Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LINEAR ACCELERATOR  

DOE Patents (OSTI)

Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

Christofilos, N.C.; Polk, I.J.

1959-02-17T23:59:59.000Z

2

Focusing in Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

McMillan, E. M.

1950-08-24T23:59:59.000Z

3

North Linear Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

4

Portable Linear Accelerator Development  

Science Conference Proceedings (OSTI)

This report describes Minac-3, a miniaturized linear accelerator system. It covers the current equipment capabilities and achievable modifications, applications information for prospective users, and technical information on high-energy radiography that is useful for familiarization and planning. The design basis, development, and applications history of Minac are also summarized.

1982-12-01T23:59:59.000Z

5

HEAVY ION LINEAR ACCELERATOR  

DOE Patents (OSTI)

A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

Van Atta, C.M.; Beringer, R.; Smith, L.

1959-01-01T23:59:59.000Z

6

Linear induction accelerator  

DOE Patents (OSTI)

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

7

Linear Accelerator | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage alternating electric fields in a linear accelerator (linac; photo below)....

8

History of Proton Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

Alvarez, L. W.

1987-01-00T23:59:59.000Z

9

Berkeley Proton Linear Accelerator  

DOE R&D Accomplishments (OSTI)

A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

1953-10-13T23:59:59.000Z

10

Acceleration Modules in Linear Induction Accelerators  

E-Print Network (OSTI)

Linear Induction Accelerator (LIA) is a unique type of accelerator, which is capable to accelerate kiloAmpere charged particle current to tens of MeV energy. The present development of LIA in MHz busting mode and successful application into synchrotron broaden LIAs usage scope. Although transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. Authors examined the transition of the magnetic cores functions during LIA acceleration modules evolution, distinguished transformer type and transmission line type LIA acceleration modules, and reconsidered several related issues based on transmission line type LIA acceleration module. The clarified understanding should be helpful in the further development and design of the LIA acceleration modules.

Wang, Shaoheng

2013-01-01T23:59:59.000Z

11

Cast dielectric composite linear accelerator  

DOE Patents (OSTI)

A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

12

Annual Planning Summaries: Stanford Linear Accelerator (SLAC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Linear Accelerator (SLAC) Annual Planning Summaries: Stanford Linear Accelerator (SLAC) Document(s) Available For Download January 11, 2012 2012 Annual Planning Summary...

13

Voltage regulation in linear induction accelerators  

DOE Patents (OSTI)

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor when it is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, W.M.

1991-03-19T23:59:59.000Z

14

Voltage regulation in linear induction accelerators  

DOE Patents (OSTI)

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

15

Independent Oversight Inspection, Stanford Linear Accelerator Center -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Linear Accelerator Stanford Linear Accelerator Center - January 2007 Independent Oversight Inspection, Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security, conducted an inspection of environment, safety, and health (ES&H) programs at the DOE Stanford Linear Accelerator Center (SLAC) during October and November 2006. The inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. Since the 2004 Type A electrical accident, SSO and SLAC have made improvements in many aspects of ES&H programs. However, the deficiencies in

16

2011 Annual Planning Summary for Stanford Linear Accelerator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Linear Accelerator Center Site Office (SLAC) 2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) The ongoing and projected Environmental...

17

High-gradient compact linear accelerator  

DOE Patents (OSTI)

A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

Carder, B.M.

1995-12-31T23:59:59.000Z

18

Oak Ridge 25URC Tandem Accelerator 2008 SNEAP Lab Report  

Science Conference Proceedings (OSTI)

During FY 2008, the 25URC operated for slightly over 3,000 research hours. The radioactive species {sup 80}Ge and {sup 17,18}F accounted for 763 of these hours. This included an experiment using {sup 17}F which was only possible due to an improvement of a factor of 50 in beam intensity over our previous facility record. Twenty stable beam species were provided this year. Operation for the experimental program was at terminal potentials from 2.02 to 23.8 MV. Approximately 200 hours of conditioning were done to return the machine to operation after tank openings. There were six tank openings during the year: three scheduled for general maintenance and three unscheduled. Two of the unscheduled openings were required to correct shorting rod issues and the other was to reestablish communication with one of the major dead sections. On July 28, an event happened that caused all accelerators at the Holifield Radioactive Ion Beam Facility (HRIBF) to suspend operation. At approximately 8 AM on that Monday, during operations with approximately 12 {micro}A of 50-MeV protons on a uranium carbide target, delivering neutron-rich {sup 81}Zn beam to the new Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS), a radiological control technician (RCT) reported higher than normal radiation levels just outside the shield door to the IRIS1 vault (the room in which RIBs are produced at HRIBF). The measured dose rate equivalent was 4 mrem/hr. The presence of radiological contamination on the floor just outside the shield door was subsequently noted, as was the possible presence of airborne radioactivity. These observations were reported to facility management. Accelerators were put in standby immediately and the building evacuated. The event was subsequently declared a laboratory operational emergency. Parts of the building were cleared for reentry to collect belongings on Monday afternoon. The entire building was cleared for reoccupation on Tuesday morning after a detailed radiological survey found no contamination outside the shielded vaults. No decontamination was required. No individual received any detectable radiological dose as a result of this event. The 25URC tandem accelerator was given permission to resume operation with stable beams in early September, but radioactive ion production is still not allowed. Subsequent analysis indicated a release that consisted entirely of noble gasses (Xe and Kr isotopes). We believe we have identified two unrelated failures, one associated with the HVAC system and the other with the roughing system exhaust which accounts for both the escape of noble gasses into the IRIS1 vault and their migration outside the vault. An investigation team report is expected by October 24. At that time, corrective actions will be determined and the path to future radioactive ion beam production will be known. The break from operations allowed a few upgrades to be implemented. The most notable was the installation and commissioning of a SNICS ion source purchased from National Electrostatics Corporation (NEC). The SNICS replaced the old Alton/Aarhus source that we have used for many years. An ANU style gas cathode holder was purchased also but has not yet been implemented. The first beams have been produced by the source and the biggest problem encountered was reducing the beam for very low current experiments. A new power supply for the injection magnet was installed during this period also. Radioactive ion beam (RIB) development at the High Power Target Laboratory (HPTL) has been delayed this year while installing the platforms, conduits and equipment for the second Injector for Radioactive Ion Species (IRIS2) which is co-located with the HPTL facility. Therefore, the majority of development activities have been performed at the two off-line ion source test facilities (ISTF1 and ISTF2) and the On-Line Test Facility (OLTF). Both test facilities have been developing systems which will eventually be used with IRIS2. Two new tunable Ti:Sapphire lasers have been ordered for continuing development of an ion source

Meigs, Martha J [ORNL; Juras, Raymond C [ORNL

2011-01-01T23:59:59.000Z

19

The Klynac: An Integrated Klystron and Linear Accelerator  

SciTech Connect

The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system

Potter, J. M., Schwellenbach, D., Meidinger, A.

2012-08-07T23:59:59.000Z

20

Drift tube suspension for high intensity linear accelerators  

DOE Patents (OSTI)

The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

1980-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Variable-energy drift-tube linear accelerator  

SciTech Connect

A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM); Potter, James M. (Los Alamos, NM); Stovall, James E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

22

Drift tube suspension for high intensity linear accelerators  

SciTech Connect

The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

Liska, Donald J. (Los Alamos, NM); Schamaun, Roger G. (Los Alamos, NM); Clark, Donald C. (Los Alamos, NM); Potter, R. Christopher (Los Alamos, NM); Frank, Joseph A. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

23

Exact acceleration of linear object detectors  

Science Conference Proceedings (OSTI)

We describe a general and exact method to considerably speed up linear object detection systems operating in a sliding, multi-scale window fashion, such as the individual part detectors of part-based models. The main bottleneck of many of those systems ... Keywords: linear object detection, part-based models

Charles Dubout; Fran$#231;ois Fleuret

2012-10-01T23:59:59.000Z

24

LOADED WAVE GUIDES FOR LINEAR ACCELERATORS  

DOE Patents (OSTI)

A periodically loaded waveguide having substantially coaxially arranged elements which provide an axial field for the acceleration of electrons is described. Radiofrequency energy will flow in the space between the inner wall of an outer guide and the peripheries of equally spaced irises or washes arranged coaxially with each other and with the outer guide, where the loading due to the geometry of the irises is such as to reduce the phase velocity of the r-f energy flowing in the guide from a value greater than that of light to the velocity of light or less.

Walkinshaw, W.; Mullett, L.B.

1959-12-01T23:59:59.000Z

25

Considerations for a Dielectric-based Two-beam-accelerator Linear...  

NLE Websites -- All DOE Office Websites (Extended Search)

WEPE033 Proceedings of IPAC'10, Kyoto, Japan 3428 03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques A03 Linear Colliders high coupling coefficient...

26

Radio-frequency quadrupole resonator for linear accelerator  

DOE Patents (OSTI)

An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

Moretti, A.

1982-10-19T23:59:59.000Z

27

RF and Beam Diagnostic Instrumentation at the Advanced Photon Source (APS) Linear Accelerator (Linac)  

E-Print Network (OSTI)

RF and Beam Diagnostic Instrumentation at the Advanced Photon Source (APS) Linear Accelerator (Linac)

Grelick, A E; Arnold, N; White, M

1996-01-01T23:59:59.000Z

28

Construction, Commissioning and Operational Experience of the Advanced Photon Source (APS) Linear Accelerator  

E-Print Network (OSTI)

Construction, Commissioning and Operational Experience of the Advanced Photon Source (APS) Linear Accelerator

White, M; Berg, W; Cours, A; Fuja, R; Grelick, A E; Ko, K; Qian, Y L; Russell, T; Sereno, N S; Wesolowski, W

1996-01-01T23:59:59.000Z

29

Stanford Linear Accelerator Center Stanford Synchrotron Radiation Laboratory  

E-Print Network (OSTI)

1 of 13 10/16/2006 FACILITY EMERGENCY PLAN February, 2006 SSRL Safety Office Stanford Linear Accelerator Center Menlo Park, California TABLE OF CONTENTS PREFACE SSRL EMERGENCY PLAN SECTION A: SAFETY RESPONSIBILITIES 1.0 SSRL Emergency Personnel 1.1 SLAC Person - In - Charge (PIC) 1.2 SSRL Beamline Duty Operator

Ford, James

30

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Links Useful Links Argonne National Laboratory Accelerator Sites Conferences Advanced Photon Source (APS) Argonne Wakefield Accelerator (AWA) Argonne Tandem Linear Accelerator System (ATLAS) High Energy Physics Division RIA (????) Link to JACoW (Joint Accelerator Conferences Website) Fermi National Accelerator Laboratory Fermilab-Argonne Collaboration Accelerator Physics Center Workshops Other Accelerator Institutes Energy Recovering Linacs Center for Advance Studies of Accelerators (Jefferson Labs) Center for Beam Physics (LBNL) Accelerator Test Facility (BNL) The Cockcroft Institute (Daresbury, UK) John Adams Institute (Rutherford, UK) ERL2009 to be held at Cornell ERL2007 ERL2005 DOE Laboratory with Accelerators Fermilab Stanford Linear Accelerator Center Brookhaven National Laboratory

31

Phase and amplitude detection system for the Stanford Linear Accelerator  

Science Conference Proceedings (OSTI)

A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

Fox, J.D.; Schwarz, H.D.

