National Library of Energy BETA

Sample records for tank centrifugal transfer

  1. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect (OSTI)

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  2. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  3. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  4. Viability of mammalian embryos subjected to liposome interaction or centrifugation for gene transfer 

    E-Print Network [OSTI]

    Loskutoff, Nadia Mikhail

    1985-01-01

    VIABILITY OF MAMMALIAN EMBRYOS SUBJECTED TO LIPOSOME INTERACTION OR CENTRIFUGATION FOR GENE TRANSFER A Thesis by NADIA MIKHAIL LOSKUTOFF Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1985 Major Subject: Veterinary Physiology VIABILITY OF MAMMALIAN EMBRYOS SUBJECTED TO LIPOSOME INTERACTION OR CENTRIFUGATION FOR GENE TRANSFER A Thesis by Nadia Mikhail Loskutoff Approved as to style...

  5. Mathematical modeling of mass transfer during centrifugal filtration of polydisperse suspensions

    SciTech Connect (OSTI)

    V.F. Pozhidaev; Y.B. Rubinshtein; G.Y. Golberg; S.A. Osadchii

    2009-07-15

    A mass-transfer equation, the solution of which for given boundary conditions makes it possible to derive in analytical form a relationship between the extraction of the solid phase of a suspension into the centrifuge effluent and the fineness of the particles, is suggested on the basis of a model; this is of particular importance in connection with the development of a new trend in the utilization of filtering centrifuges - concentration of coal slurries by extraction into the centrifuge effluent of the finest particles, the ash content of which is substantially higher than that of particles of the coarser classes. Results are presented for production studies under conditions at an active establishment (the Neryungrinskaya Enrichment Factory); these results confirmed the adequacy of the mathematical model proposed: convergence of computed and experimental data was within the limits of the experimental error (no more than 3%). The model in question can be used to predict results of suspension separation by centrifugal filtration.

  6. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    SciTech Connect (OSTI)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

  7. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    1999-04-05

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  8. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-27

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process heat from the tank during operation.

  9. Redesigning experimental equipment for determining peak pressure in a simulated tank car transfer line

    E-Print Network [OSTI]

    Diaz, Richard A

    2007-01-01

    When liquids are transported from storage tanks to tank cars, improper order of valve openings can cause pressure surges in the transfer line. To model this phenomenon and predict the peak pressures in such a transfer line, ...

  10. Material Balance Assessment for Double-Shell Tank Waste Pipeline Transfer

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Hartley, Stacey A.; Enderlin, Carl W.; White, Mike

    2002-10-30

    PNNL developed a material balance assessment methodology based on conservation of mass for detecting leaks and mis-routings in pipeline transfer of double-shell tank waste at Hanford. The main factors causing uncertainty in these transfers are variable property and tank conditions of density, existence of crust, and surface disturbance due to mixer pump operation during the waste transfer. The methodology was applied to three waste transfers from Tanks AN-105 and AZ-102.

  11. Analysis of Several Hazardous Conditions for Large Transfer and Back-Dilution Sequences in Tank 241-SY-101

    SciTech Connect (OSTI)

    Stewart, Charles W.; Mahoney, Lenna A.; Barton, William B.

    2000-01-27

    Analysis of Several Hazardous Conditions for Large Transfer and Back-Dilution Sequences in Tank 241-SY-101

  12. DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK

    SciTech Connect (OSTI)

    Adamson, D.; Gauglitz, P.

    2012-01-03

    In support of Hanford's feed delivery of high level waste (HLW) to the Waste Treatment and Immobilization Plant (WTP), pilot-scale testing and demonstrations with simulants containing cohesive particles were performed as a joint collaboration between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants, and the resulting non-Newtonian rheology, have on tank mixing and batch transfer of large and dense seed particles. The work addressed the impacts cohesive simulants have on mixing and batch transfer performance in a pilot-scale system. Kaolin slurries with a range of wt% concentrations to vary the Bingham yield stress were used in all the non-Newtonian simulants. To study the effects of just increasing the liquid viscosity (no yield stress) on mixing and batch transfers, a glycerol/water mixture was used. Stainless steel 100 micron particles were used as seed particles due to their density and their contrasting color to the kaolin and glycerol. In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work addresses the impacts cohesive simulants have on mixing and batch transfer performance. This work is follow-on to the previous tasks 'Demonstration of Mixer Jet Pump Rotational Sensitivity on Mixing and Transfers of the AY-102 Tank' and 'Demonstration of Simulated Waste Transfers from Tank AY-102 to the Hanford Waste Treatment Facility'. The cohesive simulants were investigated and selected jointly by SRNL and PNNL and a white paper was written on this evaluation. The testing and demonstrations of cohesive simulants was a joint effort performed as collaboration between SRNL and PNNL staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using the 1/22nd scale mixing system and batch transfer of seed particles. Seed particles are particles of contracting color added to mixing tank for visual inspection and an indicator of how well the contents of the tank are mixing. Also the seed particles serve as a measuring stick for how well the contents of the tank are transferred from the mixing tank during batch transfers. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative.

  13. TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION

    SciTech Connect (OSTI)

    Lee, S.

    2013-06-27

    The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP?s for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.

  14. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  15. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Caldwell, T.; Pak, D; Fink, S.; Blessing, R.; Washington, A.

    2011-09-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic streams) was less than 0.1% when processing Tank 49H HLW. The entrained solvent concentration measured in the decontaminated salt solution (DSS) was as much as {approx}140 mg/L, although that value may be overstated by as much as 50% due to modifier solubility in the DSS. The entrained solvent concentration was measured in the strip effluent (SE) and the results are pending. A steady-state concentration factor (CF) of 15.9 was achieved with Tank 49H HLW. Cesium distribution ratios [D(Cs)] were measured with non-radioactive Tank 49H waste simulant and actual Tank 49H waste. Below is a comparison of D(Cs) values of ESS and 2-cm tests. Batch Extraction-Strip-Scrub (ESS) tests yielded D(Cs) values for extraction of {approx}81-88 for tests with Tank 49H waste and waste simulant. The results from the 2-cm contactor tests were in agreement with values of 58-92 for the Tank 49H HLW test and 54-83 for the simulant waste test. These values are consistent with the reference D(Cs) for extraction of {approx}60. In tests with Tank 49H waste and waste simulant, batch ESS tests measured D(Cs) values for the two scrub stages as {approx}3.5-5.0 for the first scrub stage and {approx}1.0-3.0 for the second scrub stage. In the Tank 49H test, the D(Cs) values for the 2-cm test were far from the ESS values. A D(Cs) value of 161 was measured for the first scrub stage and 10.8 for the second scrub stage. The data suggest that the scrub stage is not operating as effectively as intended. For the simulant test, a D(Cs) value of 1.9 was measured for the first scrub stage; the sample from the second scrub stage was compromised. Measurements of the pH of all stage samples for the Tank 49H test showed that the pH for extraction and scrub stages was 14 and the pH for the strip stages was {approx}7. It is expected that the pH of the second scrub stage would be {approx}12-13. Batch ESS tests measured D(Cs) values for the strip stages to be {approx}0.002-0.010. A high value in Strip No.3 of a test with simulant solution has been attributed to issues associated with the limits of detection for the

  16. DEMONSTRATION OF SIMULATED WASTE TRANSFERS FROM TANK AY-102 TO THE HANFORD WASTE TREATMENT FACILITY

    SciTech Connect (OSTI)

    Adamson, D.; Poirier, M.; Steeper, T.

    2009-12-03

    In support of Hanford's AY-102 Tank waste certification and delivery of the waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring the waste in the Double Shell Tank (DST) to the WTP Receipt Tank. This work is a follow-on to the previous 'Demonstration of Internal Structures Impacts on Double Shell Tank Mixing Effectiveness' task conducted at SRNL 1. The objective of these transfers was to qualitatively demonstrate how well waste can be transferred out of a mixed DST tank and to provide insights into the consistency between the batches being transferred. Twelve (12) different transfer demonstrations were performed, varying one parameter at a time, in the Batch Transfer Demonstration System. The work focused on visual comparisons of the results from transferring six batches of slurry from a 1/22nd scale (geometric by diameter) Mixing Demonstration Tank (MDT) to six Receipt Tanks, where the consistency of solids in each batch could be compared. The simulant used in this demonstration was composed of simulated Hanford Tank AZ-101 supernate, gibbsite particles, and silicon carbide particles, the same simulant/solid particles used in the previous mixing demonstration. Changing a test parameter may have had a small impact on total solids transferred from the MDT on a given test, but the data indicates that there is essentially no impact on the consistency of solids transferred batch to batch. Of the multiple parameters varied during testing, it was found that changing the nozzle velocity of the Mixer Jet Pumps (MJPs) had the biggest impact on the amount of solids transferred. When the MJPs were operating at 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s), the solid particles were more effectively suspended, thus producing a higher volume of solids transferred. When the MJP flow rate was reduced to 5 gpm (14 ft/s nozzle velocity, U{sub o}D = 0.315 ft{sup 2}/s) to each pump, dead zones formed in the tank, resulting in fewer solids being transferred in each batch to the Receipt Tanks. The larger, denser particles were displaced (preferentially to the smaller particles) to one of the two dead zones and not re-suspended for the duration of the test. As the liquid level dropped in the MDT, re-suspending the particles became less effective (6th batch). The poor consistency of the solids transferred in the 6th batch was due to low liquid level in the MDT, thus poor mixing by the MJPs. Of the twelve tests conducted the best transfer of solids occurred during Test 6 and 8 where the MJP rotation was reduced to 1.0 rpm.

  17. DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK

    SciTech Connect (OSTI)

    Adamson, D.

    2011-08-04

    In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work discussed in this report (Phase III) address the impacts cohesive simulants have on mixing and batch transfer performance. The objective of the demonstrations performed in Phase III was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using 1/22{sup nd} scale mixing system and batch transfer of seed particles. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative. The batch transfers were made by pumping the simulants from the Mixing Demonstration Tank (MDT) to six Receipt Tanks (RTs), and the consistency in the amount of seed particles in each batch was compared. Tests were conducted with non-Newtonian cohesive simulants with Bingham yield stress ranging from 0.3 Pa to 7 Pa. Kaolin clay and 100 {mu}m stainless steel seed particles were used for all the non-Newtonian simulants. To specifically determine the role of the yield stress on mixing and batch transfer, tests were conducted with a Newtonian mixture of glycerol and water with at viscosity of 6.2 cP that was selected to match the Bingham consistency (high shear rate viscosity) of the higher yield stress kaolin slurries. The water/glycerol mixtures used the same 100 {mu}m stainless steel seed particles. For the transfer demonstrations in Phase III, the mixer jet pumps were operated either at 10.0 gpm (28 ft/s nozzle velocity, U{sub o}D=0.63 ft{sup 2}/s) or 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s). All batch transfers from the MDT to the RTs were made at 0.58 gpm (MDT suction velocity 3.95 ft/s). The demonstrations that used simulants that ranged from 1.6 Pa to 7 Pa yield stress had the most successful batch transfer of solids to the RTs in terms of the total quantity of seed particles transferred. Testing suggest that when mixing water/seed particles and transferring, water provides the least desired batch transfer of solids based on the total quantity transferred. For the water tests, large dead zones of solids formed in the MDT and fewer solids get transferred to the RTs. For simulants with a yield stress of 0.3 Pa and below, the batch transfer behavior in terms of total transfer of seed particles was slightly higher than water test results. The testing did show somewhat more batch-to-batch variation in the transfer of seed particles with the slurries in comparison to water. A comparison of batch transfers with the kaolin slurries that had Bingham consistencies (viscosities) that wernearly the same as the Newtonian glycerol/water mixtures showed that the kaolin slurries with Bingham yield stresses of 1.6 and 7 Pa gave better batch transfer of seed particles based on the total quantities transferred. Overall, the batch transfer testing results show that testing with water is conservative, since using a simulant with a yield stress and/or elevated viscosity always resulted in a better total transfer of solids.

  18. Results of Waste Transfer and Back-Dilution in Tanks 241-SY-101 and 241-SY-102

    SciTech Connect (OSTI)

    LA Mahoney; ZI Antoniak; WB Barton; JM Conner; NW Kirch; CW Stewart; BE Wells

    2000-07-26

    This report chronicles the process of remediation of the flammable gas hazard in Tank 241-SY-101 (SY-101) by waste transfer and back-dilution from December 18, 1999 through April 2, 2000. A brief history is given of the development of the flammable gas retention and release hazard in this tank, and the transfer and dilution systems are outlined. A detailed narrative of each of the three transfer and dilution campaigns is given to provide structure for the balance of the report. Details of the behavior of specific data are then described, including the effect of transfer and dilution on the waste levels in Tanks SY-101 and SY-102, data from strain gauges on equipment suspended from the tank dome, changes in waste configuration as inferred from neutron and gamma logs, headspace gas concentrations, waste temperatures, and the mixerpump operating performance. Operating data and performance of the transfer pump in SY-101 are also discussed.

  19. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  20. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect (OSTI)

    Onishi, Yasuo; Recknagle, Kurtis P.; Wells, Beric E.

    2000-08-09

    This report evaluates how two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102. It also assesses and confirms the adequacy of a 3-inch pipeline to transfer the resulting mixed waste slurry to the AP Tank Farm and ultimately to a planned waste treatment/vitrification plant on the Hanford Site.

  1. Demonstration of Mixing and Transferring Settling Cohesive Slurry Simulants in the AY-102 Tank - 12323

    SciTech Connect (OSTI)

    Adamson, Duane J.; Gauglitz, Phillip A.

    2012-07-01

    In support of Hanford's feed delivery of high level waste (HLW) to the Waste Treatment and Immobilization Plant (WTP), pilot-scale testing and demonstrations with simulants containing cohesive particles were performed as a joint collaboration between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants, and the resulting non- Newtonian rheology, have on tank mixing and batch transfer of large and dense seed particles. The work addressed the impacts cohesive simulants have on mixing and batch transfer performance in a pilot-scale system. Kaolin slurries with a range of wt% concentrations to vary the Bingham yield stress were used in all the non-Newtonian simulants. To study the effects of just increasing the liquid viscosity (no yield stress) on mixing and batch transfers, a glycerol/water mixture was used. Stainless steel 100 micron particles were used as seed particles due to their density and their contrasting color to the kaolin and glycerol. Testing results show that water always transfers less seed particles, and is conservative when compared to fluids with a higher yield stress and/or higher viscosity at the same mixing/transfer parameters. The impact of non-Newtonian fluid properties depends on the magnitude of the yield stress. A higher yield stress in the carrier fluid resulted in more seed particles being transferred to the RTs. A dimensional analysis highlighting the role of a yield stress (due to cohesive particle interactions) defined four regions of behavior and indicates how the results obtained in this study can be applied to the full-scale mixing behavior of a high level waste tank. The analysis indicates that the regions of behavior for full-scale mixing have been adequately represented by the current small-scale tests. (authors)

  2. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro; Lee, Kearn P.; Kelly, Steven E.

    2014-01-01

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  3. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro

    2013-09-18

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  4. Centrifugal separator devices, systems and related methods

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Garn, Troy G. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Macaluso, Lawrence L. (Carson City, NV)

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  5. REMOVAL OF SOLIDS FROM HIGHLY ENRICHED URANIUM SOLUTIONS USING THE H-CANYON CENTRIFUGE

    SciTech Connect (OSTI)

    Rudisill, T; Fernando Fondeur, F

    2009-01-15

    Prior to the dissolution of Pu-containing materials in HB-Line, highly enriched uranium (HEU) solutions stored in Tanks 11.1 and 12.2 of H-Canyon must be transferred to provide storage space. The proposed plan is to centrifuge the solutions to remove solids which may present downstream criticality concerns or cause operational problems with the 1st Cycle solvent extraction due to the formation of stable emulsions. An evaluation of the efficiency of the H-Canyon centrifuge concluded that a sufficient amount (> 90%) of the solids in the Tank 11.1 and 12.2 solutions will be removed to prevent any problems. We based this conclusion on the particle size distribution of the solids isolated from samples of the solutions and the calculation of particle settling times in the centrifuge. The particle size distributions were calculated from images generated by scanning electron microscopy (SEM). The mean particle diameters for the distributions were 1-3 {micro}m. A significant fraction (30-50%) of the particles had diameters which were < 1 {micro}m; however, the mass of these solids is insignificant (< 1% of the total solids mass) when compared to particles with larger diameters. It is also probable that the number of submicron particles was overestimated by the software used to generate the particle distribution due to the morphology of the filter paper used to isolate the solids. The settling times calculated for the H-Canyon centrifuge showed that particles with diameters less than 1 to 0.5 {micro}m will not have sufficient time to settle. For this reason, we recommend the use of a gelatin strike to coagulate the submicron particles and facilitate their removal from the solution; although we have no experimental basis to estimate the level of improvement. Incomplete removal of particles with diameters < 1 {micro}m should not cause problems during purification of the HEU in the 1st Cycle solvent extraction. Particles with diameters > 1 {micro}m account for > 99% of the solid mass and will be efficiently removed by the centrifuge; therefore, the formation of emulsions during solvent extraction operations is not an issue. Under the current processing plan, the solutions from Tanks 11.1 and 12.2 will be transferred to the enriched uranium storage (EUS) tank following centrifugation. The solution from Tanks 11.1 and 12.2 may remain in the EUS tank for an extended time prior to purification. The effects of extended storage on the solution were not evaluated as part of this study.

  6. Centrifugal Compressors

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-02-06

    The article discusses small high speed centrifugal compressors. This topic was covered in a previous ASHRAE Journal column (2003). This article reviews another configuration which has become an established product. The operation, energy savings and market potential of this offering are addressed as well.

  7. Centrifugal pyrocontactor

    DOE Patents [OSTI]

    Chow, Lorac S. (Willowbrook, IL); Leonard, Ralph A. (River Forest, IL)

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  8. Centrifugal pyrocontactor

    DOE Patents [OSTI]

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  9. ADMP Mixing of Tank 18F: History, Modeling, Testing, and Results

    SciTech Connect (OSTI)

    LEISHEAR, ROBERTA

    2004-03-29

    Residual radioactive waste was removed from Tank 18F in the F-Area Tank Farm at Savannah River Site (SRS), using the advanced design mixer pump (ADMP). Known as a slurry pump, the ADMP is a 55 foot long pump with an upper motor mounted to a steel super structure, which spans the top of the waste tank. The motor is connected by a long vertical drive shaft to a centrifugal pump, which is submerged in waste near the tank bottom. The pump mixes, or slurries, the waste within the tank so that it may be transferred out of the tank. Tank 18F is a 1.3 million gallon, 85 foot diameter underground waste storage tank, which has no internal components such as cooling coils or structural supports. The tank contained a residual 47,000 gallons of nuclear waste, consisting of a gelatinous radioactive waste known as sludge and particulate zeolite. The prediction of the ADMP success was based on nearly twenty five years of research and the application of that research to slurry pump technology. Many personnel at SRS and Pacific Northwest National Laboratories (PNNL) have significantly contributed to these efforts. This report summarizes that research which is pertinent to the ADMP performance in Tank 18F. In particular, a computational fluid dynamics (CFD) model was applied to predict the performance of the ADMP in Tank 18F.

  10. Hanford Tank Cleanup Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tank C-104 and transferred to safer double-shell tank storage along with the C-104 waste that is currently being retrieved. The vault was built in 1952 to support the...

  11. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-06-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of ?14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS’ System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP.

  12. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  13. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    SciTech Connect (OSTI)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    2012-10-04

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes. The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron, calcium, and chromium. This layer was removed by a cleaning process that left a pipe surface continuous in iron oxide/hydroxide (corrosion) with pockets of aluminum oxide, possibly gibbsite. The corrosion layer was ~ 50 11m (2 mil) thick over non-continuous pits less than ~ 50 11m deep (2 mils). Small particles of aluminum oxide were also detected under the corrosion layer. The ultrasonic transducer analysis of SN-278, like the previous primary pipes, did not reveal any noticeable thinning of the pipe wall. Analysis of the coupon cut from the pipe showed that the inside surface had a layer of tank waste residue that was partially detached from the pipe wall. This layer was easily scraped from the surface and was composed of two separate layers. The underlying layer was ~ 350 11m (14 mils) thick and composed of a cementation of small aluminum oxide (probably gibbsite) particles. A thinner layer on top of the aluminum oxide layer was rich in carbon and chlorine. Scattered pitting was observed on the inside pipe surface with one pit as deep as 200 11m (8 mils).

  14. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  15. Centrifuges Replacement Study Proposal

    E-Print Network [OSTI]

    Iqbal, Muhammad

    2005-12-16

    , the first being the Zippe-type, are used to separate isotopes, and these kinds of centrifuges are in use in nuclear power and nuclear weapon programs. Uranium- 235, which is found in nature mixed with uranium-238, must be separated to be used to produce... installed at ?ABC? manufacturing plant Figure 4 - Pictorial view of a Peeler type Centrifuge from Krauss-Maffei Process Technology Figure 5 - Picture of a Centrifuge from Bird Machine Co Figure 6 - Picture of a skid mounted Centrifuge from Flo Trend...

  16. The PHRI Geotechnical Centrifuge [abstract

    E-Print Network [OSTI]

    Terashi, M; Kitazume, M.; Tanaka, H.

    1984-01-01

    Total weight of the centrifuge (t) 1600xl600 I ·t t FIGURECur. it · mml PHRI Geotechnical Centrifuge I I I I I I I I IADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium on

  17. AMERICAN LITERATUREON GEOTECHNICAL CENTRIFUGE MODELING 1931 - 1984

    E-Print Network [OSTI]

    Cheney, J.A.

    1984-01-01

    1982), Physical Modeling of Tailings Dams Using CentrifugeMarginally Stable Tailings Dams Using Centrifuge Simulation

  18. TRANSFER PRODUCTS FROM THE REACTIONS OF HEAVY IONS

    E-Print Network [OSTI]

    Thomas III, K.E.

    2010-01-01

    target. The centrifuge cone into which the uranium solutionuranium-hydrochloric acid solution is removed from the teflon holder and transferred to a 15 ml centrifuge

  19. Centrifugal Blower Testing Lab 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    PUMP DRIVES Igor J. Karassik, L. L. Petraccaro &J. T. McGuire Worthington Pump Division, Dresser Industries Inc. Mountainside, N. J. Variable frequency drive represents a major milestone in the evolution of centrifugal pumps... and their application. The fundamentals of variable speed centrifugal pump operation are reviewed, then the advantages and evaluation approaches peculiar to variable frequency drive outlined. In addition to the immediate advantages available with existing pumps...

  20. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect (OSTI)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  1. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect (OSTI)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  2. Energy Savings for Centrifugal Compressors 

    E-Print Network [OSTI]

    Fisher, D.

    2011-01-01

    Current design improvements of both the rotating and stationary aerodynamic components of centrifugal compressors can greatly increase the efficiency of vintage machines. A centrifugal compressor built in the 1970's or 1980's might have an external...

  3. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect (OSTI)

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  4. Centrifugally decoupling touchdown bearings

    DOE Patents [OSTI]

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  5. Centrifugal unbalance detection system

    DOE Patents [OSTI]

    Cordaro, Joseph V. (Martinez, GA); Reeves, George (Graniteville, SC); Mets, Michael (Aiken, SC)

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  6. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    SciTech Connect (OSTI)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  7. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect (OSTI)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  8. Interim salt disposition program macrobatch 6 tank 21H qualification monosodium titanate and cesium mass transfer tests

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.; Fink, S. D.

    2013-02-25

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 6 processing. This qualification material was a set of six samples from Tank 21H in October 2012. This sample was used as a real waste demonstration of the Actinide Removal Process (ARP) and the Extraction-Scrub-Strip (ESS) tests process. The Tank 21H sample was contacted with a reduced amount (0.2 g/L) of MST and characterized for strontium and actinide removal at 0 and 8 hour time intervals in this salt batch. {sup 237}Np and {sup 243}Am were both observed to be below detection limits in the source material, and so these results are not reported in this report. The plutonium and uranium samples had decontamination factor (DF) values that were on par or slightly better than we expected from Batch 5. The strontium DF values are slightly lower than expected but still in an acceptable range. The Extraction, Scrub, and Strip (ESS) testing demonstrated cesium removal, stripping and scrubbing within the acceptable range. Overall, the testing indicated that cesium removal is comparable to prior batches at MCU.

  9. Centrifugal Filter Devices Centricon centrifugal filter devices with 10,000 NMWL, 30,000 NMWL,

    E-Print Network [OSTI]

    Kirschner, Marc W.

