processing sites were addressed by the Uranium Mill Tailings Radiation Control Act (UMTRCA). UMTRCA Title II sites are sites that were commercially owned and are regulated under an U.S.

  2. Washington Closure Hanford - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM...

  3. HANFORD TANK CLEANUP UPDATE

    SciTech Connect (OSTI)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  4. System for closure of a physical anomaly

    DOE Patents [OSTI]

    Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S

    2014-11-11

    Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.

  5. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  6. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    SciTech Connect (OSTI)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North and South hemispheres is currently supported by a single Mantis rover sample in each hemisphere. A floor scrape sample was obtained from a compact region near the center riser slightly in the South hemisphere and has been analyzed for a shortened list of key analytes. There is not enough additional material from the floor scrape sample material for completing the full suite of constituents. No floor scrape samples have been previously taken from the North hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 19 residual floor material, four additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Three of the four additional samples from each hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape sample results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in t

  7. Engineering study for closure of 209E facility

    SciTech Connect (OSTI)

    Brevick, C.H.; Heys, W.H.; Johnson, E.D.

    1997-07-07

    This document is an engineering study for evaluating alternatives to determine the most cost effective closure plan for the 209E Facility, Critical Mass Laboratory. This laboratory is located in the 200 East Area of the Hanford Site and contains a Critical Assembly Room and a Mix room were criticality experiments were once performed.

  8. Tank evaluation system shielded annular tank application

    SciTech Connect (OSTI)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  9. Sampling and Analysis Plan for Old Solvent Tanks S1-S22 to Address Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Filpus-Luyckx, P.E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-10-02

    The Environmental Restoration Department (ERD) assumed custody of the Old Solvent Tanks (Tanks S1-S22) in the Old Radioactive Waste Burial Ground (ORWBG, 643-E) from Waste Management in January 1991. The purpose of this Sampling and Analysis Plan (SAP) is to collect and analyze samples of the sludge solids, organic and aqueous phases to determine the level of radioactivity, the isotopic constituents, the specific gravity, and other physical parameters. These data must be obtained to evaluate the process safety of remediating the tanks, to determine the disposal path for the material in the tanks, and to determine the most viable closure technology for the tanks.

  10. Voluntary Protection Program Onsite Review, Washington Closure...

    Office of Environmental Management (EM)

    Washington Closure Hanford VPP Report - March 2009 Voluntary Protection Program Onsite Review, Washington Closure Hanford VPP Report - March 2009 March 2009 Evaluation to determine...

  11. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  12. HWMA/RCRA Closure Plan for the CPP-602 Laboratory Lines

    SciTech Connect (OSTI)

    Idaho Cleanup Project

    2009-09-30

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure (HWMA/RCRA) Plan for the CPP-602 laboratory lines was developed to meet the tank system closure requirements of the Idaho Administrative Procedures Act 58.01.05.008 and 40 Code of Federal Regulations 264, Subpart G. CPP-602 is located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The lines in CPP-602 were part of a liquid hazardous waste collection system included in the Idaho Nuclear Technology and Engineering Center Liquid Waste Management System Permit. The laboratory lines discharged to the Deep Tanks System in CPP-601 that is currently being closed under a separate closure plan. This closure plan presents the closure performance standards and the methods for achieving those standards. The closure approach for the CPP-602 laboratory lines is to remove the lines, components, and contaminants to the extent practicable. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site CPP-117 includes the CPP-602 waste trench and the area beneath the basement floor where waste lines are direct-buried. Upon completion of rinsing or mopping to remove contamination to the extent practicable from the waste trench and rinsing the intact buried lines (i.e., stainless steel sections), these areas will be managed as part of CERCLA Site CPP-117 and will not be subject to further HWMA/RCRA closure activities. The CPP-602 building is being decontaminated and decommissioned under CERCLA as a non-time critical removal action in accordance with the Federal Facility Agreement/Consent Order. As such, all waste generated by this CERCLA action, including closure-generated waste, will be managed in coordination with that CERCLA action in substantive compliance with HWMA/RCRA regulations. All waste will be subject to a hazardous waste determination for the purpose of supporting appropriate management and will be managed in accordance with this plan. ii

  13. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    SciTech Connect (OSTI)

    Adkins, B.J.

    2002-12-03

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  14. SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION

    SciTech Connect (OSTI)

    Bannochie, C.; Click, D.; Pareizs, J.

    2010-05-21

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  15. Rulison Site Surface Closure Report

    Office of Legacy Management (LM)

    Nevada Operations Office DOE/NV- -510 UC-700 Nevada Environmental Restoration Project Rulison Site Surface Closure Report July 1998 Environmental Restoration Division DOE/NV--510 UC-700 RULISON SITE SURFACE CLOSURE REPORT DOE Nevada Operations Office Las Vegas, Nevada July 1998 This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from

  16. Photogrammetry and Laser Imagery Tests for Tank Waste Volume Estimates: Summary Report

    SciTech Connect (OSTI)

    Field, Jim G.

    2013-03-27

    Feasibility tests were conducted using photogrammetry and laser technologies to estimate the volume of waste in a tank. These technologies were compared with video Camera/CAD Modeling System (CCMS) estimates; the current method used for post-retrieval waste volume estimates. This report summarizes test results and presents recommendations for further development and deployment of technologies to provide more accurate and faster waste volume estimates in support of tank retrieval and closure.

  17. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    SciTech Connect (OSTI)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was obtained from a compact region near the northeast riser and has been analyzed for a shortened list of key analytes. Since the unused portion of the floor scrape sample material is archived and available in sufficient quantity, additional analyses need to be performed to complete results for the full suite of constituents. The characterization of the full suite of analytes in the South hemisphere is currently supported by a single Mantis rover sample; there have been no floor scrape samples previously taken from the South hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 18 residual floor material, three additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Two of the three additional samples from the North hemisphere and three of the four additional samples from the South hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape samples (the sample previously obtained near NE riser plus the two additional samples that will be analyzed) results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in the stati

  18. Hanford tanks initiative plan

    SciTech Connect (OSTI)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  19. RCRA post-closure permits

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The Resource Conservation and Recovery Act (RCRA) requires that hazardous waste management facilities operate in accordance with permits granted by the US Environmental Protection Agency (EPA) or a State authorized to carry out the RCRA Subtitle C program. Several categories of permits (including treatment, storage, and disposal permits; research, development, and demonstration permits; post-closure permits; emergency permits; permits-by-rule; and trial burn and land treatment demonstration permits) are issued under the RCRA Subtitle C program. This Information Brief focuses on post-closure permitting requirements under 40 CFR 270.1(c).

  20. Alarm sensor apparatus for closures

    DOE Patents [OSTI]

    Carlson, J.A.; Stoddard, L.M.

    1984-01-31

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  1. Alarm sensor apparatus for closures

    DOE Patents [OSTI]

    Carlson, James A. (Thornton, CO); Stoddard, Lawrence M. (Arvada, CO)

    1986-01-01

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  2. Tank Waste Remediation System optimized processing strategy

    SciTech Connect (OSTI)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  3. Single Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval

    SciTech Connect (OSTI)

    DEFIGH PRICE, C.

    2000-09-20

    In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover.

  4. Compressed/Liquid Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

  5. F-Tank Farm Performance Assessment, Rev 1 | Department of Energy

    Energy Savers [EERE]

    F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to

  6. Hanford tank residual waste contaminant source terms and release models

    SciTech Connect (OSTI)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

    2011-08-23

    Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energys Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-PH phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

  7. Corrosion Control during Closure Activities at the Savannah River Site - 13514

    SciTech Connect (OSTI)

    Wiersma, Bruce J.; Subramanian, Karthik H.; Martin, Keisha B.

    2013-07-01

    Liquid radioactive wastes from the Savannah River Site (SRS) separation process are stored in large underground carbon steel tanks. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement function by providing a barrier to the environment and by maintaining acceptable structural stability during normal service and design basis events (e.g., earthquake conditions). A corrosion control program is in place to ensure that degradation of the steel does not impact the structural and leak integrity functions of these waste tanks. The SRS is currently retrieving waste from older waste tanks and processing the waste through the vitrification for long term stabilization. The retrieval processes prepare the tanks for ultimate closure (i.e., grouting) by removing sludge by mechanical and/or sluicing methods, dissolving salt cake by adding water, and chemical cleaning of the residual sludge with oxalic acid. Each of these retrieval methods will result in waste chemistry that does not meet the requirements of the current corrosion control program. Given the short-term exposure and limited remaining service life for the tanks in which retrievals are being performed, an assessment of the need for corrosion controls in these tanks was performed. The assessment reviewed the corrosion rates in the more aggressive environments and the postulated loads on the structure during the closure activities. The assessment concluded that the current corrosion control program may be suspended for a short period of time while final retrieval of the waste is performed. (authors)

  8. Reverberant Tank | Open Energy Information

    Open Energy Info (EERE)

    Reverberant Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleReverberantTank&oldid596388" Feedback Contact needs updating Image needs...

  9. Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Tow Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleTowTank&oldid596389" Feedback Contact needs updating Image needs updating Reference...

  10. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    in the EM complex Radioactive tank waste stabilization, treatment, and disposal ... Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and ...

  11. Post-Closure Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post-Closure Benefits Post-Closure Benefits The Legacy Management Post-Closure Benefits (PCB) Program includes the development, implementation, and oversight of the Department's policy concerning the continuation of contractor pension and medical benefits after the closure of applicable DOE sites/facilities. This includes oversight of the administration and management of legacy contractor benefits in a fiscally responsible and effective manner. The primary program objective is to ensure a

  12. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect (OSTI)

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  13. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  14. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  15. Helium bubble distributions in reactor tank repair specimens. Part 1

    SciTech Connect (OSTI)

    Tosten, M.H.; Kestin, P.A.

    1992-03-01

    This report discusses the Reactor Tank Repair (RTR) program was initiated to develop an in-tank repair process capable of repairing stress corrosion cracks within the SRS reactor tank walls, in the event that such a repair is needed. Previous attempts to repair C-reactor tank with a gas tungsten arc (GTA) welding process were unsuccessful due to significant cracking that occurred in the heat-affected-zones adjacent to the repair welds. It was determined that this additional cracking was a result of helium embrittlement caused by the combined effects of helium (existing within the tank walls), the high heat input associated with the GTA process, and weld shrinkage stresses. Based on the results of earlier studies it was suggested that the effects of helium embrittlement could be minimized by using a low heat input GMA process. Metallographic analysis played an important role throughout the investigation of alternative welding methods for the repair of helium-containing materials.

  16. Helium bubble distributions in reactor tank repair specimens

    SciTech Connect (OSTI)

    Tosten, M.H.; Kestin, P.A.

    1992-03-01

    This report discusses the Reactor Tank Repair (RTR) program was initiated to develop an in-tank repair process capable of repairing stress corrosion cracks within the SRS reactor tank walls, in the event that such a repair is needed. Previous attempts to repair C-reactor tank with a gas tungsten arc (GTA) welding process were unsuccessful due to significant cracking that occurred in the heat-affected-zones adjacent to the repair welds. It was determined that this additional cracking was a result of helium embrittlement caused by the combined effects of helium (existing within the tank walls), the high heat input associated with the GTA process, and weld shrinkage stresses. Based on the results of earlier studies it was suggested that the effects of helium embrittlement could be minimized by using a low heat input GMA process. Metallographic analysis played an important role throughout the investigation of alternative welding methods for the repair of helium-containing materials.

  17. TFA Tank Focus Area - multiyear program plan FY98-FY00

    SciTech Connect (OSTI)

    1997-09-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

  18. TFA Tanks Focus Area Multiyear Program Plan FY00-FY04

    SciTech Connect (OSTI)

    BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

    1999-10-12

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50 or OST).

  19. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2

    SciTech Connect (OSTI)

    KIRK WINTERHOLLER

    2008-02-25

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

  20. Tank 48 - Chemical Destruction

    SciTech Connect (OSTI)

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  1. First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 2

    Office of Environmental Management (EM)

    8 of 864 1.0 EXECUTIVE SUMMARY This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the eventual removal from service of the H-Area Tank Farm (HTF) underground radioactive waste tanks and ancillary equipment. This PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for removal from service and eventual final closure of the HTF.  U.S. Department of Energy

  2. Tank Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Waste Tank Waste December 29, 2015 Cranes remove a sluicer from tank C-102 midway through retrieval to replace it with a new piece of equipment. The sluicer is wrapped in two layers of thick plastic to prevent contamination from entering the environment or harming workers. EM's Office of River Protection Completes Waste Retrieval in Another Hanford Tank RICHLAND, Wash. - The EM Office of River Protection (ORP) and its tank operations contractor Washington River Protection Solutions

  3. Post-Closure Benefits: DOE Complex vs Closure Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post-Closure Benefits » Post-Closure Benefits: DOE Complex vs Closure Sites Post-Closure Benefits: DOE Complex vs Closure Sites Status of Contractor Pension and PRB Benefit Programs - September 30, 2013 DOE Wide Closure Sites Defined Benefit Pension Plans 36 6 Defined Contribution Plans 13 0 PRB Plans >100 7 Active Participants 61,400 0 Retirees/Survivors 75,300 6,400 Terminated Vested Participants 39,500 2,900 FY 2013 Pension Unfunded Liability 10,616 Million 0 Million FY 2013 PRB Unfunded

  4. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

  5. Analysis of the Tank 5F Feed and Bleed Residual Solids

    SciTech Connect (OSTI)

    Poirier, M.; Diprete, D.: Coleman, C.; Washington, A.