1983-01-01T23:59:59.000Z

32

Linear induction accelerator and pulse forming networks therefor  

DOE Green Energy (OSTI)

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

Buttram, Malcolm T. (Sandia Park, NM); Ginn, Jerry W. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

33

RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR  

SciTech Connect

Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

2012-07-01T23:59:59.000Z

34

Transverse emittance dilution due to coupler kicks in linear accelerators  

E-Print Network (OSTI)

One of the main concerns in the design of low emittance linear accelerators (linacs) is the preservation of beam emittance. Here we discuss one possible source of emittance dilution due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. It is common wisdom that emittance growth from coupler kicks can be strongly reduced by having the coupler location alternate from above to below the beam pipe so that the coupler kick from one cavity is compensated by that of the next. While this is correct, alternating the coupler location requires large technical changes in superconducting cryomodules where cryogenic pipes are arranged parallel to a string of several cavities. We show here that cavities with high external $Q$ have coupler kicks that change the sign of their phase when the coupler is moved from before to after the cavity, as long as one accelerates on crest. This implies that the emittance growth from one cavity can be canceled by the next, pr...

Buckley, Brandon

2007-01-01T23:59:59.000Z

35

Cryogen free superconducting splittable quadrupole magnet for linear accelerators  

SciTech Connect

A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

2011-09-01T23:59:59.000Z

36

Novel Approach to Linear Accelerator Superconducting Magnet System  

SciTech Connect

Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

Kashikhin, Vladimir; /Fermilab

2011-11-28T23:59:59.000Z

37

Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators  

SciTech Connect

Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

V.S. Morozov, S.A. Bogacz, Y.R. Roblin, K.B. Beard

2012-06-01T23:59:59.000Z

38

Ion effects in future circular and linear accelerators  

SciTech Connect

In this paper, the author discusses ion effects relevant to future storage rings and linear colliders. The author first reviews the conventional ion effects observed in present storage rings and then discusses how these effects will differ in the next generation of rings and linacs. These future accelerators operate in a new regime because of the high current long bunch trains and the very small transverse beam emittances. Usually, storage rings are designed with ion clearing gaps to prevent ion trapping between bunch trains or beam revolutions. Regardless, ions generated within a single bunch train can have significant effects. The same is true in transport lines and linacs, where typical vacuum pressures are relatively high. Amongst other effects, the author addresses the tune spreads due to the ions and the resulting filamentation which can severely limit emittance correction techniques in future linear colliders, the bunch-to-bunch coupling due to the ions which can cause a multi-bunch instability with fast growth rates, and the betatron coupling and beam halo creation which limit the vertical emittance and beam lifetimes.

Raubenheimer, T.O.

1995-05-01T23:59:59.000Z

39

2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

40

Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California  

SciTech Connect

This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

Not Available

1988-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tuning the DARHT Axis-II linear induction accelerator focusing  

SciTech Connect

Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.

Ekdahl, Carl A. [Los Alamos National Laboratory

2012-04-24T23:59:59.000Z

42

Failure Analysis of the Beam Vacuum in the Superconducting Cavities of the TESLA Main Linear Accelerator  

E-Print Network (OSTI)

1 Failure Analysis of the Beam Vacuum in the Superconducting Cavities of the TESLA Main Linear Hamburg, Germany Abstract For the long term successful operation of the superconducting TESLA accelerator The beam vacuum system of the TESLA main linear accelerators contains about 20.000 superconducting cavities

43

Dynamic MLC leaf sequencing for integrated linear accelerator control systems  

Science Conference Proceedings (OSTI)

Purpose: Leaf positions for dynamic multileaf collimator (DMLC) intensity modulated radiation therapy must be closely synchronized with MU delivery. For the Varian C3 series MLC controller, if the planned trajectory (leaf position vs. MU) requires velocities exceeding the capability of the MLC, the leaves fall behind the planned positions, causing the controller to momentarily hold the beam and thereby introduce dosimetric errors. We investigated the merits of a new commercial linear accelerator, TrueBeam, that integrates MLC control with prospective dose rate modulation. If treatment is delivered at dose rates so high that leaves would fall behind, the controller reduces the dose rate such that harmony between MU and leaf position is preserved. Methods: For three sets of DMLC leaf trajectories, point doses and two-dimensional dose distributions were measured in phantom using an ionization chamber and film, respectively. The first set, delivered using both a TrueBeam and a conventional C3 controller, comprised a single leaf bank closing at planned velocities of 2.4, 7.1, and 14 cm/s. The maximum achievable leaf velocity for both systems was 3 cm/s. The remaining two sets were derived from clinical fluence maps using a commercial treatment planning system for a range of planned dose rates and were delivered using TrueBeam set to the maximum dose rate, 600 MU/min. Generating trajectories using a planned dose rate that is lower than the delivery dose rate effectively increased the leaf velocity constraint used by the planning system for trajectory calculation. The second set of leaf trajectories was derived from two fluence maps containing regions of zero fluence obtained from representative beams of two different patient treatment plans. The third set was obtained from all nine fields of a head and neck treatment plan. For the head and neck plan, dose-volume histograms of the spinal cord and target for each planned dose rate were obtained. Results: For the single closing leaf bank trajectories, the TrueBeam control system reduced the dose rate such that the leaf velocity was less than the maximum. Dose deviations relative to the 2.4 cm/s trajectory were less than 3%. For the conventional controller, the leaves repeatedly fell behind the planned positions until the beam hold threshold was reached, resulting in deviations of up to 19% relative to the 2.4 cm/s trajectory. For the two clinical fluence maps, reducing the planned dose rate reduced the dose in the zero fluence regions by 15% and 24% and increased the delivery time by 5 s and 14 s. No significant differences were noted in the high and intermediate dose regions measured using film. The DVHs for the head and neck plan showed a 10% reduction in cord dose for 20 MU/min relative to 600 MU/min sequencing dose rate, which was confirmed by measurement. No difference in target DVHs were observed. The reduction in cord dose increased total treatment time by 1.8 min. Conclusions: Leaf sequencing algorithms for integrated control systems should be modified to reflect the reduced importance of maximum leaf velocity for accurate dose delivery.

Popple, Richard A.; Brezovich, Ivan A. [Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, Alabama 35249-6832 (United States)

2011-11-15T23:59:59.000Z

44

Towards dense linear algebra for hybrid GPU accelerated manycore systems  

Science Conference Proceedings (OSTI)

We highlight the trends leading to the increased appeal of using hybrid multicore+GPU systems for high performance computing. We present a set of techniques that can be used to develop efficient dense linear algebra algorithms for these systems. We illustrate ... Keywords: Dense linear algebra, Graphics processing units, Hybrid computing, Multicore processors, Parallel algorithms

Stanimire Tomov; Jack Dongarra; Marc Baboulin

2010-06-01T23:59:59.000Z

45

FLUKA calculations of radionuclides, star, and neutron fluence in soil around high-energy electron and proton linear accelerators  

E-Print Network (OSTI)

FLUKA calculations of radionuclides, star, and neutron fluence in soil around high-energy electron and proton linear accelerators

Puryear, A; Rokni, S H

2002-01-01T23:59:59.000Z

46

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Linac Coherent Light Source II at Stanford Linear 4: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

47

DOE - Office of Legacy Management -- Yale Heavy Ion Linear Accelerator - CT  

NLE Websites -- All DOE Office Websites (Extended Search)

Yale Heavy Ion Linear Accelerator - Yale Heavy Ion Linear Accelerator - CT 05 FUSRAP Considered Sites Site: Yale Heavy Ion Linear Accelerator (CT.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Haven , Connecticut CT.05-1 Evaluation Year: 1987 CT.05-3 Site Operations: Research and development with solvents. CT.05-1 Site Disposition: Eliminated - Potential for contamination remote based on limited amount of materials handled CT.05-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Radium CT.05-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Yale Heavy Ion Linear Accelerator CT.05-1 - MED Memorandum; To the Files, Thru Ruhoff, et. al.;

48

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

04: Linac Coherent Light Source II at Stanford Linear 04: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

49

Accelerated Iterative Method for Solving Steady Problems of Linearized Atmospheric Models  

Science Conference Proceedings (OSTI)

A new approach, referred to as the accelerated iterative method (AIM), is developed for obtaining steady atmospheric responses with a zonally varying basic state. The linear dynamical operator is divided into two parts, one associated with the ...

Masahiro Watanabe; Fei-fei Jin; Lin Pan

2006-12-01T23:59:59.000Z

50

Superstructure for high current applications in superconducting linear accelerators  

DOE Patents (OSTI)

A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

Sekutowicz, Jacek (Elbchaussee, DE); Kneisel, Peter (Williamsburg, VA)

2008-03-18T23:59:59.000Z

51

The First Observation of Intra Beam Stripping of Negative Hydrogen in a Superconducting Linear Accelerator  

Science Conference Proceedings (OSTI)

We report on an experiment in which a negative hydrogen ions beam in the Spallation Neutron Source (SNS) linear accelerator was replaced with a beam of protons with similar size and dynamics. Beam loss in the superconducting part of the SNS accelerator was at least an order of magnitude lower for the proton beam. Also beam loss has a stronger dependence on intensity with H- than with proton beams. These measurements verify a recent theoretical explanation of unexpected beam losses in the SNS superconducting linear accelerator based on an intra beam stripping mechanism for negative hydrogen ions. An identification of the new physics mechanism for beam loss is important for the design of new high current linear ion accelerators and the performance improvement of existing machines

Aleksandrov, Alexander V [ORNL; Plum, Michael A [ORNL; Shishlo, Andrei P [ORNL; Galambos, John D [ORNL

2012-01-01T23:59:59.000Z

52

Linearized error analysis for an accelerator and application to the APS injector synchrotron  

SciTech Connect

This paper presents a tolerance budget for accelerators dictated by the linear transverse dynamics of particle motion. The linearized equations satisfied by the particle motion when errors in the lattice are present are given along with the solution to these equations. The forms of these errors giving rise to the linearized equation are stated. These results are used to derive a tolerance budget for the Advanced Photon Source (APS) injector synchrotron.

Koul, R.K.; Mills, F.E.