    CENTRICON ® Centrifugal Filter Devices User Guide Centricon centrifugal filter devices with 10-vitro diagnostic use. Centricon centrifugal filter devices with 3,000 NMWL Ultracel YM membranes are for research ................................................... 3 Maximum Centrifugal Force .............................................................. 3 Rotor

  10. "Centrifugal Forces," Spring, 2015 Centrifugal Forces: Reading Russia's Regional Identities and Initiatives

    E-Print Network [OSTI]

    Huang, Wei

    "Centrifugal Forces," Spring, 2015 Centrifugal Forces: Reading Russia's Regional Identities and articulating their particular identities and interests. Proposals for "Centrifugal Forces" will resist "Moscow and periphery. "Centrifugal Forces" will be a three-day conference offering broad interdisciplinary perspectives

  11. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  12. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  13. Serial siphon valving for centrifugal microfluidic platforms

    E-Print Network [OSTI]

    2010-01-01

    2006). 1.1 Valving on centrifugal micro?uidic platforms AsSerial siphon valving for centrifugal micro?uidic platformsThe advantages offered by centrifugal micro?uidic platforms

  14. Pneumatic pumping in centrifugal microfluidic platforms

    E-Print Network [OSTI]

    Gorkin, Robert; Clime, Liviu; Madou, Marc; Kido, Horacio

    2010-01-01

    Reciprocating ?ow-based centrifugal micro?uidics mixer. RevSerial siphon valving for centrifugal micro?uidic platforms.PAPER Pneumatic pumping in centrifugal micro?uidic platforms

  15. CENTRIFUGE PREDICTION OF EGRESS SYSTEM PERFORMANCE

    E-Print Network [OSTI]

    Schmidt, R.M.; Funston, N.E.; Webbeking, V.T.; Housen, K.R.; Holsapple, K.A.; Voss, M.E.

    1984-01-01

    ~ ctuator hit ltd (sec) CENTRIFUGE I I F IG URL PREDICTIONStudy, Test No. HV12-T1C, Centrifuge Model Test Frogram."ADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium on

  16. Tank 48 - Chemical Destruction

    SciTech Connect (OSTI)

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  17. Centrifuge treatment of coal tar

    SciTech Connect (OSTI)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  18. Plasmid DNA minipreps (alkaline lysis method) 1. Centrifuge 1 mL of overnight bacterial culture in eppi tube for 2 min at 10,000 x g

    E-Print Network [OSTI]

    Pace, Norman

    Plasmid DNA minipreps (alkaline lysis method) 1. Centrifuge 1 mL of overnight bacterial culture. Incubate on ice 5 min (or longer). 7. Centrifuge for 10 min at 16,000 x g at 4°C. 8. Transfer supernatant to new eppi tube; add equal volume PCI; mix by vortex. 9. Centrifuge for 5 min at 16,000 x g at room

  19. Microwave assisted centrifuge and related methods

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  20. Centrifugal dryers keep pace with the market

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  1. APPLICATION OF CENTRIFUGE MODELING IN GEOTECHNICAL ENGINEERING

    E-Print Network [OSTI]

    Kamat, Vineet R.

    APPLICATION OF CENTRIFUGE MODELING IN GEOTECHNICAL ENGINEERING Dr. Liming Li Manager of Centrifuge, Dec 5, 2012 4:00 PM GG Brown 2355 ABSTRACT: This seminar addresses the application of centrifuge may be obtained by substituting a centrifugal force to form the gravitational field, i.e., placing

  2. Supporting document for the historical tank content estimate of U-tank fram

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-26

    This Supporting Document provides historical in-depth characterization information on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  3. Supporting document for the historical tank content estimate for AN-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  4. Supporting document for the historical tank content estimate for C-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  5. Supporting document for the historical tank content estimate for BY-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  6. Supporting document for the historical tank content estimate for AP-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  7. Supporting document for the historical tank content estimate for AW-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  8. Supporting document for the historical tank content estimate for A-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  9. Supporting document for the historical tank content estimate for BX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  10. Supporting document for the historical tank content estimate for AY-tank farm

    SciTech Connect (OSTI)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  11. Supporting document for the historical tank content estimate for the S-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  12. Supporting document for the historical tank content estimate for B-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  13. Supporting document for the historical tank content estimate for AX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Westinghouse Hanford

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  14. Supporting document for the historical tank content estimate for the SX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  15. Tank Closure

    Office of Environmental Management (EM)

    Communications Schedule Performance Ceasing Waste Removal Compliance with SC Water Protection Standards Questions? Topics 3 Overview of SRS Tank Closure Program...

  16. ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2010-02-02

    Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank walls. The Acid Spray Wash was followed by a Water Spray Wash to remove oxalic acid from the tank internals. SRR conducted the Spray Wash as follows. Personnel added 4,802 gallons of 8 wt % oxalic acid to Tank 6F through the spray mast installed in Riser 2, added 4,875 gallons of oxalic acid through Riser 7, added 5,000 gallons of deionized water into the tank via Riser 2, and 5,000 gallons of deionized water into the tank via Riser 7. Following the Spray Wash, they visually inspected the tank and transferred 22,430 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Following the Spray Wash and transfer, Savannah River Site (SRS) added 113,935 gallons of well water to Tank 6F. They mixed the tank contents with a single SMP and transferred 112,699 gallons from Tank 6F to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,488 gallons of solids remained in the tank. Following the Water Wash, SRR personnel collected a solid sample and submitted it to SRNL for analysis to assess the effectiveness of the chemical cleaning and to provide a preliminary indication of the composition of the material remaining in the tank.

  17. Centrifugal Modeling of Subsidence of Landfill Covers [abstract

    E-Print Network [OSTI]

    Sterling, Harry; Ronayne, Michael

    1984-01-01

    Engineering Division. j "Centrifugal Moueling of Subsidencer I I r t l I I I A centrifugal modeling procedure foras prototypes f or the centrifugal modeling. The prototypes'

  18. A Centrifuge Modeling Procedure for Landfill Cover Subsidence

    E-Print Network [OSTI]

    Sterling, Harry J; Ronayne, Michael C

    1984-01-01

    Advances in Geotechncial Centrifuge Modeling, University ofADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium onAdvances in Geotechnical Centrifuge Modeling was held on

  19. The centrifuge as an aid to the designer

    E-Print Network [OSTI]

    Craig, William H

    1984-01-01

    on Application of Centrifuge Modelling to GeotechnicalOperation of a geotechnical centrifuge from 1970 to 1979.ADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium on

  20. RELATIONSHIPS FOR MODELLING WATER FLOW IN GEOTECHNICAL CENTRIFUGE MODELS [abstract

    E-Print Network [OSTI]

    Goodings, Deborah

    1984-01-01

    relationships between centrifuge model and prototype waterADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium onAdvances in Geotechnical Centrifuge Modeling was held on

  1. Tests on piles installed in flight on the centrifuge

    E-Print Network [OSTI]

    Allard, M.A.

    1984-01-01

    ADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium onAdvances in Geotechnical Centrifuge Modeling was held onl I I I Committee on Centrifuges of the International

  2. Serial siphon valving for centrifugal microfluidic platforms

    E-Print Network [OSTI]

    2010-01-01

    centrifugal pumping eliminates the need for large power supplies and/or pumpsCentrifugal micro?uidics is one such platform with many advantages over typical, pressure-pump

  3. Tank Mania!

    E-Print Network [OSTI]

    2015-02-08

    (4) In an oil refinery, a storage tank contains 2000 gal of gasoline that initially has 100 lb of additive dissolved in it. In preparation for winter weather, gasoline ...

  4. Centrifugal microdevices Chip-based analysis systems provide for

    E-Print Network [OSTI]

    Rogers, John A.

    Centrifugal microdevices Chip-based analysis systems provide for efficiency gains with respect the potential applications of such instruments. Centrifugation is a well- established sample pre or macromolecules of differing sizes in suspension. Macroscale centrifuges typically generate high centrifugal

  5. Select an Energy-Efficient Centrifugal Pump

    SciTech Connect (OSTI)

    Not Available

    2005-10-01

    BestPractices Program tip sheet discussing pumping system efficiency by selecting an energy-efficient centrifugal pump.

  6. The gas centrifuge and nuclear weapons proliferation

    SciTech Connect (OSTI)

    Wood, Houston G.; Glaser, Alexander; Kemp, R. Scott

    2014-05-09

    Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

  7. Laser and gas centrifuge enrichment

    SciTech Connect (OSTI)

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  8. Centrifugal Filter Devices FOR CONCENTRATION AND PURIFICATION

    E-Print Network [OSTI]

    Kirschner, Marc W.

    Centricon® Plus-70 Centrifugal Filter Devices FOR CONCENTRATION AND PURIFICATION OF BIOLOGICAL-70 centrifugal filter is a disposable, single-use device designed for rapid processing of aqueous biological solu- tions in volumes ranging from 15 to 70 mL. It is compatible with swinging-bucket centrifuges

  9. The L.C.P.C. Centrifuge

    E-Print Network [OSTI]

    Corte, J.F.

    1984-01-01

    LABORATORY Figure 6. L.C.P.C. centrifuge facilities I I I In e r a l v i e w of t h e centrifuge a nd i ts d r i ve u nit . f l r g CENTRIFUGE CHAMBER l f MOTOR PIT 1. AC MOTOR -

  10. statistical physics canonical ensemble Uranium Centrifuges

    E-Print Network [OSTI]

    statistical physics canonical ensemble Uranium Centrifuges The easiest type of nuclear weapon of the physics behind crude uranium enrichment methods. 2 The centrifuge concept is a very generic way of trying the uranium, we remove gas from the ends of the centrifuge, where the heavier uranium atoms are more

  11. Supporting document for the historical tank content estimate for BY Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  12. Supporting document for the historical tank content estimate for B Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  13. Supporting document for the historical tank content estimate for A Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  14. Motility fractionation of bacteria by centrifugation

    E-Print Network [OSTI]

    Claudio Maggi; Alessia Lepore; Jacopo Solari; Alessandro Rizzo; Roberto Di Leonardo

    2013-10-10

    Centrifugation is a widespread laboratory technique used to separate mixtures into fractions characterized by a specific size, weight or density. We demonstrate that centrifugation can be also used to separate swimming cells having different motility. To do this we study self-propelled bacteria under the influence of an external centrifugal field. Using dynamic image correlation spectroscopy we measure the spatially resolved motility of bacteria after centrifugation. A significant gradient in swimming-speeds is observed for increasing centrifugal speeds. Our results can be reproduced by a model that treats bacteria as "hot" colloidal particles having a diffusion coefficient that depends on the swimming speed.

  15. Grouting at the Idaho National Laboratory Tank Farm Facility...

    Office of Environmental Management (EM)

    fuel basin water treatment discharges - Off-gas scrubber solutions - Sump water and condensate from tank farm transfer equipment - Other low activity miscellaneous plant wastes *...

  16. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27...

  17. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  18. Quantum anti-centrifugal force

    E-Print Network [OSTI]

    M. A. Cirone; K. Rzazewski; W. P. Schleich; F. Straub; J. A. Wheeler

    2001-08-16

    In a two-dimensional world a free quantum particle of vanishing angular momentum experiences an attractive force. This force originates from a modification of the classical centrifugal force due to the wave nature of the particle. For positive energies the quantum anti-centrifugal force manifests itself in a bunching of the nodes of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound state in a two-dimensional delta function potential. In a counter-intuitive way the attractive force pushes the particle away from the location of the delta function potential. As a consequence, the particle is localized in a band-shaped domain around the origin

  19. Centrifugal force in Kerr geometry

    E-Print Network [OSTI]

    Sai Iyer; A R Prasanna

    1992-07-31

    We have obtained the correct expression for the centrifugal force acting on a particle at the equatorial circumference of a rotating body in the locally non-rotating frame of the Kerr geometry. Using this expression for the equilibrium of an element on the surface of a slowly rotating Maclaurin spheroid, we obtain the expression for the ellipticity (as discussed earlier by Abramowicz and Miller) and determine the radius at which the ellipticity is maximum.

  20. Supporting document for the north east quadrant historical tank content estimate report for AX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This Supporting Document provides historical in-depth characterization information gathered in AX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quadrant and the Hanford 200 East Areas.

  1. Supporting document for the North East Quandrant Historical Tank Content Estimate Report for BX-Tank Farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1994-06-01

    This supporting document provides historical in-depth characterization information gathered on BX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quandrant and the Hanford 200 East Areas.

  2. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  3. Central centrifugal cicatricial alopecia: Superimposed tinea capitis as the etiology of chronic scalp pruritus

    E-Print Network [OSTI]

    Chiang, Charles; Price, Vera; Mirmirani, Paradi

    2008-01-01

    D, Olsen E. Central centrifugal cicatricial alopecia.Central centrifugal cicatricial alopecia: Superimposed tineaa patient with central centrifugal cicatricial alopecia (

  4. Centrifugal buoyancy as a mechanism for neutron star glitches

    E-Print Network [OSTI]

    Brandon Carter; David Langlois; David M. Sedrakian

    2000-04-10

    The frequent glitches (sudden increases of the apparent angular velocity) observed in certain pulsars are generally believed to be attributable to discontinuous angular momentum transfer to the outer neutron star crust from a differentially rotating superfluid layer, but the precise mechanism is not quite elucidated. Most explanations invoke vortex pinning as the essential mechanism responsible for the build up of strain in the crust that is relaxed, either by fracture of the solid structure or by discontinous unpinning, during the glitch. It is shown here that there is another mechanism that could give rise to strain, and subsequent fracture, of the solid crust, even if vortex pinning is ineffective: this is the effective force arising from the deficit of centrifugal buoyancy that will be present whenever there is differential rotation. This centrifugal buoyancy deficit force will be comparable in order of magnitude, but opposite in direction, to the force that would arise from vortex pinning if it were effective.

  5. Description of the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Arthur, W.B.

    1980-12-16

    The Portsmouth Gas Centrifuge Enrichment Plant (GCEP) will be located at the site of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. The purpose of the facility is to provide enriching services for the production of low assay enriched uranium for civilian nuclear power reactors. The construction and operation of the GCEP is administered by the US Department of Energy. The facility will be operated under contract from the US Government. Control of the GCEP rests solely with the US Government, which holds and controls access to the technology. Construction of GCEP is expected to be completed in the mid-1990's. Many facility design and operating procedures are subject to change. Nonetheless, the design described in this report does reflect current thinking. Descriptions of the general facility and major buildings such as the process buildings, feed and withdrawal building, cylinder storage and transfer, recycle/assembly building, and a summary of the centrifuge uranium enriching process are provided in this report.

  6. Tank 241-U-204 tank characterization plan

    SciTech Connect (OSTI)

    Bell, K.E.

    1995-03-23

    This document is the tank characterization plan for Tank 241-U-204 located in the 200 Area Tank Farm on the Hanford Reservation in Richland, Washington. This plan describes Data Quality Objectives (DQO) and presents historical information and scheduled sampling events for tank 241-U-204.

  7. Tank characterization report for double-shell tank 241-AN-102

    SciTech Connect (OSTI)

    Jo, J., Westinghouse Hanford

    1996-08-29

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists.

  8. Centrifugal separators and related devices and methods

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Garn, Troy G. (Idaho Falls, ID); Macaluso, Lawrence L. (Carson City, NV); Todd, Terry A. (Aberdeen, ID)

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  9. Pneumatic pumping in centrifugal microfluidic platforms

    E-Print Network [OSTI]

    Gorkin, Robert; Clime, Liviu; Madou, Marc; Kido, Horacio

    2010-01-01

    T, Madou M (2009) Serial siphon valving for centrifugale J (2007) Integrated siphon-based metering and sedimen-pneumatic pumping to siphon priming. Keywords Centrifugal Á

  10. Centrifugal quantum states of neutrons

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; A. K. Petukhov; K. V. Protasov; A. Yu. Voronin

    2008-06-24

    We propose a method for observation of the quasi-stationary states of neutrons, localized near the curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi-potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that could be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop formalism, which describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

  11. Urenco centrifuge and laser development

    SciTech Connect (OSTI)

    Upson, P.C.

    1994-12-31

    The Urenco centrifuge process for the enrichment of uranium is now well developed and economically proven. The centrifuge technology that forms the basis of Urenco`s plants in the United Kingdom, the Netherlands, and Germany has evolved steadily over the last two decades since the Urenco partnership was formed, and current programs of development will see this progress continue into the next century. From the early pilot plant work, the first generation of machines was installed and commissioned in the late 1970s in the U.K. and Netherlands plants. These have both significantly exceeded the original design expectation with respect to both stress lifetime and corrosion resistance. The early U.K. plant was shut down in 1992, again well beyond the expected 10-yr lifetime, while the Netherlands plant is still operating. Since then, significant advances have been made, and a fourth-generation machine began operation in the plants in 1991; in fact, Urenco has all four generations still in operation in its plants today. Urenco`s research on laser isotope separation is also described.

  12. CENTRIFUGAL FORCES: READING RUSSIA'S REGIONAL IDENTITIES AND INITIATIVES

    E-Print Network [OSTI]

    Huang, Wei

    CENTRIFUGAL FORCES: READING RUSSIA'S REGIONAL IDENTITIES AND INITIATIVES Thursday, March 26 and Natural Heritage, Moscow, Russia), " : , " ("The Centrifugality of the Centripetal: Space, Identity and Industry as Centrifugal Forces in Tsarist Transcaucasia" Helen Hundley (History, Wichita State U

  13. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01

    Technical Basis of the Gas Centrifuge", Adv. in Nucl. Sci.D.R. , (1978) "The Gas Centrifuge", Scientific American,Fluid Dynamics of a Gas Centrifuge", J. Fluid Mech. , 101,

  14. Centrifuge modelling of artificial sand islands in earthquakes

    E-Print Network [OSTI]

    Lee, F.H.; Schofield, A.N.

    1984-01-01

    el d, A.N. ( 1983 ) . Two Centrifuge Hode : Tes t s: o:-: S~Partial Liquefaction in a Centrifuge Model Embankment in anand Earthquake Geotechnical Centrifuge Modelling, Proc. Int,

  15. DYNAMIC BEHAVIOR OF FOUNDATIONS: AN EXPERIMENTAL STUDY IN A CENTRIFUGE

    E-Print Network [OSTI]

    Hushman, B.

    1984-01-01

    1975. Sco tt, R. F . , "Centrifuge Studies of Cyclic LateDynam i c Pile Tests by Centrifuge Mo deling ," Proc. 6th WoADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium on

  16. ANALYTICAL AND CENTRIFUGE STUDIES LATERALLY LOADED SINGLE PILES

    E-Print Network [OSTI]

    Chandrasekaran, V.S.; Kulkarni, K.R.; King, G.J.W.

    1984-01-01

    the Ap p licati on of Centrifuge Modelling to GeotechnicalKing, G.J.W. (1984). Centrifuge tests on laterally loadedgeotec h nical centrifuge operations. Geotechnique (30), 3,

  17. Centrifuge Modelling of the Performance of Liquefaction Mitigation Measures for

    E-Print Network [OSTI]

    Centrifuge Modelling of the Performance of Liquefaction Mitigation Measures for Shallow Foundations Centrifuge Stored Angular Momentum Actuator Equivalent Shear Beam Container Automatic Sand Pourer Hostun Sand Methylcellulose 3 #12;Experimental Techniques and Materials 10 m Turner Beam Centrifuge Stored

  18. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01

    E. (1973) "Uranium Enrichment by Gas Centrifuge" Mills andTHEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE Donald R.THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE by Donald

  19. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  20. Shape separation of gold nanorods using centrifugation

    E-Print Network [OSTI]

    Sharma, Vivek

    Shape separation of gold nanorods using centrifugation Vivek Sharmaa,1 , Kyoungweon Parka,2 , and Mohan Srinivasaraoa,b,c,3 aSchool of Polymer Textile and Fiber Engineering, bCenter for Advanced, and approved January 23, 2009 (received for review January 29, 2008) We demonstrate the use of centrifugation

  1. Apparatus for centrifugal separation of coal particles

    DOE Patents [OSTI]

    Dickie, William (New Eagle, PA); Cavallaro, Joseph A. (Mt. Keesport, PA); Killmeyer, Richard P. (Pleasant Hills, PA)

    1991-01-01

    A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.

  2. Centrifugal deformations of the gravitational kink

    E-Print Network [OSTI]

    Paolo Maraner; Jiannis K. Pachos

    2008-11-29

    The Kaluza-Klein reduction of 4d conformally flat spacetimes is reconsidered. The corresponding 3d equations are shown to be equivalent to 2d gravitational kink equations augmented by a centrifugal term. For space-like gauge fields and non-trivial values of the centrifugal term the gravitational kink solutions describe a spacetime that is divided in two disconnected regions.

  3. Select an Energy-Efficient Centrifugal Pump: Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2005 Select an Energy-Efficient Centrifugal Pump Overview Centrifugal pumps handle high flow rates, provide smooth, nonpulsating delivery, and regulate the flow rate over a wide...

  4. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements This tip sheet discusses...

  5. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  6. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  7. Rotational Instabilities and Centrifugal Hangup

    E-Print Network [OSTI]

    Kimberly C. B. New; Joan M. Centrella

    2001-01-17

    One interesting class of gravitational radiation sources includes rapidly rotating astrophysical objects that encounter dynamical instabilities. We have carried out a set of simulations of rotationally induced instabilities in differentially rotating polytropes. An $n$=1.5 polytrope with the Maclaurin rotation law will encounter the $m$=2 bar instability at $T/|W| \\gtrsim 0.27$. Our results indicate that the remnant of this instability is a persistent bar-like structure that emits a long-lived gravitational radiation signal. Furthermore, dynamical instability is shown to occur in $n$=3.33 polytropes with the $j$-constant rotation law at $T/|W| \\gtrsim 0.14$. In this case, the dominant mode of instability is $m$=1. Such instability may allow a centrifugally-hung core to begin collapsing to neutron star densities on a dynamical timescale. If it occurs in a supermassive star, it may produce gravitational radiation detectable by LISA.

  8. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, Norman E. (Knoxville, TN)

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  9. F-AREA PUMP TANK 1 MIXING ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2008-11-05

    The F-area pump tanks are used to transfer supernate, sludge, and other materials. In any transfer, the solution must stay well mixed without allowing particulate matter to settle out of the liquid and, thus, accumulate in the bottom of the pump tank. Recently, the pulse jet mixing in F-area Pump Tank 1 (FPT1) has been decommissioned. An analysis of the liquid transfer through FPT1 has been performed using computational fluid dynamics (CFD) methods to assess whether or not the velocities throughout the tank will remain high enough to keep all particulate suspended using only transfer and recirculation pumps. The following paragraph is an abbreviated synopsis of the transfer procedure for FPT1 [1, 2]. Prior to a transfer, FPT1 begins to be filled with inhibited water through the inlet transfer line (TI). When the tank liquid level reaches 52.5 inches above the absolute tank bottom, the recirculation pump (RI and RO) is activated. At a tank liquid level of 72.5 inches above the absolute tank bottom, the outlet transfer line (TO) is activated to reduce the liquid level in FPT1 and transfer inhibited water to H-area Pump Tank 7 (HPT7). The liquid level is reduced down to 39.5 inches, with an allowable range from 37.5 to 41.5 inches above the absolute tank bottom. HPT7 goes through a similar procedure as FPT1 until both have tank liquid levels of approximately 39.5 inches above the absolute tank bottom. The transfer of inhibited water continues until a steady-state has been reached in both pump tanks. At this point, the supernate/sludge transfer begins with a minimum flow rate of 70 gpm and an average flow rate of 150 gpm. After the transfer is complete, the pump tanks (both FPT1 and HPT7) are pumped down to between 20.5 and 22.5 inches (above absolute bottom) and then flushed with 25,000 gallons of inhibited water to remove any possible sludge heal. After the flushing, the pump tanks are emptied. Note that the tank liquid level is measured using diptubes. Figure 2.1 provides a simplified sketch (not to scale) of FPT1 during the steady-state transfer condition, which consists of two inlet flows that impact the liquid surface as plunging jets and two outlet flows drawn from near the bottom of the tank. During the transfer, the supernate level is held at 39.5 inches above the absolute bottom of the tank [1, 2]. In addition, the FPT1 can contain up to 16.7 wt.% sludge particles within the supernate for a given transfer [2]. Test results from Tank 40 sludge Batch 3 [3] provide a typical range of particulate diameters between 0.1 and 25 {micro}m, with approximately 20 vol.% of the sludge distribution consisting of particles less than 1 {micro}m in diameter. The purpose of this analysis is to estimate FPT1 flow field during the steady-state transfer conditions to ensure that the tank remains mixed and that the velocities throughout the tank are sufficient to keep all sludge particulate suspended.