    2011-07-07

    Savannah River Remediation (SRR) is preparing Tank 5F for closure. As part of Tank 5F Closure Mechanical Cleaning, SRR conducted a 'Feed and Bleed' process in Tank 5F. Following this 'Feed and Bleed' Mechanical Cleaning in Tank 5F, SRR collected two tank heel samples (referred to as sample 1 and sample 2) under Riser 5 to determine the composition of the material remaining in the tanks. This document describes sample analysis results. The conclusions from this analysis follow. (1) The anions measured all had a concentration less than 250 mg/kg, except for oxalate, which had a concentration of 2100-2400 mg/kg. (2) The measured cations with the highest concentration were iron (432,000-519,000 mg/kg), nickel (54,600-69,300 mg/kg), and manganese (35,200-42,100 mg/kg). All other cations measured less than 13,000 mg/kg. (3) The radionuclides present in the highest concentration are {sup 90}Sr (3.0 x 10{sup 10} dpm/g), {sup 137}Cs (6.8 x 10{sup 8} dpm/g), and {sup 241}Am (1.4 x 10{sup 8} - 1.8 x 10{sup 8} dpm/g). (4) The particle size analysis shows a large fraction of particles greater than 100 {micro}.

  6. Notices

    Broader source: Energy.gov (indexed) [DOE]

    its preferred alternative for wastes contained in underground radioactive waste storage tanks evaluated in the Final Tank Closure and Waste Management Environmental Impact...

  7. Risk and Performance Analyses Supporting Closure of WMA C at the Hanford Site in Southeast Washington

    SciTech Connect (OSTI)

    Eberlein, Susan J.; Bergeron, Marcel P.; Kemp, Christopher J.; Hildebrand, R. Douglas; Aly, Alaa; Kozak, Matthew; Mehta, Sunil; Connelly, Michael

    2013-11-11

    The Office of River Protection under the U.S. Department of Energy (DOE) is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C as stipulated by the Hanford Federal Facility Agreement and Consent Order (HFFACO) under federal requirements and work tasks will be done under the State-approved closure plans and permits. An initial step in meeting the regulatory requirements is to develop a baseline risk assessment representing current conditions based on available characterization data and information collected at the WMA C location. The baseline risk assessment will be supporting a Resource Conservation and Recovery Act of 1976 (RCRA) Field Investigation (RFI)/Corrective Measures Study (CMS) for WMA closure and RCRA corrective action. Complying with the HFFACO conditions also involves developing a long-term closure Performance Assessment (PA) that evaluates human health and environmental impacts resulting from radionuclide inventories in residual wastes remaining in WMA C tanks and ancillary equipment. This PA is being developed to meet the requirements necessary for closure authorization under DOE Order 435.1 and Washington State Hazardous Waste Management Act. To meet the HFFACO conditions, the long-term closure risk analysis will include an evaluation of human health and environmental impacts from hazardous chemical inventories along with other performance Comprehensive Environmental Response, Compensation, and Liability Act Appropriate and Applicable Requirements (CERCLA ARARs) in residual wastes left in WMA C facilities after retrieval and removal. This closure risk analysis is needed to needed to comply with the requirements for permitted closure. Progress to date in developing a baseline risk assessment of WMA C has involved aspects of an evaluation of soil characterization and groundwater monitoring data collected as a part of the RFI/CMS and RCRA monitoring. Developing the long-term performance assessment aspects has involved the construction of detailed numerical models of WMA C using the Subsurface Transport Over Multiple Phases (STOMP) computer code, the development of a technical approach for abstraction of a range of representative STOMP simulations into a system-level model based on the GoldSim system-level model software.The STOMP-based models will be used to evaluate local-scale impacts and closed facility performance over a sufficient range of simulations to allow for development of the system-level model of the WMA C. The GoldSim-based system-level model will be used to evaluate overall sensitivity of modeled parameters and the estimate the uncertainty in potential future impacts from a closed WMA C facility.

  8. In-Tank Elutriation Test Report And Independent Assessment

    SciTech Connect (OSTI)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.; Steeper, T. J.

    2011-04-13

    The Department of Energy (DOE) Office of Environmental Management (EM) funded Technology Development and Deployment (TDD) to solve technical problems associated with waste tank closure for sites such as Hanford Site and Savannah River Site (SRS). One of the tasks supported by this funding at Savannah River National Laboratory (SRNL) and Pacific Northwest Laboratory (PNNL) was In-Tank Elutriation. Elutriation is the process whereby physical separation occurs based on particle size and density. This report satisfies the first phase of Task WP_1.3.1.1 In-Tank Elutriation, which is to assess the feasibility of this method of separation in waste tanks at Hanford Site and SRS. This report includes an analysis of scoping tests performed in the Engineering Development Laboratory of SRNL, analysis of Hanford's inadvertent elutriation, the viability of separation methods such as elutriation and hydrocyclones and recommendations for a path forward. This report will demonstrate that the retrieval of Hanford salt waste tank S-112 very successfully decreased the tank's inventories of radionuclides. Analyses of samples collected from the tank showed that concentrations of the major radionuclides Cs-136 and Sr-90 were decreased by factors of 250 and 6 and their total curie tank inventories decreased by factors of 60,000 and 2000. The total tank curie loading decreased from 300,000 Ci to 55 Ci. The remaining heel was nearly all innocuous gibbsite, Al(OH){sub 3}. However, in the process of tank retrieval approximately 85% of the tank gibbsite was also removed. Significant amounts of money and processing time could be saved if more gibbsite could be left in tanks while still removing nearly all of the radionuclides. There were factors which helped to make the elutriation of Tank S-112 successful which would not necessarily be present in all salt tanks. 1. The gibbsite particles in the tank were surprisingly large, as much as 200 {micro}m. The gibbsite crystals had probably grown in size over a period of decades. 2. The radionuclides were apparently either in the form of soluble compounds, like cesium, or micrometer sized particles of actinide oxides or hydroxides. 3. After the initial tank retrieval the tank contained cobble which is not conducive to elutriation. Only after the tank contents were treated with thousands of gallons of 50 wt% caustic, were the solids converted to sand which is compatible with elutriation. Discussions between SRNL and PNNL resulted in plans to test elutriation in two phases; in Phase 1 particles would be separated by differences in settling velocity in an existing scaled tank with its associated hardware and in Phase 2 additional hardware, such as a hydrocyclone, would be added downstream to separate slow settling partciels from liquid. Phase 1 of in-tank elutriation was tested for Proof of Principle in theEngineering Development Laboratory of SRNL in a 41" diameter, 87 gallon tank. The tank had been previously used as a 1/22 scale model of Hanford Waste Tank AY-102. The objective of the testing was to determine which tank operating parameters achieved the best separation between fast- and slow-settling particles. For Phase 1 testing a simulated waste tank supernatant, slow-settling particles and fast-settling particles were loaded to the scaled tank. Because this was a Proof of Principle test, readily available solids particles were used that represented fast-settling and slow-settling particles. The tank contents were agitated using rotating mixer jet pumps (MJP) which suspended solids while liquids and solids were drawn out of the tank with a suction tube. The goal was to determine the optimum hydraulic operating conditions to achieve clean separation in which the residual solids in the tank were nearly all fast-settling particles and the solids transferred out of the tank were nearly all slow-settling particles. Tests were conducted at different pump jet velocities, suction tube diameters and suction tube elevations. Testing revealed that the most important variable was jet velocity which translates to a d

  9. MODIFICATIONS TO THE WIPP PANEL CLOSURE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Panel Closure ATTACHMENT 1 NMED COMMENTS ITEM 1 - MODIFICATIONS TO THE WIPP PANEL CLOSURE Page 2 of 29 Panel Closure 1-1: PMR Overview, Section 1, "Revision to the PCS Design" This section needs to explicitly explain which Attachment G1 Appendices are being deleted and which new appendices contain relevant information from old appendices. For example, Appendix B appears to include consolidated relevant information from the previous Appendices B through F; the new Appendix A replaces

  10. Clamshell closure for metal drum

    DOE Patents [OSTI]

    Blanton, Paul S

    2014-09-30

    Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.

  11. River Corridor Closure Contract Section J, Attachment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Government and Washington Closure LLC (Contractor), the undersigned, Washington Group International, Inc. (Guarantor), a corporation incorporated in the State of Delaware with...

  12. River Corridor Closure Project Partnering Performance Agreement...

    Office of Environmental Management (EM)

    - March 2009 Voluntary Protection Program Onsite Review, River Corridor Closure Project - June 2012 Indoctrinating Subcontractors into the DOE Safety Culture and Expectations...

  13. LABORATORY DELAYED OPENING, CLOSURE, OR EMERGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DELAYED OPENING, CLOSURE, OR EMERGENCY Los Alamos National Laboratory (LANL) may at times experience a work delay or closure due to inclement weather or unexpected Laboratory emergencies. In the event of a delay, closure, or emergency, Laboratory New Hires should call the following number to receive information regarding the delay or closure: LANL Update Hotline: 505-667-6622, 1-877-723-4101, and/or http://www.lanl.gov (Please note, the LANL hotline and webpage are updated by 5:30 a.m.) New Hire

  14. River Corridor Closure Contract Section J, Attachment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick L. Pettiette, President, Washington Closure LLC, October 7, 2004 Plan accepted by Michael K. Barrett, Contracting Officer, DOE-RL on Contract Award Date (signatures on file...

  15. EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC

    Broader source: Energy.gov [DOE]

    This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

  16. Performance Analysis for Mixing Pumps in Tank 18

    SciTech Connect (OSTI)

    Lee, S.Y.

    2002-04-16

    In support of sludge suspension and mixing operations in Tank 18, flow evolution models were developed and performance calculations completed for the advanced design mixer pump (ADMP) and the modified ADMP (MADMP). The MADMP was being considered as a replacement for the ADMP in Tank 18. The models and calculations were based on prototypic tank geometry and expected normal operating conditions as defined by Waste Removal Closure (WRC) Engineering. Computational fluid dynamics models of both the TNX full tank experimental facility and Tank 18 were developed using the FLUENT(tm) code. TNX test data were used to benchmark the models and assess the efficiency of sludge suspension and removal operations in the 85 ft tank. The models employed a three-dimensional approach, a two-equation turbulence model, and a stepped-rotation approximation to estimate pump rotation effects. A two-dimensional approach was also used as a scoping analysis to examine multi-dimensional effects of fluid motion on the flow circulation patterns in the tank. The results were verified by both TNX test data and literature data. Local velocity was used as a measure of slurrying and mixing capability. The results showed that normal operations in Tank 18 with the existing ADMP mixer and a 70 inch liquid level provide adequate sludge removal in most regions of the tank. The exception is the region within about 2 ft of the wall, assuming the minimum velocity required to suspend waste sludge is 2.27 ft/sec. Further results showed that the time to reach a steady-state flow pattern was affected by both pump rotation and pump location. Sensitivity studies showed that a higher tank level and the smaller nozzle size would result in better performance in suspending and removing the sludge. The results also showed that the MADMP mixer has the best sludge removal capacity. Computational results for two different fluids, water and a typical slurry, showed that the maximum clearing distance was not sensiti ve to the slurry fluid properties.

  17. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect (OSTI)

    DODD RA

    2008-01-22

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner.

  18. Criticality assessment of LLRWDF closure

    SciTech Connect (OSTI)

    Sarrack, A.G.; Weber, J.H.; Woody, N.D.

    1992-10-06

    During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of the LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted.

  19. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  20. SAVANNAH RIVER SITE TANK 18 AND TANK 19 WALL SAMPLER PERFORMANCE

    SciTech Connect (OSTI)

    Leishear, R.; Thaxton, D.; Minichan, R.; France, T.; Steeper, T.; Corbett, J.; Martin, B.; Vetsch, B.

    2009-12-19

    A sampling tool was required to evaluate residual activity ({mu}Curies per square foot) on the inner wall surfaces of underground nuclear waste storage tanks. The tool was required to collect a small sample from the 3/8 inch thick tank walls. This paper documents the design, testing, and deployment of the remotely operated sampling device. The sampler provides material from a known surface area to estimate the overall surface contamination in the tank prior to closure. The sampler consisted of a sampler and mast assembly mast assembly, control system, and the sampler, or end effector, which is defined as the operating component of a robotic arm. The mast assembly consisted of a vertical 30 feet long, 3 inch by 3 inch, vertical steel mast and a cantilevered arm hinged at the bottom of the mast and lowered by cable to align the attached sampler to the wall. The sampler and mast assembly were raised and lowered through an opening in the tank tops, called a riser. The sampler is constructed of a mounting plate, a drill, springs to provide a drive force to the drill, a removable sampler head to collect the sample, a vacuum pump to draw the sample from the drill to a filter, and controls to operate the system. Once the sampler was positioned near the wall, electromagnets attached it to the wall, and the control system was operated to turn on the drill and vacuum to remove and collect a sample from the wall. Samples were collected on filters in removable sampler heads, which were readily transported for further laboratory testing.

  1. TANK SPACE OPTIONS REPORT

    SciTech Connect (OSTI)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  2. Tank Waste Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/15 Tank Waste Committee Priorities for advice on FY17 budget Not in priority order, numbering refers to last year's related advice points, per DOE response  (#1) The Board strongly urges DOE-Headquarters (HQ) to request full funding from Congress to meet all legal requirements of the ongoing cleanup work in FY 2016 and 2017 in addition to the following specific requests.  (#2) The Board advises DOE-ORP continue to request funding to proceed to empty leaking tanks (particularly AY-102 and

  3. Steam Reforming Technology for Denitration and Immobilization of DOE Tank Wastes

    SciTech Connect (OSTI)

    Mason, J. B.; McKibbin, J.; Ryan, K.; Schmoker, D.

    2003-02-26

    THOR Treatment Technologies, LLC (THOR) is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC to further develop, market, and deploy Studsvik's patented THORSM non-incineration, steam reforming waste treatment technology. This paper provides an overview of the THORSM steam reforming process as applied to the denitration and conversion of Department of Energy (DOE) tank wastes to an immobilized mineral form. Using the THORSM steam reforming technology to treat nitrate containing tank wastes could significantly benefit the DOE by reducing capital and life-cycle costs, reducing processing and programmatic risks, and positioning the DOE to meet or exceed its stakeholder commitments for tank closure. Specifically, use of the THORSM technology can facilitate processing of up to 75% of tank wastes without the use of vitrification, yielding substantial life-cycle cost savings.

  4. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing ... Uh, sorry no Commercial CNG Tanks Tank Type I Type IV Material steel carbon fiber Capacity ...