1995-07-01T23:59:59.000Z

53

International Linear Collider Accelerator Physics R&D  

Science Conference Proceedings (OSTI)

ILC work at Illinois has concentrated primarily on technical issues relating to the design of the accelerator. Because many of the problems to be resolved require a working knowledge of classical mechanics and electrodynamics, most of our research projects lend themselves well to the participation of undergraduate research assistants. The undergraduates in the group are scientists, not technicians, and find solutions to problems that, for example, have stumped PhD-level staff elsewhere. The ILC Reference Design Report calls for 6.7 km circumference damping rings (which prepare the beams for focusing) using “conventional” stripline kickers driven by fast HV pulsers. Our primary goal was to determine the suitability of the 16 MeV electron beam in the AŘ region at Fermilab for precision kicker studies.We found that the low beam energy and lack of redundancy in the beam position monitor system complicated the analysis of our data. In spite of these issues we concluded that the precision we could obtain was adequate to measure the performance and stability of a production module of an ILC kicker, namely 0.5%. We concluded that the kicker was stable to an accuracy of ~2.0% and that we could measure this precision to an accuracy of ~0.5%. As a result, a low energy beam like that at AŘ could be used as a rapid-turnaround facility for testing ILC production kicker modules. The ILC timing precision for arrival of bunches at the collision point is required to be 0.1 picosecond or better. We studied the bunch-to-bunch timing accuracy of a “phase detector” installed in AŘ in order to determine its suitability as an ILC bunch timing device. A phase detector is an RF structure excited by the passage of a bunch. Its signal is fed through a 1240 MHz high-Q resonant circuit and then down-mixed with the AŘ 1300 MHz accelerator RF. We used a kind of autocorrelation technique to compare the phase detector signal with a reference signal obtained from the phase detector’s response to an event at the beginning of the run. We determined that the device installed in our beam, which was instrumented with an 8-bit 500 MHz ADC, could measure the beam timing to an accuracy of 0.4 picoseconds. Simulations of the device showed that an increase in ADC clock rate to 2 GHz would improve measurement precision by the required factor of four. As a result, we felt that a device of this sort, assuming matters concerning dynamic range and long-term stability can be addressed successfully, would work at the ILC. Cost effective operation of the ILC will demand highly reliable, fault tolerant and adaptive solutions for both hardware and software. The large numbers of subsystems and large multipliers associated with the modules in those subsystems will cause even a strong level of unit reliability to become an unacceptable level of system availability. An evaluation effort is underway to evaluate standards associated with high availability, and to guide ILC development with standard practices and well-supported commercial solutions. One area of evaluation involves the Advanced Telecom Computing Architecture (ATCA) hardware and software. We worked with an ATCA crate, processor monitors, and a small amount of ATCA circuit boards in order to develop a backplane “spy” board that would let us watch the ATCA backplane communications and pursue development of an inexpensive processor monitor that could be used as a physics-driven component of the crate-level controls system. We made good progress, and felt that we had determined a productive direction to extend this work. We felt that we had learned enough to begin designing a workable processor monitor chip if there were to be sufficient interest in ATCA shown by the ILC community. Fault recognition is a challenging issue in the crafting a high reliability controls system. With tens of thousands of independent processors running hundreds of thousands of critical processes, how can the system identify that a problem has arisen and determine the appropriate steps to take to correct, or compensate, for the

George D. Gollin; Michael Davidsaver; Michael J. Haney; Michael Kasten; Jason Chang; Perry Chodash; Will Dluger; Alex Lang; Yehan Liu

2008-09-03T23:59:59.000Z

54

Solving Large Sparse Linear Systems in End-to-end Accelerator Structure Simulations  

Science Conference Proceedings (OSTI)

This paper presents a case study of solving very large sparse linear systems in end-to-end accelerator structure simulations. Both direct solvers and iterative solvers are investigated. A parallel multilevel preconditioner based on hierarchical finite element basis functions is considered and has been implemented to accelerate the convergence of iterative solvers. A linear system with matrix size 93,147,736 and with 3,964,961,944 non-zeros from 3D electromagnetic finite element discretization has been solved in less than 8 minutes with 1024 CPUs on the NERSC IBM SP. The resource utilization as well as the application performance for these solvers is discussed.

Lee, L

2004-01-23T23:59:59.000Z

55

Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling  

SciTech Connect

The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

Gene Golub; Kwok Ko

2009-03-30T23:59:59.000Z

56

(Stanford Linear Accelerator Center) annual environmental monitoring report, January--December 1989  

SciTech Connect

This progress report discusses environmental monitoring activities at the Stanford Linear Accelerator Center for 1989. Topics include climate, site geology, site water usage, land use, demography, unusual events or releases, radioactive and nonradioactive releases, compliance summary, environmental nonradiological program information, environmental radiological program information, groundwater protection monitoring ad quality assurance. 5 figs., 7 tabs. (KJD)

Not Available

1990-05-01T23:59:59.000Z

57

A Linear Analysis on the Acceleration of Zonal Flow by Baroclinic Instability. Part I. Terrestrial Atmosphere  

Science Conference Proceedings (OSTI)

A mechanism which accelerates the midlatitude zonal-mean wind is investigated by means of linear stability analysis for the wave-zonal flow interaction. Two kinds of models are analyzed: In the first, the basic state consists of an unstable zonal-...

T. Sasamori; K. Droegemeier

1983-10-01T23:59:59.000Z

58

Proceedings of the conference on computer codes and the linear accelerator community  

SciTech Connect

The conference whose proceedings you are reading was envisioned as the second in a series, the first having been held in San Diego in January 1988. The intended participants were those people who are actively involved in writing and applying computer codes for the solution of problems related to the design and construction of linear accelerators. The first conference reviewed many of the codes both extant and under development. This second conference provided an opportunity to update the status of those codes, and to provide a forum in which emerging new 3D codes could be described and discussed. The afternoon poster session on the second day of the conference provided an opportunity for extended discussion. All in all, this conference was felt to be quite a useful interchange of ideas and developments in the field of 3D calculations, parallel computation, higher-order optics calculations, and code documentation and maintenance for the linear accelerator community. A third conference is planned.

Cooper, R.K. (comp.)

1990-07-01T23:59:59.000Z

59

Towards radiation pressure acceleration of protons using linearly polarized ultrashort petawatt laser pulses  

E-Print Network (OSTI)

Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.

Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

2013-01-01T23:59:59.000Z

60

Beam loading voltage profile of an accelerating section with a linearly varying group velocity  

E-Print Network (OSTI)

The CLIC Tapered Damped accelerating Structure (TDS) has a 5.4% detuning of the lowest dipole mode. The geometrical variations that produce this detuning range also fix the fundamental mode's group velocity variation - very nearly linear with 0.108c (c is the speed of light) at the structure input to 0.054c at the output. In addition R'/Q also varies approximately linearly, from 22.3 kW/m at the input to 30 kW/m at the output. These variations result in a structure that is neither constant impedance nor constant gradient so the widely used relationships between structure length, input and average accelerating gradient are not applicable. In order to simplify the process of optimizing accelerator parameters an analytic expression for the voltage profile in a structure with a linearly varying group velocity has been derived. A more accurate numerical solution that includes the variation in R'/Q is also presented.

Wuensch, Walter

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Tandem betatron  

DOE Patents (OSTI)

Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

Keinigs, Rhonald K. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

62

Tandem betatron  

DOE Patents (OSTI)

Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The electron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

Keinigs, R.K.

1991-01-01T23:59:59.000Z

63

Low energy improvements to the Fermilab 400-MeV linear accelerator  

SciTech Connect

Improvements in the Fermilab operating 400-MeV linear accelerator injector are required to achieve the beam intensity and emittance requirement of the Proton Driver design study [5]. It has been determined that these requirements can be achieved by replacing the components in the Linac below 10 MeV. An improved H{sup {minus}} ion source with an electrostatic transport to a two-section Radio-Frequency Quadrupole (RFQ) accelerator, with the RFQ sections separated by a magnetic five-dimensional phase-space imaging system as used in an earlier Fermilab/SAIC PET Project, and a new 10-MeV drift-tube linac cavity have been studied. It appears possible that an H{sup {minus}} intensity of 4.5 x 10{sup 13} ions per pulse with an improvement in beam emittance from the present system can be achieved with the proposed changes.

Don E. Young et al.

2001-07-02T23:59:59.000Z

64

Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider  

E-Print Network (OSTI)

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

Lebrun, Philippe

2010-01-01T23:59:59.000Z

65

Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy  

SciTech Connect

Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

Stiebel-Kalish, Hadas, E-mail: kalishhadas@gmail.com [Neuro-Ophthalmology Unit, Rabin Medical Center, Petah Tikva (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Reich, Ehud [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Department of Ophthalmology, Rabin Medical Center, Petah Tikva (Israel); Gal, Lior [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Rappaport, Zvi Harry [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Department of Neurosurgery, Rabin Medical Center, Petah Tikva (Israel); Nissim, Ouzi [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Department of Neurosurgery, Sheba Medical Center, Ramat Gan (Israel); Pfeffer, Raphael [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Spiegelmann, Roberto [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Department of Neurosurgery, Sheba Medical Center, Ramat Gan (Israel)

2012-02-01T23:59:59.000Z

66

Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator  

SciTech Connect

We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

1999-09-20T23:59:59.000Z

67

Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator  

Science Conference Proceedings (OSTI)

We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

1999-09-20T23:59:59.000Z

68

RF System Upgrades to the Advanced Photon Source Linear Accelerator in Support of the Fel Operation  

E-Print Network (OSTI)

The S-band linear accelerator, which was built to be the source of particles and the front end of the Advanced Photon Source injector, is now also being used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). The more severe rf stability requirements of the FEL have resulted in an effort to identify sources of phase and amplitude instability and implement corresponding upgrades to the rf generation chain and the measurement system. Test data and improvements implemented and planned are described

Smith, T L; Grelick, A E; Pile, G; Nassiri, A; Arnold, N

2000-01-01T23:59:59.000Z

69

Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear vs. Circular' (HF2012)  

E-Print Network (OSTI)

This paper is a summary report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear vs. Circular' (HF2012). It discusses four types of accelerators as possible candidates for a Higgs factory: linear e+e- colliders, circular e+e- colliders, muon collider and photon colliders. The comparison includes: physics reach, performance (energy and luminosity), upgrade potential, technology maturity and readiness, and technical challenges requiring further R&D.

Alain Blondel; Alex Chao; Weiren Chou; Jie Gao; Daniel Schulte; Kaoru Yokoya

2013-02-14T23:59:59.000Z

70

Stanford Linear Accelerator Center, Order R2-2005-0022, May 18, 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN FRANCISCO BAY REGION ORDER No. R2-2005-0022 RESCISSION of: ORDER No. 85-88, WASTE DISCHARGE REQUIREMENTS and ADOPTION of: SITE CLEANUP REQUIREMENTS for: STANFORD UNIVERSITY and the UNITED STATES DEPARTMENT OF ENERGY for the property located at the: STANFORD LINEAR ACCELERATOR CENTER 2575 SAND HILL ROAD MENLO PARK, SAN MATEO COUNTY FINDINGS: The California Regional Water Quality Control Board, San Francisco Bay Region (Water Board) finds that: 1. Purpose of Order This Order establishes Site Cleanup Requirements for the investigation and remediation of impacted soil and groundwater resulting from historical spills and leaks that have occurred during the course of operations of the Stanford Linear

71

Second order particle motion equations and linear chromaticity calculation in accelerator rings  

SciTech Connect

The first part of this note presents a thorough study on the second order particle motion equations, both in continuous field and in hard edges, with emphasis put on the latter. Having quite general conditions and strict mathematical treatments, it provides a sound ground from which many problems can be solved without fear of being misled. Then the linear CHR calculation is inspected, the first step being a general analytical expression of the transverse oscillation phase increment due to a small disturbance. The expression for the CHR is then readily obtained since tune is the transverse oscillation number per turn and the CHR is the linear dependence of the tune on particle energy/momentum deviation. The last part gives the formulae for practical CHR calculation, which are general enough to include almost all the magnet types commonly used in various accelerator rings and are simpler than can be found elsewhere.

Liu, R.Z.

1984-01-01T23:59:59.000Z

72

Intraoperative radiation therapy using mobile electron linear accelerators: Report of AAPM Radiation Therapy Committee Task Group No. 72  

Science Conference Proceedings (OSTI)

Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.