  10. Savannah River Site Achieves Waste Transfer First

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F Tank Farm to H Tank Farm using a central control room.

  11. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and...

  12. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-10-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors.

  13. Proceedings of the Symposium on Recent Advances in Geotechnical Centrifuge Modeling

    E-Print Network [OSTI]

    Center for Geotechnical Modeling, Department of Civil Engineering, University of California Davis

    1984-01-01

    1982), Physical Modeling of Tailings Dams Using CentrifugeMarginally Stable Tailings Dams Using Centrifuge Simulation

  14. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect (OSTI)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  15. Centrifuge workers study. Phase II, completion report

    SciTech Connect (OSTI)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  16. Tank characterization report for single-shell tank 241-B-104

    SciTech Connect (OSTI)

    Field, J.G.

    1996-04-08

    This document summarizes information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-104. Sampling and analyses meet safety screening and historical data quality objectives. This report supports the requirements of Tri-party Agreement Milestone M-44-09. his characterization report summoned the available information on the historical uses and the current status of single-shell tank 241-B-104, and presents the analytical results of the June 1995 sampling and analysis effort. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1994). Tank 241-B-104 is a single-shell underground waste storage tank located in the 200 East Area B Tank Farm on the Hanford Site. It is the first tank in a three-tank cascade series. The tank went into service in August 1946 with a transfer of second-cycle decontamination waste generated from the bismuth phosphate process. The tank continued to receive this waste type until the third quarter of 1950, when it began receiving first-cycle decontamination waste also produced during the bismuth phosphate process. Following this, the tank received evaporator bottoms sludge from the 242-B Evaporator and waste generated from the flushing of transfer lines. A description and the status of tank 241-B-104 are sum in Table ES-1 and Figure ES-1. The tank has an operating capacity of 2,010 kL (530 kgal), and presently contains 1,400 kL (371 kgal) of waste. The total amount is composed of 4 kL (1 kgal) of supernatant, 260 kL (69 kgal) of saltcake, and 1,140 kL (301 kgal) of sludge (Hanlon 1995). Current surveillance data and observations appear to support these results.

  17. TANK48 CFD MODELING ANALYSIS

    SciTech Connect (OSTI)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

  18. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    SciTech Connect (OSTI)

    Lee, Kearn P.; Thien, Michael G.

    2013-11-07

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased.

  19. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  20. Paper No. : 0317 LATERAL SPREADING DURING CENTRIFUGE MODEL

    E-Print Network [OSTI]

    Haigh, Stuart

    Paper No. : 0317 LATERAL SPREADING DURING CENTRIFUGE MODEL EARTHQUAKES Stuart K. Haigh1 , S sand marker lines within centrifuge models. A series of dynamic centrifuge model tests have been these free boundaries from previous earthquakes. Dynamic centrifuge modelling was carried out using sloping

  1. EIS-0468: American Centrifuge Plant in Piketon, OH | Department...

    Broader source: Energy.gov (indexed) [DOE]

    EIS-0468: Final Environmental Impact Statement Proposed American Centrifuge Plant in Piketon, Ohio Pike County, Ohio...

  2. EIS-0468: American Centrifuge Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction, operation, and decommissioning of the American Centrifuge Plant (ACP), located on DOE reservation in Piketon, Ohio. (DOE adopted this EIS issued by the Nuclear Regulatory Commission on 02/16/2011.)

  3. A methodology for centrifugal compressor stability prediction

    E-Print Network [OSTI]

    Benneke, Björn

    2009-01-01

    The stable operation of centrifugal compressors is limited by well-known phenomena, rotating stall and surge. Although the manifestation of the full scale instabilities is similar to the ones observed in axial machines, ...

  4. Improved return passages for multistage centrifugal compressors

    E-Print Network [OSTI]

    Glass, Benjamin W., S.M. Massachusetts Institute of Technology

    2010-01-01

    This thesis presents a design concept for return passages in multistage centrifugal compressors. Flow in a baseline return passage is analyzed to identify loss sources that have substantial potential for reduction. For the ...

  5. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  6. Tank characterization report for single-shell tank 241-BY-104

    SciTech Connect (OSTI)

    Benar, C.J.

    1996-09-26

    This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

  7. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    SciTech Connect (OSTI)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.; Barnes, T. J.; Duncan, K. G.

    2015-01-07

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service following deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.

  8. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of soil between the ground surface and the water table 200-to-300 feet below. The project tracks and monitors contamination in the soil. Technologies are being developed and deployed to detect and monitor contaminants. Interim surface barriers, which are barriers put over the single-shell tanks, prevent rain and snow from soaking into the ground and spreading contamination. The impermeable barrier placed over T Farm, which was the site of the largest tank waste leak in Hanford's history, is 60,000 square feet and sloped to drain moisture outside the tank farm. The barrier over TY Farm is constructed of asphalt and drains moisture to a nearby evaporation basin. Our discussion of technology will address the incredible challenge of removing waste from Hanford's single-shell tanks. Under the terms of the Tri-Party Agreement, ORP is required to remove 99 percent of the tank waste, or until the limits of technology have been reached. All pumpable liquids have been removed from the single-shell tanks, and work now focuses on removing the non-pumpable liquids. Waste retrieval was completed from the first single-shell tank in late 2003. Since then, another six single-shell tanks have been retrieved to regulatory standards. (authors)

  9. Centrifuge Use There are a few important guidelines for operating a centrifuge, even a small one. Following them can

    E-Print Network [OSTI]

    Kay, Mark A.

    Centrifuge Use There are a few important guidelines for operating a centrifuge, even a small one. Following them can prevent damage to the centrifuge and possible serious injury to you and others. Use 1. The work surface must be level and firm. Do not use the centrifuge on an uneven or slanted work surface. 2

  10. A Fuzzy Feed-Forward/Feedback Control System for a Three-Phase Oil Field Centrifuge.

    SciTech Connect (OSTI)

    Parkinson, W. J. ,; Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Ross, Timothy J.; Jamshidi, Mohammad; Miller, N.

    2002-01-01

    A set of fuzzy controllers was designed and applied to a commercial three-phase oil field centrifuge. This centrifuge is essentially a one of a kind unit. It is used to recover oil from tank bottoms and oil field and/or refinery sludge. It is unique because it can separate oily emulsions into three separate phases, oil, water, and solids, in one operation. The centrifuge is a large but portable device. It is moved form site to site and is used to separate a large variety of waste emulsions. The centrifuge feedstock varies significantly from site to site and often varies significantly during the daily operation. In this application, fuzzy logic was used on a class of problems not easily solved by classical control techniques. The oil field centrifuge is a highly nonlinear system, with a time varying input. We have been unable to develop a physical-mathematical model of the portion of the centrifuge operation that actually separates the oil, water, and solids. For this portion of the operation we developed a fuzzy feedback control system that modeled a skilled operator's knowledge and actions as opposed to the physical model of the centrifuge itself. Because of the variable feed we had to develop a feed-forward controller that would sense and react to feed changes prior to the time that the actual change reached the centrifuge separation unit. This portion of the control system was also a fuzzy controller designed around the knowledge of a skilled operator. In addition to the combined feed-forward and feedback control systems, we developed a soft-sensor that was used to determine the value of variables needed for the feed-forward control system. These variables could not actually be measured but were calculated from the measurement of other variables. The soft-sensor was developed with a combination of a physical model of the feed system and a skilled operator's expert knowledge. Finally the entire control system is tied together with a fuzzy-SPC (Statistical Process Control) filter, used to filter process and instrument noise and a fuzzy conflict resolution code used to keep the feed-forward and feedback control systems working well together.

  11. Tank characterization report: Tank 241-C-109

    SciTech Connect (OSTI)

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  12. Tank Characterization Report for Single Shell Tank 241-C-104

    SciTech Connect (OSTI)

    ADAMS, M.R.

    2000-04-06

    Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank.

  13. Tank evaluation system shielded annular tank application

    SciTech Connect (OSTI)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  14. Preparation of genomic DNA for PCR 1. Centrifuge 5 mL of a saturated overnight culture of yeast cells at 5000 x g for 5 min at RT.

    E-Print Network [OSTI]

    Pace, Norman

    Preparation of genomic DNA for PCR 1. Centrifuge 5 mL of a saturated overnight culture of yeast water. 3. Transfer volume to screw-cap eppi tube and centrifuge at 5,000 x g for 5 min at RT. 4L of sterile glass beads and 200 µL of phenol-chloroform-isoamyl alcohol. 7. Vortex 15 min at RT. 8. Centrifuge

  15. EIS-0303: Savannah River Site High-Level Waste Tank Closure

    Broader source: Energy.gov [DOE]

    This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE...

  16. Basis for Section 3116 Determination for Closure of F-Tank Farm...

    Office of Environmental Management (EM)

    slugs (known as targets) that were irradiated in the site's nuclear production reactors. Before transfer of the waste from the F Canyon to the tank farms, sodium hydroxide...

  17. Vacuum/Compression Valving (VCV) Using Parrafin-Wax on a Centrifugal Microfluidic CD Platform

    E-Print Network [OSTI]

    2013-01-01

    wax solidifies) by centrifugal force. Author ContributionsF, et al. (2007) The centrifugal microfluidic Bio-Diskswitching valves on a centrifugal microfluidic platform.

  18. EVALUATION OF A CONSTITUTIVE MODEL FOR SOFT CLAY USING THE CENTRIFUGE

    E-Print Network [OSTI]

    Liang, R.Y.K.; Tse, E.C.; Kuhn, M.R.; Mitchell, J.K.

    1984-01-01

    gravity field in the centrifuge is radial and the verticalADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium onAdvances in Geotechnical Centrifuge Modeling was held on

  19. Behavior of Pile Foundations in Laterally Spreading Ground during Centrifuge Tests

    E-Print Network [OSTI]

    Brandenberg, Scott J; Boulanger, R W; Kutter, Bruce L; Chang, Dongdong

    2005-01-01

    during earthquakes: Centrifuge experiments and analyses. ”during earthquakes—centrifuge data report for SJB03. ” Rep.during earthquakes—centrifuge data report for SJB01. ” Rep.

  20. Static pushover analyses of pile groups in liquefied and laterally spreading ground in centrifuge tests

    E-Print Network [OSTI]

    Brandenberg, Scott J; Boulanger, R W; Kutter, Bruce L; Chang, Dongdong

    2007-01-01

    spreading ground during centrifuge tests. ” J. Geotech.and Liu, L. ?1995?. “Centrifuge modeling of liquefactionGonzales, L. ?2005?. “Centrifuge modeling of permeability

  1. Evaluation of Nonlinear Site Response of Soft Clay Using Centrifuge Models

    E-Print Network [OSTI]

    Afacan, Kamil Bekir

    2014-01-01

    spreading ground during centrifuge tests." J. Geotech.densesand in laminated centrifuge container." J. Geotech. &response in laminated centrifuge container." Proc. 1st

  2. CRATERING MODEL VERIFICATION: A CENTRIFUGE PREDICTION VERSUS FIELD RESULT FOR A 40-TON EXPLOSIVE EVENT [abstract

    E-Print Network [OSTI]

    Holsapple, K.A.; Schmidt, R.M.

    1984-01-01

    and experiments on centrifuge crater- ing. J. Geophys. Res.J 980. Schmidt, R. M. , Centrifuge simulation of the JOHNIEformation - implications of centrifuge scaling. Proc. Lunar

  3. SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION

    SciTech Connect (OSTI)

    Bannochie, C.; Click, D.; Pareizs, J.

    2010-05-21

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  4. The geotechnical centrifuge in offshore engineering

    SciTech Connect (OSTI)

    Murff, J.D.

    1996-12-31

    One of the greatest needs in offshore geotechnical engineering is for large scale test measurements on which to calibrate design procedures. The geotechnical centrifuge offers at least a partial remedy. Because it allows one to properly simulate stresses, it is a legitimate, relatively inexpensive option to full scale field testing. As such it is a valuable technique and can be an excellent complement to laboratory tests, 1-g model tests and numerical analyses. However, it has not been widely used by industry even though the capability has existed for almost thirty years. This paper argues that this technology should gain acceptance beyond the research community. The paper presents an overview of centrifuge principles, philosophies of use, and limitations of the technique. For illustration, several actual applications of centrifuge testing for complex offshore problems are described. Results are shown to provide important insights into prototype behavior and to agree well with full scale measurements where these are available.

  5. Tank characterization report for double-shell tank 241-AP-101. Revision 1

    SciTech Connect (OSTI)

    Conner, J.M.

    1997-06-24

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes m support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AP-101. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AP-101 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about safety status and additional sampling needs. The appendixes contain supporting data and information. This report supported the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05. The characterization information in this report originated from sample analyses and known historical sources. Appendix A provides historical information for tank 241-AP-101 including surveillance, information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a model based upon process knowledge. Appendix B summarizes recent sampling events and historical sampling information. Tank 241-AP-101 was grab sampled in November 1995, when the tank contained 2,790 kL (737 kgal) of waste. An addition1034al 1,438 kL (380 kgal) of waste was received from tank 241-AW-106 in transfers on March 1996 and January 1997. This waste was the product of the 242-A Evaporator Campaign 95-1. Characterization information for the additional 1,438 kL (380 kgal) was obtained using grab sampling data from tank 241-AW-106 and a slurry sample from the evaporator. Appendix C reports on the statistical analysis and numerical manipulation of data used in issue resolution. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. Appendix E is a bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-AP-101 and its respective waste types. A majority of the reports listed in Appendix E are available in the Tank Characterization and Safety Resource Center.

  6. Supporting document for the historical tank content estimate for SY-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  7. British Tank in Action 

    E-Print Network [OSTI]

    2012-03-05

    of the storage tank height .......................................................... 34 Figure 13: Comparison between simulated storage tank sizes and actual storage tank sizes...] ........................................................................................ 80 Figure 36: Diagram of the mixer in a CSP plant .............................................................. 82 Figure 37: Demonstrate of the requirements of the electricity greedy strategy ............... 84 Figure 38: Flow chart...

  8. "Centrifugal force: A gedanken experiment" - new surprises

    E-Print Network [OSTI]

    G. Z. Machabeli; A. D. Rogava

    1996-04-22

    A recently proposed "gedanken experiment" [G.Z. Machabeli and A.D. Rogava. Phys. Rev. A {\\bf 50}, 98 (1994)], exhibiting surprising behavior, is reexamined. A description of this behavior in terms of the laboratory inertial frame is presented, avoiding uncertainties arising due to a definition of a centrifugal force in relativity. The surprising analogy with the radial geodesic motion in Schwarzschild geometry is discovered. The definition of the centrifugal force, suggested by J.C. Miller and M.A. Abramowicz, is discussed.

  9. Wave-Driven Rotation In Centrifugal Mirrors

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-03-28

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  10. Visualizing Unsteady Vortical Behavior of a Centrifugal Pump Mathias Otto

    E-Print Network [OSTI]

    Visualizing Unsteady Vortical Behavior of a Centrifugal Pump Mathias Otto University of Magdeburg. The given data represents a high resolution simulation of a centrifugal pump used to transport liquids

  11. Development of a body force model for centrifugal compressors

    E-Print Network [OSTI]

    Kottapalli, Anjaney Pramod

    2013-01-01

    This project is focused on modeling the internal ow in centrifugal compressors for the purpose of assessing the onset of rotating stall and surge. The current methods to determine centrifugal compressor stability limits ...

  12. A parametric study of vestibular stimulation during centrifugation

    E-Print Network [OSTI]

    Pouly, Jeremie M

    2006-01-01

    Artificial Gravity (AG) provided by short-radius centrifugation is a promising countermeasure to the health problems associated with long duration human spaceflight. Head-turns performed during centrifugation, however, ...

  13. Systems approach used in the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  14. Differential white cell count by centrifugal microfluidics.

    SciTech Connect (OSTI)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  15. CENTRIFUGAL MODEL TESTS FOR ULTIMATE BEARING CAPACITY OF FOOTINGS ON STEEP SLOPES IN COHESIONLESS SOIL [abstract

    E-Print Network [OSTI]

    Gemperline, Mark

    1984-01-01

    Gemperline, Mark C. , Centrifugal ~odel Tests for UltimateDivision. ABSTRACTS II CENTRIFUGAL MODEL TESTS FOR ULTIMATE

  16. Global endwall effects on centrifugally stable flows Marc Avila,1

    E-Print Network [OSTI]

    Marques, Francisco

    Global endwall effects on centrifugally stable flows Marc Avila,1 Matt Grimes,2 Juan M. Lopez,2 is centrifugally unstable, and when the Reynolds number Re is large enough, the system forms radial jets-length effects. The predicted onset of centrifugal instability for infinite cyl- inders is in good agreement

  17. Regulation of the centrifugal interchange cycle in Saturn's inner magnetosphere

    E-Print Network [OSTI]

    Winglee, Robert M.

    Regulation of the centrifugal interchange cycle in Saturn's inner magnetosphere A. Kidder,1 R. M, except that the heavy ions are being driven outward not by gravity but by centrifugal forces. Interplanetary magnetic field (IMF) parallel to the planetary magnetic field reduces centrifugal forcing, whereas

  18. Vortices in rotating systems: Centrifugal, elliptic and hyperbolic type instabilities

    E-Print Network [OSTI]

    Lauga, Eric

    Vortices in rotating systems: Centrifugal, elliptic and hyperbolic type instabilities D. Sipp, E and centrifugal instabilities. A complete picture of the short-wave stability properties of the flow is given that anticyclones undergo centrifugal instability if the Rossby number verifies Ro 1, elliptic instability for all

  19. Global Mode Analysis of Centrifugal and Curvature Driven

    E-Print Network [OSTI]

    Columbia University

    Global Mode Analysis of Centrifugal and Curvature Driven Interchange Instabilities Benjamin Joseph Reserved #12;ABSTRACT Global Mode Analysis of Centrifugal and Curvature Driven Interchange Modes Benjamin- sure and centrifugal forces created in a laboratory magnetic dipole is presented. The mode structures

  20. CENTRIPETAL ACCELERATION AND CENTRIFUGAL FORCE IN GENERAL RELATIVITY

    E-Print Network [OSTI]

    Jantzen, Robert T.

    1 CENTRIPETAL ACCELERATION AND CENTRIFUGAL FORCE IN GENERAL RELATIVITY D. BINI Istituto per acceleration which, once interpreted as a centrifugal force acting on the particle, allows writing the particle and centrifugal acceleration generalizing the classical concepts must be properly (geometrically) defined

  1. Development and application of centrifugal contactors in China

    SciTech Connect (OSTI)

    Cao, Pijia; Duan, Wuhua

    2008-07-01

    Compared with mixer-settlers and extraction columns, centrifugal contactors have some advantages. Since the late 1970's, a series of centrifugal contactors with rotor diameters of 10 to 550 mm have been developed and applied in some industrial fields in China. In this paper, both new improvements and applications of centrifugal contactors in China are reviewed. (authors)

  2. Active surge control of centrifugal compressors using drive torque

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Active surge control of centrifugal compressors using drive torque Jan Tommy Gravdahl , Olav control is presented. A centrifugal compressor driven by an electrical motor is studied, and the drive of centrifugal com- pressors, which occurs when the operating point of the compressor is located to the left

  3. TECHNICAL NOTE Centrifuge cone penetration tests in sand

    E-Print Network [OSTI]

    Bolton, Malcolm

    TECHNICAL NOTE Centrifuge cone penetration tests in sand M. D. BOLTON,Ã M. W. GUI,Ã J. GARNIER,{ J. F. CORTE,{ G. BAGGE,{ J. LAUE} and R. RENZIk KEYWORDS: centrifuge modelling; in-situ testing; laboratory tests; piles; sands. INTRODUCTION Centrifuges have been widely adopted in modelling geotechnical

  4. Centrifugal Filter Devices for the Concentration and Purification of

    E-Print Network [OSTI]

    Lebendiker, Mario

    Centrifugal Filter Devices for the Concentration and Purification of Biological Samples  Amicon Ultra Ready for an evolution? ® #12;The next stage in centrifugal filter devices. The introduction of Amicon Ultra sets a new standard for centrifugal filter devices. This high performance ultrafiltration

  5. COMPARISON OF FATIGUE BEHAVIOR FOR CENTRIFUGALLY CAST AND

    E-Print Network [OSTI]

    Beckermann, Christoph

    COMPARISON OF FATIGUE BEHAVIOR FOR CENTRIFUGALLY CAST AND KEEL BLOCK CAST STEEL J.J. Gradman1 , R The objective of this research was to determine if location through the wall thickness of centrifugal castings affects fatigue properties and to compare fatigue and monotonic tensile properties of centrifugal castings

  6. Testing of Expansive Clays in a Centrifuge Permeameter

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Testing of Expansive Clays in a Centrifuge Permeameter M. D. Plaisted & J. G. Zornberg with the objective of characterizing the swelling of highly plastic clays using a centrifuge permeameter. The new. This study, conducted using a comparatively simple, non- instrumented centrifuge device complements ongo- ing

  7. Centrifuge: Integrated Lease Management and Partitioning for Cloud Services

    E-Print Network [OSTI]

    Adya, Atul

    Centrifuge: Integrated Lease Management and Partitioning for Cloud Services Atul Adya , John datacenter lease managers. This paper presents Centrifuge, a datacenter lease manager that solves this problem by integrating parti- tioning and lease management. Centrifuge consists of a set of libraries

  8. Waste Feed Delivery Transfer System Analysis

    SciTech Connect (OSTI)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  9. T. Ly, Lamond Lab protocol Centrifugal Elutriation of NB4 Cells

    E-Print Network [OSTI]

    Lamond, Angus I.

    T. Ly, Lamond Lab protocol Centrifugal Elutriation of NB4 Cells This protocol uses centrifugal the centrifuge at 1000 rpm to remove bubbles trapped in the elutriation chamber. Stop centrifuge and flow rate centrifuge at 1800 rpm. 6. Set FS to 102. 7. If the back pressure increases above 5 psi, stop centrifuge

  10. Tank 241-U-103 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-10

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-U-103.

  11. Tank 241-TX-111 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-09

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-TX-111.

  12. Tank 241-U-108 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-10

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-U-108.

  13. Tank 241-AN-104 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-08-08

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of double-shell tank 241-AN-104.

  14. Tank 241-BY-103 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-10

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-BY-103.

  15. Tank 241-TX-105 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-09

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-TX-105.

  16. Tank 241-S-108 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-09

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-S-108.

  17. Tank 241-C-102 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-10

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-C-102.

  18. Tank 241-T-103 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-09

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-T-103.

  19. Tank 241-U-102 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-08-08

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management at single-shell tank 241-U-102.

  20. Tank 241-S-111 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-09

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-S-111.

  1. Tank 241-S-109 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-05-09

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-S-109.

  2. Tank 241-SX-104 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-10

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-SX-104.

  3. In-tank pretreatment of high-level tank wastes: The SIPS system

    SciTech Connect (OSTI)

    Reich, M.; Powell, J.; Barletta, R.

    1996-03-01

    A new approach, termed SIPS (Small In-Tank Processing System), that enables the in-tank processing and separation of high-level tank wastes into high-level waste (HLW) and low-level waste (LLW) streams that are suitable for vitrification, is described. Presently proposed pretreatment systems, such as enhanced sludge washing (ESW) and TRUEX, require that the high-level tank wastes be retrieved and pumped to a large, centralized processing facility, where the various waste components are separated into a relatively small, radioactively concentrated stream (HLW), and a relatively large, predominantly non-radioactive stream (LLW). In SIPS, a small process module, typically on the order of 1 meter in diameter and 4 meters in length, is inserted into a tank. During a period of approximately six months, it processes the solid/liquid materials in the tank, separating them into liquid HLW and liquid LLW output streams that are pumped away in two small diameter (typically 3 cm o.d.) pipes. The SIPS concept appears attractive for pretreating high level wastes, since it would: (1) process waste in-situ in the tanks, (2) be cheaper and more reliable than a larger centralized facility, (3) be quickly demonstrable at full scale, (4) have less technical risk, (5) avoid having to transfer unstable slurries for long distances, and (6) be simple to decommission and dispose of. Further investigation of the SIPS concept appears desirable, including experimental testing and development of subscale demonstration units.