  5. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  6. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks

    SciTech Connect (OSTI)

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-11-10

    ABSTRACT Several tanks at the Hanford Site (in Washington State, USA) belong to the first generation of underground nuclear waste storage tanks known as single shell tanks (SSTs). These tanks were constructed between 1943 and 1964 and are well beyond their design life. This article discusses the structural analysis approach and modeling challenges encountered during the ongoing analysis of record (AOR) for evaluating the structural integrity of the SSTs. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads of these tanks for proper estimation of creep strains and thermal degradation of material properties. The loads prescribed in the AOR models also include anticipated loads that these tanks may see during waste retrieval and closure. Due to uncertainty in a number of inputs to the models, sensitivity studies were conducted to address questions related to the boundary conditions to realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed soil surrounding the backfill. Because of the limited availability of data on the thermal and operating history for many of the individual tanks, some of the data was assumed or interpolated. However, the models developed for the analysis of record represent the bounding scenarios and include the loading conditions that the tanks were subjected to or anticipated. The modeling refinement techniques followed in the AOR resulted in conservative estimates for force and moment demands at various sections in the concrete tanks. This article discusses the modeling aspects related to Type-II and Type-III SSTs. The modeling techniques, methodology and evaluation criteria developed for evaluating the structural integrity of SSTs at Hanford are in general applicable to any similar tanks or underground concrete storage structures.

  7. POST-CLOSURE CARE AND INSPECTION PLAN

    Office of Legacy Management (LM)

    B Post-Closure Care and Inspection Plan This page intentionally left blank U.S. Department of Energy Comprehensive Legacy Management and Institutional Controls Plan Doc. No. S03496-8.0-Final Attachment B-Post-Closure Care and Inspection Plan January 2015 Page i Contents Abbreviations ................................................................................................................................. iii 1.0 Introduction

  8. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    SciTech Connect (OSTI)

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). 5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP#8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12. Mix, LP#8-16 is recommended for inclusion in the specification for furnishing and delivering tank closure grout for Tanks 18-F and 19-F [Forty, 2011 c]. A shrinkage compensating variation of this mix, LP#16C, has not been fully developed and characterized at this time.

  9. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  10. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  11. Plating Tank Control Software

    Energy Science and Technology Software Center (OSTI)

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  12. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    SciTech Connect (OSTI)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will provide additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well casing interference and soil moisture content and may not be successful in some conditions. In some cases the level of interference must be estimated due to uncertainties regarding the materials used in well construction and soil conditions, Well casing deployment used for many in-situ geophysical methods is relatively expensive and geophysical methods do not generally provide real time values for contaminants. In addition, some of these methods are not practical within the boundaries of the tank farm due to physical constraints, such as underground piping and other hardware. The CP technologies could facilitate future characterization of vadose zone soils by providing vadose zone data in near real-time, reducing the number of soil samples and boreholes required, and reducing characterization costs.

  13. Closure for milliliter scale bioreactor

    DOE Patents [OSTI]

    Klein, David L.; Laidlaw, Robert D.; Andronaco, Gregory; Boyer, Stephen G.

    2010-12-14

    A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.

  14. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-12-15

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.

  15. Independent Oversight Special Review, Rocky Flats Closure Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats...

  16. ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy

    Energy Savers [EERE]

    AUG 2006 ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 PDF icon Rocky Flats Closure Project-Lessons Learned-August 2006.pdf More Documents & Publications Rocky Flats Overview...

  17. Letter: Transition of Closure Sites from the Office of Environmental...

    Office of Environmental Management (EM)

    Transition of Closure Sites from the Office of Environmental Management to other DOE Organizations Letter: Transition of Closure Sites from the Office of Environmental Management...

  18. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

  19. DOE Announces Preference for Disposal of Hanford Transuranic Tank Waste at WIPP

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. –  Today the U.S. Department of Energy (DOE) announced its preferred alternative to retrieve, treat, package, characterize and certify certain Hanford tank waste for disposal at...

  20. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured by different methods, and the differences in the fraction removed are not statistically significant. (10) Chemical cleaning removed 10-50% of the barium, chromium, iron, magnesium, manganese, and silicon. (11) Chemical cleaning removed only {approx}1% of the nickel.

  1. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology (16 second flow cone value) from 0.25 cubic feet to 4.3 cubic feet. (Ten 0.43 cubic batches were produced because full-scale equipment was not available for the Tier 1A test.); (5) Demonstrating continuous gravity filling of the ADMP mock up test form; (6) Demonstrating continuous gravity filling of 1 inch and 2 inch schedule 40 pipe; and (7) Demonstrating filling of 1 inch and 2 inch schedule 40 pipe from the bottom up by discharging through a tube inserted into the pipes. The Tier 1A mock-up test focused on the ADMP and pipes at least one inch in diameter. The ADMP which is located in center riser of Tank 18-F is a concern because the column for this long-shaft (55 ft) pump is unique and modification to the pump prior to placing it in service limited the flow path options for filling by creating a single flow path for filling and venting the ADMP support column. The large size, vertical orientation, and complicated flow path in the ADMP warrants a detailed description of this piece of ancillary equipment.

  2. he Hanford Story Tank Waste Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    he Hanford Story Tank Waste Cleanup he Hanford Story Tank Waste Cleanup Addthis Description The Hanford Story Tank Waste Cleanup

  3. Tank Waste Corporate Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Waste Management » Tank Waste and Waste Processing » Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste

  4. Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop

    Office of Environmental Management (EM)

    Pre-Developmental INL EBR-II Wash Water Treatment Technologies (PBS # ADSHQTD0100 (0003199)) EBR-II Wash Water Workshop - The majority of the sodium has been removed, remaining material is mostly passivated. Similar closure projects have been successfully completed. Engineering needs to be developed to apply the OBA path. Page 1 of 2 Idaho National Laboratory Idaho Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop Challenge In 1994 Congress ordered the shutdown of the

  5. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  6. Environmental challenges facing military base closures

    SciTech Connect (OSTI)

    Pomerleau, N.M.; Cunanan, P.P.; Lingo, R.

    1995-12-01

    Environmental remediation activities at military bases mandated for closure or realignment pose unique technical and managerial challenges to meet statutory requirements and community interests. Past industrial activities at Department of Army installations involving weapons development, testing, and repairs present extremely diverse problems for cleanup. The combination of environmental and defense statutory requirements present even greater challenges to assure that remediation activities are accelerated to render bases available for early re-use. The inclusion of bases on the National Priorities List and the need to consider socio-economic factors in identifying alternative uses of military bases and public involvement become significant factors in environment decisionmaking. Specific statutory authorities enable military facilities to identify uncontaminated parcels and allow property to be deeded, upon demonstration that an approved remedy is operating properly and successfully, while long-term cleanup of the entire installation continues. Successful cleanup strategies also require effective communication with public and disparate community interest groups. To speed the economic recovery of communities with closing military bases, the Clinton Administration has pledged to reduce the delays normally associated with environmental remediation activities. This article examines four core issues in the decontamination process: complexities associated with accelerating remediation activities at Army installations; managing the process within the constraints of limited resources; the public`s early involvement in shaping environmental contamination. The complexities presented by closing military bases and assuring environmental compliance have resulted in the development and implementation of several innovative methods that may prove useful to non-defense environmental situations. Examples of these methods and a discussion of strategies will be presented.

  7. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    SciTech Connect (OSTI)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  8. Extender for securing a closure

    DOE Patents [OSTI]

    Thomas, II, Patrick A.

    2012-10-02

    An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.

  9. Cavity closure arrangement for high pressure vessels

    DOE Patents [OSTI]

    Amtmann, Hans H. (San Diego, CA)

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  10. Reliability assessment of underground shaft closure

    SciTech Connect (OSTI)

    Fossum, A.F.

    1994-12-31

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties.

  11. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  12. Ohio Closure Projects Ceremony | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closure Projects Ceremony Ohio Closure Projects Ceremony January 19, 2007 - 9:59am Addthis Remarks for Energy Secretary Samuel Bodman Thank you, Alan Boeckmann for that kind introduction. It is a privilege to be with you today. I am pleased to be joined by my cabinet colleague Stephen Johnson, the administrator of the Environmental Protection Agency. It's also good to see Sen. George Voinovich. Senator, thank you for your leadership on so many issues critical to America's energy security and for

  13. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    NA

    2006-03-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos.

  14. EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first

  15. Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical

    Energy Savers [EERE]

    Review | Department of Energy Briefing on SRS Tank 48 Independent Technical Review Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing. PDF icon Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review More Documents & Publications Savannah River Site - Tank 48 SRS Review Report Savannah River Site - Tank 48 Transmittal Letter of

  16. Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review |

    Energy Savers [EERE]

    Department of Energy Transmittal Letter of SRS Tank 48 Review Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review This letter reviews the Path Forward for Savannah River Site Tank 48 and outlines best judgement on all issues and recommendations on how to procede. PDF icon Savannah River Site - Tank 48 Transmittal Letter of SRS Tank 48 Review More Documents & Publications Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review Savannah River

  17. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-06-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  18. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 17, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING April 17, 2012 Richland, WA Topics in this Meeting Summary Welcome & Introductions...

  19. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING March 8, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions...

  20. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 10, 2013 Richland, WA Topics in this Meeting Summary Opening ......

  1. Accelerating cleanup: Paths to closure

    SciTech Connect (OSTI)

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  2. Tank Waste Retrieval Lessons Learned at the Hanford Site

    SciTech Connect (OSTI)

    Dodd, R.A.

    2008-07-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner. Retrieval of SST waste in accordance with HFFACO requirements was initiated at the Hanford Site in April 2003. New and innovative tank waste retrieval methods that minimize and control the use of liquids are being implemented for the first time. These tank waste retrieval methods replace Past Practice Hydraulic Sluicing and employ modified sluicing, vacuum retrieval, and in-tank vehicle techniques. Waste retrieval has been completed in seven Hanford Site SSTs (C-106, C-103, C-201, C-202, C-203, C-204, and S-112) in accordance with HFFACO requirements. Three additional tanks are currently in the process of being retrieved (C-108, C-109 and S-102) Preparation for retrieval of two additional SSTs (C-104 and C-110) is ongoing with retrieval operations forecasted to start in calendar year 2008. Tank C-106 was retrieved to a residual waste volume of 470 ft{sup 3} using oxalic acid dissolution and modified sluicing. An Appendix H exception request for Tank C-106 is undergoing review. Tank C-103 was retrieved to a residual volume of 351 ft{sup 3} using a modified sluicing technology. This approach was successful at reaching the TPA limits for this tank of less than 360 ft{sup 3}and the limits of the technology. Tanks C-201, C-202, C-203, and C-204 are smaller (55,000 gallon) tanks and waste removal was completed in accordance with HFFACO requirements using a vacuum retrieval system. Residual waste volumes in each of these four tanks were less than 25 ft{sup 3}. Tank S-112 retrieval was completed February 28, 2007, meeting the TPA Limits of less than

  3. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities Tank Farms About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  4. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    SciTech Connect (OSTI)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  5. Savannah River Tank Waste Residuals

    Office of Environmental Management (EM)

    in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is...

  6. 1,153-ton Waste Vault Removed from 300 Area- Vault held waste tanks with contamination from Hanford’s former laboratory facilities

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy’s (DOE’s) Richland Operations Office announced the removal of a massive concrete vault that once held two 15,000-gallon stainless steel tanks used to collect highly contaminated waste from Hanford’s 300 Area laboratories as part of the River Corridor Closure project.

  7. High-Pressure Hydrogen Tank Testing

    Broader source: Energy.gov [DOE]

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  8. Organic liner for thermoset composite tank

    DOE Patents [OSTI]

    Garvey, Raymond E. (Knoxville, TN)

    1991-01-01

    A cryogenic tank that is made leak-proof under cryogenic conditions by successive layers of epoxy lining the interior of the tank.

  9. Independent Oversight Review, Hanford Tank Farms- November 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  10. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks

    SciTech Connect (OSTI)

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-03-01

    Abstract: A total of 149 tanks out of 177 at the Hanford Site (in Washington State, USA) belong to the first generation of underground nuclear waste storage tanks known as single shell tanks (SSTs). These tanks were constructed between 1943 and 1964 and are well beyond their design life. All the SSTs had been removed from active service by November 1980 and have been later interim stabilized by removing the pumpable liquids. The remaining waste in the tanks is in the form of salt cake and sludge awaiting r permanent disposal.. The evaluation of the structural integrity of these tanks is of utmost importance not only for the continued safe storage of the waste until waste retrieval and closure, but also to assure safe retrieval and closure operations. This article discusses the structural analysis approach, modeling challenges and issues encountered during the ongoing analysis of record (AOR) for evaluating the structural integrity of the SSTs. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. Several studies were conducted to refine the models in order to minimize modeling artifacts introduced by soil arching, boundary effects, concrete cracking, and concrete-soil interface behavior. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads of these tanks for proper estimation of creep strains and thermal degradation of material properties. The loads imposed in the AOR models also include anticipated loads that these tanks may see during waste retrieval and closure. Due to uncertainty in a number of inputs to the models, sensitivity studies were conducted to address questions related to the boundary conditions to realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed soil surrounding the backfill. The article also discusses the criteria and design standards used for evaluating the structural integrity of these underground concrete tanks. Because of the non-availability of complete data on the thermal and operating history for many of the individual tanks, some of the data was assumed or interpolated. However, the models developed for the analysis of record represent the bounding scenarios and include the worst and extreme loading cases that the tanks were subjected to or anticipated. The modeling refinement techniques followed in the AOR resulted in conservative estimates for force and moment demands at various sections in the concrete tanks. The SSTs are classified into 4 types as per their configuration and capacity. This article discusses the modeling aspects related to two types of SSTs that have been analyzed until now. The TOLA results combined with seismic demands from seismic analysis for the analysis of record indicate that the tanks analyzed are structurally stable as per the evaluation criteria established. These results are presented in a separate article. The modeling techniques, methodology and evaluation criteria developed for evaluating the structural integrity of SSTs at Hanford are in general applicable to any similar tanks or underground concrete storage structures.