Sam Beddar, A.; Biggs, Peter J.; Chang Sha; Ezzell, Gary A.; Faddegon, Bruce A.; Hensley, Frank W.; Mills, Michael D. [Department of Radiation Physics, Division of Radiation Oncology, Unit 94, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 (United States); Department of Radiation Oncology, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259 (United States); Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143 (United States); Department of Radiation Oncology, University of Heidelberg, 69120 Heidelberg (Germany); Department of Radiation Oncology, James Graham Brown Cancer Center, Louisville, Kentucky 40202 (United States)

2006-05-15T23:59:59.000Z

73

Experimental measurement methods and data on irradiation of functional design materials by helium ions in linear accelerator  

E-Print Network (OSTI)

The experimental research on the irradiation of the functional design materials by the Helium ions in the linear accelerator is conducted. The experimental measurements techniques and data on the irradiation of the functional design materials by the Helium ions with the energy up to 4 MeV, including the detailed scheme of experimental measurements setup, are presented. The new design of accelerating structure of the IH-type such as POS-4, using the method of alternate-phase focusing with the step-by-step change of the synchronous phase along the focusing periods in a linear accelerator, is developed with the aim to irradiate the functional design materials by the Helium ions. The new design of the injector of the charged Helium ions with the energy of 120 KeV at the output of an accelerating tube and the accelerating structure of the type of POS-4 for the one time charged Helium ions acceleration in the linear accelerator are researched and developed. The special chamber for the irradiation of functional design materials by the Helium ions is also created. In the process of experiment, the temperature of a sample, the magnitude of current of Helium ions beam and the irradiation dose of sample are measured precisely. The experimental measurement setup and techniques are fully tested and optimized in the course of the research on the electro-physical properties of irradiated samples and the thermal-desorption of Helium ions in a wide range of temperatures

R. A. Anokhin; V. N. Voyevodin; S. N. Dubnyuk; A. M. Egorov; B. V. Zaitsev; A. F. Kobets; O. P. Ledenyov; K. V. Pavliy; V. V. Ruzhitsky; G. D. Tolstolutskaya

2013-09-03T23:59:59.000Z

74

Neutron source, linear-accelerator fuel enricher and regenerator and associated methods  

DOE Patents (OSTI)

A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

Steinberg, Meyer (Huntington Station, NY); Powell, James R. (Shoreham, NY); Takahashi, Hiroshi (Setauket, NY); Grand, Pierre (Blue Point, NY); Kouts, Herbert (Brookhaven, NY)

1982-01-01T23:59:59.000Z

75

Load Schedule Coordination for a Large Linear Accelerator: An Operation Powerplay Concept  

E-Print Network (OSTI)

Operation Powerplay is a viable electric load management program developed and tested with Department of Energy funding and support. It is a concept designed to provide financial benefits to a utility and one or more of its customers through priority-based or on-demand load shaving. Currently being implemented in pilot form is a variation of Operation Powerplay. In this instance, it is the mutual cooperation between the Western Area Power Administration (Western), which markets hydro-power from Federal power projects, and the Los Alamos National Laboratory (LANL) at Los Alamos, New Mexico. With this variation, only the portion of LANL's total load requirement for the Linear Accelerator at the Meson Physics Facility is targeted to be managed by this arrangement. This paper will discuss the negotiations and agreements between LANL and Western to maximize use of the Meson facility and minimize operational costs through this variation of Operation Powerplay.

Johnson, W. H.

1984-01-01T23:59:59.000Z

76

Photon beam quality variations of a flattening filter free linear accelerator  

Science Conference Proceedings (OSTI)

Purpose: Recently, there has been an increasing interest in operating conventional linear accelerators without a flattening filter. The aim of this study was to determine beam quality variations as a function of off-axis ray angle for unflattened beams. In addition, a comparison was made with the off-axis energy variation in flattened beams. Methods: Two Elekta Precise linear accelerators were modified in order to enable radiation delivery with and without the flattening filter in the beam line. At the Medical University Vienna (Vienna, Austria), half value layer (HVL) measurements were performed for 6 and 10 MV with an in-house developed device that can be easily mounted on the gantry. At St. Luke's Hospital (Dublin, Ireland), measurements were performed at 6 MV in narrow beam geometry with the gantry tilted around 270 deg. with pinhole collimators, an attenuator, and the chamber positioned on the table. All attenuation measurements were performed with ionization chambers and a buildup cap (2 mm brass) or a PMMA mini phantom (diameter 3 cm, measurement depth 2.5 cm). Results: For flattened 6 and 10 MV photon beams from the Elekta linac the relative HVL({theta}) varies by about 11% for an off-axis ray angle {theta}=10 deg. These results agree within {+-}2% with a previously proposed generic off-axis energy correction. For unflattened beams, the variation was less than 5% in the whole range of off-axis ray angles up to 10 deg. The difference in relative HVL data was less than 1% for unflattened beams at 6 and 10 MV. Conclusions: Off-axis energy variation is rather small in unflattened beams and less than half the one for flattened beams. Thus, ignoring the effect of off-axis energy variation for dose calculations in unflattened beams can be clinically justified.

Georg, Dietmar; Kragl, Gabriele; Wetterstedt, Sacha af; McCavana, Patrick; McClean, Brendan; Knoeoes, Tommy [Department of Radiotherapy, Division Medical Radiation Physics, Medical University of Vienna, AKH Vienna, 1090 Vienna (Austria); Department of Radiotherapy, St Luke's Hospital, Dublin 6 (Ireland); Radiation Physics, Lund University and Lund University Hospital, 22185 Lund (Sweden)

2010-01-15T23:59:59.000Z

77

Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators Elementary Particles Detectors Accelerators Visit World Labs For Children - for younger people For Children The Electric Force For Children Electric Force Fields For...

78

Medical Isotope Production Using A 60 MeV Linear Electron Accelerator , R.C. Block1  

E-Print Network (OSTI)

Medical Isotope Production Using A 60 MeV Linear Electron Accelerator Y. Danon1 , R.C. Block1 , R@rpi.edu) 2 AlphaMed Inc, 20 Juniper Ridge Road, Acton, MA 01720 INTRODUCTION Medical isotopes can be produced

Danon, Yaron

79

BNL | Tandem Van de Graaff | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Tandem Van de Graaff Tandem Van de Graaff Tandem Home Conduct Research at the Tandem Capabilities Testing & Callibration SEU Test Facility Ion Species Ion Irradiation / Implantation Schedule Org Chart (.pdf) Contact Welcome to the Tandem The Tandem Van de Graaff Facility consists of two 15-megavolt electrostatic accelerators capable of delivering continuous, or high-intensity pulsed ion beams in a wide range of ion species at various energies to experimental chambers that are available to researchers on a full cost-recovery basis. More » Use the Tandem Follow these simple steps to determine if the Tandem meets your experimental needs, reserve beam time, and to plan for your visit. Review Capabilities Learn what ion species are available at the Tandem and at what LETs, maximum energies, and energy ranges, as well as other capabilities.

80

acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

middle name. The head of Fermilab's Accelerator Division explains a basic idea of high-energy physics in everyday language. Painless Physics Articles BEAM COOLING August 2, 1996...

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research  

Science Conference Proceedings (OSTI)

This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

McDonald, R.J. (ed.)

1987-09-01T23:59:59.000Z

82

Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

1. ACCELERATOR PHYSICS OF COLLIDERS Revised July 2011 by D. A. Edwards (DESY) and M. J. Syphers (MSU) 1.1. Luminosity This article provides background for the High-Energy Collider...

83

Early Days of Accelerator Mass Spectrometry  

DOE R&D Accomplishments (OSTI)

Alvarez reviews his role in the development of the tandem Van de Graaff accelerator and the technique of accelerator mass spectrometry as a technique for isotope dating. (GHT)

Alvarez, L. W.

1981-05-00T23:59:59.000Z

84

Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School  

Science Conference Proceedings (OSTI)

We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

2012-06-26T23:59:59.000Z

85

Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

86

Experimental study of new laser-based alignment system at the KEK B-factory injector linear accelerator  

Science Conference Proceedings (OSTI)

A new laser-based alignment system for the precise alignment of accelerator components along an ideal straight line at the KEK B-factory injector linear accelerator (linac) is under development. This system is strongly required in the next generation of B-factories for the stable acceleration of high-brightness electron and positron beams with high bunch charges and also for maintaining the stability of injection beams with high quality. A new laser optics for the generation of a so-called Airy beam has been developed for the laser-based alignment system. The laser propagation characteristics both in vacuum and at atmospheric pressure have been systematically investigated in an 82-m-long straight section of the injector linac. The laser-based alignment measurements based on the new laser optics have been carried out with a measurement resolution of {+-}0.1 mm level by using an existing laser detection electronics. The horizontal and vertical displacements from a reference laser line measured using this system are in good agreement with those measured using a standard telescope-based optical alignment technique. In this report, we describe the experimental study in detail along with the basic designs and the recent developments in the new laser-based alignment system.

Suwada, T.; Satoh, M.; Kadokura, E. [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-12-15T23:59:59.000Z

87

A Non-interceptive Method to Measure Longitudinal Twiss Parameters of a Beam in a Hadron Linear Accelerator using Beam Position Monitors  

Science Conference Proceedings (OSTI)

A new method of measuring of the RMS longitudinal Twiss parameters of a beam in linear accelerators is presented. It is based on using signals from beam position monitors (BPM) sensitive to the second order moment of the longitudinal charge distribution in the bunch. The applicability of the method is demonstrated on the superconducting section of the Oak Ridge Spallation Neutron Source (SNS) linear accelerator. The results are compared to a direct measurement of the bunch longitudinal profiles using an interceptive bunch shape monitor (BSM) in the linac warm section of the same accelerator. Limitations of the method are discussed. The method is fast and simple, and can be used to obtain the initial parameters for the longitudinal matching in linear accelerators where interceptive diagnostics are not desirable.

Aleksandrov, Alexander V [ORNL; Shishlo, Andrei P [ORNL

2013-01-01T23:59:59.000Z

88

Radio frequency pulse compression experiments at SLAC (Stanford Linear Accelerator Center)  

Science Conference Proceedings (OSTI)

Proposed future positron-electron linear colliders would be capable of investigating fundamental processes of interest in the 0.5--5 TeV beam-energy range. At the SLAC Linear Collider (SLC) gradient of about 20 MV/m this would imply prohibitive lengths of about 50--250 kilometers per linac. We can reduce the length by increasing the gradient but this implies high peak power, on the order of 400-- to 1000-MW at X-Band. One possible way to generate high peak power is to generate a relatively long pulse at a relatively low power and compress it into a short pulse with higher peak power. It is possible to compress before DC to RF conversion, as is done using magnetic switching for induction linacs, or after DC to RF conversion, as is done for the SLC. Using RF pulse compression it is possible to boost the 50-- to 100-MW output that has already been obtained from high-power X-Band klystrons the levels required by the linear colliders. In this note only radio frequency pulse compression (RFPC) is considered.

Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Miller, R.H.; Nantista, C.; Spalek, G.; Wilson, P.B.

1991-01-01T23:59:59.000Z

89

Focusing solenoid for the front end of a linear RF accelerator  

SciTech Connect

A prototype of a superconducting focusing solenoid for use in an RF linac has been built and tested at Fermi National Accelerator Laboratory (FNAL). The solenoid is comprised of the main coil, two bucking coils, two dipole corrector windings, and a low carbon steel flux return. At the excitation current of 250 A, the magnetic field reaches 7.2 T in the center of the solenoid and is less than 5 G on the axis at a distance of 150 mm from the center. The length of the solenoid is 150 mm; the length of a cryovessel for the solenoid with a 20 mm diameter 'warm' bore is 270 mm. This paper presents the main design features of the focusing solenoid and discusses results from tests of the solenoid.