  4. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    SciTech Connect (OSTI)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

  5. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  6. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect (OSTI)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

  7. Hanford tanks initiative plan

    SciTech Connect (OSTI)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  8. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    SciTech Connect (OSTI)

    Hubbard, M.

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned motor pumps designed to fit within available risers and have significant agitation capabilities to suspend waste solids. Waste removal and closure of two tanks has been accomplished with agitation provided by 3 SMPs installed within the tanks. In 2012, a team was assembled to investigate alternative solids removal technologies to support waste removal for closing tanks. The goal of the team was to find a more cost effective approach that could be used to replace the current mixing pump technology. This team was unable to identify an alternative technology outside of mixing pumps to support waste agitation and removal from SRS waste tanks. However, the team did identify a potentially lower cost mixing pump compared to the baseline SLPs and SMPs. Rather than using the traditional procurement using an engineering specification, the team proposed to seek commercially available submersible mixer pumps (CSMP) as alternatives to SLPs and SMPs. SLPs and SMPs have a high procurement cost and the actual cost of moving pumps between tanks has shown to be significantly higher than the original estimates that justified the reuse of SMPs and SLPs. The team recommended procurement of “off-the-shelf” industry pumps which may be available for significant savings, but at an increased risk of failure and reduced operating life in the waste tank. The goal of the CSMP program is to obtain mixing pumps that could mix from bulk waste removal through tank closure and then be abandoned in place as part of tank closure. This paper will present the development, progress and relative advantages of the CSMP.

  9. Centrifugal deterministic lateral displacement separation system

    E-Print Network [OSTI]

    Mingliang Jiang; Aaron D. Mazzeo; German Drazer

    2015-07-22

    This work investigates the migration of spherical particles of different sizes in a centrifuge-driven deterministic lateral displacement (c-DLD) device. Specifically, we use a scaled-up model to study the motion of suspended particles through a square array of cylindrical posts under the action of centrifugation. Experiments show that separation of particles by size is possible depending on the orientation of the driving acceleration with respect to the array of posts (forcing angle). We focus on the fractionation of binary suspensions and measure the separation resolution at the outlet of the device for different forcing angles. We found excellent resolution at intermediate forcing angles, when large particles are locked to move at small migration angles but smaller particles follow the forcing angle more closely. Finally, we show that reducing the initial concentration (number) of particles, approaching the dilute limit of single particles, leads to increased resolution in the separation.

  10. Centrifugal deterministic lateral displacement separation system

    E-Print Network [OSTI]

    Jiang, Mingliang; Drazer, German

    2015-01-01

    This work investigates the migration of spherical particles of different sizes in a centrifuge-driven deterministic lateral displacement (c-DLD) device. Specifically, we use a scaled-up model to study the motion of suspended particles through a square array of cylindrical posts under the action of centrifugation. Experiments show that separation of particles by size is possible depending on the orientation of the driving acceleration with respect to the array of posts (forcing angle). We focus on the fractionation of binary suspensions and measure the separation resolution at the outlet of the device for different forcing angles. We found excellent resolution at intermediate forcing angles, when large particles are locked to move at small migration angles but smaller particles follow the forcing angle more closely. Finally, we show that reducing the initial concentration (number) of particles, approaching the dilute limit of single particles, leads to increased resolution in the separation.

  11. Free of centrifugal acceleration spacetime - Geodesics

    E-Print Network [OSTI]

    Hristu Culetu

    2013-04-27

    A static spacetime with no centrifugal repulsion, previously studied by Dadhich, is investigate in this paper. The source of curvature is considered to be an anisotropic fluid with $\\rho = -p_{r}$ and constant angular pressures. The positive parameter from the line-element is interpreted as the invariant acceleration of a static observer. We found that the Tolman-Komar gravitational energy is finite everywhere. The timelike and null geodesics of the spacetime are examined.

  12. Compressed/Liquid Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

  13. Double Shell Tank (DST) Utilities Specification

    SciTech Connect (OSTI)

    SUSIENE, W.T.

    2000-04-27

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  14. Tank characterization reference guide

    SciTech Connect (OSTI)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  15. Tank characterization report for double-shell tank 241-AW-105

    SciTech Connect (OSTI)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses one of the requirements specified in the safety screening DQO. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-AW-105 and its respective waste types is contained in Appendix E. A majority of the documents listed in Appendix E may be found in the Tank Characterization and Safety Resource Center.

  16. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    SciTech Connect (OSTI)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  17. A curious spacetime entirely free of centrifugal acceleration

    E-Print Network [OSTI]

    Naresh Dadhich

    2012-09-07

    In the Einstein gravity, besides the usual gravitational and centrifugal potential there is an additional attractive term that couples these two together. It is fun to enquire whether the latter could fully counteract the centrifugal repulsion everywhere making the spacetime completely free of the centrifugal acceleration. We present here such a curious spacetime metric and it produces a global monopole like stresses going as $~1/r^2$ in an AdS spacetime.

  18. Ferrocyanide safety program: Thermal analysis of ferrocyanide tanks, Group I

    SciTech Connect (OSTI)

    McLaren, J.M.

    1994-06-01

    The purpose of this report is to document the results of a series of analyses conducted to the heat loads of the first of two groups of tanks on the Ferrocyanide Watch List. The analyses use the fill/transfer history with a transient solution for the heat load determination. Nominal values of the heat load are determined, as well as the upper lower bounds of the heat load. Ranges of thermal conductivity of the tank waste are determined.

  19. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Broader source: Energy.gov (indexed) [DOE]

    This tip sheet discusses control strategies for centrifugal pumps with variable flow rate requirements in pumping systems and includes installation considerations. PUMPING SYSTEMS...

  20. Centrifugal Modeling of Subsidence of Landfill Covers [abstract

    E-Print Network [OSTI]

    Sterling, Harry; Ronayne, Michael

    1984-01-01

    j "Centrifugal Moueling of Subsidence of Landfill Covers" bysites may result in subsidence of the soil cover system.Following subsidence, water flow through the cover may rise

  1. Exercise protocols during short-radius centrifugation for artificial gravity

    E-Print Network [OSTI]

    Edmonds, Jessica Leigh

    2008-01-01

    Long-duration spaceflight results in severe physiological deconditioning, threatening the success of interplanetary travel. Exercise combined with artificial gravity provided by centrifugation may be the comprehensive ...

  2. DOE Announces Cooperative Agreement with USEC for American Centrifuge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. to provide support for the continued development and demonstration of the American Centrifuge technology. The Department sees promise in this advanced technology, and last...

  3. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01

    Soubbaramayer, (1979) in "Uranium Enrichment", S. Villani,and Davies, E. (1973) "Uranium Enrichment by Gas Centrifuge"Nuclear Energy THE THEORY OF URANIUM ENRICHMENT BY THE GAS

  4. Incremental adaptation to yaw head movements during 30 RPM centrifugation

    E-Print Network [OSTI]

    Elias, Paul Z. (Paul Ziad)

    2006-01-01

    Artificial Gravity (AG) provided by short-radius centrifugation is a promising countermeasure against the harmful physiological effects of prolonged weightlessness. However, the vestibular stimulus associated with making ...

  5. Advanced Remote Maintenance Design for Pilot-Scale Centrifugal...

    Office of Scientific and Technical Information (OSTI)

    Design for Pilot-Scale Centrifugal Contactors Advanced designs of used nuclear fuel recycling processes and radioactive waste treatment processes are expected to include...

  6. An investigation of the bearing capacity of footings under eccentric and inclined loading on sand in a geotechnical centrifuge

    E-Print Network [OSTI]

    James, R.G.; Tanaka, H.

    1984-01-01

    The application of centrifuge modelling to geotechnicalADVANCES IN GEOTECHNICAL CENTRIFUGE MODELING A symposium onAdvances in Geotechnical Centrifuge Modeling was held on

  7. Centrifuge experiments to evaluate the seismic performance of levees on peaty soils in the Sacramento-San Joaquin delta

    E-Print Network [OSTI]

    Cappa, R; Yniesta, S; Lemnitzer, A; Brandenberg, SJ; Stewart, JP

    2014-01-01

    support of the UC Davis Centrifuge facility team along withCENTRIFUGE EXPERIMENTS TO EVALUATE THE SEISMIC PERFORMANCElarge scale 9m radius centrifuge tests modeling the levee-

  8. Tank waste characterization basis

    SciTech Connect (OSTI)

    Brown, T.M.

    1996-08-09

    This document describes the issues requiring characterization information, the process of determining high priority tanks to obtain information, and the outcome of the prioritization process. In addition, this document provides the reasoning for establishing and revising priorities and plans.

  9. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    SciTech Connect (OSTI)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  10. A centrifugal microfluidic platform for point-of-care diagnostic applications

    E-Print Network [OSTI]

    Hugo, Suzanne; Land, Kevin; Madou, Marc; Kido, Horacio

    2014-01-01

    M, Madou M. Large-volume centrifugal microfluidic device forKellog J. Microfabricated centrifugal microfluidic systems:B, Park J-M, et al. Centrifugal microfluidics for biomedical

  11. Centrifuge Permeameter for Unsaturated Soils. II: Measurement of the Hydraulic Characteristics

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Centrifuge Permeameter for Unsaturated Soils. II: Measurement of the Hydraulic Characteristics and hydraulic conductivity function K function , determined using a new centrifuge permeameter developed hydraulic characteristics of the compacted clay. The SWRCs and K functions defined using the centrifuge

  12. Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics

    E-Print Network [OSTI]

    Banerjee, Debjyoti

    Numerical modeling and experimental validation of uniform microchamber filling in centrifugal analysis of microchamber filling in centrifugal microfluidics is presented. In the development of micro microchambers, such as those needed for nucleic acid amplification or detection. With centrifugal devices

  13. Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation

    E-Print Network [OSTI]

    Bürger, Raimund

    Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation­liquid separation of flocculated suspensions including sedimentation- thickening, centrifugation and filtration. After identifying the variables and equations for each of the operations, thickening, centrifugation

  14. Proceedings of the Symposium on Recent Advances in Geotechnical Centrifuge Modeling

    E-Print Network [OSTI]

    Center for Geotechnical Modeling, Department of Civil Engineering, University of California Davis

    1984-01-01

    S. Bang and J.F. Mitchell, "Centrifuge Modeling of a LateralJ.A. Cheney, "Drum Centrifuge Studies of Overconsolidatedand R.H. Bassett, "Centrifuge Testing in Geotechnical

  15. Centrifugal devices can replace traditional separation techniques such as column chromatography, preparative

    E-Print Network [OSTI]

    Lebendiker, Mario

    Centrifugal devices can replace traditional separation techniques such as column chromatography, preparative electrophoresis, alcohol or salt precipitation, dialysis, and gradient centrifugation when. Centrifugal Devices for Ultrafiltration & Microfiltration Nanosep®, MicrosepTM, Macrosep®, and Jumbosep

  16. FACTORS IN THE DESIGN OF A ROCK MECHANICS CENTRIFUGE FOR STRONG ROCK

    E-Print Network [OSTI]

    Clark, George B

    1984-01-01

    1 . Capacit i es of known centrifuges and v proposed SoftSolla I rock mechanics centrifuge r, ---------1~ --- dxB. , (1980), Geotechnical centrifuges for model studies and

  17. Separative power of an optimised concurrent gas centrifuge

    E-Print Network [OSTI]

    Bogovalov, S V

    2015-01-01

    The problem of separation of uranium isotopes in a concurrent gas centrifuge is solved analytically. Separative power of the optimized concurrent gas centrifuges equals to $\\delta U=12.7(V/700~{\\rm m/s})^2 (300 ~{\\rm K}/T)L, ~{\\rm kg ~SWU/yr}$, where $L$ and $V$ are the length and linear velocity of the rotor of the gas centrifuge, $T$ is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges. The optimal value of the separative power is not unique on the plane $(p_w,v_z)$, where $p_w$ is pressure at the wall of the rotor and $v_z$ is axial velocity of the gas. This value is constant on a line defined by the equation $p_wv_z=constant$. Equations defining the mass flux and the electric power necessary to support the rotation of the gas centrifuge are obtained.

  18. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    SciTech Connect (OSTI)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

  19. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Mechanical...

  20. Proceedings of the Symposium on Recent Advances in Geotechnical Centrifuge Modeling

    E-Print Network [OSTI]

    Center for Geotechnical Modeling, Department of Civil Engineering, University of California Davis

    1984-01-01

    mechanics centrifuges and this science has not advanced asAdvanced designs will be required for large high-g centrifuges

  1. On a free of centrifugal acceleration spacetime

    E-Print Network [OSTI]

    Hristu Culetu

    2015-12-17

    A static spacetime with no centrifugal repulsion, previously studied by Dadhich, is investigate in this paper. The source of curvature is considered to be an anisotropic fluid with $\\rho = -p_{r}$ and constant angular pressures. The positive parameter from the line-element is interpreted as the invariant acceleration of a static observer. The timelike and null geodesics of the spacetime are examined. A regularized form of the metric is proposed, rendering it finite at the origin. The energy density of the fluid becomes finite and negative for any $r$ and all the pressures are positive throughout the spacetime. The Tolman-Komar energy $W(r)$ is computed and proves to be smaller than that one calculated with the Dadhich metric.

  2. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

  3. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  4. Hanford Waste Transfer Planning and Control - 13465

    SciTech Connect (OSTI)

    Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)] [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2013-07-01

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  5. Ferrocyanide tank waste stability

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

  6. Engineering study of tank fill options for landfill closure

    SciTech Connect (OSTI)

    Skelly, W.A.

    1996-09-27

    To prepare single-shell tanks for closure, it will be necessary to piece some type of load- bearing fill material inside the tanks to support the domes. Provision of internal support permits the simplifying assumption that the combined weight of the dome, the existing operational soil cover, and the surface barrier will eventually transfer to and be carried by the fill. This engineering study provides descriptions and evaluations of four alternative concepts for fitting and stabilizing nominally empty SSTs with fill materials. For this study it is assumed that 99 percent (or more) of tank wastes will be retrieved before closure is undertaken. The alternatives are: Gravel: tanks would be fitted with crushed aggregate using a rotating stinger apparatus installed in the central riser; Grout: tanks would be fitted with a pumpable, ex-situ mixed grout formulation; Hybrid: tanks would be fitted first with coarse aggregate, then with grout, producing a pre-placed aggregate concrete material; or Concrete: tank. would be filled with a highly-flowable, ex-situ mixed concrete formulation.

  7. High Pressure Hydrogen Tank Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards - DOT FMVSS 304 (Mandatory requirement for on-board fuel tanks) - NGV - 2007 (Established industry standard for on-board fuel tanks, over 40,000 Type IV...

  8. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    SciTech Connect (OSTI)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S. [Mechanical Engineering Department, School of Engineering, Minho University (Portugal); Stefanescu, I. [Faculty of Mechanical Engineering, Dunarea de Jos University Galati (Romania)

    2008-02-15

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  9. The American Gas Centrifuge Past, Present, and Future

    SciTech Connect (OSTI)

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beam’s experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970’s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990’s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  10. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect (OSTI)

    Becker, D.L.

    1998-09-02

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  11. TANK SPACE OPTIONS REPORT

    SciTech Connect (OSTI)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  12. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  13. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  14. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    SciTech Connect (OSTI)

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated filter loadings and would lead to an unfiltered pathway from the radioactively contaminated and toxic aerosols in the head space (vapor space) of the tank into the outside environment. The initiator for the unfiltered (continuous) release scenario is wetting of the HEPA filters with an accompanying filter breach or failure of the seals surrounding the filter in the enclosure. No releases from the filters themselves are assumed in this scenario. In the absence of controls, the exhaust system would continue to expel the contaminated head space air into the outside environment in all three of these scenarios.

  15. Tank characterization report for single-shell tank 241-C-110. Revision 1

    SciTech Connect (OSTI)

    Benar, C.J.

    1997-06-14

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E. The reports listed in Appendix E may be found in the Lockheed Martin Hanford Corporation Tank Characterization and Safety Resource Center.

  16. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  17. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    SciTech Connect (OSTI)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  18. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    SciTech Connect (OSTI)

    Crawford, C.

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  19. EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

  20. Results For The Second Quarter 2013 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    SciTech Connect (OSTI)

    Bannochie, Christopher J.

    2013-07-31

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Saltstone Facility Engineering (SFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  1. Results for the second quarter 2014 tank 50 WAC slurry sample chemical and radionuclide contaminants

    SciTech Connect (OSTI)

    Bannochie, C.

    2014-09-04

    This report details the chemical and radionuclide contaminant results for the characterization of the 2014 Second Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  2. Results For The Third Quarter 2013 Tank 50 WAC Slurry Sample

    SciTech Connect (OSTI)

    Bannochie, Christopher J.

    2013-11-26

    This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  3. Results for the Third Quarter 2012 Tank 50 WAC Slurry Sample: Chemical and Radionuclide Contaminants

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2012-10-26

    This report details the chemical and radionuclide contaminant results for the characterization of the 2012 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  4. THE SEPARATION OF CRAB MEAT FROM SHELL & TENDON BY A CENTRIFUGAL PROCESS

    E-Print Network [OSTI]

    THE SEPARATION OF CRAB MEAT FROM SHELL & TENDON BY A CENTRIFUGAL PROCESS Wayne I. Tretsven of centrifugal force tothe problem. Trials with an industrial, solid -bowl centrifuge indicated that a machine of this type had great potential for the separation of meat from shell. The centrifuge, a Bird Machine Co

  5. The magnetic centrifugal mass filter Abraham J. Fetterman and Nathaniel J. Fisch

    E-Print Network [OSTI]

    The magnetic centrifugal mass filter Abraham J. Fetterman and Nathaniel J. Fisch Department centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology

  6. Highly'efficient'and'effective'removal'of'fat'from'fried'chicken' via'centrifugation'

    E-Print Network [OSTI]

    Amir, Yair

    #12;Highly'efficient'and'effective'removal'of'fat'from'fried'chicken' via'centrifugation' Lucas!centrifugation!of!the!already!cooked!fried!chicken!as!an!alternative!method!for!fat! reduction.!We!show!that!centrifugation!already!fried!chicken,!thus!providing!the!first!method!that!can!be!used!directly! by!consumers!with!access!to!a!centrifuge

  7. Algal Harvesting for Biodiesel Production: Comparing Centrifugation and Electrocoagulation 

    E-Print Network [OSTI]

    Kovalcik, Derek John

    2013-08-09

    Electrocoagulation was compared to centrifugation at pilot scale for harvesting Nannochloris oculata and Nannochloropsis salina for biodiesel production. The pilot scale testing is a proof of concept and no optimization ...

  8. Characterization of unsteady flow processes in a centrifugal compressor stage

    E-Print Network [OSTI]

    Gould, Kenneth A. (Kenneth Arthur)

    2006-01-01

    Numerical experiments have been implemented to characterize the unsteady loading on the rotating impeller blades in a modem centrifugal compressor. These consist of unsteady Reynolds-averaged Navier Stokes simulations of ...

  9. Forced response predictions in modern centrifugal compressor design

    E-Print Network [OSTI]

    Smythe, Caitlin J. (Caitlin Jeanne)

    2005-01-01

    A computational interrogation of the time-averaged and time-unsteady flow fields of two centrifugal compressors of nearly identical design (the enhanced, which encountered aeromechanical difficulty, and production, which ...

  10. Return channel loss reduction in multi-stage centrifugal compressors

    E-Print Network [OSTI]

    Aubry, Anne-Raphaëlle

    2012-01-01

    This thesis presents concepts for improving the performance of return channels in multi-stage centrifugal compressors. Geometries have been developed to reduce both separation and viscous losses. A number of different ...

  11. Multi-parameter control for centrifugal compressor performance optimization

    E-Print Network [OSTI]

    Mannai, Sébastien (Sébastien Karim)

    2014-01-01

    The potential performance benefit of actuating inlet guide vane (IGV) angle, variable diffuser vane (VDV) angle and impeller speed to implement a multi-parameter control on a centrifugal compressor system is assessed. The ...

  12. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  13. Calibration of accelerometers on the 5000 g centrifuge

    SciTech Connect (OSTI)

    Rebarchik, F.N.

    1992-05-01

    This memorandum is a synopsis of the description and operation of the equipment used and the events occurring during the calibration of an accelerometer on the 5000 g centrifuge.

  14. Calibration of accelerometers on the 1000 g centrifuge

    SciTech Connect (OSTI)

    Rebarchik, F.N.

    1991-04-01

    This memorandum is a synopsis of the description and operation of the equipment used, and the events occurring during the calibration of an accelerometer on the 1000 G centrifuge. 2 refs., 1 tab.

  15. Centrifuge modeling of LNAPL transport in partially saturated sand

    SciTech Connect (OSTI)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-12-01

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an unsaturated sand prepared at two values of porosity. The duration of the centrifuge model tests corresponded to a prototype equivalent of 110 days. The choice of modeling a 2D flow together with the use of a transparent container enabled direct visual observation of the experiments. Scaling laws developed in connection with other centrifuge modeling studies were used to support the test results. Tests were conducted at two different centrifuge accelerations to verify, by means of the modeling of models technique, the similitude between the different experiments. The paper presents details of the experimental methodologies and the measuring techniques used to evaluate the final distribution of water and LNAPL content in the soils.

  16. Confusion around the tidal force and the centrifugal force

    E-Print Network [OSTI]

    Matsuda, Takuya; Boffin, Henri M J

    2015-01-01

    We discuss the tidal force, whose notion is sometimes misunderstood in the public domain literature. We discuss the tidal force exerted by a secondary point mass on an extended primary body such as the Earth. The tidal force arises because the gravitational force exerted on the extended body by the secondary mass is not uniform across the primary. In the derivation of the tidal force, the non-uniformity of the gravity is essential, and inertial forces such as the centrifugal force are not needed. Nevertheless, it is often asserted that the tidal force can be explained by the centrifugal force. If we literally take into account the centrifugal force, it would mislead us. We therefore also discuss the proper treatment of the centrifugal force.

  17. Squat exercise biomechanics during short-radius centrifugation

    E-Print Network [OSTI]

    Duda, Kevin R., 1979-

    2007-01-01

    Artificial gravity (AG) created by short-radius centrifugation is a promising countermeasure to the physiological de-conditioning that results from long-duration spaceflight. However, as on Earth, gravity alone does not ...

  18. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect (OSTI)

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  19. Ferrocyanide safety program: Updated thermal analysis model for ferrocyanide tanks with application to Tank 241-BY-104

    SciTech Connect (OSTI)

    McLaren, J.M.

    1993-12-01

    During the middle to late 1950`s, a program was begun to concentrate the radioactive waste products of the uranium and plutonium recovery processes. This program used sodium nickel ferrocyanide to precipitate radioactive cesium from the waste streams. The precipitate was then stored in large, underground single-shell tanks at the Hanford Site in south central Washington. Several of the tanks have been stabilized, a process that included removing as much pumpable liquid as possible from the tanks. This liquid contained heat-producing radionuclides. Because of the many transfers involved, the lack of accurate inventory data for the various waste streams, and the absence of a need for an accurate value of the heat load, the heat loads of the ferrocyanide waste storage tanks have only been estimated. As a result of the intense radiation field within these tanks, the chemical content of the waste has changed. This, coupled with the fact that the characteristics of the input waste were not well known, has resulted in uncertainty in the thermal characteristics of the stored sludge. All of these parameters are needed to evaluate the safety of these tanks. The purposes of this report are to document the updated thermal analysis model for ferrocyanide tanks and to use the model to determine the heat load of Tank 241-BY-104. This new model utilizes several new parameters and a new technique, which are described in this report. The new model is considered more accurate than the previous model, and all future thermal analyses of ferrocyanide tanks will use this updated model.

  20. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  1. Structural Dimensions, Fabrication, Materials, and Operational History for Types I and II Waste Tanks

    SciTech Connect (OSTI)

    Wiersma, B.J.

    2000-08-16

    Radioactive waste is confined in 48 underground storage tanks at the Savannah River Site. The waste will eventually be processed and transferred to other site facilities for stabilization. Based on waste removal and processing schedules, many of the tanks, including those with flaws and/or defects, will be required to be in service for another 15 to 20 years. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement function by providing a leak-tight barrier to the environment and by maintaining acceptable structural stability during design basis event which include loading from both normal service and abnormal conditions.