  11. The Fernald Closure Project: Lessons Learned

    SciTech Connect (OSTI)

    Murphy, Cornelius M.; Carr, Dennis

    2008-01-15

    For nearly 37 years, the U.S. Department of Energy site at Fernald - near Cincinnati, Ohio - produced 230,000 metric tons (250,000 short tons) of high-purity, low-enriched uranium for the U.S. Defense Program, generating more than 5.4 million metric tons (6 million short tons) of liquid and solid waste as it carried out its Cold War mission. The facility was shut down in 1989 and clean up began in 1992, when Fluor won the contract to clean up the site. Cleaning up Fernald and returning it to the people of Ohio was a $4.4 billion mega environmental-remediation project that was completed in October 2006. Project evolved through four phases: - Conducting remedial-investigation studies to determine the extent of damage to the environment and groundwater at, and adjacent to, the production facilities; - Selecting cleanup criteria - final end states that had to be met that protect human health and the environment; - Selecting and implementing the remedial actions to meet the cleanup goals; - Executing the work in a safe, compliant and cost-effective manner. In the early stages of the project, there were strained relationships - in fact total distrust - between the local community and the DOE as a result of aquifer contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholders groups in the decision-making process, the DOE and Fluor developed a public-participation strategy to open the channels of communication with the various parties: site leadership, technical staff and regulators. This approach proved invaluable to the success of the project, which has become a model for future environmental remediation projects. This paper will summarize the history and shares lessons learned: the completion of the uranium-production mission to the implementation of the Records of Decision defining the cleanup standards and the remedies achieved. Lessons learned fall into ten categories: - Regulatory approach with end-state determinations; - Interaction with stakeholders; - The balanced approach - on-site and off-site waste-disposal alternatives; - The contracting model; - Site safety performance; - Effectiveness of cleanup remedies; - Worker training and transition; - Client interface; - Cost and schedule performance; - Legacy management. Lessons learned can be applied: While each site and project has its own issues, the various lessons learned from the Fernald Closure Project, when taken from a global perspective, can be applied to similar efforts so that pitfalls are avoided and efficiencies realized.

  12. Tank 241-Z-361 vapor sampling and analysis plan

    SciTech Connect (OSTI)

    BANNING, D.L.

    1999-02-23

    Tank 241-Z-361 is identified in the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement), Appendix C, (Ecology et al. 1994) as a unit to be remediated under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). As such, the U.S. Environmental Protection Agency will serve as the lead regulatory agency for remediation of this tank under the CERCLA process. At the time this unit was identified as a CERCLA site under the Tri-Party Agreement, it was placed within the 200-ZP-2 Operable Unit. In 1997, The Tri-parties redefined 200 Area Operable Units into waste groupings (Waste Site Grouping for 200 Areas Soils Investigations [DOE-RL 1992 and 1997]). A waste group contains waste sites that share similarities in geological conditions, function, and types of waste received. Tank 241-Z-361 is identified within the CERCLA Plutonium/Organic-rich Process Condensate/Process Waste Group (DOE-RL 1992). The Plutonium/Organic-rich Process Condensate/Process Waste Group has been prioritized for remediation beginning in the year 2004. Results of Tank 216-Z-361 sampling and analysis described in this Sampling and Analysis Plan (SAP) and in the SAP for sludge sampling (to be developed) will determine whether expedited response actions are required before 2004 because of the hazards associated with tank contents. Should data conclude that remediation of this tank should occur earlier than is planned for the other sites in the waste group, it is likely that removal alternatives will be analyzed in a separate Engineering Evaluation/Cost Analysis (EE/CA). Removal actions would proceed after the U.S. Environmental Protection Agency (EPA) signs an Action Memorandum describing the selected removal alternative for Tank 216-Z-361. If the data conclude that there is no immediate threat to human health and the environment from this tank, remedial actions for the tank will be defined in a feasibility study for the entire waste group.

  13. Closure device for lead-acid batteries

    DOE Patents [OSTI]

    Ledjeff, Konstantin (Schwalbach, DE)

    1983-01-01

    A closure device for lead-acid batteries includes a filter of granulated activated carbon treated to be hydrophobic combined with means for preventing explosion of emitted hydrogen and oxygen gas. The explosion prevention means includes a vertical open-end tube within the closure housing for maintaining a liquid level above side wall openings in an adjacent closed end tube. Gases vent from the battery through a nozzle directed inside the closed end tube against an impingement surface to remove acid droplets. The gases then flow through the side wall openings and the liquid level to quench any possible ignition prior to entering the activated carbon filter. A wick in the activated carbon filter conducts condensed liquid back to the closure housing to replenish the liquid level limited by the open-end tube.

  14. A STRUCTURAL IMPACT ASSESSMENT OF FLAWS DETECTED DURING ULTRASONIC EXAMINATION OF TANK 15

    SciTech Connect (OSTI)

    Wiersma, B; James Elder, J

    2008-08-21

    Ultrasonic (UT) inspection of Tank 15 was conducted between April and July 2007 in accordance with the Tank 15 UT inspection plan. This was a planned re-inspection of this tank, the previous one was performed in 2002. Ten cracks were characterized in the previous examination. The re-inspection was performed to verify the present models and understanding for stress corrosion cracking. During this re-examination, one indication that was initially reported as a 'possible perpendicular crack <25% through wall' in 2002, was clearly shown not to be a crack. Additionally, examination of a new area immediately adjacent to other cracks along a vertical weld revealed three new cracks. It is not known when these new cracks formed as they could very well have been present in 2002 as well. Therefore, a total of twelve cracks were evaluated during the re-examination. A critical review of the information describing stress corrosion crack behavior for the SRS waste tanks, as well as a summary review of the service history of Tank 15, was performed. Each crack was then evaluated for service exposure history, consistency of the crack behavior with the current understanding of stress corrosion cracking, and present and future impact to the structural integrity of the tank. Crack instability calculations were performed on each crack for a bounding waste removal loading condition in Tank 15. In all cases, the crack behavior was determined to be consistent with the previous understanding of stress corrosion cracking in the SRS waste tank environment. The length of the cracks was limited due to the short-range nature of the residual stresses near seam, repair and attachment welds. Of the twelve cracks, nine were located in the vapor space above the sludge layer, including the three new cracks. Comparison of the crack lengths measured in 2002 and 2007 revealed that crack growth had occurred in four of the six previously measured vapor space cracks. However, the growth remained within the residual stress zone. None of the three cracks beneath the sludge showed evidence of growth. The impact of the cracks that grew on the future service of Tank 15 was also assessed. Tank 15 is expected to undergo closure activities including sludge waste removal. A bounding loading condition for waste removal of the sludge at the bottom of Tank 15 was considered for this analysis. The analysis showed that the combination of hydrostatic, seismic, pump and weld residual stresses are not expected to drive any of the cracks identified during the Tank 15 UT inspection to instability. Wall thickness mapping for general thinning and pitting was also performed. No significant wall thinning was observed. The average wall thickness values were well above nominal. Two isolated pit-like indications were observed. Both were approximately 30 mils deep. However, the remaining wall thickness was still greater than nominal specified for the original construction plate material. It was recommended that a third examination of selected cracks in Tank 15 be performed in 2014. This examination would provide information to determine whether any additional detectable degradation is occurring in Tank 15 and to supplement the basis for characterization of conditions that are non-aggressive to tank corrosion damage. The in-service inspection program is re-evaluated on a three year periodicity. The Type I and II tanks are not active receipt tanks at present, and are therefore not a part of the In-Service Inspection Program for the Type III Tanks [1]. Changes to the mission for Tank 15 and other Type I and II tanks may be considered by the In-Service Inspection Review Committee (ISIRC) and the program adjusted accordingly.

  15. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. (4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). (5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP-8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12.

  16. F-Tank Farm Performance Assessment Updates through the Special Analysis Process at Savannah River Site - 12169

    SciTech Connect (OSTI)

    Layton, Mark H.

    2012-07-01

    The F-Area Tank Farm (FTF) is owned by the U.S. Department of Energy and operated by Savannah River Remediation, LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF is in the north-central portion of the SRS and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. An FTF Performance Assessment (PA) was prepared to support the eventual closure of the FTF underground radioactive waste tanks and ancillary equipment. The PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for final closure of FTF. The FTank Farm is subject to a state industrial waste water permit and Federal Facility Agreement. Closure documentation will include an F-Tank Farm Closure Plan and tank-specific closure modules utilizing information from the performance assessment. For this reason, the State of South Carolina and the Environmental Protection Agency must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. The projected waste tank inventories in the FTF PA provide reasonably bounding FTF inventory projections while taking into account uncertainties in the effectiveness of future tank cleaning technologies. As waste is removed from the FTF waste tanks, the residual contaminants will be sampled and the remaining residual inventory is characterized. In this manner, tank specific data for the tank inventories at closure will be available to supplement the waste tank inventory projections currently used in the FTF PA. For FTF, the new tank specific data will be evaluated through the Special Analysis process. The FTF Special Analyses process will be utilized to evaluate information regarding the final residual waste that will be grouted in place in the FTF Tanks and assess the potential impact the new inventory information has on the FTF PA assumptions and results. The Special Analysis can then be used to inform decisions regarding FTF tank closure documents. The purpose of this paper is to discuss the Special Analysis process and share insights gained while implementing this process. An example of an area of interest in the revision process is balancing continuous improvement versus configuration control of agreed upon methodologies. Other subjects to be covered include: 1) defining the scope of the revisions included in the Special Analysis, 2) determining which PA results should be addressed in the Special Analysis, and 3) deciding whether the Special Analysis should utilize more qualitative or quantitative assessments. For the SRS FTF, an FTF PA has been prepared to provide the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of FTF. The FTF Special Analyses process will be utilized to evaluate the impact new information has on the FTF PA assumptions and results. The Special Analysis can then be used to inform decisions regarding FTF tank closure documents. In preparing SAs, it is crucial that the scope of the SA be well defined within the SA, since the specific scope will vary from SA to SA. Since the SAs are essentially addendums to the PA, the SA scope should utilize the PA as the baseline from which the SA scope is defined. The SA needs to focus on evaluating the change associated with the scope, and not let other changes interfere with the ability to perform that evaluation by masking the impact of the change. In preparing the SA, it is also important to let the scope determine whether the Special Analysis should utilize more qualitative or quantitative assessments and also which results from the PA should be addresse

  17. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  18. First Draft Performance Assessment for the H-Area Tank Farm at the Savannah River Site - Part 1

    Office of Environmental Management (EM)

    SRR-CWDA-2010-00128 Revision 0 PERFORMANCE ASSESSMENT for the H-AREA TANK FARM at the SAVANNAH RIVER SITE March 2011 Prepared by: Savannah River Remediation LLC Closure & Waste Disposal Authority Aiken, SC 29808 Prepared for U.S. Department of Energy Under Contract No. DE-AC09-09SR22505 Performance Assessment for the SRR-CWDA-2010-00128 H-Area Tank Farm at the Revision 0 Savannah River Site March 2011 Page ii of 864 REVISION SUMMARY REV. # DESCRIPTION DATE OF ISSUE 0a Initial issue to DOE-SR

  19. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (Draft), Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 124, Areas 8, 15, and 16 Storage Tanks, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 124 consists of five Corrective Action Sites (CASs) located in Areas 8, 15, and 16 of the Nevada Test Site as follows: 08-02-01, Underground Storage Tank 15-02-01, Irrigation Piping 16-02-03, Underground Storage Tank 16-02-04, Fuel Oil Piping 16-99-04, Fuel Line (Buried) and UST This plan provides the methodology of field activities necessary to gather information to close each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 124 using the SAFER process.

  20. Savannah River Site - Tank 48 Transmittal Letter of SRS Tank...

    Office of Environmental Management (EM)

    Aiken, SC 29808 Dear Mr. Allison and Mr. Pedde, Subject: Independent Technical Review (ITR) of SRS Tank 48 Path Forward The ITR Team is pleased to submit herewith our final...

  1. Light Duty Vehicle CNG Tanks

    Office of Environmental Management (EM)

    Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office, EERE, US DOE Arlington VA, January 13, 2014 Advanced Research Projects Agency-Energy Can I put my luggage in the trunk? Uh, sorry no Commercial CNG Tanks Tank Type I Type IV Material steel carbon fiber Capacity 12 gallon 12 gallon Weight 490 lb 190 lb Cost $1,700 $4,300 50% less

  2. Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan

    SciTech Connect (OSTI)

    K.J. Kroegler, M. Truex, D.J. McBride

    2006-01-19

    This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

  3. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-1 APPENDIX K SHORT-TERM HUMAN HEALTH RISK ANALYSIS This appendix presents the methodologies and assumptions used for estimating potential impacts on, and risks to, individuals and the general public from exposure to releases of radioactive and hazardous chemical materials during normal operations and as a result of hypothetical accidents. It also presents the methodology that was used to assess industrial safety. This information is intended to support the public and occupational health and

  4. CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS

    SciTech Connect (OSTI)

    Hay, M.; Reboul, S.

    2012-06-19

    The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitrate (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.