Terechkine, I.; Kashikhin, V.V.; Page, T.; Tartaglia, M.; Tompkins, J.; /Fermilab

2007-06-01T23:59:59.000Z

90

Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies  

SciTech Connect

The issue of neutron leakage has recently been raised in connection with dedicated electron-only linear accelerators used for intraoperative radiation therapy (IORT). In particular, concern has been expressed about the degree of neutron production at energies of 10 MeV and higher due to the need for additional, perhaps permanent, shielding in the room in which the device is operated. In particular, three mobile linear accelerators available commercially offer electron energies at or above the neutron threshold, one at 9 MeV, one at 10 MeV, and the third at 12 MeV. To investigate this problem, neutron leakage has been measured around the head of two types of electron accelerators at a distance of 1 m from the target at azimuthal angles of 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg. The first is a dedicated electron-only (nonmobile) machine with electron energies of 6 (not used here), 9, 12, 15, and 18 MeV and the second a conventional machine with electron energies of 6 (also not used here), 9, 12, 16, and 20 MeV. Measurements were made using neutron bubble detectors and track-etch detectors. For electron beams from a conventional accelerator, the neutron leakage in the forward direction in Sv/Gy is 2.1x10{sup -5} at 12 MeV, 1.3x10{sup -4} at 16 MeV, and 4.2x10{sup -4} at 20 MeV, assuming a quality factor (RBE) of 10. For azimuthal angles >0 deg., the leakage is almost angle independent [2x10{sup -6} at 12 MeV; (0.7-1.6)x10{sup -5} at 16 MeV, and (1.6-2.9)x10{sup -5} at 20 MeV]. For the electron-only machine, the neutron leakage was lower than for the conventional linac, but also independent of azimuthal angle for angles >0 deg. : ([0 deg. : 7.7x10{sup -6} at 12 MeV; 3.0x10{sup -5} at 15 MeV; 1.0x10{sup -4} at 18 MeV]; [other angles: (2.6-5.9)x10{sup -7} at 12 MeV; (1.4-2.2)x10{sup -6} at 15 MeV; (2.7-4.7)x10{sup -6} at 18 MeV]). Using the upper limit of 6x10{sup -7} Sv/Gy at 12 MeV for the IORT machine for azimuthal angles >0 deg. and assuming a workload of 200 Gy/wk and an inverse square factor of 10, the neutron dose equivalent is calculated to be 0.012 mSv/wk. For the primary beam at 12 MeV (0 deg. ), the 10x higher dose would be compensated by the attenuation of a primary beam stopper in a mobile linear accelerator. These neutron radiation levels are below regulatory values (National Council on Radiation Protection and Measurements, 'Limitation of exposure to ionizing radiation', NCRP Report No. 116, NCRP Bethesda, MD, 1993)

Jaradat, Adnan K.; Biggs, Peter J. [Department of Physics, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States); Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 (United States)

2008-05-15T23:59:59.000Z

91

Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks  

SciTech Connect

This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still offering the desired low temperature coefficient of resistance compared to sodium thiosulfate. The characterization experiments and comparison with the sodium thiosulfate liquid resistors will be fully discussed and the final design described.

Kreitzer, B R; Houck, T L; Luchterhand, O C

2011-07-19T23:59:59.000Z

92

Neutron-induced electronic failures around a high-energy linear accelerator  

Science Conference Proceedings (OSTI)

Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T. [Department of Radiation Physics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 and Health Science Center Houston, Graduate School of Biomedical Sciences, University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Biostatistics and Applied Mathematics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States) and Health Science Center Houston, Graduate School of Biomedical Sciences, University of Texas, Houston, Texas 77030 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States) and Health Science Center Houston, Graduate School of Biomedical Sciences, University of Texas, Houston, Texas 77030 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

2011-01-15T23:59:59.000Z

93

C-AD Accelerator Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

94

University, Linear Accelerator  

E-Print Network (OSTI)

proposals for innovative, econanical, low head hydro power plant ides development. For this purpose, low head was defined as 3m or less. Early hydra power projects were small scale and very close to load centers. Inefficient paddlewheels turned shafts in udlls which, through belts, drove mill equipmt. With the advent of electrical wr, hydro power projects could be reasonably rarote from load centers and located at optimm sites of high head and intermediate flew or high flow and intermediate head. The best sites were quickly exploited and secondary sites became uneconanical. Secondary sites or those evenmre rmte fran load centers were then erploitedby public agencies and the ec onanics justified by power generation plus flood control and/or irrigation plus establistrnent of potable water reservoirs, to serve rapidly growing urban centers. Many of the earlier dams no longer were used to generate power as the mill-races vanished. Many nw low head dams were used for flood control and evening flows toward hydro ver ejects, and were not furnished with generators since these sites were even m3re rarPte

F. F. -hall; P. Box

1980-01-01T23:59:59.000Z

95

Factors Predictive of Symptomatic Radiation Injury After Linear Accelerator-Based Stereotactic Radiosurgery for Intracerebral Arteriovenous Malformations  

SciTech Connect

Purpose: To investigate predictive factors in the development of symptomatic radiation injury after treatment with linear accelerator-based stereotactic radiosurgery for intracerebral arteriovenous malformations and relate the findings to the conclusions drawn by Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC). Methods and Materials: Archived plans for 73 patients who were treated at the British Columbia Cancer Agency were studied. Actuarial estimates of freedom from radiation injury were calculated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards models were used for analysis of incidence of radiation injury. Log-rank test was used to search for dosimetric parameters associated with freedom from radiation injury. Results: Symptomatic radiation injury was exhibited by 14 of 73 patients (19.2%). Actuarial rate of symptomatic radiation injury was 23.0% at 4 years. Most patients (78.5%) had mild to moderate deficits according to Common Terminology Criteria for Adverse Events, version 4.0. On univariate analysis, lesion volume and diameter, dose to isocenter, and a V{sub x} for doses {>=}8 Gy showed statistical significance. Only lesion diameter showed statistical significance (p < 0.05) in a multivariate model. According to the log-rank test, AVM volumes >5 cm{sup 3} and diameters >30 mm were significantly associated with the risk of radiation injury (p < 0.01). The V{sub 12} also showed strong association with the incidence of radiation injury. Actuarial incidence of radiation injury was 16.8% if V{sub 12} was <28 cm{sup 3} and 53.2% if >28 cm{sup 3} (log-rank test, p = 0.001). Conclusions: This study confirms that the risk of developing symptomatic radiation injury after radiosurgery is related to lesion diameter and volume and irradiated volume. Results suggest a higher tolerance than proposed by QUANTEC. The widely differing findings reported in the literature, however, raise considerable uncertainties.

Herbert, Christopher, E-mail: cherbert@bccancer.bc.ca [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Moiseenko, Vitali [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, BC (Canada); McKenzie, Michael [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Redekop, Gary [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Hsu, Fred [Department of Radiation Oncology, British Columbia Cancer Agency, Abbotsford, BC (Canada); Gete, Ermias; Gill, Brad; Lee, Richard; Luchka, Kurt [Department of Medical Physics, British Columbia Cancer Agency, Vancouver, BC (Canada); Haw, Charles [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Lee, Andrew [Department of Neurosurgery, Royal Columbian Hospital, New Westminster, BC (Canada); Toyota, Brian [Division of Neurosurgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC (Canada); Martin, Montgomery [Department of Medical Imaging, British Columbia Cancer Agency, Vancouver, BC (Canada)

2012-07-01T23:59:59.000Z

96

Relative Humidity in Limited Streamer Tubes for Stanford Linear Accelerator Center's BaBar Detector  

SciTech Connect

The BABAR Detector at the Stanford Linear Accelerator Center studies the decay of B mesons created in e{sup +}e{sup -} collisions. The outermost layer of the detector, used to detect muons and neutral hadrons created during this process, is being upgraded from Resistive Plate Chambers (RPCs) to Limited Streamer Tubes (LSTs). The standard-size LST tube consists of eight cells, where a silver-plated wire runs down the center of each. A large potential difference is placed between the wires and ground. Gas flows through a series of modules connected with tubing, typically four. LSTs must be carefully tested before installation, as it will be extremely difficult to repair any damage once installed in the detector. In the testing process, the count rate in most modules showed was stable and consistent with cosmic ray rate over an approximately 500 V operating range between 5400 to 5900 V. The count in some modules, however, was shown to unexpectedly spike near the operation point. In general, the modules through which the gas first flows did not show this problem, but those further along the gas chain were much more likely to do so. The suggestion was that this spike was due to higher humidity in the modules furthest from the fresh, dry inflowing gas, and that the water molecules in more humid modules were adversely affecting the modules' performance. This project studied the effect of humidity in the modules, using a small capacitive humidity sensor (Honeywell). The sensor provided a humidity-dependent output voltage, as well as a temperature measurement from a thermistor. A full-size hygrometer (Panametrics) was used for testing and calibrating the Honeywell sensors. First the relative humidity of the air was measured. For the full calibration, a special gas-mixing setup was used, where relative humidity of the LST gas mixture could be varied from almost dry to almost fully saturated. With the sensor calibrated, a set of sensors was used to measure humidity vs. time in the LSTs. The sensors were placed in two sets of LST modules, one gas line flowing through each set. These modules were tested for count rate v. voltage while simultaneously measuring relative humidity in each module. One set produced expected readings, while the other showed the spike in count rate. The relative humidity in the two sets of modules looked very similar, but it rose significantly for modules further along the gas chain.

Lang, M.I.; /MIT; Convery, M.; /SLAC; Menges, W.; /Queen Mary, U. of London

2005-12-15T23:59:59.000Z

97

Improvements in dose accuracy delivered with static-MLC IMRT on an integrated linear accelerator control system  

Science Conference Proceedings (OSTI)

Purpose: Dose accuracy has been shown to vary with dose per segment and dose rate when delivered with static multileaf collimator (SMLC) intensity modulated radiation therapy (IMRT) by Varian C-series MLC controllers. The authors investigated the impact of monitor units (MUs) per segment and dose rate on the dose delivery accuracy of SMLC-IMRT fields on a Varian TrueBeam linear accelerator (LINAC), which delivers dose and manages motion of all components using a single integrated controller. Methods: An SMLC sequence was created consisting of ten identical 10 x 10 cm{sup 2} segments with identical MUs. Beam holding between segments was achieved by moving one out-of-field MLC leaf pair. Measurements were repeated for various combinations of MU/segment ranging from 1 to 40 and dose rates of 100-600 MU/min for a 6 MV photon beam (6X) and dose rates of 800-2400 MU/min for a 10 MV flattening-filter free photon (10XFFF) beam. All measurements were made with a Farmer (0.6 cm{sup 3}) ionization chamber placed at the isocenter in a solid-water phantom at 10 cm depth. The measurements were performed on two Varian LINACs: C-series Trilogy and TrueBeam. Each sequence was delivered three times and the dose readings for the corresponding segments were averaged. The effects of MU/segment, dose rate, and LINAC type on the relative dose variation ({Delta}{sub i}) were compared using F-tests ({alpha} = 0.05). Results: On the Trilogy, large {Delta}{sub i} was observed in small MU segments: at 1 MU/segment, the maximum {Delta}{sub i} was 10.1% and 57.9% at 100 MU/min and 600 MU/min, respectively. Also, the first segment of each sequence consistently overshot ({Delta}{sub i} > 0), while the last segment consistently undershot ({Delta}{sub i} dose rates greater than 100 MU/min. The linear trend of decreasing dose accuracy as a function of increasing dose rate on the Trilogy is no longer apparent on TrueBeam, even for dose rates as high as 2400 MU/min. Dose inaccuracy averaged over all ten segments in each beam delivery sequence was larger for Trilogy than TrueBeam, with the largest discrepancy (0.2% vs 3%) occurring for 1 MU/segment beams at both 300 and 600 MU/min. Conclusions: Earlier generations of Varian LINACs exhibited large dose variations for small MU segments in SMLC-IMRT delivery. Our results confirmed these findings. The dose delivery accuracy for SMLC-IMRT is significantly improved on TrueBeam compared to Trilogy for every combination of low MU/segment (1-10) and high dose rate (200-600 MU/min), in part due to the faster sampling rate (100 vs 20 Hz) and enhanced electronic integration of the MLC controller with the LINAC. SMLC-IMRT can be implemented on TrueBeam with higher dose accuracy per beam ({+-}0.2% vs {+-}3%) than previous generations of Varian C-series LINACs for 1 MU/segment delivered at 600 MU/min).