  2. URANIUM AND PLUTONIUM LOADING ONTO MONOSODIUM TITANATE MST IN TANK 50H

    SciTech Connect (OSTI)

    Hobbs, D

    2006-08-31

    A possible disposition pathway for the residue from the abandoned In-Tank Precipitation (ITP) sends the material from Tank 48H in increments to Saltstone via aggregation in Tank 50H. After entering Tank 50H, the amount of fissile material sorbed on MST may increase as a result of contacting waste solutions with dissolved uranium and plutonium. SRNL recommends that nuclear criticality safety evaluations use uranium and plutonium loadings onto MST of 14.0 {+-} 1.04 weight percent (wt %) for uranium and 2.79 {+-} 0.197 wt % for plutonium given the assumed streams defined in this report. These values derive from recently measured for conditions relevant to the Actinide Removal Process (ARP) and serve as conservative upper bounds for uranium and plutonium loadings during the proposed transfers of MST from Tank 48H into Tank 50H.

  3. Tank characterization data report: Tank 241-C-112

    SciTech Connect (OSTI)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-04-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

  4. WRPS MEETING THE CHALLENGE OF TANK WASTE

    SciTech Connect (OSTI)

    BRITTON JC

    2012-02-21

    Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

  5. Test Loop Demonstration and Evaluation of Slurry Transfer Line Critical Velocity Measurement Instruments

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Jenks, Jeromy WJ; Morgen, Gerald P.; Peters, Timothy J.; Wilcox, Wayne A.; Adkins, Harold E.; Burns, Carolyn A.; Greenwood, Margaret S.; MacFarlan, Paul J.; Denslow, Kayte M.; Schonewill, Philip P.; Blanchard, Jeremy; Baer, Ellen BK

    2010-07-31

    This report presents the results of the evaluation of three ultrasonic sensors for detecting critical velocity during slurry transfer between the Hanford tank farms and the WTP.

  6. In-Tank Elutriation Test Report And Independent Assessment

    SciTech Connect (OSTI)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.; Steeper, T. J.

    2011-04-13

    The Department of Energy (DOE) Office of Environmental Management (EM) funded Technology Development and Deployment (TDD) to solve technical problems associated with waste tank closure for sites such as Hanford Site and Savannah River Site (SRS). One of the tasks supported by this funding at Savannah River National Laboratory (SRNL) and Pacific Northwest Laboratory (PNNL) was In-Tank Elutriation. Elutriation is the process whereby physical separation occurs based on particle size and density. This report satisfies the first phase of Task WP_1.3.1.1 In-Tank Elutriation, which is to assess the feasibility of this method of separation in waste tanks at Hanford Site and SRS. This report includes an analysis of scoping tests performed in the Engineering Development Laboratory of SRNL, analysis of Hanford's inadvertent elutriation, the viability of separation methods such as elutriation and hydrocyclones and recommendations for a path forward. This report will demonstrate that the retrieval of Hanford salt waste tank S-112 very successfully decreased the tank's inventories of radionuclides. Analyses of samples collected from the tank showed that concentrations of the major radionuclides Cs-136 and Sr-90 were decreased by factors of 250 and 6 and their total curie tank inventories decreased by factors of 60,000 and 2000. The total tank curie loading decreased from 300,000 Ci to 55 Ci. The remaining heel was nearly all innocuous gibbsite, Al(OH){sub 3}. However, in the process of tank retrieval approximately 85% of the tank gibbsite was also removed. Significant amounts of money and processing time could be saved if more gibbsite could be left in tanks while still removing nearly all of the radionuclides. There were factors which helped to make the elutriation of Tank S-112 successful which would not necessarily be present in all salt tanks. 1. The gibbsite particles in the tank were surprisingly large, as much as 200 {micro}m. The gibbsite crystals had probably grown in size over a period of decades. 2. The radionuclides were apparently either in the form of soluble compounds, like cesium, or micrometer sized particles of actinide oxides or hydroxides. 3. After the initial tank retrieval the tank contained cobble which is not conducive to elutriation. Only after the tank contents were treated with thousands of gallons of 50 wt% caustic, were the solids converted to sand which is compatible with elutriation. Discussions between SRNL and PNNL resulted in plans to test elutriation in two phases; in Phase 1 particles would be separated by differences in settling velocity in an existing scaled tank with its associated hardware and in Phase 2 additional hardware, such as a hydrocyclone, would be added downstream to separate slow settling partciels from liquid. Phase 1 of in-tank elutriation was tested for Proof of Principle in theEngineering Development Laboratory of SRNL in a 41" diameter, 87 gallon tank. The tank had been previously used as a 1/22 scale model of Hanford Waste Tank AY-102. The objective of the testing was to determine which tank operating parameters achieved the best separation between fast- and slow-settling particles. For Phase 1 testing a simulated waste tank supernatant, slow-settling particles and fast-settling particles were loaded to the scaled tank. Because this was a Proof of Principle test, readily available solids particles were used that represented fast-settling and slow-settling particles. The tank contents were agitated using rotating mixer jet pumps (MJP) which suspended solids while liquids and solids were drawn out of the tank with a suction tube. The goal was to determine the optimum hydraulic operating conditions to achieve clean separation in which the residual solids in the tank were nearly all fast-settling particles and the solids transferred out of the tank were nearly all slow-settling particles. Tests were conducted at different pump jet velocities, suction tube diameters and suction tube elevations. Testing revealed that the most important variable was jet velocity which translates to a d

  7. Asymmetric Supernovae from Magneto-Centrifugal Jets

    E-Print Network [OSTI]

    J. Craig Wheeler; David L. Meier; James R. Wilson

    2001-12-02

    Strong toroidal magnetic fields generated in stellar collapse can generate magneto-centrifugal jets in analogy to those found in simulations of black hole accretion and explain why all core collapse supernovae are found to be substantially asymmetric and predominantly bi-polar. We describe two phases: the initial LeBlanc-Wilson jet and a subsequent protopulsar or toroidal jet that propagates at about the core escape velocity. The jets will produce bow shocks that tend to expel matter, including iron and silicon, into equatorial tori, accounting for observations of the element distribution in Cas A. A magnetic ``switch'' mechanism may apply in instances of low density and large magnetic field with subsequent increase in the speed and collimation of the toroidal jet, depositing relatively little momentum. The result could be enough infall to form a black hole with a third, highly relativistic jet that could catch up to the protopulsar jet after it has emerged from the star. The interaction of these two jets could generate internal shocks and explain the presence of iron lines in the afterglow. Recent estimates that typical gamma-ray burst energy is about 3x10^50 erg imply either a very low efficiency for conversion of rotation into jets, or a rather rapid turnoff of the jet process even though the black hole still rotates rapidly. Magnetars and ``hypernovae'' might arise in an intermediate parameter regime of energetic jets that yield larger magnetic fields and provide more energy than the routine case, but that are not so tightly collimated that they yield failed supernova. (slightly abridged)

  8. Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent...

    Office of Environmental Management (EM)

    not pursue Fenton's or other alternatives further Concentrate bulk tank contents by 3x, upstream of processing August 2006 9 SRS Tank 48 ITR SRS Tank 48 ITR Heel Removal and Tank...

  9. Relocation and repair of the National Geotechnical Centrifuge. Final report

    SciTech Connect (OSTI)

    Cheney, J.A.

    1994-10-01

    In January of 1984, the large geotechnical centrifuge located at NASA Ames Research Center, was in the first stages of operational checkout when the main thrust bearing of the large D.C. drive motor failed. After many months of investigation and proposals for repair of the facility, it became evident that it would be far more advantageous to the engineering community to remove those components of the centrifuge that were undamaged to the Davis campus and replace the drive system completely. The large centrifuge had cost over 2 million dollars to build, and it would have been irresponsible to simply scrap it. Recognizing this fact, funds were solicited and received from various sources, and Beam Engineering Inc. was contracted to design and construct the centrifuge at its new location. The University of California contributed a quarter of a million dollars and Tyndall Air Force Base, through Los Alamos National Laboratory, contributed $140,000. There were funds also contributed by LANL, LLNL, US Navy and NSF. The first stage in the phased development of the newly located centrifuge is nearing completion, which prompts the writing of this report. By the time that this report reaches the reader the first runs of the centrifuge will have been completed. The present report describes the present capability of the centrifuge and the plans for upgrading as time goes on. Several pilot studies were carried out. The experiments involved (1) the effects of nearby explosions on buried thin walled containers and (2) the advection and dispersion of toxic waste water through soils.

  10. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

  11. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    SciTech Connect (OSTI)

    Adkins, B.J.

    2002-12-03

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  12. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

  13. Tank characterization data report: Tank 241-C-112

    SciTech Connect (OSTI)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  14. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    SciTech Connect (OSTI)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  15. Fabrication of a Sludge-Conditioning System for Processing Legacy Wastes from the Gunite and Associated Tanks

    SciTech Connect (OSTI)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-08-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS.

  16. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  17. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  18. Rules governing the classification of coal slurries for filtering centrifuges

    SciTech Connect (OSTI)

    G.Y. Gol'berg; Y.B. Rubinshtein; S.A. Osadchii

    2008-07-01

    The feasibility of using filtering centrifuges for the cleaning of a coking-coal slurry is confirmed in principle, and regime operating parameters which ensure the production of a concentrate of conditioned quality are determined on the basis of results of experimental-industrial tests of a new procedure for this operation at the Neryungrinskaya Concentrating Mill. An equation is proposed for determination of solid carry-off in the centrifuge effluent, which completely satisfactorily (with a correlation coefficient of 0.7-0.8) describes the dependence of the parameter in question on the solid content in the centrifuge feed, and on its content of -0.2-mm material. It is noted that special investigations to determine the effect of the speed of the rotor and shape of the particles on the amount of solid carry-off in the centrifuge effluent are required for construction of a model describing the size reduction of solid-phase particles in the effluent during centrifuge filtration.

  19. Centrifugal force reversal from the perspective of rigidly rotating observer

    E-Print Network [OSTI]

    Giorgi Dalakishvili

    2011-12-26

    In previous studies the dynamics of the relativistic particle moving along the rotating pipe was investigated. The simple gedanken experiment was considered. It was shown that at large enough velocities a centrifugal force acting on the bead changes its usual sign and attracts towards the rotation axis. The authors studied motion of the particle along the rotating straight pipe in the frame of the observer located in the center of rotation, also dynamics of centrifugally accelerated relativistic particle was studied in the laboratory frame. In the both cases it was shown that centrifugal force changes sign. Recently the problem was studied in the frame of stationary observers. It was argued that centrifugal acceleration reversal is not frame invariant effect. In the present paper we consider motion of particle along the rotating straight line in the frame of an arbitrary stationary observer located at certain distance form the center of rotation and rigidly rotating with constant angular velocity. It is shown that any stationary observer could detect reversal of centrifugal acceleration.

  20. A fuzzy controlled three-phase centrifuge for waste separation

    SciTech Connect (OSTI)

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

  1. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    SciTech Connect (OSTI)

    Olander, Donald R.

    1981-03-01

    Onsager's analysis of the hydrodynamics of fluid circulation in the boundary layer on the rotor wall of a gas centrifuge is reviewed. The description of the flow in the boundary layers on the top and bottom end caps due to Carrier and Maslen is summarized. The method developed by Wood and Morton of coupling the flow models in the rotor wall and end cap boundary layers to complete the hydrodynamic analysis of the centrifuge is presented. Mechanical and thermal methods of driving the internal gas circulation are described. The isotope enrichment which results from the superposition of the elementary separation effect due to the centrifugal field in the gas and its internal circulation is analyzed by the Onsager-Cohen theory. The performance function representing the optimized separative power of a centrifuge as a function of throughput and cut is calculated for several simplified internal flow models. The use of asymmetric ideal cascades to exploit the distinctive features of centrifuge performance functions is illustrated.

  2. The Effect of Contact Angles and Capillary Dimensions on the Burst Frequency of Super Hydrophilic and Hydrophilic Centrifugal Microfluidic Platforms, a CFD Study

    E-Print Network [OSTI]

    Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J; Han, Arum

    2013-01-01

    from Whole Blood on a Centrifugal Microfluidic Device. 10–14capillary microvalves in centrifugal microfluidic platformsburst valves in centrifugal microfluidics. Amsterdam. Kluwer

  3. Cesium uptake capacity of simulated ferrocyanide tank waste. Interim report FY 1994, Ferrocyanide Safety Project

    SciTech Connect (OSTI)

    Burgeson, I.E.; Bryan, S.A.; Burger, L.E.

    1994-09-01

    The objective of this project is to determine the capacity for {sup 137}CS uptake by mixed metal ferrocyanides present in Hanford waste tanks, and to assess the potential for aggregation of these {sup 137}CS exchanged materials to form tank ``hot-spots.`` This research, performed at the Pacific Northwest Laboratory (PNL) for the Westinghouse Hanford Company (WHC), stems from concerns of possible localized radiolytic heating within the tanks. If radioactive cesium is exchanged and concentrated by the remaining nickel ferrocyanide present in the tanks, this heating could cause temperatures to rise above the safety limits specified for the ferrocyanide tanks. For the purposes of this study, two simulants, In-Farm-2 and U-Plant-2, were chosen to represent the wastes generated by the scavenging processes. These simulants were formulated using protocols from the original cesium scavenging campaign. Later additions of cesium-rich wastes from various processes also were considered. The simulants were prepared and centrifuged to obtain a moist ferrocyanide sludge. The centrifuged sludges were treated with the original supernate spiked with a known amount of cesium nitrate. After analysis by flame atomic absorption spectrometry, distribution coefficients (K{sub d}) were calculated. The capacity of solid waste simulants to exchange radioactive cesium from solution was examined. Initial results showed that the greater the molar ratio of cesium to cesium nickel ferrocyanide, the less effective the exchange of cesium from solution. The theoretical capacity of 2 mol cesium per mol of nickel ferrocyanide was not observed. The maximum capacity under experimental conditions was 0.35 mol cesium per mol nickel ferrocyanide. Future work on this project will examine the layering tendency of the cesium nickel ferrocyanide species.

  4. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and...

  5. Tank Integrity Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents > Tank Integrity Reports Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

  6. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect (OSTI)

    Jolly, R.C.Jr. [Washington Savannah River Company (United States); Martin, B. [Washington Savannah River Company, A Washington Group International Company (United States)

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra-area transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations. (authors)

  7. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    SciTech Connect (OSTI)

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.

  8. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    SciTech Connect (OSTI)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  9. Centrifugally activated bearing for high-speed rotating machinery

    SciTech Connect (OSTI)

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  10. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    SciTech Connect (OSTI)

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  11. Centrifugal cosmological repulsive force in a homogeneous universe

    E-Print Network [OSTI]

    A. V. Klimenko; V. A. Klimenko

    2011-03-21

    We study the dynamics of homogeneous isotropic three-dimensional worlds filled with radiation (3R-worlds). It is shown that the dynamics of these worlds with the additional fourth large-scale spatial dimension leads to an important effect. At 3R-worlds the forces of repulsion appear. The source of these forces is the thermal energy of the radiation that fills these worlds. In the four-dimensional space, these forces are centrifugal. They operate in an external for 3R-world spatial dimension and stretch it. In the three-dimensional comoving coordinate system the centrifugal forces shows themselves as forces of repulsion. Standard Einstein's equations do not describe these forces. Written generalized Einstein's equation describing the dynamics of a homogeneous isotropic universe, taking into consideration the centrifugal forces of repulsion. We propose a cosmological model of the universe, based on these equations. This model apply to explain the observation data.

  12. Centrifugally activated bearing for high-speed rotating machinery

    DOE Patents [OSTI]

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  13. Tank Waste Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliers Tag:Take ActionPermitB3/15 Tank Waste

  14. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect (OSTI)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  15. Independent Oversight Review, Hanford Tank Farms- November 2011

    Broader source: Energy.gov [DOE]

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  16. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    and Assumptions 5. Current Inventory: Best Basis Inventory (Tanks), Catch Tanks and Pipelines and Uncertainties 6. Residual Inventory Estimates - HTWOS and Uncertainties 7....

  17. High-Pressure Hydrogen Tank Testing

    Broader source: Energy.gov [DOE]

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  18. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve...

  19. SCALING SOLID RESUSPENSION AND SORPTION FOR THE SMALL COLUMN ION EXCHANGE PROCESSING TANK

    SciTech Connect (OSTI)

    Poirier, M.; Qureshi, Z.

    2010-12-14

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing 1.3 million gallon waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending Monosodium Titanate (MST), Crystalline Silicotitanate (CST), and simulated sludge. In addition, SRNL will also be conducting pilot-scale tests to determine the mixing requirements for the strontium and actinide sorption. As part of this task, the results from the pilot-scale tests must be scaled up to a full-scale waste tank. This document describes the scaling approach. The pilot-scale tank is a 1/10.85 linear scale model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX Program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). MST additions are through Riser E1, the proposed MST addition riser in Tank 41H. To determine the approach to scaling the results from the pilot-scale tank to Tank 41H, the authors took the following approach. They reviewed the technical literature for methods to scale mixing with jets and suspension of solid particles with jets, and the technical literature on mass transfer from a liquid to a solid particle to develop approaches to scaling the test data. SRNL assembled a team of internal experts to review the scaling approach and to identify alternative approaches that should be considered.

  20. Alternative generation and analysis for phase I privatization transfer system needs

    SciTech Connect (OSTI)

    Galbraith, J.D.

    1996-09-10

    This decision document provides input for the Phase I Privatization waste staging plans for the High-Level Waste (HLW)and Low-Level Waste (LLW) Disposal Programs. This AGA report evaluates what infrastructure upgrades to existing 200 East waste transfer systems are necessary for delivery of HLW and LLW streams to the Phase I Privatization vendor. The AGA identifies the transfer routing alternatives for supernatant waste transfers from the 241-AN, 241-AW, and 241-AP Tank Farms to the 241-AP-102 tank and/or the 241-AP-104 tank. These two tanks have been targeted as the initial LLW feed staging tanks. In addition,this report addresses the transfer of slurry waste from the 241-AY and 241-AZ Tank Farms to the Phase I Privatization vendor`s facilities for HLW immobilization.

  1. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-12-31

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

  2. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  3. Invited Review Article: Review of centrifugal microfluidic and bio-optical disks

    E-Print Network [OSTI]

    Nolte, David D.

    of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugalInvited Review Article: Review of centrifugal microfluidic and bio-optical disks David D. Nolte

  4. Photoinitiated decomposition of HNCO near the H NCO threshold: Centrifugal barriers and channel competition

    E-Print Network [OSTI]

    Sanov, Andrei

    Photoinitiated decomposition of HNCO near the H NCO threshold: Centrifugal barriers and channel. These constraints are associated with long range 4­7 Å centrifugal barriers, which are significant even near

  5. EQUILIBRIUM-STATE DENSITY PROFILES OF CENTRIFUGED CAKES OF FLOCCULATED SUSPENSIONS

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    251 EQUILIBRIUM-STATE DENSITY PROFILES OF CENTRIFUGED CAKES OF FLOCCULATED SUSPENSIONS WEI advanced ceramics are formed by colloidal consolidation using techniques such as sedimentation, centrifugation, or pressure filtration. In all these, the minimization of density variations of various

  6. Porous hydroxyapatite-polyhydroxybutyrate composites fabricated by a novel method via centrifugation

    E-Print Network [OSTI]

    McKittrick, Joanna

    centrifugation Michael M Porter1 , Steve Lee1 , Nuttapol Tanadchangsaeng2 , Matt J Jaremko2 , Jian Yu2 , Marc micro-/nano- particles into rigid HA scaffolds via centrifugation, followed by subsequent heating at 175

  7. Cushioned centrifugation of stallion semen: factors impacting equine sperm recovery rate and quality 

    E-Print Network [OSTI]

    Waite, Jessica Arlene

    2009-05-15

    Centrifugation of stallion semen is an integral part of the cryopreservation procedure, primarily allowing for the concentration of sperm and removal of seminal plasma. In addition, centrifugation is required for maximizing spermatozoal quality...

  8. Scales modified for use on board the human centrifuge in the MIT Man Vehicle Lab

    E-Print Network [OSTI]

    Samuelson, Heather Marie

    2006-01-01

    The MIT Man Vehicle Lab (MVL) is currently performing research on the effects of rotational artificial gravity on humans through the use of a short-radius centrifuge. The MVL centrifuge allows subjects to spin in the supine ...

  9. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect (OSTI)

    DODD RA

    2008-01-22

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner.

  10. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    SciTech Connect (OSTI)

    ERPENBECK EG; LESHIKAR GA

    2011-01-13

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

  11. Preliminary design requirements document for the initial single-shell tank retrieval system

    SciTech Connect (OSTI)

    Hertzel, J.S., Westinghouse Hanford

    1996-07-24

    The scope of this Preliminary Design Requirements Document is to identify and define the functions, with associated requirements, which must be performed to demonstrate and accomplish the initial single-shell tank saltcake retrieval from selected tanks. This document sets forth functions, requirements, performance requirements and design constraints necessary to begin conceptual design for the Initial Single-shell Tank Retrieval System. System and physical interfaces between the Initial Single-shell Tank Retrieval System project and the Tank Waste Remediation are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. The design requirements provided in this document will be augmented by additional detailed design to be documented by the project.

  12. Select an Energy-Efficient Centrifugal Pump - Pumping System Tip Sheet #3

    SciTech Connect (OSTI)

    2005-10-01

    BestPractices Program tip sheet discussing pumping system efficiency by selecting an energy-efficient centrifugal pump.

  13. Promising Technology: Magnetic Bearing Variable-Speed Centrifugal Chillers

    Broader source: Energy.gov [DOE]

    Magnetic bearing variable speed centrifugal chillers save energy compared to conventional chillers by eliminating friction with the magnetic bearings and by improving efficiency at partial loads with the variable speed drive. In addition to saving energy, the magnetic bearings eliminate the maintenance costs associated with lubricating conventional metal bearings.

  14. Experiments with background gas in a vacuum arc centrifuge

    SciTech Connect (OSTI)

    Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    1996-04-01

    Since promising isotope separation results were first reported by Krishnan et al. in 1981, a range of vacuum arc centrifuge experiments have been conducted in laboratories around the world. The PCEN (Plasma CENtrifuge) vacuum arc centrifuge at the Brazilian National Institute for Space Research has been used for isotope separation studies with cathode materials of carbon and magnesium and also to investigate the performance in terms of the rotational velocity attained for different cathode materials. Here, a vacuum arc centrifuge has been operated with an initial filling gas of either argon or hydrogen for pressures ranging from 10{sup {minus}3} to 10{sup {minus}1} Pa. The angular velocity {omega} of the plasma has been determined by cross-correlating the signals from potential probes, and the electron temperature T has been deduced from Langmuir probe data. At high gas pressures and early times during the 14 ms plasma lifetime, high-frequency nonuniformities frequently observed in the vacuum discharge disappear, suggesting that the associated instability is suppressed. Under the same conditions, nonuniformities rotating with much lower angular velocities are observed in the plasma. Temperatures are reduced in the presence of the background gas, and the theoretical figure of merit for separation proportional to {omega}{sup 2}/T is increased compared to its value in the vacuum discharge for both argon and hydrogen gas fillings.

  15. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect (OSTI)

    VAN BEEK, J.E.