  5. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect (OSTI)

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  6. Voluntary Protection Program Onsite Review, River Corridor Closure Project

    Office of Environmental Management (EM)

    - June 2012 | Department of Energy River Corridor Closure Project - June 2012 Voluntary Protection Program Onsite Review, River Corridor Closure Project - June 2012 June 2012 Evaluation to determine whether River Corridor Closure Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during June 11 - 14, 2012 to determine whether Washington Closure Hanford, LLC is continuing to perform at a level deserving DOE-VPP Star recognition. PDF

  7. Voluntary Protection Program Onsite Review, Washington Closure Hanford VPP

    Office of Environmental Management (EM)

    Report - March 2009 | Department of Energy Closure Hanford VPP Report - March 2009 Voluntary Protection Program Onsite Review, Washington Closure Hanford VPP Report - March 2009 March 2009 Evaluation to determine whether Washington Closure Hanford, LLC is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during March 23-April 3, 2009 to determine whether Washington Closure Hanford, LLC is continuing to perform at a level deserving DOE-VPP Star

  8. Washington Closure Hanford: Ten Years of River Corridor Cleanup |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington Closure Hanford: Ten Years of River Corridor Cleanup Washington Closure Hanford: Ten Years of River Corridor Cleanup December 17, 2015 - 12:30pm Addthis Contract-Timeline-E1511010_4-B_756px.jpg This timeline shows contractor Washington Closure Hanford's accomplishments over the past 10 years through its River Corridor Closure Contract. Addthis Related Articles EM Update Newsletter Spotlights River Corridor Cleanup at Hanford Site River Corridor Achievements

  9. April 29, 2004: Fernald Closure Site | Department of Energy

    Energy Savers [EERE]

    9, 2004: Fernald Closure Site April 29, 2004: Fernald Closure Site April 29, 2004: Fernald Closure Site April 29, 2004 Demolition crews bring down the Pilot Plant at DOE's Fernald Closure Site in Ohio. The plant was the last to be torn down of ten former uranium production complexes that produced high purity uranium metal from 1951 to 1989 to support the nation's weapons production needs. Environmental cleanup work at the site is projected to be completed in 2006

  10. Independent Oversight Special Review, Rocky Flats Closure Project Site -

    Office of Environmental Management (EM)

    April 2001 | Department of Energy Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site This report provides the results of a Special Review at the Rocky Flats Closure Project that was performed U.S. Department of Energy's (DOE) Office of Independent Environment, Safety, and Health Oversight. The Special Review was conducted in February and March 2001

  11. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  12. Retooling Michigan: Tanks to Turbines

    Broader source: Energy.gov [DOE]

    A company that has manufactured geared systems for the M1 Abrams tank for more than 20 years is now part of the forces working toward energy security and independence.

  13. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the exposure risk, and they are exposed every time they do work on the tanks. Pam Larson, City of Richland, asked when the next iteration of the TC&WM EIS will be released....

  14. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  15. Rocky Flats Closure Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P.C.; Skokan, B.

    2007-07-01

    The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

  16. ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 PDF icon Rocky Flats Closure Project-Lessons Learned-August 2006.pdf More Documents & Publications Rocky Flats Overview Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned WC_1995_010__PETITION_FOR_CLASS_WAIVER_for_KAISER_HILL_CO_In.pdf

  17. Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy from the 2015 DOE National Cleanup Workshop by Scott Sax, President, Washington Closure Hanford. PDF icon Washington Closure Hanford: Cleanup Progress Along Hanford's River Corridor More Documents & Publications 2014 Congressional Nuclear Cleanup Caucus Briefings 2013 Congressional Nuclear Cleanup Caucus Briefings Voluntary Protection Program Onsite Review, River Corridor Closure Project - June 2012

  18. Onboard Storage Tank Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial

  19. Closure Report for Corrective Action Unit 523: Housekeeping Waste, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2003-11-01

    This closure report documents the closure activities conducted for Corrective Action Unit 523: Housekeeping Waste, Nevada Test Site, Nevada.

  20. Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options

    SciTech Connect (OSTI)

    Klem, M.J.

    1996-10-23

    This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

  1. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    SciTech Connect (OSTI)

    Gelles, C. M.; Sheppard, F. R.

    2002-02-26

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

  2. EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report

    SciTech Connect (OSTI)

    Rinker, M.W.; Bamberger, J.A.; Alberts, D.G.

    1997-09-01

    The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT).

  3. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    SciTech Connect (OSTI)

    McLaughlin, T.J.

    1998-01-06

    This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

  4. HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2007-01-15

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

  5. Closure Report Central Nevada Test Area Subsurface Corrective Action Unit 443 January 2016

    SciTech Connect (OSTI)

    Findlay, Rick

    2015-11-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) prepared this Closure Report for the subsurface Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA), Nevada, Site. CNTA was the site of a 0.2- to 1-megaton underground nuclear test in 1968. Responsibility for the site’s environmental restoration was transferred from the DOE, National Nuclear Security Administration, Nevada Field Office to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended 2011) and all applicable Nevada Division of Environmental Protection (NDEP) policies and regulations. This Closure Report provides justification for closure of CAU 443 and provides a summary of completed closure activities; describes the selected corrective action alternative; provides an implementation plan for long-term monitoring with well network maintenance and approaches/policies for institutional controls (ICs); and presents the contaminant, compliance, and use-restriction boundaries for the site.

  6. Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent...

    Office of Environmental Management (EM)

    SRS Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then...

  7. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  8. Baseline Risk Assessment Supporting Closure at Waste Management Area C at the Hanford Site Washington

    SciTech Connect (OSTI)

    Singleton, Kristin M.

    2015-01-07

    The Office of River Protection under the U.S. Department of Energy is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C under the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO). A baseline risk assessment (BRA) of current conditions is based on available characterization data and information collected at WMA C. The baseline risk assessment is being developed as a part of a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Corrective Measures Study (CMS) at WMA C that is mandatory under Comprehensive Environmental Response, Compensation, and Liability Act and RCRA corrective action. The RFI/CMS is needed to identify and evaluate the hazardous chemical and radiological contamination in the vadose zone from past releases of waste from WMA C. WMA C will be under Federal ownership and control for the foreseeable future, and managed as an industrial area with restricted access and various institutional controls. The exposure scenarios evaluated under these conditions include Model Toxics Control Act (MTCA) Method C, industrial worker, maintenance and surveillance worker, construction worker, and trespasser scenarios. The BRA evaluates several unrestricted land use scenarios (residential all-pathway, MTCA Method B, and Tribal) to provide additional information for risk management. Analytical results from 13 shallow zone (0 to 15 ft. below ground surface) sampling locations were collected to evaluate human health impacts at WMA C. In addition, soil analytical data were screened against background concentrations and ecological soil screening levels to determine if soil concentrations have the potential to adversely affect ecological receptors. Analytical data from 12 groundwater monitoring wells were evaluated between 2004 and 2013. A screening of groundwater monitoring data against background concentrations and Federal maximum concentration levels was used to determine vadose zone contamination impacts on groundwater. Waste Management Area C is the first of the Hanford tank farms to begin the closure planning process. The current baseline risk assessment will provide valuable information for making corrective actions and closure decisions for WMA C, and will also support the planning for future tank farm soil investigation and baseline risk assessments.

  9. AIR AND RADON PATHWAY MODELING FOR THE F AREA TANK FARM

    SciTech Connect (OSTI)

    Dixon, K.; Phifer, M.

    2010-07-30

    An air and radon pathways analysis was conducted for the F-Area Tank Farm (FTF) to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. Additionally, the dose to the MEI was estimated at a seepage outcrop located 1600 m from the facility. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent radionuclide was estimated for the simulation period of 10,100 years.

  10. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  11. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect (OSTI)

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy) for an inhibited waste to a range of 5 to 23.4 mpy, depending on sludge chemistry. F-area-based effluents were, in general, more corrosive. Effective corrosion control measures included evaporation, hydroxide additions and mixing with supernates containing a representative supernate chemistry (5 M hydroxide and 1.5 M nitrite). Corrosion rates with these measures were generally 0.2 mpy. The A537 carbon steel was found to be susceptible to pitting when the corrosion control measure involved mixing the ECC effluent with a supernate chemistry having minimal inhibitor concentrations (0.5 M hydroxide and 0.3 M nitrite). Corrosion rates in this case were near 1 mpy.

  12. Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms 222-S Laboratory - January 2014 Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory - January 2014 January 2014 Review of the Hanford Tank Farms ...

  13. Alternative Compliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliance Individual Permit: Alternative Compliance When permittees believe they have installed measures to minimize pollutants but are unable to certify completion of corrective action, they may seek to place a Site into Alternative Compliance. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Alternative Compliance Requests to EPA SMA SITE Submittal Date Document 2M-SMA-1.42 06-001(a) February 26, 2016 NPDES Permit No.

  14. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  15. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  16. Evaluation of Tank 241-T-111 Level Data and In-Tank Video Inspection

    SciTech Connect (OSTI)

    Schofield, John S.; Feero, Amie J.

    2014-03-17

    This document summarizes the status of tank T-111 as of January 1, 2014 and estimates a leak rate and post-1994 leak volume for the tank.

  17. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  18. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z. (Knoxville, TN)

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  19. Performance Assessment for Pump-and-Treat Closure or Transition

    SciTech Connect (OSTI)

    Truex, Michael J.; Johnson, Christian D.; Becker, Dave J.; Lee, Michelle H.; Nimmons, Michael J.

    2015-09-29

    A structured performance assessment approach is useful to evaluate pump-and-treat (P&T) groundwater remediation, which has been applied at numerous sites. Consistent with the U.S. Environmental Protection Agency’s Groundwater Road Map, performance assessment during remedy implementation may be needed, and should consider remedy optimization, transition to alternative remedies, or remedy closure. In addition, a recent National Research Council study examined groundwater remediation at complex contaminated sites and concluded that it may be beneficial to evaluate remedy performance and the potential need for transition to alternative approaches at these sites. The intent of this document is to provide a structured approach for assessing P&T performance to support a decision to optimize, transition, or close a P&T remedy. The process presented in this document for gathering information and performing evaluations to support P&T remedy decisions includes use of decision elements to distinguish between potential outcomes of a remedy decision. Case studies are used to augment descriptions of decision elements and to illustrate each type of outcome identified in the performance assessment approach. The document provides references to resources for tools and other guidance relevant to conducting the P&T assessment.

  20. Closure Report for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-12-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration Plan (SAFER) Plan for CAU 326 (US Department of Energy, Nevada Operations Office [DOE/NV, 2001]). CAU 326 consists of four Corrective Action Sites (CASs), 06-25-01, 06-25-02, 06-25-04, and 27-25-01. CAS 06-25-01 is a release site associated with an underground pipeline that carried heating oil from the heating oil underground storage tank (UST), Tank 6-CP-1, located to the west of Building CP-70 to the boiler in Building CP-1 located in the Area 6 Control Point (CP) compound. This site was closed in place administratively by implementing use restrictions. CAS 06-25-02 is a hydrocarbon release associated with an active heating oil UST, Tank 6-DAF-5, located west of Building 500 at the Area 6 Device Assembly Facility. This site was closed in place administratively by implementing use restrictions. CAS 06-25-04 was a hydrocarbon release associated with Tank 6-619-4. This site was successfully remediated when Tank 6-619-4 was removed. No further action was taken at this site. CAS 27-25-01 is an excavation that was created in an attempt to remove hydrocarbon-impacted soil from the Site Maintenance Yard in Area 27. Approximately 53 cubic meters (m{sup 3}) (70 cubic yards [yd{sup 3}]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated from the site in August of 1994. Clean closure of this site was completed in 2002 by the excavation and disposal of approximately 160 m{sup 3} (210 yd{sup 3}) of PCB-impacted soil.

  1. TANK48 CFD MODELING ANALYSIS

    SciTech Connect (OSTI)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

  2. Microsoft Word - 13-NEAC-Plant-Closures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Engineering Engineering Physics Engineering Mechanics Astronautics November 20, 2013 To: Richard Meserve, NEAC Chair From: Michael Corradini, NEAC Subcommittee Chair Re: Nuclear Reactor Technology Subcommittee Meeting on Nuclear Plant Closures The Nuclear Reactor Technology (NRT) Subcommittee has historically examined the research and development activities within the DOE Office of Nuclear Energy (DOE-NE) as they relate to nuclear reactor technologies; i.e., reactor design, reactor

  3. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  4. Hanford immobilized low-activity tank waste performance assessment

    SciTech Connect (OSTI)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.

  5. Radioactive material package closures with the use of shape memory alloys

    SciTech Connect (OSTI)

    Koski, J.A.; Bronowski, D.R.

    1997-11-01

    When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described.

  6. DOE Vehicular Tank Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday April 29: (312) 878-0222, Access code: 621-488-137 https://www1.gotomeeting.com/register/948744369 Goal/Charter: Identify key issues, including R&D needs, regulations, codes and standards, and a path forward to enable the deployment of hydrogen storage tanks in early market fuel cell applications for vehicles Workshop Objectives: * Provide initial follow up to the DOE-DOT workshop on CNG-H2 Fuels:

  7. Microsoft Word - 2012sr01_tanks18_19 (3).doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Operations Office (803) 952-7697 P.O. Box A Aiken, SC 29802 http://sro.srs.gov/index.html SAVANNAH RIVER OPERATIONS OFFICE AIKEN, SC 29802 NEWS MEDIA CONTACT: FOR IMMEDIATE RELEASE Jim Giusti, DOE, (803) 952-7697 Monday, April 2, 2012 james-r.giusti@srs.gov Dean Campbell, SRR, 803.208.8270 Dean.Campbell@srs.gov Grouting Begins on First SRS Waste Tanks Since 1997 AIKEN, S.C. - At about 9 AM today, Savannah River Remediation (SRR), LLC, workers began the operational closure of two

  8. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  9. High-Pressure Tube Trailers and Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  10. Ohmsett Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing...