Li Ji; Wiersma, Rodney D.; Stepaniak, Christopher J.; Farrey, Karl J.; Al-Hallaq, Hania A. [Department of Radiation and Cellular Oncology, University of Chicago, 5758 South Maryland Avenue, MC9006, Chicago, Illinois 60637 (United States)

2012-05-15T23:59:59.000Z

98

Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source  

SciTech Connect

Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

Baillie, Devin [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Aubin, J. St. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Steciw, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

2013-04-15T23:59:59.000Z

99

Conceptual design for a linear-transformer driver (LTD)-based refurbishment and upgrade of the Saturn accelerator pulse-power system.  

Science Conference Proceedings (OSTI)

The purpose of this work was to develop a conceptual design for the Saturn accelerator using the modular Liner-Transformer Driver (LTD) technology to identify risks and to focus development and research for this new technology. We present a reference design for a Saturn class driver based on a number of linear inductive voltage adders connected in parallel. This design is very similar to a design reported five years ago [1]. However, with the design reported here we use 1-MA, 100-kV LTD cavities as building blocks. These cavities have already been built and are currently in operation at the HCEI in Tomsk, Russia [2]. Therefore, this new design integrates already-proven individual components into a full system design.

Mazarakis, Michael Gerrassimos; Struve, Kenneth William

2006-09-01T23:59:59.000Z

100

Construction of. gamma pi. /sup 0/ spectrometer and photon tagging facility at Bates Linear Accelerator. Final report, July 31, 1979-July 31, 1980  

SciTech Connect

The funds provided under Contract No. DE-AC02-79ER10486 were totally expended for hardware and supplies required by two related devices at the Bates Linear Accelerator. These were a photon tagging facility and a ..gamma pi../sup 0/ spectrometer in Beam Line C of the new South Experimental Hall. Construction was begun in November of 1979 and both systems became fully operational in the summer of 1981. Preliminary data was taken in 1980 with a prototype ..gamma pi../sup 0/ spectrometer will be carried out in the fall of 1981 and spring of 1982. The photon tagging system has been used successfully to calibrate the ..gamma pi../sup 0/ spectrometer for the BU - MIT collaboration and to test a lead glass detector system for Brandeis University.

Booth, E.C.

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Testing and Implementation Progress on the Advanced Photon Source (APS) Linear Accelerator (Linac) High-Power S-band Switching System  

E-Print Network (OSTI)

An S-band linear accelerator is the source of particles and the front end of the Advanced Photon Source injector. In addition, it supports a low-energy undulator test line (LEUTL) and drives a free-electron laser (FEL). A waveguide-switching and distribution system is now under construction. The system configuration was revised to be consistent with the recent change to electron-only operation. There are now six modulator-klystron subsystems, two of which are being configured to act as hot spares for two S-band transmitters each, so that no single failure will prevent injector operation. The two subsystems are also used to support additional LEUTL capabilities and off-line testing. Design considerations for the waveguide-switching subsystem, topology selection, control and protection provisions, high-power test results, and current status are described

Grelick, A E; Berg, S; Dohan, D A; Goeppner, G A; Kang, Y W; Nassiri, A; Pasky, S; Pile, G; Smith, T; Stein, S J

2000-01-01T23:59:59.000Z

102

Tandem mobile robot system  

DOE Patents (OSTI)

A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

Buttz, James H. (Albuquerque, NM); Shirey, David L. (Albuquerque, NM); Hayward, David R. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

103

Linear Correlation Between Patient Survival and Decreased Percentage of Tumor [{sup 18}F]Fluorodeoxyglucose Uptake for Late-Course Accelerated Hyperfractionated Radiotherapy for Esophageal Cancer  

SciTech Connect

Purpose: The aims of this trial were to study whether a decreased percentage of tumor fluorodeoxyglucose (FDG) uptake (%DeltaSUVmax) correlated with overall survival and local control times for patients with esophageal cancer and which patients would benefit from a late-course accelerated hyperfractionated (LCHF) radiation scheme. Methods and Materials: A total of 50 eligible patients with squamous esophageal cancer received positron-emission tomography examinations three times and were treated with the LCHF radiation scheme, with a dose of 68.4 Gy/41 fractions in 6.5 weeks. A %DeltaSUVmax value was calculated, and patients were stratified as highly radiosensitive (HR), moderately radiosensitive (MR), and low radiosensitivity (LR) according to %DeltaSUVmax values in the conventional fraction (CF) scheme. Then, a linear correlation was calculated between patients' survival time and %DeltaSUVmax. Local control and overall survival rates were compared after stratification. Results: In the MR subgroup, there was no linear correlation between %DeltaSUVmax and the CF and LCHF schemes (correlation coefficient, R < 0.4; p > 0.05). In the other subgroups (HR and LR), %DeltaSUVmax values between the CF and LCHF schemes were correlated. Also, in the HR and LR subgroups, %DeltaSUVmax after radiation correlated with overall survival or local control rates (correlation coefficient, R >0.5, and p < 0.05). Three-year local control rates in the HR, MR, and LR subgroups were 100%, 81.5%, and 0%, respectively (p < 0.001). Also, 3-year overall survival rates were 92.4%, 58.8%, and 0% for HR, MR, and LR subgroups, respectively (p < 0.001). Conclusions: Postradiation %DeltaSUVmax was positively correlated with survival time for patients' with esophageal cancer. Patients who benefited from LCHF schedules were those with a decrease of 30% to 60% in tumor FDG uptake after the completion of CF radiation.

Ma Jinbo; Song Yipeng [Department of Oncology, Shandong University School of Medicine, Shandong Province (China); Department of Radiation Oncology, Yantai Yuhuangding Hospital, School of Medicine, Qingdao University, Yantai (China); Yu Jinming, E-mail: yujmwin@yahoo.cn [Department of Oncology, Shandong University School of Medicine, Shandong Province (China); Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Province (China); Zhou Wei [Department of Oncology, Shandong University School of Medicine, Shandong Province (China); Cheng Ercheng [Department of Radiation Oncology, Yantai Yuhuangding Hospital, School of Medicine, Qingdao University, Yantai (China); Zhang Xiqin [Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Province (China)

2012-03-15T23:59:59.000Z

104

Human Accelerator - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

electrons. The cavities are arranged in two long, straight sections called Linear Accelerators. In this activity, students pass tennis balls down a line like Jefferson Lab's...

105

ION ACCELERATOR  

DOE Patents (OSTI)

An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

Bell, J.S.

1959-09-15T23:59:59.000Z

106

Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy  

SciTech Connect

Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

Gondi, Vinai [Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Tolakanahalli, Ranjini [Department of Medical Physics, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Mehta, Minesh P. [Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Tewatia, Dinesh [Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Department of Medical Physics, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Rowley, Howard [Department of Neuroradiology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Kuo, John S. [Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Department of Neurological Surgery, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Khuntia, Deepak [Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Tome, Wolfgang A., E-mail: tome@humonc.wisc.ed [Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States); Department of Medical Physics, University of Wisconsin Comprehensive Cancer Center, Madison, WI (United States)

2010-11-15T23:59:59.000Z

107

Edge diagnostics for tandem mirror machines  

SciTech Connect

The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed.

Allen, S.L.

1984-09-14T23:59:59.000Z

108

Advances in Tandem Mirror fusion power reactors  

DOE Green Energy (OSTI)

The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

Perkins, L.J.; Logan, B.G.

1986-05-20T23:59:59.000Z

109

Finding of No Significant Impact for the Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California (DOE/EA-1426) (2/28/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) Finding of No Significant Impact Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California. AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1426, evaluating the proposed action to construct and operate the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC). Based upon the information and analyses in the EA, the DOE has determined that the proposed federal action does not significantly affect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969.

110

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network (OSTI)

LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

Schroeder, C. B.

2010-01-01T23:59:59.000Z

111

Compact accelerator  

DOE Patents (OSTI)

A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

2007-02-06T23:59:59.000Z

112

Tandem resonator reflectance modulator  

DOE Patents (OSTI)

A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

Fritz, I.J.; Wendt, J.R.

1994-09-06T23:59:59.000Z

113

Tandem resonator reflectance modulator  

DOE Patents (OSTI)

A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

114

Monolithic tandem solar cell  

DOE Patents (OSTI)

It is an object of the invention to provide a monolithic tandem photovoltaic solar cell which is highly radiation resistant and efficient; in which the energy bandgap of the lower subcell can be tailored for specific applications; solar cell comprising layers of InP and GaInAsP (or GaInAs), where said photovoltaic cell is useful, for example, in space power applications; having an improved power-to-mass ratio; in which subcells are lattice-matches; and are both two terminal and three terminal monolithic tandem photovoltaic solar cells. To achieve the foregoing and other objects and in accordance with the purpose of the present invention, as embodied and broadly described herein, the monolithic tandem photovoltaic solar cell may comprise; (a) an InP substrate having an upper surface; (b) a first photoactive subcell on the upper surface of the InP substrate; wherein the first subcell comprises GaInAs (which could include GaInAsP) and includes a homojunction; and (c) a second photoactive subcell on the first subcell; wherein the second subcell comprises InP and includes a homojunction. The cell is described in detail. 5 figs., 2 tabs.

Wanlass, M.W.

1989-11-03T23:59:59.000Z

115

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

Wanlass, M.W.

1994-06-21T23:59:59.000Z

116

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

Wanlass, Mark W. (Golden, CO)

1991-01-01T23:59:59.000Z

117

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, Mark W. (Golden, CO)

1994-01-01T23:59:59.000Z

118

Design of a superconducting linear accelerator for an Infrared Free Electron Laser of the proposed Chemical Dynamics Research Laboratory at LBL  

Science Conference Proceedings (OSTI)

An accelerator complex has recently been designed at LBL as part of an Infrared Free Electron Laser facility in support of a proposed Chemical Dynamics Research Laboratory. We will outline the choice of parameters and design philosophy, which are strongly driven by the demand of reliable and spectrally stable operation of the FEL for very special scientific experiments. The design is based on a 500 MHz recirculating superconducting electron linac with highest energy reach of about 60 MeV. The accelerator is injected with beams prepared by a specially designed gun-buncher system and incorporates a near-isochronous and achromatic recirculation line tunable over a wide range of beam energies. The stability issues considered to arrive at the specific design will be outlined.

Chattopadhyay, S.; Byrns, R.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Kim, K.J.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

1992-08-01T23:59:59.000Z

119

Tandem Van de Graaff  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternating Gradient Synchrotron (AGS) for further acceleration. At the time, this modification opened an entirely new area of research at the AGS. The TtB now makes it possible...

120

High brightness electron accelerator  

DOE Patents (OSTI)

A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity.

Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heavy-atom neutral beams for tandem-mirror end plugs  

DOE Green Energy (OSTI)

The advantages of neutral beams with Z greater than or equal to 3 formed from negative ions, accelerated to 0.5 to 1.0 MeV/amu, and neutralized with high efficiency, are investigated for use in tandem mirror reactor end plugs. These beams can produce Q's of 20 to 30, and thus can replace the currently proposed 200 to 500 keV neutral proton beams presently planned for tandem mirror reactors. Thus, these Z greater than or equal to 3 neutral beams increase the potential attractiveness of tandem mirror reactors by offering a substitute for difficult high energy neutral hydrogen end plug beams.

Post, D.E.; Grisham, L.R.; Santarius, J.F.; Emmert, G.A.

1981-05-01T23:59:59.000Z

122

Experiment on a Tunable Dielectric-Loaded Accelerating Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings of IPAC'10, Kyoto, Japan THPD068 03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques A14 Advanced Concepts 4437 is connected to the...

123

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

Teng, L.C.

1960-01-19T23:59:59.000Z

124

Can Accelerators Accelerate Learning?  

Science Conference Proceedings (OSTI)

The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, Caixa Postal 68528, 21941-972 (Brazil)

2009-03-10T23:59:59.000Z

125

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

A fixed-field alternating gradient accelerator for simultaneous acceleration of two particle beams in opposite directions is described. (T.R.H.)

Ohkawa, T.

1959-06-01T23:59:59.000Z

126

Research Accelerator Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Kevin Jones The Research Accelerator Division is responsible for operation of the SNS accelerator complex, which consists of a negative hydrogen-ion injector, a 1 GeV linear...

127

Research Accelerator Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Kevin Jones. The Research Accelerator Division (RAD) is responsible for operation of the SNS accelerator complex, which consists of a negative hydrogen-ion injector, a 1 GeV linear...

128

Acceleration Mechanisms  

E-Print Network (OSTI)

Glossary I. Background and context of the subject II. Stochastic acceleration III. Resonant scattering IV. Diffusive shock acceleration V. DSA at multiple shocks VI. Applications of DSA VII. Acceleration by parallel electric fields VIII. Other acceleration mechanisms IX. Future directions X. Appendix: Quasilinear equations XI. Bibliography

Melrose, D B

2009-01-01T23:59:59.000Z

129

Linear collider: a preview  

Science Conference Proceedings (OSTI)

Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

Wiedemann, H.

1981-11-01T23:59:59.000Z

130

Subcritical Fission Reactor Based on Linear Collider  

E-Print Network (OSTI)

The beams of Linear Collider after main collision can be utilized to build an accelerator--driven sub--critical reactor.

I. F. Ginzburg

2005-07-29T23:59:59.000Z

131

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes LCC - 0018, 15/06/99 Rev B, June 2002 Correct Account of RF Deflections in Linac Acceleration June 15, 1999 G.V. Stupakov Stanford Linear Accelerator Center Stanford, California Abstract: During acceleration in the linac structure, the beam not only increases its longitudinal momentum, but also experiences a transverse kick from the accelerating mode which is linear in accelerating gradient. This effect is neglected in such computer codes as LIAR and TRANSPORT. We derived the Hamiltonian equations that describe the effect of RF deflection into the acceleration process and included it into the computational engine of LIAR. By comparing orbits for the NLC main linac, we found that the difference between the two algorithms is about 10\%. The effect will be more pronounced at smaller

132

Panel discussion on laboratory accelerator programs: present and future  

SciTech Connect

The present SLAC accelerator program is summarized briefly, and the future of electron-positron colliders is discussed. Present activities discussed include the PEP storage ring, the SPEAR storage ring, the Linear Accelerator, and the SLAC Linear Collider (SLC) project. Future prospects include a larger scale linear collider. The stability requirements on acceleration are briefly discussed. (LEW)

Richter, B.

1986-09-01T23:59:59.000Z

133

Muon Acceleration - RLA and FFAG  

SciTech Connect

Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

Alex Bogacz

2011-10-01T23:59:59.000Z

134

ORELA accelerator facility  

NLE Websites -- All DOE Office Websites (Extended Search)

The Oak Ridge Electron Linear Accelerator The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source The ORELA is a powerful electron accelerator-based neutron source located in the Physics Division of Oak Ridge National Laboratory. It produces intense, nanosecond bursts of neutrons, each burst containing neutrons with energies from 10e-03 to 10e08 eV. ORELA is operated about 1200 hours per year and is an ORNL User Facility open to university, national laboratory and industrial scientists. The mission of ORELA has changed from a recent focus on applied research to nuclear astrophysics. This is an area in which ORELA has historically been very productive: most of the measurements of neutron capture cross sections necessary for understanding heavy element nucleosynthesis through the slow neutron capture process (s-process) have

135

ACCELERATED LINEARIZED BREGMAN METHOD June 21, 2011 ...  

E-Print Network (OSTI)

Jun 21, 2011... 10-16571, ONR. Grants N00014-03-0514 and N00014-08-1-1118, and DOE Grants DE-FG01-92ER-25126 and DE-FG02-08ER-25856. 1 ...

136

Accelerator and Beam Science, ABS, Accelerator Operations and Technology,  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Concepts Accelerator Concepts Injectors Operations Physics CONTACTS Group Leader Robert Garnett Deputy Group Leader Kenneth Johnson Office Administrator Monica Sanchez Phone: (505) 667-2846 Put a short description of the graphic or its primary message here Accelerator and Beam Science The Accelerator and Beam Science (AOT-ABS) Group at Los Alamos addresses physics aspects of the driver accelerator for the LANSCE spallation neutron source and related topics. These activities are wide ranging and include generating negative and positive ions in plasma ion sources, creating ion beams from these particles, accelerating the ion beams in linear accelerator structures up to an energy of 800 MeV, compressing the negative hydrogen beam to packets of sub-microsecond duration and accumulating beam current in the Proton Storage Ring, and

137

"Nanocrystal bilayer for tandem catalysis"  

DOE Green Energy (OSTI)

Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

2011-01-24T23:59:59.000Z

138

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

139

Accelerator Need  

NLE Websites -- All DOE Office Websites (Extended Search)

Need for Large Accelerators An Article Written Originally for Midlevel Teachers Back In order to study small particles, a high energy beam of particles must be generated. The...

140

Tandem mirror technology demonstration facility  

Science Conference Proceedings (OSTI)

This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

Not Available

1983-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Improved monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, M.W.

1991-04-23T23:59:59.000Z

142

Tandem junction amorphous silicon solar cells  

DOE Patents (OSTI)

An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

Hanak, Joseph J. (Lawrenceville, NJ)

1981-01-01T23:59:59.000Z

143

SLAC National Accelerator Laboratory - Accelerators and Society  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and Society PHOTO: An accelerator at SLAC. SLAC has been developing, running and studying the basic physics of particle accelerators for half a century. Thousands of...

144

SLAC National Accelerator Laboratory - Accelerator Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

physics. Today, the Accelerator Directorate operates and maintains SLAC's existing accelerators to provide the highest possible level of performance. Accelerator employees improve...

145

Muon Acceleration in Cosmic-ray Sources  

E-Print Network (OSTI)

Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in Gamma-Ray Bursts magnetars, or other sources. These source models require very high accelerating gradients, $10^{13}$ keV/cm, with the minimum gradient set by the length of the source. At gradients above 1.6 keV/cm, muons produced by hadronic interactions undergo significant acceleration before they decay. This acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. We rule out many models of linear acceleration, setting strong constraints on plasma wakefield accelerators and on models for sources like Gamma Ray Bursts and magnetars.

Spencer R. Klein; Rune Mikkelsen; Julia K. Becker Tjus

2012-08-09T23:59:59.000Z

146

Application Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest architectures. We describe current bottlenecks and performance improvement areas for applications including plasma physics, chemistry related to carbon capture and sequestration, and material science. We include a variety of methods including advanced hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto- parallelization compilers. KEYWORDS: hybrid

147

SLAC National Accelerator Laboratory - Shaken, Not Heated: the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Working at the SLAC National Accelerator Laboratory's Linear Coherent Light Source (LCLS), the scientists aimed intense, 130-femtosecond-long pulses of terahertz light at...

148

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 April 2001 Rev.1 July 2003 Guide to LIBXSIF, a Library for Parsing the Extended Standard Input Format of Accelerated Beamlines Peter G. Tenenbaum Stanford Linear Accelerator Center Stanford University Stanford, CA Abstract: We describe LIBXSIF, a standalone library for parsing the Extended Standard Input Format of accelerator beamlines. Included in the description are: documentation of user commands; full description of permitted accelerator elements and their attributes; the construction of beamline lists; the mechanics of adding LIBXSIF to an existing program; and "under the hood" details for users who wish to modify the library or are merely morbidly curious. Guide to LIBXSIF, a Library for Parsing the Extended Standard Input Format of

149

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 27/05/99 6, 27/05/99 Tolerances of Random RF Jitters in X-Band Main Linacs May 27, 1999 Kiyoshi KUBO KEK Tsukuba, Japan Abstract: Tracking simulations have been performed for the main linacs of an X-band linear collider. We discuss the choice of phase of the accelerating field relative to the bunches. The tolerances of the phase and the amplitude errors are studied. Tolerances of Random RF Jitters in X-Band Main Linacs K. Kubo, KEK Abstract Tracking simulations have been performed for main linacs of X-band linear collider. We discuss about choice of the phase of the accelerating field relative to the bunches. The tolerances of the phase and the amplitude errors are studied. 1 INTRODUCTION In order to preserve the low emittance through the main linacs of future linear colliders, various effects

150

MUON ACCELERATION  

Science Conference Proceedings (OSTI)

One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

BERG,S.J.

2003-11-18T23:59:59.000Z

151

What is an accelerator?  

NLE Websites -- All DOE Office Websites (Extended Search)

world of physics though, 'accelerator' means something a little more specific. Our accelerators are a whole class of machines that accelerate atoms, or more often, pieces of...

152

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Accelerator Institute: Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities...

153

SLAC National Accelerator Laboratory - Accelerator Research  

NLE Websites -- All DOE Office Websites (Extended Search)

An image of the FACET equipment and a man examining it. ACCELERATOR PHYSICS Accelerators form the backbone of SLAC's on-site experimental program. They are complicated...

154

Accelerators and the Accelerator Community  

Science Conference Proceedings (OSTI)

In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

Malamud, Ernest; Sessler, Andrew

2008-06-01T23:59:59.000Z

155

Tandem-mirror program: status and projection  

SciTech Connect

Construction of MFTF-B is scheduled for completion in 1985. Results of experiments in TMX-U and MFTF-B will permit the design of the D-T burning tandem-mirror next-step facility (TMNS) in which physics issues will not be at issue. TMNS will be a facility for engineering research and development. The end cells of TMNS are expected to be appropriate for a tandem-mirror demonstration fusion reactor (TMR), construction of which should begin about 1986 for operation in the 1990's.

Van Atta, C.M.