    1999-09-02

    Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

  16. Fig. 1. Schematic of gating operation driven by centrifugal force. (a) shows top view of the

    E-Print Network [OSTI]

    Banerjee, Debjyoti

    R1 R2 (a) Pm (b) Fig. 1. Schematic of gating operation driven by centrifugal force. (a) shows top-expanding opening. Liquid pressure at the meniscus is Pm. DESIGN ANALYSES OF CAPILLARY BURST VALVES IN CENTRIFUGAL, Capillary Gating, Centrifugal force, FlumeCAD I. Introduction There is a wide interest in micron

  17. Proposed model for Saturn's auroral response to the solar wind: Centrifugal instability model

    E-Print Network [OSTI]

    Richardson, John

    Proposed model for Saturn's auroral response to the solar wind: Centrifugal instability model E. C in the intensity of Saturn Kilometric Radiation (SKR). Our model, referred to as the centrifugal instability model by centrifugally driven flux tube interchange motions, when the magnetosphere spins up, outward transport

  18. Elimination of Adverse Leakage Flow in a Miniature Pediatric Centrifugal Blood Pump by Computational Fluid Dynamics

    E-Print Network [OSTI]

    Paden, Brad

    Elimination of Adverse Leakage Flow in a Miniature Pediatric Centrifugal Blood Pump levitated centrifugal blood pump intended to deliver 0.3­1.5 l/min of support to neo- nates and infants by centrifugal force to flow radially outwards toward the outlet of the impeller against an unfavorable pressure

  19. Title of dissertation: Plasma-Neutral Equilibrium in Centrifugally Confined Plasma

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: Plasma-Neutral Equilibrium in Centrifugally Confined Plasma Sheung Plasma-neutral interactions are considered for a centrifugally confined plasma, such as the Maryland Centrifugal eXperiment (MCX), wherein a crossfield plasma rotation inhibits plasma escape along the magnetic

  20. The Effects of Coulomb Friction on the Performance of Centrifugal Pendulum Vibration

    E-Print Network [OSTI]

    Feeny, Brian

    The Effects of Coulomb Friction on the Performance of Centrifugal Pendulum Vibration Absorbers on the performance of centrifugal pen- dulum vibration absorbers (CPVAs), which are used to re- duce torsional suspensions. 1 Introduction Centrifugal pendulum vibration absorbers (CPVAs) have been shown to significantly

  1. Pressure-driven outflow and magneto-centrifugal wind from a dynamo active disc

    E-Print Network [OSTI]

    Dobler, Wolfgang

    Pressure-driven outflow and magneto-centrifugal wind from a dynamo active disc Wolfgang Dobler1 outflow near the rotation axis and a centrifugally driven uncollimated wind in the outer parts. The jet be launched and collimated by centrifugal and magnetic forces. This idea has been further developed

  2. A STRONGLY DEGENERATE CONVECTION-DIFFUSION PROBLEM MODELING CENTRIFUGATION OF FLOCCULATED SUSPENSIONS

    E-Print Network [OSTI]

    A STRONGLY DEGENERATE CONVECTION-DIFFUSION PROBLEM MODELING CENTRIFUGATION OF FLOCCULATED of BV entropy solutions of a strongly degenerate convection-di#11;usion problem modeling centrifugation- boundary value problem numerically, i.e., to simulate the centrifugation process. 1. Introduction We

  3. Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms and monopoles

    E-Print Network [OSTI]

    Enciso, Alberto

    Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms-type contribution together with N centrifugal terms. Moreover, we show that U can be chosen to be the appropriate together with N centrifugal terms. · The SW system on the Darboux space III [26], which

  4. Retinal Target Cells of the Centrifugal Projection from the Isthmo-optic Nucleus

    E-Print Network [OSTI]

    Uchiyama, Hiroyuki

    Retinal Target Cells of the Centrifugal Projection from the Isthmo-optic Nucleus HIROYUKI UCHIYAMA by the axons might be essential for the overall topographic organization of the centrifugal visual system in birds. J. Comp. Neurol. 476:146­153, 2004. © 2004 Wiley-Liss, Inc. Indexing terms: retina; centrifugal

  5. DEVELOPMENTALBIOLOGY120,270-283(198'7) Centrifugation Redistributes Factors Determining Cleavage

    E-Print Network [OSTI]

    Weisblat, David A.

    DEVELOPMENTALBIOLOGY120,270-283(198'7) Centrifugation Redistributes Factors Determining Cleavage/P, and Q) teloblasts. Here we report studies on the effects of centrifugation on cleavage pattern and protein composition of individual blastomeres of the leech HelobdeUu triswialis. Centrifugation partially

  6. On the effect of centrifugal stretching on the rotational partition function of an asymmetric top

    E-Print Network [OSTI]

    Martin, Jan M.L.

    On the effect of centrifugal stretching on the rotational partition function of an asymmetric top;accepted13August 1991) Correction terms (up to third order in temperature) for the effectof centrifugal'sasymptotic expansionfor the rigid rotor and the centrifugal correction factor derivedin the presentwork. Numerical

  7. Dynamics of Surfactant-Suspended Single-Walled Carbon Nanotubes in a Centrifugal Field

    E-Print Network [OSTI]

    Dynamics of Surfactant-Suspended Single-Walled Carbon Nanotubes in a Centrifugal Field Nitish Nair-suspended single-walled carbon nanotubes in a density gradient, while being subjected to a centrifugal field position in the gradient after centrifugation has been completed. Analysis of the spatial concentration

  8. Gap size effects on centrifugally and rotationally driven instabilities innocent MutabazP and Christiane Normand

    E-Print Network [OSTI]

    Wesfreid, José Eduardo

    Gap size effects on centrifugally and rotationally driven instabilities innocent Mutabaz 1991) The rotation effects on centrifugally driven instabilities in curved channel flow with a finite these instabilities are due to the curvature of streamlines in- ducing a centrifugal force which unbalances the radial

  9. IEEE Visualization Contest 2011 Visualizing Unsteady Vortical Behavior of a Centrifugal Pump

    E-Print Network [OSTI]

    IEEE Visualization Contest 2011 Visualizing Unsteady Vortical Behavior of a Centrifugal Pump number 226042. em eg We present our results analyzing a centrifugal pump as a part of the IEEE Visualization Contest 2011. The given data set represents a high resolution simulation of a centrifugal pump

  10. Centrifugal compression of soft particle packings: Theory and experiment K. N. Nordstrom,1

    E-Print Network [OSTI]

    Gollub, Jerry P.

    Centrifugal compression of soft particle packings: Theory and experiment K. N. Nordstrom,1 E to centrifugal compression, for arbitrary constitutive relation between stress and strain. Example solutions by centrifugal compression, and we illustrate our method with experiments on 1 m diam- eter NIPA microgel beads

  11. DETERMINATION OF THE SWELL-STRESS CURVE OF AN EXPANSIVE SOIL USING CENTRIFUGE TECHNOLOGY

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    DETERMINATION OF THE SWELL-STRESS CURVE OF AN EXPANSIVE SOIL USING CENTRIFUGE TECHNOLOGY project was conducted on the use of centrifuge technology to characterize the expansive properties of a soil sample in the centrifuge. This paper focuses on the analysis of testing results, specifically how

  12. Influence of centrifugal effects on particle and momentum transport in NSTX R. Buchholz1

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Influence of centrifugal effects on particle and momentum transport in NSTX R. Buchholz1 , S experimentally relevant condi- tions in the spherical tokamak NSTX. The focus is specifically on the centrifugal, strengthened by centrifugal effects. This result is consistent with experimental measurements, and contradicts

  13. Constant centrifugal potential approximation for atom-diatom chemical reaction dynamics

    E-Print Network [OSTI]

    Takada, Shoji

    Constant centrifugal potential approximation for atom-diatom chemical reaction dynamics Kengo,Myodaiji, Okazaki 444. Japan (Received 28 September 1993; accepted 8 December 1993) The constant centrifugal of such practically useful approxima- tions the constant centrifugal potential approximation (CCPA) (or the energy

  14. Centrifuge Permeameter for Unsaturated Soils. I: Theoretical Basis and Experimental Developments

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Centrifuge Permeameter for Unsaturated Soils. I: Theoretical Basis and Experimental Developments Jorge G. Zornberg, M.ASCE1 ; and John S. McCartney, A.M.ASCE2 Abstract: A new centrifuge permeameter the centrifuge permeame- ter for concurrent determination of the soil-water retention curve SWRC and hydraulic

  15. Critique of the Centrifugal Effect in the Hydrogen Atom Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    Critique of the Centrifugal Effect in the Hydrogen Atom Frank Rioux Some quantum textbooks invoke with involves the middle term in the Hamiltonian given above. Some authors call it the centrifugal potential the effective potential energy. In support of this maneuver they invoke the idea of centrifugal force, which

  16. Absolute H Emission Measurement System for the Maryland Centrifugal eXperiment

    E-Print Network [OSTI]

    Anlage, Steven

    Absolute H Emission Measurement System for the Maryland Centrifugal eXperiment Ryan Clary April 22 developed and implemented at the Maryland Centrifugal eXperiment (MCX). The primary goal of this system Introduction The Maryland Centrifugal eXperiment (MCX) is a rotating-plasma mirror machine. The purpose

  17. On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments

    E-Print Network [OSTI]

    Bürger, Raimund

    On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments is presented. The specific new element is a centrifugal configuration, which gives rise to a non-constant body numerically, and thereby to simulate centrifugation of two polydisperse suspensions. Ó 2003 Elsevier Ltd. All

  18. RESEARCH PAPER Centrifuge model test on the face stability of shallow tunnel

    E-Print Network [OSTI]

    Borja, Ronaldo I.

    RESEARCH PAPER Centrifuge model test on the face stability of shallow tunnel Gregor Idinger · Pelin on a small-scale tunnel model in a geotechnical centrifuge. By making use of symmetry, half of the tunnel wall and measured by digital image correlation. The results from centrifuge model tests were compared

  19. Centrifugal Shape Sorting of Faceted Gold Nanoparticles Using an Atomic Plane-Selective Surfactant

    E-Print Network [OSTI]

    Gao, Hongjun

    Centrifugal Shape Sorting of Faceted Gold Nanoparticles Using an Atomic Plane-Selective Surfactant control or postsynthetic processing that relies on centrifugal sedimentation-based sorting schemes whereNPs possessing different shapes that would otherwise be virtually indistinguishable during centrifugal

  20. WAVE-DRIVEN ROTATION IN CENTRIFUGAL MIRRORS Abraham J. Fetterman and Nathaniel J. Fisch

    E-Print Network [OSTI]

    WAVE-DRIVEN ROTATION IN CENTRIFUGAL MIRRORS Abraham J. Fetterman and Nathaniel J. Fisch Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA Centrifugal mirrors use input. By eliminating the need for electrodes, this opens new op- portunities for centrifugal traps. I

  1. ON CENTRIFUGAL SETTLING OF POLYDISPERSE SUSPENSIONS WITH A CONTINUOUS PARTICLE SIZE DISTRIBUTION

    E-Print Network [OSTI]

    Bürger, Raimund

    ON CENTRIFUGAL SETTLING OF POLYDISPERSE SUSPENSIONS WITH A CONTINUOUS PARTICLE SIZE DISTRIBUTION@ucn.cl ABSTRACT Gravity or centrifugal sedimentation of polydisperse suspensions with a continuous particle size is extended to settling in a rotating tube or basket centrifuge. Numerical simulations are presented

  2. THE CENTRIFUGE PERMEAMETER FOR UNSATURATED SOILS (CPUS) By: John McCartney1

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    THE CENTRIFUGE PERMEAMETER FOR UNSATURATED SOILS (CPUS) By: John McCartney1 and Jorge Zornberg, Advisor2 Abstract: This paper describes the development of a new centrifuge permeameter capable inflow rates (0.1 ml/min) within a rotating centrifuge environment, capable of imposing an acceleration

  3. Paper No. 9.06 1 NEWMARKIAN ANALYSIS OF LIQUEFIED FLOW IN CENTRIFUGE MODEL

    E-Print Network [OSTI]

    Haigh, Stuart

    Paper No. 9.06 1 NEWMARKIAN ANALYSIS OF LIQUEFIED FLOW IN CENTRIFUGE MODEL EARTHQUAKES S.K. Haigh S-pressure history either predicted using a suitable constitutive model, or measured during a centrifuge or shaking displacements using this procedure and displacements measured in centrifuge model tests with the same pore

  4. Centrifugal Separation of Antiprotons and Electrons G. Gabrielse,1,* W. S. Kolthammer,1

    E-Print Network [OSTI]

    Gabrielse, Gerald

    Centrifugal Separation of Antiprotons and Electrons G. Gabrielse,1,* W. S. Kolthammer,1 R. Mc November 2010) Centrifugal separation of antiprotons and electrons is observed, the first antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal

  5. Instabilities due a vortex at a density interface: gravitational and centrifugal effects

    E-Print Network [OSTI]

    Dixit, Harish

    Instabilities due a vortex at a density interface: gravitational and centrifugal effects Harish N showed recently that the flow is subject to centrifugal Rayleigh-Taylor and spiral Kelvin for example [5]). In the absence of gravity, centrifugal forces are predominant, and we showed recently [4

  6. Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic Dipole

    E-Print Network [OSTI]

    Mauel, Michael E.

    Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic) Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic electrostatic dipole vortex [3] that transports mass, energy, and charge [4]. The centrifugally driven

  7. Title of dissertation: H & NEUTRAL DENSITY SCALING IN THE MARYLAND CENTRIFUGAL EXPERI-

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: H & NEUTRAL DENSITY SCALING IN THE MARYLAND CENTRIFUGAL EXPERI Department of Physics The Maryland Centrifugal eXperiment (MCX) is a hydrogen plasma confinement experiment with a rotating mirror magnetic configuration. This experiment was de- signed to test the concepts of centrifugal

  8. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    SciTech Connect (OSTI)

    Daniel M. Dabbs; Ilhan A. Aksay

    2005-01-12

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations.

  9. Screen bowl centrifuge: a high-efficiency particle size separator

    SciTech Connect (OSTI)

    Mohanty, M.K.; Zhang, B.; Khanna, N.; Palit, A.; Dube, B.

    2008-05-15

    Over the years, screen bowl centrifuges have been widely used for dewatering fine coal in coal preparation plants in the United States and elsewhere. It is generally recognized in the engineering and scientific communities that screen bowl centrifuges provide some degree of particle size separation while dewatering fine coal in a common application. However, the extent of differential partitioning of coarse and fine particles achievable by a screen bowl centrifuge has not been systematically studied in the past. The present investigation was aimed at conducting a parametric study using a statistically designed experimental program to better understand and optimize the size classification performance of a screen bowl centrifuge. A continuously operating screen bowl centrifuge having a bowl diameter of 0.5 m was used for this study at the Illinois Coal Development Park. Three key operating parameters, i.e., feed flow rate, feed solid content and pool depth, were varied to conduct a total of 17 experiments using a three-level factorial test matrix. Some of the best size separation performances achieved in this study may be described as having an imperfection value of 0.13 at an effective separation size (d(50c)) of 38 mu m and an imperfection value of 0.27 at an effective separation size (d(50c)) of 2.8 mu m. Due to an effective separation of ultrafine high ash materials, the ash content of the screen bowl feed was reduced from 22.3% to a minimum of 8.84% with a combustible recovery of 84.1% and an ash rejection of 71.6%. A higher combustible recovery of 92.1% was achieved at a product ash content of 12.5% with a d(50c) of 2.8 mu m and imperfection of 0.27.

  10. Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options

    SciTech Connect (OSTI)

    Klem, M.J.

    1996-10-23

    This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

  11. Tank characterization report for single-shell tanks 241-T-201, 241-T-202, 241-T-203, and 241-T-204

    SciTech Connect (OSTI)

    Simpson, B.C.

    1998-02-19

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, in addition to other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for the single-shell tank series consisting of 241-T-201, -T-202, -T-203, and -T-204. The objectives of this report are: (1) to use characterization data in response to technical issues associated with T-200 series tank waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. Appendix A contains historical information for 241-T-201 to T-204, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge-based computer program. Appendix B summarizes sampling events, sample data obtained before 1989, and the most current sampling results. Appendix C reports the statistical analysis and numerical manipulation of data used in issue resolution. Appendix D contains the evaluation to establish the best-basis for the inventory estimate and the statistical analysis performed for this evaluation. Appendix E is a bibliography that resulted from an in-depth literature search of all known information sources applicable to tanks 241-T-201, -T-202, -T-203, and -T-204. The reports listed in Appendix E are available in the Tank Characterization and Safety Resource Center.

  12. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  13. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text. Volume 2: Checklists and work instructions

    SciTech Connect (OSTI)

    1998-05-01

    This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage. The transfer will be accomplished through sluicing and pumping operations which are designed to pump the slurry in a closed circuit system using a sluicing nozzle to resuspend the sludge. Once resuspended, the slurry will be transferred to the MVST. The report documenting the material transfer will be prepared after transfer of the tank materials has been completed. The OBF tanks contain approximately 52,600 gal (199,000 L) of low-level radioactive waste consisting of both sludge and supernatant. This material is residual from the now-abandoned grout injection operations conducted from 1964 to 1980. Total curie content is approximately 30,000 Ci. A sluicing and pumping system has been specifically designed for the OHF tanks contents transfer operations. This system is remotely operated and incorporates a sluicing nozzle and arm (Borehole Miner) originally designed for use in the mining industry. The Borehole Miner is an in-tank device designed to deliver a high pressure jet spray via an extendable nozzle. In addition to removing the waste from the tanks, the use of this equipment will demonstrate applicability for additional underground storage tank cleaning throughout the U.S. Department of Energy complex. Additional components of the complete sluicing and pumping system consist of a high pressure pumping system for transfer to the MVST, a low pressure pumping system for transfer to the recycle tank, a ventilation system for providing negative pressure on tanks, and instrumentation and control systems for remote operation and monitoring.

  14. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect (OSTI)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  15. Tank 241-BX-109 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S.

    1995-10-04

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-BX-109.

  16. Tank 241-B-106 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S.

    1995-10-04

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-B-106.

  17. Tank 241-SY-103 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S.

    1995-10-05

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-SY-103.

  18. Tank 241-U-103 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S.

    1995-10-04

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-U-103.

  19. Tank 241-U-111 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S.

    1995-10-25

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-U-111.

  20. Tank 241-S-112 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-09

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-S-112.

  1. Tank 241-TX-116 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-05-10

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-TX-116.

  2. Tank 241-SX-115 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-09

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-SX-115.

  3. Tank 241-B-104 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Homi, C.S.

    1995-10-04

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-B-104

  4. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect (OSTI)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  5. TANK 7 CHARACTERIZATION AND WASHING STUDIES

    SciTech Connect (OSTI)

    Lambert, D.; Pareizs, J.; Click, D.

    2010-02-04

    A 3-L PUREX sludge sample from Tank 7 was characterized and then processed through a series of inhibited water washes to remove oxalate, sodium, and other soluble ions. Current plans use Tank 7 as one of the feed sources for Sludge Batch 7 (SB7). Tank 7 is high in oxalate due to the oxalic acid cleaning of the sludge heels from Tanks 5 and 6 and subsequent transfer to Tank 7. Ten decant and nine wash cycles were performed over a 47 day period at ambient temperature. Initially, seven decants and seven washes were completed based on preliminary estimates of the number of wash cycles required to remove the oxalate in the sludge. After reviewing the composition data, SRNL recommended the completion of 2 or 3 more decant/wash cycles to ensure all of the sodium oxalate had redissolved. In the first 7 washes, the slurry oxalate concentration was 12,300 mg/kg (69.6% oxalate removal compared to 96.1% removal of the other soluble ions). After all ten decants were complete, the slurry oxalate concentration was 3,080 mg/kg (89.2% oxalate removal compared to 99.0% of the other soluble ions). The rate of dissolution of oxalate increased significantly with subsequent washes until all of the sodium oxalate had been redissolved after seven decant/wash cycles. The measured oxalate concentrations agreed very well with LWO predictions for washing of the Tank 7 sample. Highlights of the analysis and washing of the Tank 7 sample include: (1) Sodium oxalate was detected in the as-received filtered solids. 95% of the oxalate was insoluble (undissolved) in the as-received slurry. (2) No sodium oxalate was detected in the post-wash filtered solids. (3) Sodium oxalate is the last soluble species that redissolves during washing with inhibited water. In order to significantly reduce the sodium oxalate concentration, the sludge must be highly washed, leaving the other soluble anions and cations (including sodium) very low in concentration. (4) The post-wash slurry had 1% of the soluble anions and cations remaining, with the exception of sodium and oxalate, for which the percentages were 2.8% and 10.8% respectively. The post-wash sodium concentration was 9.25 wt% slurry total solids basis and 0.15 M supernate. (5) The settling rate of slurry was very fast allowing the completion of one decant/wash cycle each day. (6) The measured yield stress of as-received (6.42 wt% undissolved solids) and post-wash (7.77 wt% undissolved solids) slurry was <1 Pa. For rapidly settling slurries, it can be hard to measure the yield stress of the slurry so this result may be closer to the supernate result than the slurry. The recommended strategy for developing the oxalate target for sludge preparation for Sludge Batch 7 includes the following steps: (1) CPC simulant testing to determine the percent oxalate destruction and acid mix needed to produce a predicted redox of approximately 0.2 Fe{sup +2}/{Sigma}Fe in a SME product while meeting all DWPF processing constraints. (2) Perform a DWPF melter flammability assessment to ensure that the additional carbon in the oxalate together with other carbon sources will not lead to a flammability issue. (3) Perform a DWPF glass paper assessment to ensure the glass produced will meet all DWPF glass limits due to the sodium concentration in the sludge batch. The testing would need to be repeated if a significant CPC processing change, such as an alternative reductant to formic acid, is implemented.

  6. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect (OSTI)

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  7. The enhanced ASDEX Upgrade pellet centrifuge launcher

    SciTech Connect (OSTI)

    Plöckl, B.; Lang, P. T.

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  8. Engineering evaluation of alternatives: Managing the assumed leak from single-shell Tank 241-T-101

    SciTech Connect (OSTI)

    Brevick, C.H. [ICF Kaiser Hanford Co., Richland, WA (United States); Jenkins, C. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-02-01

    At mid-year 1992, the liquid level gage for Tank 241-T-101 indicated that 6,000 to 9,000 gal had leaked. Because of the liquid level anomaly, Tank 241-T-101 was declared an assumed leaker on October 4, 1992. SSTs liquid level gages have been historically unreliable. False readings can occur because of instrument failures, floating salt cake, and salt encrustation. Gages frequently self-correct and tanks show no indication of leak. Tank levels cannot be visually inspected and verified because of high radiation fields. The gage in Tank 241-T-101 has largely corrected itself since the mid-year 1992 reading. Therefore, doubt exists that a leak has occurred, or that the magnitude of the leak poses any immediate environmental threat. While reluctance exists to use valuable DST space unnecessarily, there is a large safety and economic incentive to prevent or mitigate release of tank liquid waste into the surrounding environment. During the assessment of the significance of the Tank 241-T-101 liquid level gage readings, Washington State Department of Ecology determined that Westinghouse Hanford Company was not in compliance with regulatory requirements, and directed transfer of the Tank 241-T-101 liquid contents into a DST. Meanwhile, DOE directed WHC to examine reasonable alternatives/options for safe interim management of Tank 241-T-101 wastes before taking action. The five alternatives that could be used to manage waste from a leaking SST are: (1) No-Action, (2) In-Tank Stabilization, (3) External Tank Stabilization, (4) Liquid Retrieval, and (5) Total Retrieval. The findings of these examinations are reported in this study.

  9. CENTRIFUGAL MEMBRANE FILTRATION (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface....

  10. Potential radiological exposure rates resulting from hypothetical dome failure at Tank W-10

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The main plant area at Oak Ridge National Laboratory (ORNL) contains 12 buried Gunite tanks that were used for the storage and transfer of liquid radioactive waste. Although the tanks are no longer in use, they are known to contain some residual contaminated sludges and liquids. In the event of an accidental tank dome failure, however unlikely, the liquids, sludges, and radioactive contaminants within the tank walls themselves could create radiation fields and result in above-background exposures to workers nearby. This Technical Memorandum documents a series of calculations to estimate potential radiological exposure rates and total exposures to workers in the event of a hypothetical collapse of a Gunite tank dome. Calculations were performed specifically for tank W-10 because it contains the largest radioactivity inventory (approximately half of the total activity) of all the Gunite tanks. These calculations focus only on external, direct gamma exposures for prescribed, hypothetical exposure scenarios and do not address other possible tank failure modes or routes of exposure. The calculations were performed with established, point-kernel gamma ray modeling codes.

  11. Ferrocyanide safety program: Thermal analysis of ferrocyanide Watch List tanks, Group II

    SciTech Connect (OSTI)

    McLaren, J.M.

    1994-09-01

    The purpose of this report is to document the results of a series of analyses conducted to determine the heat loads of the second of two groups of tanks on the Ferrocyanide Watch List. The analyses of the second group of tanks used the fill/transfer history and tank temperature data with a transient solution for the heat load determination. Nominal heat load values were determined, as well as the upper and lower bounds of the heat load. Because the waste level in most of these tanks was low, thermal conductivity estimation could only be made for two tanks. The method used in this report uses computer analysis of the tank and its contents, along with the temperature data obtained from in situ thermocouple trees, to determine the heat load of the tanks and the thermal conductivity of the waste. A computer model of the tank and its contents is used that also includes the surrounding soil, which is the main heat sink.

  12. SLUDGE BATCH 7 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB7 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect (OSTI)

    Pareizs, J.; Hay, M.

    2011-02-22

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Seven (SB7) for processing in the Defense Waste Processing Facility (DWPF). The SB7 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB6. The radionuclide concentrations were measured or estimated in the Tank 51 SB7 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter qualification sample of Tank 51 sludge slurry (HTF-51-10-125) received on September 18, 2010. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. With consultation from the Liquid Waste Organization, the qualification sample was then modified by several washes and decants, which included addition of Pu from H Canyon and sodium nitrite per the Tank Farm corrosion control program. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB7 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2010-0031. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task III.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB7 will be taken and transferred to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB7 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated.