  11. Estimating Waste Inventory and Waste Tank Characterization

    Broader source: Energy.gov [DOE]

    Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

  12. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  13. Hanford Communities Issue Briefing on Tank Farms

    Broader source: Energy.gov [DOE]

    Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

  14. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  15. West Coast Port Closure Enforcement Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Coast Port Closure Enforcement Policy West Coast Port Closure Enforcement Policy February 27, 2015 Closures at 29 West Coast marine ports in February 2015 due to a labor dispute have resulted in significant delays for certain goods entering the United States through those ports. DOE issued a policy not to seek civil penalties for violations resulting from those delays if the importers provide certain documentation to DOE by July 1, 2015. PDF icon Enforcement Policy Statement: West Coast

  16. Incentive Fee Determination Summary Contractor: Washington Closure Hanford LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incentive Fee Determination Summary Contractor: Washington Closure Hanford LLC Contract: River Corridor Closure Contract Line Item Number One (CLIN 1) Schedule Performance Incentive Fee (SPIF) Contract Number: DE-AC06-05RL14655 Award Fee Available: $32,800,000 Award Fee Earned: $31,200,000 Basis of Evaluation: Completion of CLIN 1 incentivized scope identified in Section J, Attachment J-1, River Corridor Closure Contract Work Scope, according to the schedule set forth in Section B, Table B.1

  17. CFD Combustion Modeling with Conditional Moment Closure using Tabulated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry | Department of Energy Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is presented that allows for efficient conditional moment closure combustion simulations through the use of a progress variable based parameterization of the combustion chemistry. PDF icon p-15_borg.pdf More Documents & Publications Advanced CFD Models for High Efficiency Compression

  18. Institute Recognizes Washington Closure Hanford as International Award

    Office of Environmental Management (EM)

    Finalist | Department of Energy Institute Recognizes Washington Closure Hanford as International Award Finalist Institute Recognizes Washington Closure Hanford as International Award Finalist December 17, 2015 - 12:05pm Addthis RICHLAND, Wash. - The Project Management Institute (PMI) honored Hanford Site contractor Washington Closure Hanford (WCH) as a finalist for the international Project of the Year Award. WCH and the River Corridor team were recognized for their cleanup progress in this

  19. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  20. Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank

    Broader source: Energy.gov [DOE]

    RICHLAND -- The Department of Energy’s Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks.

  1. Petroleum USTs: RCRA Subtitle 1, Underground Storage Tanks. RCRA Information Brief

    SciTech Connect (OSTI)

    Dailey, R.

    1994-01-01

    Underground tanks that contain petroleum or hazardous substances may be subject to the Federal Underground Storage Tank (UST) regulations. These regulations, issued by EPA under authority of Subtitle I of the Resource Conservation and Recovery (RCRA) [Section 9003 of the Hazardous and Solid Waste Amendments Act of 1984 (HSWA)], establish standards for installation, operation, release detection, corrective action, repair, and closure. The Department of Energy (DOE) is required by Section 9007 of RCRA to implement these regulations at DOE facilities with USTs. DOE prepared a guidance document, Regulated Underground Storage Tanks (DOE/EH-231/0041/0191, June 1992), that describes the UST procedural requirements which regulate tanks and piping for both petroleum and hazardous substance USTs as well as USTs containing radioactive material regulated under the Atomic Energy Act of 1954 (42 USC 2011). This information Brief supplements the UST guidance by responding to critical questions concerning how the regulations apply to petroleum USTs. It is part of a series of information Briefs which address issues pertinent to specific categories of USTs.

  2. Post Closure Safety of the Morsleben Repository

    SciTech Connect (OSTI)

    Preuss, J.; Eilers, G.; Mauke, R.; Moeller-Hoeppe, N.; Engelhardt, H.-J.; Kreienmeyer, M.; Lerch, C.; Schrimpf, C.

    2002-02-26

    After the completion of detailed studies of the suitability the twin-mine Bartensleben-Marie, situated in the Federal State of Saxony-Anhalt (Germany), was chosen in 1970 for the disposal of low and medium level radioactive waste. The waste emplacement started in 1978 in rock cavities at the mine's fourth level, some 500 m below the surface. Until the end of the operational phase in 1998 in total about 36,800 m{sup 3} of radioactive waste was disposed of. The Morsleben LLW/ILW repository (ERAM) is now under licensing for closure. After completing the licensing procedure the repository will be sealed and backfilled to exclude any undue future impact onto man or the environment. The main safety objective is to protect the biosphere from the harmful effects of the disposed radionuclides. Furthermore, classical or conventional requirements call for ruling out or minimizing other unfavorable environmental effects. The ERAM is an abandoned rock salt and potash mine. As a consequence it has a big void volume, however small parts of the cavities are backfilled with crushed salt rocks. Other goals of the closure concept are therefore a long-term stabilization of the cavities to prevent a dipping or buckling of the ground surface. In addition, groundwater protection shall be assured. For the sealing of the repository a closure concept was developed to ensure compliance with the safety protection objectives. The concept anticipates the backfilling of the cavities with hydraulically setting backfill materials (salt concretes). The reduction of the remaining void volume in the mine causes in the case of brine intrusions a limitation of the leaching processes of the exposed potash seams. However, during the setting process the hydration heat of the concrete will lead to an increase of the temperature and hence to thermally induced stresses of the concrete and the surrounding rocks. Therefore, the influence of these stresses and deformations on the stability of the salt body and the integrity of the geological barrier was examined by 2D and 3D thermo-mechanical computations. The compliance of the safety objectives are proved on the basis of safety evidence criteria. It can be concluded that the closure concept is able to serve all conventional and radiological safety objectives.

  3. Liquid Water the Key to Arctic Cloud Radiative Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water the Key to Arctic Cloud Radiative Closure For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight...

  4. Closure for the Seventh Generation - A Report from the Stewardship...

    Office of Environmental Management (EM)

    for the Seventh Generation - A Report from the Stewardship Committee of the State and Tribal Government Working Group (February 1999) Closure for the Seventh Generation - A Report...

  5. PERFORMANCE OF A CONTAINMENT VESSEL CLOSURE FOR RADIOACTIVE GAS CONTENTS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of the design and testing of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The containment vessel closure incorporates features specifically designed for the containment of tritium when subjected to the normal and hypothetical conditions required of Type B radioactive material shipping Packages. The paper discusses functional performance of the containment vessel closure of the BTSP prototype packages and separate testing that evaluated the performance of the metallic C-Rings used in a mock BTSP closure.

  6. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  7. Microsoft Word - S05767_PostClosureInspRpt.doc

    Office of Legacy Management (LM)

    09 Doc. No. S05767 Page A-1 Post-Closure Inspection & Monitoring Report for CAU 417 U.S. Department of Energy Doc. No. S05767 October 2009 Page A-2 U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767 Page A-3 Post-Closure Inspection & Monitoring Report for CAU 417 U.S. Department of Energy Doc. No. S05767 October 2009 Page A-4 U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009

  8. Status Report on Paths to Closure | Department of Energy

    Energy Savers [EERE]

    Report on Paths to Closure Status Report on Paths to Closure This status report updates EM's life cycle cost and schedule estimates for completing cleanup, which EM last provided in the 1998 Paths to Closure report. EM issued this status report to update its life-cycle cost and schedule estimates and to introduce additional analyses that offered insights into the long-term scope of the program. PDF icon Status Report on Paths to Closure More Documents & Publications Evolution and History of

  9. Preliminary Notice of Violation, Washington Closure Hanford, LLC -

    Energy Savers [EERE]

    WEA-2010-02 | Department of Energy Closure Hanford, LLC - WEA-2010-02 Preliminary Notice of Violation, Washington Closure Hanford, LLC - WEA-2010-02 August 19, 2010 Issued to Washington Closure Hanford, LLC related an Employee Fall at the High Bay Testing Facility (336 Building) at the Hanford Site On August 19, 2010, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued a Preliminary Notice of Violation (WEA-2010-02) to Washington Closure

  10. News Release Closure of Russian Nuclear Plant.PDF

    National Nuclear Security Administration (NNSA)

    CONTACTS: FOR IMMEDIATE RELEASE Jonathan Kiell, 202586-7371 September 27, 2001 Date Set for Closure of Russian Nuclear Weapons Plant U.S. National Nuclear Security Administration ...

  11. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  12. EVALUATION OF ALTERNATIVE STRONIUM AND TRANSURANIC SEPARATION PROCESSES

    SciTech Connect (OSTI)

    SMALLEY CS

    2011-04-25

    In order to meet contract requirements on the concentrations of strontium-90 and transuranic isotopes in the immobilized low-activity waste, strontium-90 and transuranics must be removed from the supernate of tanks 241-AN-102 and 241-AN-107. The process currently proposed for this application is an in-tank precipitation process using strontium nitrate and sodium permanganate. Development work on the process has not proceeded since 2005. The purpose of the evaluation is to identify whether any promising alternative processes have been developed since this issue was last examined, evaluate the alternatives and the baseline process, and recommend which process should be carried forward.

  13. ALTERNATE CITY:

    Office of Legacy Management (LM)

    E;;;: 61c F &&I-&&- ALTERNATE --___-----~~~~~-----~~~~~~~--~~~~~~~--- CITY: w _______ STATE:-&- -------- - NAfiE: +~;--- c I 7-b-q Current: Owner contacted 0 yes m no; if yes, date contacted TYPE OF OPERATION ~~_-----~~~~----- q Research & Development cl Facility Type 0 Production sgale testing 0 Pilat Scale 0 Manufacturing 0 Bench Scale Process r~ University i Theoretical Studies 0 Research Organization 0 Government Sponsored Facility Sample & Analysis f$ Other -U-h-

  14. Hanford single-shell tank grouping study

    SciTech Connect (OSTI)

    Remund, K.M.; Anderson, C.M.; Simpson, B.C.

    1995-10-01

    A tank grouping study has been conducted to find Hanford single-shell tanks with similar waste properties. The limited sampling resources of the characterization program could be allocated more effectively by having a better understanding of the groups of tanks that have similar waste types. If meaningful groups of tanks can be identified, tank sampling requirements may be reduced, and the uncertainty of the characterization estimates may be narrowed. This tank grouping study considers the analytical sampling information and the historical information that is available for all single-shell tanks. The two primary sources of historical characterization estimates and information come from the Historical Tank Content Estimate (HTCE) Model and the Sort on Radioactive Waste Tanks (SORWT) Model. The sampling and historical information are used together to come up with meaningful groups of similar tanks. Based on the results of analyses presented in this report, credible tank grouping looks very promising. Some groups defined using historical information (HTCE and SORWT) correspond well with those based on analytical data alone.

  15. Remote controlled vacuum joint closure mechanism

    DOE Patents [OSTI]

    Doll, David W. (San Diego, CA); Hager, E. Randolph (La Jolla, CA)

    1986-01-01

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  16. Impact of Different Standard Type A7A Drum Closure-Ring Practices on Gasket Contraction and Bolt Closure Distance– 15621

    SciTech Connect (OSTI)

    Ketusky, Edward; Blanton, Paul; Bobbitt, John H.

    2015-03-11

    The Department of Energy, the Savannah River National Laboratory, several manufacturers of specification drums, and the United States Department of Transportation (DOT) are collaborating in the development of a guidance document for DOE contractors and vendors who wish to qualify containers to DOT 7A Type A requirements. Currently, the effort is focused on DOT 7A Type A 208-liter (55-gallons) drums with a standard 12-gauge bolted closure ring. The U.S. requirements, contained in Title 49, Part 178.350 “Specification 7A; general packaging, Type A specifies a competent authority review of the packaging is not required for the transport of (Class 7) radioactive material containing less than Type A quantities of radioactive material. For Type AF drums, a 4 ft. regulatory free drop must be performed, such that the drum “suffers maximum damage.” Although the actual orientation is not defined by the specification, recent studies suggest that maximum damage would result from a shallow angle top impact, where kinetic energy is transferred to the lid, ultimately causing heavy damage to the lid, or even worse, causing the lid to come off. Since each vendor develops closure recommendations/procedures for the drums they manufacture, key parameters applied to drums during closing vary based on vendor. As part of the initial phase of the collaboration, the impact of the closure variants on the ability of the drum to suffer maximum damage is investigated. Specifically, closure testing is performed varying: 1) the amount of torque applied to the closure ring bolt; and, 2) stress relief protocol, including: a) weight of hammer; and, b) orientation that the hammer hits the closure ring. After closure, the amount of drum lid gasket contraction and the distance that the closure bolt moves through the closure ring is measured.

  17. Refinement of Modeling Techniques for the Structural Evaluation of Hanford Single-Shell Nuclear Waste Storage Tanks - 12288

    SciTech Connect (OSTI)

    Karri, Naveen K.; Rinker, Michael W.; Johnson, Kenneth I.; Bapanapalli, Satish K.

    2012-07-01

    The single-shell tanks at the Hanford Site (in Washington State, USA) were constructed between 1943 and 1964 and are well beyond their estimated 25 year design life. This article discusses the structural analysis approach and modeling challenges encountered during the ongoing analysis of record for evaluating the structural integrity of the single-shell tanks. There are several geometrical and material nonlinearities and uncertainties to be dealt with while performing the modern finite element analysis of these tanks. The analysis takes into account the temperature history of the tanks and allowable mechanical operating loads for proper estimation of creep strains and thermal degradation of material properties. The loads prescribed in the analysis of record models also include anticipated loads that may occur during waste retrieval and closure. Due to uncertainty in a number of modeling details, sensitivity studies were conducted to address questions related to boundary conditions that realistically or conservatively represent the influence of surrounding tanks in a tank farm, the influence of backfill excavation slope, the extent of backfill and the total extent of undisturbed soil surrounding the backfill. Because of the limited availability of data on the thermal and operating history for many of the individual tanks, some of the data was assumed or interpolated. However, the models developed for the analysis of record represent the bounding scenarios and include the loading conditions that the tanks were subjected to or anticipated. The modeling refinement techniques followed in the analysis of record resulted in conservative estimates for force and moment demands at various sections in the concrete tanks. This article discusses the modeling aspects related to Type-II and Type-III single-shell tanks. The modeling techniques, methodology and evaluation criteria developed for evaluating the structural integrity of single-shell tanks at Hanford are in general applicable to other similar tanks or underground concrete storage structures. This article presented the details of the finite element models and analysis approach followed during the ongoing effort to establish structural integrity of single shell tanks at the Hanford site. The details of the material constitutive models applicable to the underground Hanford concrete tanks that capture the thermal and creep induce degradation are also presented. The thermal profiles were developed based on the available tank temperature data for the Type II and Type III single-shell tanks, and they were chosen to yield conservative demands under the thermal and operating loads analysis of these tanks. Sensitivity studies were conducted to address two issues regarding the soils modeled around the single-shell tanks. The results indicate that excluding the boundary separating the backfill soil from the undisturbed soil will result in conservative demands (plots 14b and 14c green lines for circumferential Demand/Capacity ratios). The radial extent study indicated that the soil model extending to 240 ft gave more conservative results than the model with 62 ft of soil (plots 17a and 17c magenta lines for hoop Demand/Capacity ratios). Based on these results, a 240 ft far-field soil boundary with backfill throughout the lateral extent was recommended and used for the finite element models used in the Type-II and Type-III analyses of record. The modeling effort and sensitivity studies discussed in this article helped in developing bounding models for the structural integrity evaluation of single shell tanks at the Hanford site. (authors)

  18. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

  19. Alternative generation and analysis for phase I privatization transfer system needs

    SciTech Connect (OSTI)

    Galbraith, J.D.

    1996-09-10

    This decision document provides input for the Phase I Privatization waste staging plans for the High-Level Waste (HLW)and Low-Level Waste (LLW) Disposal Programs. This AGA report evaluates what infrastructure upgrades to existing 200 East waste transfer systems are necessary for delivery of HLW and LLW streams to the Phase I Privatization vendor. The AGA identifies the transfer routing alternatives for supernatant waste transfers from the 241-AN, 241-AW, and 241-AP Tank Farms to the 241-AP-102 tank and/or the 241-AP-104 tank. These two tanks have been targeted as the initial LLW feed staging tanks. In addition,this report addresses the transfer of slurry waste from the 241-AY and 241-AZ Tank Farms to the Phase I Privatization vendor`s facilities for HLW immobilization.

  20. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  1. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  3. Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Fayer, Michael J.; Keller, Jason M.

    2007-09-24

    Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project. As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.

  4. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  5. Hanford waste tank bump accident analysis

    SciTech Connect (OSTI)

    MALINOVIC, B.

    2003-03-21

    This report provides a new evaluation of the Hanford tank bump accident analysis (HNF-SD-Wh4-SAR-067 2001). The purpose of the new evaluation is to consider new information and to support new recommendations for final safety controls. This evaluation considers historical data, industrial failure modes, plausible accident scenarios, and system responses. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. A tank bump is distinguished from a gas release event in two respects: First, the physical mechanism for release involves vaporization of locally superheated liquid, and second, gases emitted to the head space are not flammable. For this reason, a tank bump is often called a steam bump. In this report, even though non-condensible gases may be considered in bump models, flammability and combustion of emitted gases are not. The analysis scope is safe storage of waste in its current configuration in single-shell tanks (SSTs) and double-shell tanks (DSTs). The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential, application of the criteria to the tanks, and accident analysis of bump scenarios. The result of consequence analysis is the mass of waste released from tanks for specific scenarios where bumps are credible; conversion to health consequences is performed elsewhere using standard Hanford methods (Cowley et al. 2000). The analysis forms a baseline for future extension to consider waste retrieval.

  6. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2005-12-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.

  7. AIR AND RADON PATHWAY MODELING FOR THE F-AREA TANK FARM

    SciTech Connect (OSTI)

    Dixon, K; Mark Phifer, M

    2007-09-17

    The F-Area Tank Farm (FTF) is located within F-Area in the General Separations Area (GSA) of the Savannah River Site (SRS) as seen in Figure 1. The GSA contains the F and H Area Separations Facilities, the S-Area Defense Waste Processing Facility, the Z-Area Saltstone Facility, and the E-Area Low-Level Waste Disposal Facilities. The FTF is a nearly rectangular shaped area and comprises approximately 20 acres, which is bounded by SRS coordinates N 76,604.5 to N 77,560.0 and E 52,435.0 to E 53,369.0. SRS is in the process of preparing a Performance Assessment (PA) to support FTF closure. As part of the PA process, an analysis was conducted to evaluate the potential magnitude of gaseous release of radionuclides from the FTF over the 100-year institutional control period and 10,000-year post-closure compliance period. Specifically, an air and radon pathways analysis has been conducted to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent radionuclide was estimated for the simulation period of 10,100 years.

  8. Closure head for a nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E. (South Huntingdon, PA)

    1980-01-01

    A closure head for a nuclear reactor includes a stationary outer ring integral with the reactor vessel with a first rotatable plug disposed within the stationary outer ring and supported from the stationary outer ring by a bearing assembly. A sealing system is associated with the bearing assembly to seal the annulus defined between the first rotatable plug and the stationary outer ring. The sealing system comprises tubular seal elements disposed in the annulus with load springs contacting the tubular seal elements so as to force the tubular seal elements against the annulus in a manner to seal the annulus. The sealing system also comprises a sealing fluid which is pumped through the annulus and over the tubular seal elements causing the load springs to compress thereby reducing the friction between the tubular seal elements and the rotatable components while maintaining a gas-tight seal therebetween.

  9. LITERATURE REVIEW ON THE SORPTION OF PLUTONIUM, URANIUM, NEPTUNIUM, AMERICIUM AND TECHNETIUM TO CORROSION PRODUCTS ON WASTE TANK LINERS

    SciTech Connect (OSTI)

    Li, D.; Kaplan, D.

    2012-02-29

    The Savannah River Site (SRS) has conducted performance assessment (PA) calculations to determine the risk associated with closing liquid waste tanks. The PA estimates the risk associated with a number of scenarios, making various assumptions. Throughout all of these scenarios, it is assumed that the carbon-steel tank liners holding the liquid waste do not sorb the radionuclides. Tank liners have been shown to form corrosion products, such as Fe-oxyhydroxides (Wiersma and Subramanian 2002). Many corrosion products, including Fe-oxyhydroxides, at the high pH values of tank effluent, take on a very strong negative charge. Given that many radionuclides may have net positive charges, either as free ions or complexed species, it is expected that many radionuclides will sorb to corrosion products associated with tank liners. The objective of this report was to conduct a literature review to investigate whether Pu, U, Np, Am and Tc would sorb to corrosion products on tank liners after they were filled with reducing grout (cementitious material containing slag to promote reducing conditions). The approach was to evaluate radionuclides sorption literature with iron oxyhydroxide phases, such as hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), goethite ({alpha}-FeOOH) and ferrihydrite (Fe{sub 2}O{sub 3} {center_dot} 0.5H{sub 2}O). The primary interest was the sorption behavior under tank closure conditions where the tanks will be filled with reducing cementitious materials. Because there were no laboratory studies conducted using site specific experimental conditions, (e.g., high pH and HLW tank aqueous and solid phase chemical conditions), it was necessary to extend the literature review to lower pH studies and noncementitious conditions. Consequently, this report relied on existing lower pH trends, existing geochemical modeling, and experimental spectroscopic evidence conducted at lower pH levels. The scope did not include evaluating the appropriateness of K{sub d} values for the Fe-oxyhydroxides, but instead to evaluate whether it is a conservative assumption to exclude this sorption process of radionuclides onto tank liner corrosion products in the PA model. This may identify another source for PA conservatism since the modeling did not consider any sorption by the tank liner.

  10. Remote controlled vacuum joint closure mechanism

    DOE Patents [OSTI]

    Doll, D.W.; Hager, E.R.

    1984-02-22

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.

  11. Nested Fixed Depth Fluidic Sampler and At Tank Analysis System Deployment Strategy and Plan

    SciTech Connect (OSTI)

    REICH, F.R.

    2000-02-01

    Under the Hanford Site River Protection Project (RPP) privatization strategy, the U.S. Department of Energy (DOE) Office of River Protection (ORP) requires the CH2M Hill Hanford Group, Inc. (CHG) to supply tank waste to the privatization contractor, BNFL Inc. (BNFL), for separation and/or treatment and immobilization (vitrification). Three low-activity waste (LAW) specification envelopes represent the range of liquid waste types in the large, Hanford Site underground waste storage tanks. The CHG also is expected to supply high-level waste (HLW) separation and/or treatment and disposal. The HLW envelope is an aqueous slurry of insoluble suspended solids (sludge). The Phase 1 demonstration will extend over 24 years (1996 through 2019) and will be used to resolve technical uncertainties. About one-tenth of the total Hanford Site tank waste, by mass, will be processed during this period. This document provides a strategy and top-level implementation plan for demonstrating and deploying an alternative sampling technology. The alternative technology is an improvement to the current grab sampling and core sampling approaches that are planned to be used to support the RPP privatization contract. This work also includes adding the capability for some at-tank analysis to enhance the potential of this new technology to meet CHG needs. The first application is to LAW and HLW feed staging for privatization; the next is to support cross-site waste transfer from 200 West Area tanks.

  12. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect (OSTI)

    Haass, C.C.

    1998-09-03

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  13. REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION

    SciTech Connect (OSTI)

    Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

    2009-03-01

    The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese during a single contact in the simulant demonstration. (The iron dissolution may be high due to corrosion of carbon steel coupons.) (3) The oxalic acid dissolved {approx} 80% of the uranium, {approx} 70% of the iron, {approx} 50% of the manganese, and {approx} 90% of the aluminum in the actual waste demonstration for a single contact. (4) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 15% of the iron, {approx} 40% of the manganese, and {approx} 80% of the aluminum in Tank 5F during the first contact cycle. Except for the iron, these results agree well with the demonstrations. The data suggest that a much larger fraction of the iron in the sludge dissolved, but it re-precipitated with the oxalate added to Tank 5F. (5) The demonstrations produced large volumes (i.e., 2-14 gallons of gas/gallon of oxalic acid) of gas (primarily carbon dioxide) by the reaction of oxalic acid with sludge and carbon steel. (6) The reaction of oxalic acid with carbon steel produced hydrogen in the simulant and actual waste demonstrations. The volume produced varied from 0.00002-0.00100 ft{sup 3} hydrogen/ft{sup 2} carbon steel. The hydrogen production proved higher in unmixed tanks than in mixed tanks.

  14. NMAC 20.5.2 Petroleum Storage Tanks Registration of Tanks | Open...

    Open Energy Info (EERE)

    .2 Petroleum Storage Tanks Registration of Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.5.2 Petroleum...

  15. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  16. FY 1996 Tank waste analysis plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-09-18

    This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

  17. Underground Storage Tanks: New Fuels and Compatibility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Underground Storage Tanks: New Fuels and Compatibility Biomass 2014 Demand-Developing Biomarkets Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels July 29, 2014 Ryan Haerer EPA Office of Underground Storage Tanks 1 Storing High Octane Fuels in Underground Storage Tanks (USTs)  Mid range E20-E30 high octane fuels being considered as possible path forward  Storing high octane ethanol blended fuels will require careful consideration of material

  18. Corrective Action Decision Document/Closure Report for Corrective Action 405: Area 3 Septic Systems, Tonopah Test Range, Nevada Rev. No.: 0, April 2002

    SciTech Connect (OSTI)

    IT Coroporation, Las Vegas, NV

    2002-04-17

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 405, Area 3 Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. Located on the Tonopah Test Range (TTR) approximately 235 miles north of Las Vegas, Nevada, CAU 405 consists of three Corrective Action Sites (CASs): 03-05-002-SW03, Septic Waste System (aka: Septic Waste System [SWS] 3); 03-05-002-SW04, Septic Waste System (aka: SWS 4); 03-05-002-SW07, Septic Waste System (aka: SWS 7). The CADD and CR have been combined into one report because no further action is recommended for this CAU, and this report provides specific information necessary to support this recommendation. The CAU consists of three leachfields and associated collection systems that were installed in or near Area 3 for wastewater disposal. These systems were used until a consolidated sewer system was installed in 1990. Historically, operations within various buildin gs in and near Area 3 of the TTR generated sanitary and industrial wastewaters. There is a potential that contaminants of concern (COCs) were present in the wastewaters and were disposed of in septic tanks and leachfields. The justification for closure of this CAU without further action is based on process knowledge and the results of the investigative activities. Closure activities were performed at these CASs between January 14 and February 2, 2002, and included the removal and proper disposal of media containing regulated constituents and proper closure of septic tanks. No further action is appropriate because all necessary activities have been completed. No use restrictions are required to be imposed for these sites since the investigation showed no evidence of COCs identified in the soil for CAU 405.

  19. Dynamics of solid-containing tanks

    SciTech Connect (OSTI)

    Veletsos, A.S.; Younan, A.H.; Bandyopadhyay, K.

    1997-01-01

    Making use of a relatively simple, approximate but reliable method of analysis, a study is made of the responses to horizontal base shaking of vertical, circular cylindrical tanks that are filled with a uniform viscoelastic material. The method of analysis is described, and comprehensive numerical data are presented that elucidate the underlying response mechanisms and the effects and relative importance of the various parameters involved. In addition to the characteristics of the ground motion and a dimensionless measure of the tank wall flexibility relative to the contained medium, the parameters examined include the ratio of tank-height to tank-radius and the physical properties of the contained material. Both harmonic and earthquake-induced ground motions are considered. The response quantities investigated are the dynamic wall pressures, the critical forces in the tank wall, and the forces exerted on the foundation. Part A of the report deals with rigid tanks while the effects of tank wall flexibility are examined in Part B. A brief account is also given in the latter part of the interrelationship of the critical responses of solid-containing tanks and those induced in tanks storing a liquid of the same mass density.

  20. EMAB Tank Waste Subcommittee Report Presentation

    Office of Environmental Management (EM)

    EM Environmental Management Tank Waste Subcommittee (EM- -TWS) TWS) Report to the Report ... Low Assess Candidate Low- -Activity Waste Forms Activity Waste Forms Charge 3: ...

  1. Carderock Tow Tank 3 | Open Energy Information

    Open Energy Info (EERE)

    3 Jump to: navigation, search Basic Specifications Facility Name Carderock Tow Tank 3 Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing...

  2. Tank Farms Regulator Perspective Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decree compliant Identify areas of improvement Determine need for double shell tank space Case 1* Consent Decree Compliant Case 2* Direct Feed Low-Activity Waste and...

  3. Single-Shell Tank Evaluations - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Shell Tank Evaluations Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford...

  4. Tank waste remediation systems technical baseline database

    SciTech Connect (OSTI)

    Porter, P.E.

    1996-10-16

    This document includes a cassette tape that contains Hanford generated data for the Tank Waste Remediation Systems Technical Baseline Database as of October 09, 1996.