  13. Retooling Michigan: Tanks to Turbines

    Office of Energy Efficiency and Renewable Energy (EERE)

    A company that has manufactured geared systems for the M1 Abrams tank for more than 20 years is now part of the forces working toward energy security and independence.

  14. Tank 214-AW-105, grab samples, analytical results for the finalreport

    SciTech Connect (OSTI)

    Esch, R.A.

    1997-02-20

    This document is the final report for tank 241-AW-105 grab samples. Twenty grabs samples were collected from risers 10A and 15A on August 20 and 21, 1996, of which eight were designated for the K Basin sludge compatibility and mixing studies. This document presents the analytical results for the remaining twelve samples. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DO). The results for the previous sampling of this tank were reported in WHC-SD-WM-DP-149, Rev. 0, 60-Day Waste Compatibility Safety Issue and Final Results for Tank 241-A W-105, Grab Samples 5A W-95-1, 5A W-95-2 and 5A W-95-3. Three supernate samples exceeded the TOC notification limit (30,000 microg C/g dry weight). Appropriate notifications were made. No immediate notifications were required for any other analyte. The TSAP requested analyses for polychlorinated biphenyls (PCB) for all liquids and centrifuged solid subsamples. The PCB analysis of the liquid samples has been delayed and will be presented in a revision to this document.

  15. Tank Waste Retrieval Lessons Learned at the Hanford Site

    SciTech Connect (OSTI)

    Dodd, R.A.

    2008-07-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner. Retrieval of SST waste in accordance with HFFACO requirements was initiated at the Hanford Site in April 2003. New and innovative tank waste retrieval methods that minimize and control the use of liquids are being implemented for the first time. These tank waste retrieval methods replace Past Practice Hydraulic Sluicing and employ modified sluicing, vacuum retrieval, and in-tank vehicle techniques. Waste retrieval has been completed in seven Hanford Site SSTs (C-106, C-103, C-201, C-202, C-203, C-204, and S-112) in accordance with HFFACO requirements. Three additional tanks are currently in the process of being retrieved (C-108, C-109 and S-102) Preparation for retrieval of two additional SSTs (C-104 and C-110) is ongoing with retrieval operations forecasted to start in calendar year 2008. Tank C-106 was retrieved to a residual waste volume of 470 ft{sup 3} using oxalic acid dissolution and modified sluicing. An Appendix H exception request for Tank C-106 is undergoing review. Tank C-103 was retrieved to a residual volume of 351 ft{sup 3} using a modified sluicing technology. This approach was successful at reaching the TPA limits for this tank of less than 360 ft{sup 3}and the limits of the technology. Tanks C-201, C-202, C-203, and C-204 are smaller (55,000 gallon) tanks and waste removal was completed in accordance with HFFACO requirements using a vacuum retrieval system. Residual waste volumes in each of these four tanks were less than 25 ft{sup 3}. Tank S-112 retrieval was completed February 28, 2007, meeting the TPA Limits of less than

  16. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  17. Published by the Centrifuge Instrument Systems Development Center of Beckman Coulter, Inc., Palo Alto, California 94304 SW 41 Ti ROTOR

    E-Print Network [OSTI]

    Marchant, Jonathan

    Published by the Centrifuge Instrument Systems Development Center of Beckman Coulter, Inc., Palo if used in a centrifuge not of Beckman Coulter's manufacture or in a Beckman Coulter ultra- centrifuge or explosive vapors. Do not centrifuge such materials in nor handle or store them near the ultracentrifuge

  18. The majority of all centrifuge accidents result from user error. To avoid injury, workers should follow the manufacturer's

    E-Print Network [OSTI]

    Johnson, Eric E.

    The majority of all centrifuge accidents result from user error. To avoid injury, workers should follow the manufacturer's operating instructions for each make and model of centrifuge that they use. Follow these steps for the safe operation of centrifuges: I Ensure that centrifuge bowls and tubes

  19. High-Level Liquid Waste Tank Integrity Workshop - 2008

    Office of Environmental Management (EM)

    techniques for primarysecondary tank wall and concrete * * Develop tank integrity roadmap and execution plan Develop tank integrity roadmap and execution plan including...

  20. Fuel Tank Manufacturing, Testing, Field Performance, and Certification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance CNG and Hydrogen Tank Safety, R&D, and Testing Type 4 Tank Testing, Certification and Field...

  1. Results of Hg speciation testing on tanks 30, 32, and 37 depth samples

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-11-30

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The twelfth shipment of samples was designated to include 3H evaporator system Tank 30, 32, and 37 depth samples. The Tank 30 depth sample (HTF-30-15-70) was taken at 190 inches from the tank bottom and the Tank 32 depth sample (HTF-32-15-68) was taken at 89 inches from the tank bottom and both were shipped to SRNL on June 29, 2015 in an 80 mL stainless steel dip bottles. The Tank 37 surface sample (HTF-37-15-94) was taken around 253.4 inches from the tank bottom and shipped to SRNL on July 21, 2015 in an 80 mL stainless steel dip bottle. All samples were placed in the SRNL Shielded Cells and left unopened until intermediate dilutions were made on July 24, 2015 using 1.00 mL of sample diluted to 100.00 mL with deionized H2O. A 30 mL Teflon® bottle was rinsed twice with the diluted tank sample and then filled leaving as little headspace as possible. It was immediately removed from the Shielded Cells and transferred to refrigerated storage where it remained at 4 °C until final dilutions were made on October 20. A second portion of the cells diluted tank sample was poured into a shielded polyethylene bottle and transferred to Analytical Development for radiochemical analysis data needed for Hazardous Material Transportation calculations.

  2. Practical considerations in realizing a magnetic centrifugal mass filter

    SciTech Connect (OSTI)

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-12-15

    The magnetic centrifugal mass filter concept represents a variation on the plasma centrifuge, with applications that are particularly promising for high-throughput separation of ions with large mass differences. A number of considerations, however, constrain the parameter space in which this device operates best. The rotation speed, magnetic field intensity, and ion temperature are constrained by the ion confinement requirements. Collisions must also be large enough to eject ions, but small enough not to eject them too quickly. The existence of favorable regimes meeting these constraints is demonstrated by a single-particle orbit code. As an example of interest, it is shown that separation factors of about 2.3 are achievable in a single pass when separating Aluminum from Strontium ions.

  3. Theory on Measuring Orientation with MEMS Accelerometers in a Centrifuge

    E-Print Network [OSTI]

    Beemer, Ryan D.; Murali, Madhuri; Biscontin, Giovanna; Aubeny, Charles

    2015-03-21

    , in brief, examples include: evaluation of MEMS accelerometers in dynamic centrifuge testing (Stringer et al. 2010), seismic evaluation of pile reinforced slopes (Al-Defae and Knappett 2014), and measurement of pile rotation (Lau et al. 2014). However... Eq. 13 Since the across is dependent on ?n and ?n is dependent on across an iterative process is required for calculating sensor orientation. DISCUSSION Basket Orientation It is possible for the basket to rotate and not be at ? from vertical...

  4. On preparation of viscous pore fluids for dynamic centrifuge modelling

    E-Print Network [OSTI]

    Adamidis, O.; Madabhushi, S. P. G.

    2014-11-21

    upon cooling. Gelation temperatures for METHOCEL F50 are well above the expected range of temperatures in dynamic centrifuge modelling [Dow, 2002]. As a result, the gelation process is not consid- ered in this study. Measurements of viscosity... + e e · ki (24) where k is the coefficient of permeability and i is the hydraulic gradient. Since an upper estimate for shearing rate is sought after, the critical hydraulic gradient, for which the seepage forces become equal to the submerged weight...

  5. Mathematical modeling of mixer pump performance for agitation of radioactive slurries in one-million-gallon underground storage tanks at Hanford

    SciTech Connect (OSTI)

    Bamberger, J.A.; Eyler, L.L.; Dodge, R.E.

    1993-04-01

    The objective of this work is to analyze the Hanford Waste Vitrification Project (HWVP) feed preparation tank mixing pump agitation design. This was accomplished by (1) reviewing mixing pump characteristics, (2) performing computer modeling of jet mixing and particulate material transport, (3) evaluating the propensity of the tank and mixing pump design to maintain particulate material in the tank in a uniformly mixed state, and (4) identifying important design parameters required to ensure optimum homogeneity and solids content during batch transfers.

  6. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS WITH TANK 40 AND H CANYON NEPTUNIUM

    SciTech Connect (OSTI)

    Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M

    2009-04-28

    The Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 5 (SB5) from Tank 40. SB5 contains the contents of Tank 51 from November 2008, qualified by the Savannah River National Laboratory (SRNL) and the heel in Tank 40 remaining from Sludge Batch 4. Current Liquid Waste Operations (LWO) plans are to (1) decant supernatant from Tank 40 to remove excess liquid caused by a leaking slurry pump and (2) receive a Np stream from H Canyon It should be noted that the Np stream contains significant nitrate requiring addition of nitrite to Tank 40 to maintain a high nitrite to nitrate ratio for corrosion control. SRNL has been requested to qualify the proposed changes; determine the impact on DWPF processability in terms of hydrogen generation, rheology, etc.; evaluate antifoam addition strategy; and evaluate mercury stripping. Therefore, SRNL received a 3 L sample of Tank 40 following the transfer of Tank 51 to Tank 40 (Tank Farm Sample HTF-40-08-157 to be used in testing and to perform the required Waste Acceptance Product Specifications radionuclide analyses). Based on Tank Farm projections, SRNL decanted a portion* of the sample, added sodium nitrite, and added a Np solution from H Canyon representative of the Np to be dispositioned to Tank 40 (neutralized to 0.6 M excess hydroxide). The resulting material was used in a DWPF Chemical Process Cell (CPC) demonstration -- a Sludge Receipt and Adjustment Tank (SRAT) cycle and a Slurry Mix Evaporator (SME) cycle. Preliminary data from the demonstration has been reported previously. This report includes discussion of these results and additional results, including comparisons to Tank Farm projections and the SB5 demonstration.

  7. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  8. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  9. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  10. Evaluation of Tank 241-T-111 Level Data and In-Tank Video Inspection

    SciTech Connect (OSTI)

    Schofield, John S.; Feero, Amie J.

    2014-03-17

    This document summarizes the status of tank T-111 as of January 1, 2014 and estimates a leak rate and post-1994 leak volume for the tank.

  11. On reversal of centrifugal acceleration in special relativity

    E-Print Network [OSTI]

    Maxim Lyutikov

    2009-03-05

    The basic principles of General Theory of Relativity historically have been tested in gedanken experiments in rotating frame of references. One of the key issues, which still evokes a lot of controversy, is the centrifugal acceleration. Machabeli & Rogava (1994) argued that centrifugal acceleration reverse direction for particles moving radially with relativistic velocities within a "bead on a wire" approximation. We show that this result is frame-dependent and reflects a special relativistic dilution of time (as correctly argued by de Felice (1995)) and is analogous to freezing of motion on the black hole horizon as seen by a remote observer. It is a reversal of coordinate acceleration; there is no such effect as measured by a defined set of observers, e.g., proper and/or comoving. Frame-independent velocity of a "bead" with respect to stationary rotating observers increases and formally reaches the speed of light on the light cylinder. In general relativity, centrifugal force does reverse its direction at photon circular orbit, r=3M in Schwarzschild metric, as argued by Abramowicz (1990).

  12. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX SOLIDS WITH LIQUIDS IN TANK 50H

    SciTech Connect (OSTI)

    Poirier, M.

    2011-11-11

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). In the summer of 2011, Tank 50H contained two standard slurry pumps and two quad volute slurry pumps. Current requirements for mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste moved both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that were failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National Laboratory (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to mix solids with liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Small Column Ion Exchange Process (SCIX), SRNL computational fluid dynamics (CFD) modeling, Tank 50H operating experience, and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters of pumps needed to mix the solid particles with the liquid in Tank 50H. The analysis determined pump requirements to suspend the solids with no 'dead zones', but did not determine the pump requirements to produce a homogeneous suspension. In addition, the analysis determined the pump requirements to prevent the accumulation of a large amount of solid particles under the telescoping transfer pump. The conclusions from this analysis follow: (1) The analysis shows that three Quad Volute pumps should be able to suspend the solid particles expected ({approx}0.6 g/L insoluble solids, {approx}5 micron) in Tank 50H. (2) Three standard slurry pumps may not be able to suspend the solid particles in Tank 50H; (3) The ability of two Quad Volute pumps to fully suspend all of the solid particles in Tank 50H is marginal; and (4) One standard slurry pump should be able to achieve a cleaning radius larger than 43.5 feet, which will prevent large amounts of solid particles from settling under the telescoping transfer pump (TTP). The report recommends a pump operating approach to maximize the achieved cleaning radius.

  13. Comparative Analysis between Grundfos CRE 15-3 Variable Speed Centrifugal Pumps and a Worthington D-824 Constant Speed Centrifugal Pump in a KU Steam Power Plant Application

    E-Print Network [OSTI]

    Schmidt, Fabian Philip

    2014-05-31

    This document presents a comparative analysis between the use of a Grundfos CRE 15-3 variable speed centrifugal pump and a Worthington D-824 constant speed centrifugal pump in a steam power plant application. This was performed since, in many...

  14. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z. (Knoxville, TN)

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  15. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  16. ANALYSIS OF THE SALT FEED TANK CORE SAMPLE

    SciTech Connect (OSTI)

    Reigel, M.; Cheng, W.

    2012-01-26

    The Saltstone Production Facility (SPF) immobilizes and disposes of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site (SRS). Low-level waste (LLW) streams from processes at SRS are stored in Tank 50 until the LLW can be transferred to the SPF for treatment and disposal. The Salt Feed Tank (SFT) at the Saltstone Production Facility (SPF) holds approximately 6500 gallons of low level waste from Tank 50 as well as drain water returned from the Saltstone Disposal Facility (SDF) vaults. Over the past several years, Saltstone Engineering has noted the accumulation of solids in the SFT. The solids are causing issues with pump performance, agitator performance, density/level monitoring, as well as taking up volume in the tank. The tank has been sounded at the same location multiple times to determine the level of the solids. The readings have been 12, 25 and 15 inches. The SFT is 8.5 feet high and 12 feet in diameter, therefore the solids account for approximately 10 % of the tank volume. Saltstone Engineering has unsuccessfully attempted to obtain scrape samples of the solids for analysis. As a result, Savannah River National Laboratory (SRNL) was tasked with developing a soft core sampler to obtain a sample of the solids and to analyze the core sample to aid in determining a path forward for removing the solids from the SFT. The source of the material in the SFT is the drain water return system where excess liquid from the Saltstone disposal vaults is pumped back to the SFT for reprocessing. It has been shown that fresh grout from the vault enter the drain water system piping. Once these grout solids return to the SFT, they settle in the tank, set up, and can't be reprocessed, causing buildup in the tank over time. The composition of the material indicates that it is potentially toxic for chromium and mercury and the primary radionuclide is cesium-137. Qualitative measurements show that the material is not cohesive and will break apart with some force.

  17. TANK 40 FINAL SB6 CHEMICAL CHARACTERIZATION RESULTS

    SciTech Connect (OSTI)

    Bannochie, C.

    2010-08-13

    A sample of Sludge Batch 6 (SB6) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS), and a portion of the sample was designated for SB6 processing studies. The SB6 WAPS sample was also analyzed for chemical composition including noble metals and fissile composition, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to DWPF as SB6. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB6 sample was transferred from the shipping container into a 4-L high density polyethylene vessel and solids were allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 485 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples.

  18. Tank 49H salt batch supernate qualification for ARP/MCU

    SciTech Connect (OSTI)

    Nash, C. A.; Peters, T.; Fink, S.; Foster, T.

    2008-08-25

    This report covers the laboratory testing and analyses of Tank 49H Qualification Sample Sets A and C, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include checking that Tank 49H was well mixed after the last receipt of Tank 23H, characterizing Tank 49H supernate after solids are settled so that its composition can be compared to waste acceptance and hazard criteria, verifying actinide and strontium adsorption with a small scale test using monosodium titanate (MST) and filtration, checking MCU solvent performance when applied to the liquid produced from MST contact, and verifying that in-tank settling after a minimum of 30 days was at least as good or better at reducing solids content after a Tank 49H to Tank 50H transfer occurred than what was observed in less time in the lab. The first four items were covered by Sample Set A. The fifth item was covered by Sample Set C, which had several analyses after compositing as required in the nuclear criticality safety evaluation (NCSE).

  19. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  20. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  1. Tank Stabilization September 30, 1999 Summary

    Office of Environmental Management (EM)

    Type Consent Decree Legal Driver(s) RCRA Scope Summary Renegotiate a schedule to pump liquid radioactive hazardous waste from single-shell tanks to double-shell tanks...

  2. The Fuel Tank Consider a cylindrical fuel tank of radius r and length L, that is

    E-Print Network [OSTI]

    Fournier, John J.F.

    The Fuel Tank Question Consider a cylindrical fuel tank of radius r and length L, that is lying on its side. Suppose that fuel is being pumped into the tank at a rate q. At what rate is the fuel level rising? r L Solution Here is an end view of the tank. The shaded part of the circle is filled with fuel

  3. A RAM (Reliability, Availability and Maintainability) analysis of the proposed Tinker AFB Jet Fuel Storage Tank Facility. [Reliability, Availability, and Maintainability

    SciTech Connect (OSTI)

    Wright, R.E.; Sattison, M.B.

    1987-08-01

    The purpose of this study is to determine the Reliability, Availability and Maintainability (RAM) at the 30% design phase of a Jet Fuel Storage Tank Facility that is to be installed at the Tinker Air Force Base, Tulsa, Oklahoma. The Jet Fuel Storage Tank Facility was divided into four subsystems: Fuel Storage and Pipeline Transfer Pumps; Truck Unloading and Loading; Fire Protection (foam and water supply systems); and Electric Power. The RAM analysis was performed on four functions of these subsystems: transferring fuel from the two new 55K barrel storage tanks to the existing fuel pipeline system; transferring fuel from the two 55K barrel storage tanks to the aircraft refueler trucks; transferring fuel from the road transport trucks to the aircraft refueler trucks; and fire protection. A fault tree analysis was performed on each functional system. The quantification was performed for several mission times.

  4. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    SciTech Connect (OSTI)

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  5. Global Intermodal Tank Container Management for the Chemical Industry

    E-Print Network [OSTI]

    Erera, Alan

    transport multiple cargoes. Tank containers, also referred to as ISO tanks, intermodal tanks, or IMOGlobal Intermodal Tank Container Management for the Chemical Industry Alan L. Erera, Juan C on asset management problems faced by tank container operators, and formulates an operational tank

  6. Tank Characterization Report for Single Shell Tank 241-U-103

    SciTech Connect (OSTI)

    ADAMS, M.R.

    2000-02-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-U-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B.

  7. Tank 241-C-103 tank characterization plan. Revision 1

    SciTech Connect (OSTI)

    Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-01-24

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-103.

  8. Selection of potential IAEA inspection strategies involving cascade access at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP)

    SciTech Connect (OSTI)

    Not Available

    1981-04-13

    This report has been prepared as a US contribution to Team 4 of the Hexapartite Safeguards Project. It provides to the Team 4 participants one example of an approach, which has been used in the United States, to developing a range of safeguards strategies involving differing degrees of access to cascade areas of centrifuge enrichment plants. Its purpose is to facilitate the work of other Hexapartite participants in completing Task II of Team 4's terms of reference. The scope of this report is limited to identifying safeguards approaches for the Portsmouth Gas Centrifuge Enrichment Plant (GCEP) which involve differing degrees of access to the cascade area. This report provides a method for selecting cascade access inspection strategies at GCEP which appear promising for more detailed evaluation. It is quite important to note, however, that the effectiveness and practicability of these strategies have not been established at the present. In addition, some strategies have been included on the basis of very preliminary calculations and considerations which have not been validated. Thus, some of these strategies may ultimately be rejected because they prove to be impracticable. Considerations of cost and the possible transfer of information and technology related to the production of enriched uranium will also be pertinent in considering the degrees and frequency of access to the cascade areas of centrifuge enrichment plants. This report describes the process for combining technical measures, implementation approaches and objectives to arrive at the total number of theoretically possible combinations. It then describes how these combinations may be reduced in a series of steps to a number that is more manageable for detailed evaluation. The process is shown schematically.

  9. Onsite Wastewater Treatment Systems: Pump Tank 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23

    Pump tanks are concrete, fiberglass or polyethylene containers that collect wastewater to be dosed into the soil at intervals. This publication explains the design and maintenance of pump tanks, and it offers advice on what to do if a pump tank...

  10. Hanford Communities Issue Briefing on Tank Farms

    Broader source: Energy.gov [DOE]

    Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

  11. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  12. Adiabatic field-free alignment of asymmetric top molecules with an optical centrifuge

    E-Print Network [OSTI]

    Korobenko, A

    2015-01-01

    We use an optical centrifuge to align asymmetric top $\\mathrm{SO_2}$ molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment which persists after the molecules are released from the centrifuge. Periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 degrees, permanent field-free alignment offers new ways of controlling molecules with laser light.

  13. Centrifugal-Barrier Effects and Determination of the Interaction Radius

    E-Print Network [OSTI]

    Ning Wu

    2013-05-21

    The interaction radius of a resonance is an important physical quantity to describe the structure of a resonance. But, for a long time, physicists do not find a reliable way to measure the magnitude of the interaction radius of a resonance. In this paper, a method is proposed to measure the interaction radius in physics analysis. It is found that the centrifugal barrier effects have great influence to physical results obtained in the PWA fit, and the interaction radius of some resonances can be well measured in the fit.

  14. water tank 9/13/2007 1 4.1 Water tank

    E-Print Network [OSTI]

    Taylor, Peter

    water tank 9/13/2007 1 4.1 Water tank (a) A cylindrical tank contains 800 ml of water. At t=0 (min- utes) a hole is punched in the bottom, and water begins to flow out. It takes exactly 100 seconds for the tank to empty. Draw the graph of the amount z of water in the tank against time t. Explain the shape

  15. A Comparison of Immersive HMD, Fish Tank VR and Fish Tank with Haptics Displays for Volume Visualization

    E-Print Network [OSTI]

    Healey, Christopher G.

    A Comparison of Immersive HMD, Fish Tank VR and Fish Tank with Haptics Displays for Volume: (1) head-mounted display (HMD); (2) fish tank VR (fish tank); and (3) fish tank VR augmented its structure. Fish tank and haptic participants saw the entire volume on-screen and rotated

  16. Evaluation of remaining life of the double-shell tank waste systems

    SciTech Connect (OSTI)

    Schwenk, E.B.

    1995-05-04

    A remaining life assessment of the DSTs (double-shell tanks) and their associated waste transfer lines, for continued operation over the next 10 years, was favorable. The DST assessment was based on definition of significant loads, evaluation of data for possible material degradation and geometric changes and evaluation of structural analyses. The piping assessment was based primarily on service experience.

  17. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  18. Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

  19. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    DOE Patents [OSTI]

    Jubin, Robert T. (Powell, TN); Randolph, John D. (Maryville, TN)

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  20. Centrifuge study of DNAPL transport in granular media

    SciTech Connect (OSTI)

    Pantazidou, M.; Abu-Hassanein, Z.S.; Riemer, M.F.

    2000-02-01

    The migration potential of dense nonaqueous phase liquids (DNAPLs) in saturated soil was investigated experimentally using the elevated acceleration field of the geotechnical centrifuge. The transport of the DNAPL was monitored with a video camera in flight, through the transparent wall of the sample box. By using measurements of the velocity of the DNAPL front from models corresponding to the same prototype and applying the technique of modeling of models, the stable infiltration of a low density, high viscosity DNAPL in saturated homogeneous media was shown to scale properly in the centrifuge. The visual observations confirmed the correlations between the DNAPL physicochemical properties and transport patterns, which have important consequences for the characterization of DNAPL-contaminated sites. Infiltrating DNAPLs of high density and low viscosity displace water in an unstable manner and create extensive contaminated areas characterized by non-uniform DNAPL distributions. In contrast, the displacement of water by DNAPLs of low density and high viscosity is stable and efficient, and hence, results in smaller contaminated areas of high DNAPL saturation. Numerical simulations yielded predictions and sensitivity analysis results that agreed well with these experimental observations.