  5. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of soil between the ground surface and the water table 200-to-300 feet below. The project tracks and monitors contamination in the soil. Technologies are being developed and deployed to detect and monitor contaminants. Interim surface barriers, which are barriers put over the single-shell tanks, prevent rain and snow from soaking into the ground and spreading contamination. The impermeable barrier placed over T Farm, which was the site of the largest tank waste leak in Hanford's history, is 60,000 square feet and sloped to drain moisture outside the tank farm. The barrier over TY Farm is constructed of asphalt and drains moisture to a nearby evaporation basin. Our discussion of technology will address the incredible challenge of removing waste from Hanford's single-shell tanks. Under the terms of the Tri-Party Agreement, ORP is required to remove 99 percent of the tank waste, or until the limits of technology have been reached. All pumpable liquids have been removed from the single-shell tanks, and work now focuses on removing the non-pumpable liquids. Waste retrieval was completed from the first single-shell tank in late 2003. Since then, another six single-shell tanks have been retrieved to regulatory standards. (authors)

  6. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    SciTech Connect (OSTI)

    Stephenson, David E.; Delegard, Calvin H.; Schmidt, Andrew J.

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactive sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.

  7. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  8. FORM AND AGING OF PLUTONIUM IN SAVANNAH RIVER SITE WASTE TANK 18

    SciTech Connect (OSTI)

    Hobbs, D.

    2012-02-24

    This report provides a summary of the effects of aging on and the expected forms of plutonium in Tank 18 waste residues. The findings are based on available information on the operational history of Tank 18, reported analytical results for samples taken from Tank 18, and the available scientific literature for plutonium under alkaline conditions. These findings should apply in general to residues in other waste tanks. However, the operational history of other waste tanks should be evaluated for specific conditions and unique operations (e.g., acid cleaning with oxalic acid) that could alter the form of plutonium in heel residues. Based on the operational history of other tanks, characterization of samples from the heel residues in those tanks would be appropriate to confirm the form of plutonium. During the operational period and continuing with the residual heel removal periods, Pu(IV) is the dominant oxidation state of the plutonium. Small fractions of Pu(V) and Pu(VI) could be present as the result of the presence of water and the result of reactions with oxygen in air and products from the radiolysis of water. However, the presence of Pu(V) would be transitory as it is not stable at the dilute alkaline conditions that currently exists in Tank 18. Most of the plutonium that enters Savannah River Site (SRS) high-level waste (HLW) tanks is freshly precipitated as amorphous plutonium hydroxide, Pu(OH){sub 4(am)} or hydrous plutonium oxide, PuO{sub 2(am,hyd)} and coprecipitated within a mixture of hydrous metal oxide phases containing metals such as iron, aluminum, manganese and uranium. The coprecipitated plutonium would include Pu{sup 4+} that has been substituted for other metal ions in crystal lattice sites, Pu{sup 4+} occluded within hydrous metal oxide particles and Pu{sup 4+} adsorbed onto the surface of hydrous metal oxide particles. The adsorbed plutonium could include both inner sphere coordination and outer sphere coordination of the plutonium. PuO{sub 2(am,hyd)} is also likely to be present in deposits and scales that have formed on the steel surfaces of the tank. Over the operational period and after closure of Tank 18, Ostwald ripening has and will continue to transform PuO{sub 2(am,hyd)} to a more crystalline form of plutonium dioxide, PuO{sub 2(c)}. After bulk waste removal and heel retrieval operations, the free hydroxide concentration decreased and the carbonate concentration in the free liquid and solids increased. Consequently, a portion of the PuO{sub 2(am,hyd)} has likely been converted to a hydroxy-carbonate complex such as Pu(OH){sub 2}(CO{sub 3}){sub (s)}. or PuO(CO{sub 3}) {center_dot} xH{sub 2}O{sub (am)}. Like PuO{sub 2(am,hyd)}, Ostwald ripening of Pu(OH){sub 2}(CO{sub 3}){sub (s)} or PuO(CO{sub 3}) {center_dot} xH{sub 2}O{sub (am)} would be expected to occur to produce a more crystalline form of the plutonium carbonate complex. Due to the high alkalinity and low carbonate concentration in the grout formulation, it is expected that upon interaction with the grout, the plutonium carbonate complexes will transform back into plutonium hydroxide. Although crystalline plutonium dioxide is the more stable thermodynamic state of Pu(IV), the low temperature and high water content of the waste during the operating and heel removal periods in Tank 18 have limited the transformation of the plutonium into crystalline plutonium dioxide. During the tank closure period of thousands of years, transformation of the plutonium into a more crystalline plutonium dioxide form would be expected. However, the continuing presence of water, reaction with water radiolysis products, and low temperatures will limit the transformation, and will likely maintain an amorphous Pu(OH){sub 4} or PuO{sub 2(am,hyd)} form on the surface of any crystalline plutonium dioxide produced after tank closure. X-ray Absorption Spectroscopic (XAS) measurements of Tank 18 residues are recommended to confirm coordination environments of the plutonium. If the presence of PuO(CO{sub 3}){sub (am,hyd)} is confirmed by XAS, it is recommended that e

  9. Supporting document for the historical tank content estimate for S tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  10. Supporting document for the historical tank content estimate for AN-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  11. Supporting document for the historical tank content estimate for C-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  12. Supporting document for the historical tank content estimate for BY-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  13. Supporting document for the historical tank content estimate for AP-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  14. Supporting document for the historical tank content estimate for AW-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  15. Supporting document for the historical tank content estimate for A-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  16. Supporting document for the historical tank content estimate for BX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  17. Supporting document for the historical tank content estimate for AY-tank farm

    SciTech Connect (OSTI)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  18. Supporting document for the historical tank content estimate for the S-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  19. Supporting document for the historical tank content estimate for B-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  20. Supporting document for the historical tank content estimate for AX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Westinghouse Hanford

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  1. Supporting document for the historical tank content estimate for the SX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  2. Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

    1996-04-01

    The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

  3. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    SciTech Connect (OSTI)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  4. History of Sandia National Laboratories` auxiliary closure mechanisms

    SciTech Connect (OSTI)

    Weydert, J.C.; Ponder, G.M.

    1993-12-01

    An essential component of a horizontal, underground nuclear test setup at the Nevada Test Site is the auxiliary closure system. The massive gates that slam shut immediately after a device has been detonated allow the prompt radiation to pass, but block debris and hot gases from continuing down the tunnel. Thus, the gates protect experiments located in the horizontal line-of-sight steel pipe. Sandia National Laboratories has been the major designer and developer of these closure systems. This report records the history of SNL`s participation in and contributions to the technology of auxiliary closure systems used in horizontal tunnel tests in the underground test program.

  5. DOE Cites Washington Closure Hanford for Safety Violations | Department of

    Energy Savers [EERE]

    Energy Closure Hanford for Safety Violations DOE Cites Washington Closure Hanford for Safety Violations August 19, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy has issued a Preliminary Notice of Violation (PNOV) to contractor Washington Closure Hanford (WCH) for violations of DOE's worker safety and health program regulations in 2009 at the Hanford Site in southeast Washington State. In a continued effort to maintain the highest level of worker safety at DOE sites,

  6. Microsoft Word - S05767_PostClosureInspRpt.doc

    Office of Legacy Management (LM)

    NDEP Correspondence and Record of Review This page intentionally left blank U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767 Page D-1 Post-Closure Inspection & Monitoring Report for CAU 417 U.S. Department of Energy Doc. No. S05767 October 2009 Page D-2 U.S. Department of Energy Post-Closure Inspection & Monitoring Report for CAU 417 October 2009 Doc. No. S05767 Page D-3 Due Date 12-23-09 Review No. 1 Project Offsites -

  7. DOE, Washington Closure complete recycling project at Hanford | Department

    Office of Environmental Management (EM)

    of Energy DOE, Washington Closure complete recycling project at Hanford DOE, Washington Closure complete recycling project at Hanford October 28, 2014 - 4:00pm Addthis Media Contacts Cameron Hardy, DOE, 509-376-5365, Cameron.Hardy@rl.doe.gov Peter Bengtson, Washington Closure Hanford, 509-372-9031, Peter.Bengtson@wch-rcc.com About $400,000 saved by recycling electrical substation components in 300 Area RICHLAND, Wash. - The U.S. Department of Energy (DOE) recently teamed with contractor

  8. Tank farms essential drawing plan

    SciTech Connect (OSTI)

    Domnoske-Rauch, L.A.

    1998-08-04

    The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

  9. Alpha Calutron tank | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calutron tank Alpha Calutron tank The C-shaped alpha calutron tank, together with its emitters and collectors on the lower-edge door, was removed in a special drydock from the magnet for the recovery of uranium-235

  10. Independent Activity Report, Hanford Tank Farms - April 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms HIAR-HANFORD-2013-04-15 The Office...

  11. Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...

    Office of Environmental Management (EM)

    May 2009 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  12. Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...

    Office of Environmental Management (EM)

    July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  13. Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...

    Office of Environmental Management (EM)

    10 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  14. Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  15. Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - May 2011 PDF icon Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary -...

  16. Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...

    Office of Environmental Management (EM)

    09 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  17. Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  18. Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  19. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    SciTech Connect (OSTI)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    2013-11-27

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and tested with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing needs for the permanganate precipitation process to be field-deployable. A more comprehensive listing of future testing needs to allow the process to be field deployable are contained in RPP-PLAN-51288, Development Test Plan for Sr/TRU Precipitation Process.

  20. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    SciTech Connect (OSTI)

    Schaus, P.S.

    1998-01-06

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. The Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team Final Report and the Internal Assessment Final Report.

  1. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

  2. Tank waste remediation system compensatory measure removal

    SciTech Connect (OSTI)

    MILLIKEN, N.J.

    1999-05-18

    In support of Fiscal Year 1998 Performance Agreement TWR1.4.3, ''Replace Compensatory Measures,'' the Tank Waste Remediation System is documenting the completion of field modifications supporting the removal of the temporary exemptions from the approved Tank Waste Remediation System Technical Safety Requirements (TSRs), HNF-SD-WM-TSR-006. These temporary exemptions or compensatory measures expire September 30, 1998.

  3. Tank Waste Committee Summaries - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Advisory Board Committee Meeting Information Tank Waste Committee Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Tank Waste Committee Summaries Email

  4. Mixing liquid holding tanks for uniform concentration

    SciTech Connect (OSTI)

    Sprouse, K.M.

    1988-01-01

    Achieving uniform concentration within liquid holding tanks can often times be a difficult task for the nuclear chemical process industry. This is due to the fact that nuclear criticality concerns require these tanks to be designed with high internal aspect ratios such that the free movement of fluid is greatly inhibited. To determine the mixing times required to achieve uniform concentrations within these tanks, an experimental program was conducted utilizing pencil tanks, double-pencil tanks, and annular tanks of varying geometries filled with salt-water solutions (simulant for nitric acid actinide solutions). Mixing was accomplished by air sparging and/or pump recirculation. Detailed fluid mechanic mixing models were developed --from first principles--to analyze and interpret the test results. These nondimensional models show the functionality of the concentration inhomogeneity (defined as the relative standard deviation of the true concentration within the tank) in relationship to the characteristic mixing time--among other variables. The results can be readily used to scale tank geometries to sizes other than those studied here.

  5. Tanks Focus Area annual report FY2000

    SciTech Connect (OSTI)

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  6. Type B Accident Investigation At Washington Closure Hanford,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on ... July 30, 2009 During D4 project demolition preparation work on the morning of July 1, ...

  7. Stress analysis of closure bolts for shipping casks

    SciTech Connect (OSTI)

    Mok, G.C.; Fischer, L.E. ); Hsu, S.T. )

    1993-01-01

    This report specifies the requirements and criteria for stress analysis of closure bolts for shipping casks containing nuclear spent fuels or high level radioactive materials. The specification is based on existing information conceming the structural behavior, analysis, and design of bolted joints. The approach taken was to extend the ASME Boiler and Pressure Vessel Code requirements and criteria for bolting analysis of nuclear piping and pressure vessels to include the appropriate design and load characteristics of the shipping cask. The characteristics considered are large, flat, closure lids with metal-to-metal contact within the bolted joint; significant temperature and impact loads; and possible prying and bending effects. Specific formulas and procedures developed apply to the bolt stress analysis of a circular, flat, bolted closure. The report also includes critical load cases and desirable design practices for the bolted closure, an in-depth review of the structural behavior of bolted joints, and a comprehensive bibliography of current information on bolted joints.

  8. Voluntary Protection Program Onsite Review, River Corridor Closure...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation to determine whether River Corridor Closure Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during June 11...

  9. Table of Contents: Accelerating Cleanup, Paths to Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for closure of the repository to complete dismantlement and decommissioning activities. ... A.2.4. Project Status in FY 2006: The WIPP will have received 43,580 cubic meters of ...

  10. Miscibility gap closure, interface morphology, and phase microstructur...

    Office of Scientific and Technical Information (OSTI)

    Miscibility gap closure, interface morphology, and phase microstructure of 3D LixFePO4 nanoparticles from surface wetting and coherency strain Citation Details In-Document Search ...

  11. Montana Underground Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    Underground Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Underground Storage Tanks Webpage Abstract Provides overview...

  12. Alaska Underground Storage Tanks Website | Open Energy Information

    Open Energy Info (EERE)

    Underground Storage Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill...

  13. Hawaii Department of Health Underground Storage Tank Webpage...

    Open Energy Info (EERE)

    Underground Storage Tank Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Department of Health Underground Storage Tank Webpage Abstract...

  14. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Below is information...

  15. Independent Oversight Activity Report, Hanford Waste Tank Farms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - October 28 - November 6, 2013 Independent Oversight Activity Report, Hanford Waste Tank Farms - October 28 - November 6, 2013 February 2014 Follow-up on Previously...

  16. Utah Underground Storage Tank Installation Permit | Open Energy...

    Open Energy Info (EERE)

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  17. Texas Petroleum Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    Petroleum Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Texas Petroleum Storage Tanks Webpage Author Texas Commission on...

  18. Nevada Underground Tank Program Webpage | Open Energy Information

    Open Energy Info (EERE)

    Underground Tank Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Underground Tank Program Webpage Abstract Provides overview of...

  19. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications...

  20. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the...