  1. Centrifugal Breakout of Magnetically Confined Line-Driven Stellar Winds

    E-Print Network [OSTI]

    A. ud-Doula; R. H. D. Townsend; S. P. Owocki

    2006-02-15

    We present 2D MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the star's rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value), and also a large magnetic confinement parameter, $\\eta_{\\ast} \\equiv B_{\\ast}^2 R_{\\ast}^{2} / \\dot{M} V_{\\infty} = 600$. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outwards. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back on to the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outwards, leading to episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly $10^{8}$K, high enough to emit hard (several keV) X-rays. Such \\emph{centrifugal mass ejection} represents a novel mechanism for driving magnetic reconnection, and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like $\\sigma$ Ori E.

  2. LISSAT Analysis of a Generic Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Lambert, H; Elayat, H A; O?Connell, W J; Szytel, L; Dreicer, M

    2007-05-31

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for use in designing and evaluating safeguards systems for current and future plants in the nuclear power fuel cycle. The DOE is engaging several DOE National Laboratories in efforts applied to safeguards for chemical conversion plants and gaseous centrifuge enrichment plants. As part of the development, Lawrence Livermore National Laboratory has developed an integrated safeguards system analysis tool (LISSAT). This tool provides modeling and analysis of facility and safeguards operations, generation of diversion paths, and evaluation of safeguards system effectiveness. The constituent elements of diversion scenarios, including material extraction and concealment measures, are structured using directed graphs (digraphs) and fault trees. Statistical analysis evaluates the effectiveness of measurement verification plans and randomly timed inspections. Time domain simulations analyze significant scenarios, especially those involving alternate time ordering of events or issues of timeliness. Such simulations can provide additional information to the fault tree analysis and can help identify the range of normal operations and, by extension, identify additional plant operational signatures of diversions. LISSAT analyses can be used to compare the diversion-detection probabilities for individual safeguards technologies and to inform overall strategy implementations for present and future plants. Additionally, LISSAT can be the basis for a rigorous cost-effectiveness analysis of safeguards and design options. This paper will describe the results of a LISSAT analysis of a generic centrifuge enrichment plant. The paper will describe the diversion scenarios analyzed and the effectiveness of various safeguards systems alternatives.

  3. Centrifugal compression of soft particle packings - theory and experiment

    E-Print Network [OSTI]

    K. N. Nordstrom; E. Verneuil; W. G. Ellenbroek; T. C. Lubensky; J. P. Gollub; D. J. Durian

    2010-09-15

    An exact method is developed for computing the height of an elastic medium subjected to centrifugal compression, for arbitrary constitutive relation between stress and strain. Example solutions are obtained for power-law media and for cases where the stress diverges at a critical strain -- for example as required by packings composed of deformable but incompressible particles. Experimental data are presented for the centrifugal compression of thermo-responsive N-isopropylacrylamide (NIPA) microgel beads in water. For small radial acceleration, the results are consistent with Hertzian elasticity, and are analyzed in terms of the Young elastic modulus of the bead material. For large radial acceleration, the sample compression asymptotes to a value corresponding to a space-filling particle volume fraction of unity. Therefore we conclude that the gel beads are incompressible, and deform without deswelling. In addition, we find that the Young elastic modulus of the particulate gel material scales with cross-link density raised to the power 3.3+-0.8, somewhat larger than the Flory expectation.

  4. Phase-separation of miscible liquids in a centrifuge

    E-Print Network [OSTI]

    Yoav Tsori; Ludwik Leibler

    2007-12-18

    We show that a liquid mixture in the thermodynamically stable homogeneous phase can undergo a phase-separation transition when rotated at sufficiently high frequency $\\omega$. This phase-transition is different from the usual case where two liquids are immiscible or where the slow sedimentation process of one component (e.g. a polymer) is accelerated due to centrifugation. For a binary mixture, the main coupling is due to a term $\\propto \\Delta\\rho(\\omega r)^2$, where $\\Delta\\rho$ is the difference between the two liquid densities and $r$ the distance from the rotation axis. Below the critical temperature there is a critical rotation frequency $\\omega_c$, below which smooth density gradients occur. When $\\omega>\\omega_c$, we find a sharp interface between the low density liquid close to the center of the centrifuge and a high density liquid far from the center. These findings may be relevant to various separation processes and to the control of chemical reactions, in particular their kinetics.

  5. Hanford single-shell tank grouping study

    SciTech Connect (OSTI)

    Remund, K.M.; Anderson, C.M.; Simpson, B.C.

    1995-10-01

    A tank grouping study has been conducted to find Hanford single-shell tanks with similar waste properties. The limited sampling resources of the characterization program could be allocated more effectively by having a better understanding of the groups of tanks that have similar waste types. If meaningful groups of tanks can be identified, tank sampling requirements may be reduced, and the uncertainty of the characterization estimates may be narrowed. This tank grouping study considers the analytical sampling information and the historical information that is available for all single-shell tanks. The two primary sources of historical characterization estimates and information come from the Historical Tank Content Estimate (HTCE) Model and the Sort on Radioactive Waste Tanks (SORWT) Model. The sampling and historical information are used together to come up with meaningful groups of similar tanks. Based on the results of analyses presented in this report, credible tank grouping looks very promising. Some groups defined using historical information (HTCE and SORWT) correspond well with those based on analytical data alone.

  6. Hanford Site Waste Storage Tank Information Notebook

    SciTech Connect (OSTI)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*.

  7. Ferrocyanide tank safety program: Cesium uptake capacity of simulated ferrocyanide tank waste. Final report

    SciTech Connect (OSTI)

    Burgeson, I.E.; Bryan, S.A.

    1995-07-01

    The objective of this project is to determine the capacity for {sup 137}Cs uptake by mixed metal ferrocyanides present in Hanford Site waste tanks, and to assess the potential for aggregation of these {sup 137}Cs-exchanged materials to form ``hot-spots`` in the tanks. This research, performed at Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company, stems from concerns regarding possible localized radiolytic heating within the tanks. After ferrocyanide was added to 18 high-level waste tanks in the 1950s, some of the ferrocyanide tanks received considerable quantities of saltcake waste that was rich in {sup 137}Cs. If radioactive cesium was exchanged and concentrated by the nickel ferrocyanide present in the tanks, the associated heating could cause tank temperatures to rise above the safety limits specified for the ferrocyanide-containing tanks, especially if the supernate in the tanks is pumped out and the waste becomes drier.

  8. a p p l i c a t i o n n o t e Removal of endotoxin from monoclonal antibodies using VivapureTM centrifugal

    E-Print Network [OSTI]

    Lebendiker, Mario

    TM centrifugal ion exchange membrane devices Brendan Fish, Karen Bannister and Emma Tribbeck Cambridge Antibody chromatography, ultrafiltration, hydrophobic interaction chromatography, sucrose gradient centrifugation Removal of endotoxin from monoclonal antibodies using VivapureTM centrifugal ion exchange membrane devices

  9. Performance and Dynamic Stability of General-Path Centrifugal Pendulum Vibration

    E-Print Network [OSTI]

    Shaw, Steven W.

    Performance and Dynamic Stability of General-Path Centrifugal Pendulum Vibration Absorbers A. S. Alsuwaiyan and S. W. Shaw Department of Mechanical Engineering Michigan State University, East Lansing, MI 48824, USA RUNNING HEADLINE: GENERAL PATH CPVAS. #12;Abstract Centrifugal pendulum vibration absorbers

  10. Integral methods for flow in a conical centrifuge Digby D. Symons n

    E-Print Network [OSTI]

    Symons, Digby

    Available online 13 April 2011 Keywords:: Centrifugation Films Fluid mechanics Laminar flow Mathematical. Both papers consider a Newtonian viscous, laminar flow where the film thickness h is much smaller thanIntegral methods for flow in a conical centrifuge Digby D. Symons n University of Cambridge

  11. The theory of the centrifugal mechanism of feeding-in in bent crystals

    E-Print Network [OSTI]

    Valery M. Biryukov

    2001-10-18

    For a particle channeled in the bent crystal planes (axes), the phenomenon of "bending dechanneling", which is a particle transition to a random state due to centrifugal force, is well known. We consider an analytical theory of the reverse phenomenon, i.e., feeding from a random state to a channeled state due to centrifugal force in a crystal with variable curvature.

  12. he centrifuge tube was the first that neuroscientist Philip Sabes had held in

    E-Print Network [OSTI]

    Shenoy, Krishna V.

    T he centrifuge tube was the first that neuroscientist Philip Sabes had held in his hand for 15 and no bench-top centrifuge. The centre's one ice machine spits out large cubes instead of the crushed ice or develop a new skill. Now though, advances in a five-year-old field called optogenetics are convincing

  13. Supplementary Information Single-Step Fabrication of Quantum Funnels via Centrifugal Colloidal Casting of

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    1 Supplementary Information Single-Step Fabrication of Quantum Funnels via Centrifugal Colloidal Science, Daejeon, 305- 701, Republic of Korea 5 Department of Chemistry, Korea Advanced Institute processing. #12;4 Supplementary Figure 3. GISAXS intensity pattern of PbS CQD film made by centrifugal

  14. Numerical simulation of the equilibrium and transport of a centrifugally confined plasma

    E-Print Network [OSTI]

    Hassam, Adil

    of plasmas along the magnetic field.1,2 Configurations that could be used for thermonuclear fusion plasmas centrifugal forces from supersonic plasma rotation to augment the conventional magnetic confinement of fusion confinement as applied to fusion devices. The centrifugal force constitutes an additional ``knob'' and is used

  15. Centrifuge enrichment plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are considered. (Contains a minimum of 172 citations and includes a subject term index and title list.)

  16. Centrifugal Pump for a 20-m/s, 1-cm-Diameter Mercury Jet

    E-Print Network [OSTI]

    McDonald, Kirk

    Centrifugal Pump for a 20-m/s, 1-cm-Diameter Mercury Jet Ernst de Haas, Kirk T. McDonald Joseph) centrifugal pump from R.S. Cor- coran, powered by a 20-hp, 480 V motor from Baldor. A photograph of this pump

  17. Centrifuge enrichment plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1993-09-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are considered. (Contains a minimum of 171 citations and includes a subject term index and title list.)

  18. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect (OSTI)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  19. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  20. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  1. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    SciTech Connect (OSTI)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  2. 10-5 10-4 10-3 10-2 10-1 100 101 Centrifugal

    E-Print Network [OSTI]

    California at San Diego, University of

    Landau Centrifugal Separation Impurity Drag Damping 20% imp5% imp The laser-cooled and laser). At ultra-low temperatures, the various species become separated radially due to centrifugal effects

  3. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  4. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  5. Hanford waste tank bump accident analysis

    SciTech Connect (OSTI)

    MALINOVIC, B.

    2003-03-21

    This report provides a new evaluation of the Hanford tank bump accident analysis (HNF-SD-Wh4-SAR-067 2001). The purpose of the new evaluation is to consider new information and to support new recommendations for final safety controls. This evaluation considers historical data, industrial failure modes, plausible accident scenarios, and system responses. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. A tank bump is distinguished from a gas release event in two respects: First, the physical mechanism for release involves vaporization of locally superheated liquid, and second, gases emitted to the head space are not flammable. For this reason, a tank bump is often called a steam bump. In this report, even though non-condensible gases may be considered in bump models, flammability and combustion of emitted gases are not. The analysis scope is safe storage of waste in its current configuration in single-shell tanks (SSTs) and double-shell tanks (DSTs). The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential, application of the criteria to the tanks, and accident analysis of bump scenarios. The result of consequence analysis is the mass of waste released from tanks for specific scenarios where bumps are credible; conversion to health consequences is performed elsewhere using standard Hanford methods (Cowley et al. 2000). The analysis forms a baseline for future extension to consider waste retrieval.

  6. Integrated heat exchanger design for a cryogenic storage tank

    SciTech Connect (OSTI)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U.; Tomsik, T. M.; Conyers, H. J.

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  7. Investigating leaking underground storage tanks 

    E-Print Network [OSTI]

    Upton, David Thompson

    1989-01-01

    general methodology for many geologic regions where stratigraphic and hydrogeologic conditions are likely to be similar. Ultimately, the goal of any investigator or owner is to obtain the necessary information in order to satisfy the concerns... INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989...

  8. DOE Vehicular Tank Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9. Technology ValidationVehicular Tank

  9. Study of JET Soft Housekeeping Waste Volume Reduction by Plasma Arc Centrifuge and Gasification in Countercurrent Regime Methods

    E-Print Network [OSTI]

    Study of JET Soft Housekeeping Waste Volume Reduction by Plasma Arc Centrifuge and Gasification in Countercurrent Regime Methods

  10. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX MISCIBLE AND IMMISCIBLE LIQUIDS IN TANK 50H

    SciTech Connect (OSTI)

    Poirier, M.

    2011-06-15

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). At present, Tank 50H contains two standard slurry pumps and two Quad Volute slurry pumps. Current requirements and mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste would like to move one or both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that are failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to blend miscible and immiscible liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Salt Disposition Integration Project (SDIP) and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters needed to blend the tank contents. The conclusions from this analysis are: (1) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will be able to blend miscible liquids (i.e., salt solution) in Tank 50H within 4.4 hours. (2) Two rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 3.1 hours. (3) Three rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 2.5 hours. (4) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will disperse Isopar L{reg_sign} droplets that are less than or equal to 15 micron in diameter. If the droplets are less than 15 micron, they will be dispersed within 4.4 hours. Isopar L{reg_sign} provides a lower bound on the maximum size of droplets that will be dispersed by the slurry pumps in Tank 50H. (5) Two rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron within 3.1 hours, and three rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron within 2.5 hours. (6) If the Isopar L{reg_sign} droplets are drawn through the pump, they will be further reduced in size, with a maximum drop size less than 15 micron.

  11. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  12. The centrifugal force reversal and X-ray bursts

    E-Print Network [OSTI]

    M. A. Abramowicz; W. Kluzniak; J. -P. Lasota

    2001-06-15

    Heyl (2000) made an interesting suggestion that the observed shifts in QPO frequency in type I X-ray bursts could be influenced by the same geometrical effect of strong gravity as the one that causes centrifugal force reversal discovered by Abramowicz and Lasota (1974). However, his main result contains a sign error. Here we derive the correct formula and conclude that constraints on the M(R) relation for neutron stars deduced from the rotational-modulation model of QPO frequency shifts are of no practical interest because the correct formula implies a weak condition R* > 1.3 Rs, where Rs is the Schwarzschild radius. We also argue against the relevance of the rotational-modulation model to the observed frequency modulations.

  13. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  14. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  15. Concrete Cleaning, Inc. centrifugal shot blaster: Baseline report; Summary

    SciTech Connect (OSTI)

    NONE

    1997-07-31

    The centrifugal shot blaster is an electronically operated shot-blast machine that removes layer of concrete of varying depths. Hardened steel shot propelled at a high rate of speed abrades the surface of the concrete. The depth of material removed is determined by the rate of speed the machine is traveling and the volume of shot being fired into the blast chamber. The steel shot is reused until it is pulverized to dust, which is deposited in the waste container with the concrete being removed. Debris is continually vacuumed by a large dust collection system attached to the shot blaster. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  16. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    SciTech Connect (OSTI)

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.

  17. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    SciTech Connect (OSTI)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L. [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test. (authors)

  18. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 5, SEPTEMBER 1999 567 Centrifugal Compressor Surge and Speed Control

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 5, SEPTEMBER 1999 567 Centrifugal of the compressor. First a low-order centrifugal compressor model is presented where the states are mass flow] showed that it is also applicable to centrifugal compressors. The model has two states, normalized mass

  19. PHYSICAL REVIEW E 89, 013019 (2014) Confined rotating convection with large Prandtl number: Centrifugal effects on wall modes

    E-Print Network [OSTI]

    Marques, Francisco

    2014-01-01

    : Centrifugal effects on wall modes Jezabel Curbelo Instituto de Ciencias Matem´aticas (CSIC-UAM-UC3M-to-height aspect ratio of = 4 for fluids with large Prandtl number is studied numerically. Centrifugal buoyancy of the centrifugal buoyancy effects with significant dynamical consequences, which are detailed. DOI: 10.1103/Phys

  20. TDR System for Hydraulic Characterization of Unsaturated Soils in the Centrifuge John S. McCartney1

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    TDR System for Hydraulic Characterization of Unsaturated Soils in the Centrifuge John S. McCartney1@mail.utexas.edu Abstract A centrifuge permeameter has been developed to provide expedited determination of the hydraulic properties of unsaturated soils. The centrifuge permeameter is an acrylic cylinder mounted on a swinging

  1. Instability of a Vacuum Arc Centrifuge M. J. Hole, R. S. Dallaqua, S. W. Simpson* and E. Del Bosco.

    E-Print Network [OSTI]

    Instability of a Vacuum Arc Centrifuge M. J. Hole, R. S. Dallaqua, S. W. Simpson* and E. Del Bosco, SP, Brazil Abstract. Ever since conception of the Vacuum Arc Centrifuge (VAC) in 1980, periodic predictions and compare with detailed experiments conducted on the PCEN centrifuge at the Brazilian National

  2. Multi-function Waste Tank Facility path forward engineering analysis -- Technical Task 3.6, Estimate of operational risk in 200 West Area

    SciTech Connect (OSTI)

    Coles, G.A.

    1995-04-28

    Project W-0236A has been proposed to provide additional waste tank storage in the 200 East and 200 West Areas. This project would construct two new waste tanks in the 200 West Area and four new tanks in the 200 East Area, and a related project (Project W-058) would construct a new cross-site line. These projects are intended to ensure sufficient space and flexibility for continued tank farm operations, including tank waste remediation and management of unforeseen contingencies. The objective of this operational risk assessment is to support determination of the adequacy of the free-volume capacity provided by Projects W-036A and W-058 and to determine related impacts. The scope of the assessment is the 200 West Area only and covers the time period from the present to the year 2005. Two different time periods were analyzed because the new cross-site tie line will not be available until 1999. The following are key insights: success of 200 West Area tank farm operations is highly correlated to the success of the cross-site transfer line and the ability of the 200 East Area to receive waste from 200 West; there is a high likelihood of a leak on a complexed single-shell tank in the next 4 years (sampling pending); there is a strong likelihood, in the next 4 years, that some combination of tank leaks, facility upsets, and cross-site line failure will require more free tank space than is currently available in Tank 241-SY-102; in the next 4 to 10 years, there is a strong likelihood that a combination of a cross-site line failure and the need to accommodate some unscheduled waste volume will require more free tank space than is presently available in Tank 241-SY-102; the inherent uncertainty in volume projections is in the range of 3 million gallons; new million-gallon tanks increase the ability to manage contingencies and unplanned events.

  3. Tank characterization report for single-shell tank 241-B-111

    SciTech Connect (OSTI)

    Benar, C.J., Westinghouse Hanford

    1996-06-06

    This tank characterization report for Tank 241-B-111 was initially released as PNL-10099. This document is now being released as WHC-SD- WM-ER-549 in order to accommodate internet publishing.

  4. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  5. ICPP tank farm closure study. Volume 1

    SciTech Connect (OSTI)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  6. FY 1996 Tank waste analysis plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-09-18

    This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

  7. Developing and Testing an Alkaline-Side Solvent Extraction Process for Technetium Separation from Tank Waste

    SciTech Connect (OSTI)

    Leonard, Ralph A.; Conner, Cliff; Liberatore, Matthew W.; Bonnesen, Peter V.; Presley, Derek J.; Moyer, Bruce A.; Lumetta, Gregg J. )

    1998-11-01

    Engineering development and testing of the SRTALK solvent extraction process are discussed in this paper. This process provides a way to carry out alkaline-side removal and recovery of technetium in the form of pertechnetate anion from nuclear waste tanks within the DOE complex. The SRTALK extractant consists of a crown ether, bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6, in a modifier, tributyl phosphate, and a diluent, Isopar-L. The SRTALK flowsheet given here separates technetium form the waste and concentrates it by a factor of ten to minimize the load on downstream evaporator for the technetium effluent. In this work, we initially generated and correlated the technetium extraction data, measured the dispersion number for various processing conditions, and determined hydraulic performance in a single-stage 2-cm centrifugal contactor. Then we used extraction-factor analysis, single-stage contactor tests, and stage-to-stage process calculations to develop a SRTALK flowsheet . Key features of the flowsheet are (1) a low organic-to-aqueous (O/A) flow ratio in the extraction section and a high O/A flow ratio in the strip section to concentrate the technetium and (2) the use of a scrub section to reduce the salt load in the concentrated technetium effluent. Finally, the SRTALK process was evaluated in a multistage test using a synthetic tank waste. This test was very successful. Initial batch tests with actual waste from the Hanford nuclear waste tanks show the same technetium extractability as determined with the synthetic waste feed. Therefore, technetium removal from actual tank wastes should also work well using the SRTALK process.

  8. High-level waste tank farm set point document

    SciTech Connect (OSTI)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  9. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-12-15

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.

  10. Hanford Single-Shell Tank Integrity Program

    Office of Environmental Management (EM)

    on 241-S-102 * Estimates of detection capability ranged from 800 to 2,000 gallons - Surface Geophysical Exploration (SGE) Technologies * Demonstrated in 241-C Tank Farm...

  11. Characterization of Hanford tank wastes containing ferrocyanides

    SciTech Connect (OSTI)

    Tingey, J.M.; Matheson, J.D.; McKinley, S.G.; Jones, T.E.; Pool, K.H.

    1993-02-01

    Currently, 17 storage tanks on the Hanford site that are believed to contain > 1,000 gram moles (465 lbs) of ferrocyanide compounds have been identified. Seven other tanks are classified as ferrocyanide containing waste tanks, but contain less than 1,000 gram moles of ferrocyanide compounds. These seven tanks are still included as Hanford Watch List Tanks. These tanks have been declared an unreviewed safety question (USQ) because of potential thermal reactivity hazards associated with the ferrocyanide compounds and nitrate and nitrite. Hanford tanks with waste containing > 1,000 gram moles of ferrocyanide have been sampled. Extensive chemical, radiothermical, and physical characterization have been performed on these waste samples. The reactivity of these wastes were also studied using Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis. Actual tank waste samples were retrieved from tank 241-C-112 using a specially designed and equipped core-sampling truck. Only a small portion of the data obtained from this characterization effort will be reported in this paper. This report will deal primarily with the cyanide and carbon analyses, thermal analyses, and limited physical property measurements.

  12. EMAB Tank Waste Subcommittee Report Presentation

    Office of Environmental Management (EM)

    EM Environmental Management Tank Waste Subcommittee (EM- -TWS) TWS) Report to the Report to the Environmental Management Advisory Board Environmental Management Advisory Board FY...

  13. Draft Tank Closure & Waste Management EIS - Summary

    Office of Environmental Management (EM)

    91 Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington Summary U.S. Department of Energy October 2009 Cover Sheet...

  14. Shark Tank: Residential Energy Efficiency Edition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition Call Slides and Discussion Summary June 11, 2015 Agenda Introduction and Better Buildings...

  15. Tank Manufacturing, Testing, Deployment and Field Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing, Testing, Field Performance, and Certification International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings CNG and Hydrogen Tank Safety, R&D, and Testing...

  16. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect (OSTI)

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  17. 45Fuel Level in a Spherical Tank Spherical tanks are found in many

    E-Print Network [OSTI]

    45Fuel Level in a Spherical Tank Spherical tanks are found in many different situations, from the storage of cryogenic liquids, to fuel tanks. Under the influence of gravity, or acceleration, the liquid then be designed to measure where the surface of the liquid is, and from this derive h. Problem 1 - Slice the fluid

  18. Tank characterization report for single-shell tank 241-BY-112

    SciTech Connect (OSTI)

    Baldwin, J.H.

    1997-08-22

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-112. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated a Ferrocyanide Watch List tank.)

  19. Radioactive air emissions notice of construction use of a portable exhauster on single shell tanks (SSTs) during salt well pumping

    SciTech Connect (OSTI)

    GRANDO, C.J.

    1999-11-18

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping.

  20. Evidence for Centrifugal Barrier in X-ray Pulsar GRO J1744-28

    E-Print Network [OSTI]

    Wei Cui

    1997-12-13

    We present further observational evidence of the effects of a centrifugal barrier in GRO J1744-28, based on continued monitoring of the source with RXTE. For X-ray pulsars, the centrifugal barrier manifests itself in the cessation of pulsed emission when the source becomes faint. We show that such phenomenon occurred repeatedly for GRO J1744-28, following the decay of two X-ray outbursts. This has allowed a direct measurement of the dipole field strength for this pulsar. Here we argue that some of the other peculiar properties observed of this source may also be related to an active centrifugal barrier.