1981-03-12T23:59:59.000Z

156

High voltage series connected tandem junction solar battery  

DOE Patents (OSTI)

A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

Hanak, Joseph J. (Lawrenceville, NJ)

1982-01-01T23:59:59.000Z

157

Characterisation of electron beams from laser-driven particle accelerators  

Science Conference Proceedings (OSTI)

The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2012-12-21T23:59:59.000Z

158

Accelerating Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Solutions From vehicles on the road to the energy that powers them, Oak Ridge National Laboratory innovations are advancing American transportation. Oak Ridge National Laboratory is making an impact on everyday America by enhancing transportation choices and quality of life. Through strong collaborative partnerships with industry, ORNL research and development efforts are helping accelerate the deployment of a new generation of energy efficient vehicles powered by domestic, renewable, clean energy. EPA ultra-low sulfur diesel fuel rule ORNL and the National Renewable Energy Laboratory co-led a comprehensive research and test program to determine the effects of diesel fuel sulfur on emissions and emission control (catalyst) technology. In the course of this program, involving

159

Linear Quadratic  

E-Print Network (OSTI)

The proposal of Reshef et. al. (“MIC”) is an interesting new approach for discovering non-linear dependencies among pairs of measurements in exploratory data mining. However, it has a potentially serious drawback. The authors laud the fact that MIC has no preference for some alternatives over others, but as the authors know, there is no free lunch in Statistics: tests which strive to have high power against all alternatives can have low power in many important situations. To investigate this, we ran simulations to compare the power of MIC to that of standard Pearson correlation and distance correlation (dcor) Székely & Rizzo (2009). We simulated pairs of variables with different relationships (most of which were considered by the Reshef et. al.), but with varying levels of noise added. To determine proper cutoffs for testing the independence hypothesis, we simulated independent data with the appropriate marginals. As one can see from the Figure, MIC has lower power than dcor, in every case except the somewhat pathological

Noah Simon; Robert Tibshirani; Noah Simon; Robert Tibshirani

2011-01-01T23:59:59.000Z

160

Tandem microwave waste remediation and decontamination system  

DOE Patents (OSTI)

The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Direct High-Power Laser Acceleration of Ions for Medical Applications  

Science Conference Proceedings (OSTI)

Theoretical investigations show that linearly and radially polarized multiterawatt and petawatt laser beams, focused to subwavelength waist radii, can directly accelerate protons and carbon nuclei, over micron-size distances, to the energies required for hadron cancer therapy. Ions accelerated by radially polarized lasers have generally a more favorable energy spread than those accelerated by linearly polarized lasers of the same intensity.

Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Physics Department, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

2008-04-18T23:59:59.000Z

162

DDES and IDDES of tandem cylinders.  

Science Conference Proceedings (OSTI)

The paper presents an overview of the authors contribution to the BANC-I Workshop on the flow past tandem cylinders (Category 2). It includes an outline of the simulation approaches, numerics, and grid used, the major results of the simulations, their comparison with available experimental data, and some preliminary conclusions. The effect of varying the spanwise period in the simulations is strong for some quantities, and not others.

Balakrishnan, R.; Garbaruk, A.; Shur, M.; Strelets, M.; Spalart, P.; New Technologies and Services - Russia; St.-Peterburg State Polytechnic Univ.; Boeing Commercial Airplanes

2010-09-09T23:59:59.000Z

163

Current and lattice matched tandem solar cell  

DOE Patents (OSTI)

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

Olson, Jerry M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

164

Accelerator and electrodynamics capability review  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

Jones, Kevin W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

165

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute In 2006, Argonne Laboratory Director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. More Information for: Members * Students Industrial Collaborators - Working with Argonne Link to: Accelerators for America's Future Upcoming Events and News 4th International Particle Accelerator Conference (IPAC'13)

166

Science Accelerator Widget  

Office of Scientific and Technical Information (OSTI)

Science Accelerator Widget You can now explore multiple Science Accelerator features through the new tabbed widget. Download this tool via the 'Get Widget Options' link or by...

167

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators at Argonne Argonne has a long and continuing history of participation in accelerator based, and user oriented facilities. The Zero-Gradient Synchrotron, which began...

168

A tandem-based compact dual-energy gamma generator  

E-Print Network (OSTI)

behind the suppressor. Source (SNS) project. It consists ofmA currently achieved by the SNS ion source[6]. The tandem

Persaud, A.

2010-01-01T23:59:59.000Z

169

Tandem mirror reactor as a synthetic fuel producer  

DOE Green Energy (OSTI)

A scoping design is reported of a fusion reactor based on tandem mirror physics coupled to thermochemical processes for the production of hydrogen.

Werner, R.W.

1980-01-01T23:59:59.000Z

170

ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.  

SciTech Connect

The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

2006-10-02T23:59:59.000Z

171

NIST MIRF - Accelerator Radiation Physics  

Science Conference Proceedings (OSTI)

Accelerator Radiation Physics. Medium-energy accelerators are under investigation for production of channeling radiation ...

172

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

photo: IARC photo: IARC As envisioned, the Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers from Fermilab, Argonne and Illinois universities will work side by side with industrial partners to research and develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security. Located on the Fermilab campus this 83,000 square foot, state-of-the-art facility will house offices, technical and educational space to study

173

SLAC National Accelerator Laboratory - SLAC National Accelerator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Notice and Terms of Use Updated January 3, 2005 PRIVACY NOTICE Welcome to the SLAC National Accelerator Laboratory website. We collect no personal information about you...

174

Petawatt pulsed-power accelerator  

DOE Patents (OSTI)

A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

2010-03-16T23:59:59.000Z

175

Thomas Jefferson National Accelerator Facility  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

176

Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes  

E-Print Network (OSTI)

Design considerations for a laser-plasma linear collider,"E.Esarey, and W.P.Leemans, "Free-electron laser driven bythe LBNL laser-plasma accelerator," in Proc. Adv. Acc. Con.

Geddes, C.G.R.

2011-01-01T23:59:59.000Z

177

Proceedings of the first international workshop on accelerator alignment  

Science Conference Proceedings (OSTI)

This report contains papers on the following accelerator topics: current alignment topics; toolboxes: instrumentation, software, and methods; fiducialization of conventional magnets; fiducialization of superconducting magnets; and next generation linear colliders.

Not Available

1990-10-01T23:59:59.000Z

178

Linear Collider Collaboration Tech Notes LCC-0104  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 October 2002 Beamstrahlung Photon Load on the TESLA Extraction Septum Blade Andrei Seryi Stanford Linear Accelerator Center Stanford, CA 94309, USA Abstract: This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade ANDREI SERYI STANFORD LINEAR

179

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development Click to download a PDF version of this document. PDF Focus Research Areas Fundamental Accelerator Physics: Theory Importance Accelerator physics research is normally associated with specific accelerator projects. As a scientific discipline, however, it is useful to study fundamental accelerator phenomena decoupled, as much as possible, from specific project aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying the limitations and suggesting ways to overcome those limitations. Such basic research tends to be discouraged in a project-driven environment. For sustained and significant progress in

180

Design considerations for a laser-plasma linear collider  

SciTech Connect

Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma based collider is presented.

Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Some aspects of superconducting accelerator design  

SciTech Connect

The performance of an accelerator can be characterized by the efficiency with which electrical energy, the minimumm energy needed to generate a given beam voltage. The current accelerator improvement program at SLAC aims at raising the beam voltage to 50 GV which will use 240 klystrons each capable of producing a pulse 5 ..mu..s in length at a peak power of 36 MW. The Linear Collider requires 50 MW klystrons to achieve 60 GV which will raise the concomittant power consumption to 32.3 MW. We show that with superconducting elements we can increase the rf and ac conversion efficiencies and achieve the necessary 50 GV using only 1/3 of the present power requirements, provided that we exclude CW operation. We will further demonstrate that this increase in efficiency is crucial and highly significant in the design of a proposed 1000 GV linear accelerator.

Farkas, Z.D.; St. Lorant, S.J.

1982-11-01T23:59:59.000Z

182

Plasma beat-wave accelerator  

Science Conference Proceedings (OSTI)

We perform an analytic study of some quantities relevant to the plasma beat-wave accelerator (PBWA) concept. We obtain analytic expressions for the plasma frequency, longitudinal electron velocity, plasma density and longitudinal plasma electric field of a nonlinear longitudinal electron plasma oscillation with amplitude less than the wave-breaking limit and phase velocity approaching the speed of light. We also estimate the luminosity of a single-pass e/sup +/e/sup -/ linear PBWA collider assuming the energy and collision beamstrahlung are fixed parameters.

Noble, R.J.

1983-06-01T23:59:59.000Z

183

Wakefields in photonic accelerator structures  

SciTech Connect

Control and manipulation of properties - such as vacuum modal confinement, spatial harmonic content, phase velocity, and group velocity - are reasons why an all-dielectric beam-driven accelerator would be expected to benefit by borrowing from the field of optical bandgap photonics. We outline the general conditions for coherent Cerenkov radiation in a photonic crystal, illustrated by three examples: two Bragg mirrors separated by a vacuum gap, a woodpile with a linear waveguide channel, and a stack of photonic slabs having a planar waveguide channel.

Naranjo, B.; Andonian, G.; Arab, E.; Barber, S.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Mahapatra, S.; O'Shea, B.; Valloni, A.; Williams, O.; Yang, C.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095-1547 (United States)

2012-12-21T23:59:59.000Z

184

Experimental Plans to Explore Dielectric Wakefield Acceleration in the THZ Regime  

SciTech Connect

Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate the performances of a possible experiment under consideration at the FLASH facility in DESY to explore wakefield acceleration with an enhanced transformer ratio. The experiment capitalizes on a unique pulse shaping capability recently demonstrated at this facility. In addition, the facility incorporates a superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of potential dynamical effects in dielectric wakefield accelerators.

Lemery, F.; Mihalcea, D.; /Northern Illinois U.; Piot, P.; /Fermilab; Behrens, C.; Elsen, E.; Flottmann, K.; Gerth, C.; Kube, G.; Schmidt, B.; /DESY; Osterhoff, J.; /Hamburg U., Inst. Theor. Phys. II; Stoltz, P.

2011-09-07T23:59:59.000Z

185

High-energy lattice for first-beam operation of the SRF test accelerator at NML  

Science Conference Proceedings (OSTI)

The Superconducting Radio Frequency Test Accelerator, a linear electron accelerator currently in construction at Fermilab's New Muon Laboratory, will eventually reach energies of {approx} 900 MeV using four ILC-type superconducting accelerating cryomodules. The accelerator's construction is staged according to cryomodules availability. The first phase that will support first beam operation incorporates one cryomodule. In this Note, we summarize a possible design for the first-beam accelerator configuration.

Prokop, C.; /NICADD, DeKalb; Piot, P.; /NICADD, DeKalb /Fermilab; Church, M.; /Fermilab

2011-09-01T23:59:59.000Z

186

Radiative Effects on Particle Acceleration via Relativistic Electromagnetic Expansion  

E-Print Network (OSTI)

We study the radiation effect on the diamagnetic relativistic pulse accelerator (DPRA) in two-and-half-dimensional particle-in-cell (PIC) plasma simulation with magnetized electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle, which reduces the acceleration force and converts particle energy to radiation. The emitted radiation is strongly linearly polarized and peaked within few degrees from the direction of Poynting flux due to the relativistic acceleration by the DPRA.

Noguchi, K; Nishimura, K; Noguchi, Koichi; Liang, Edison; Nishimura, Kazumi

2004-01-01T23:59:59.000Z

187

Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam  

DOE Patents (OSTI)

A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

Maschke, A.W.

1984-04-16T23:59:59.000Z

188

STANFORD LINEAR ACCELERATOR CENTER FY 2004 FY2010  

E-Print Network (OSTI)

of natural gas, compressed air, cooling-tower water, chilled water and hot water systems. These systems LF 3 sensors and PLC controllers at least two (2) out of four (4) cooling towers: 101, 1201, 1202 and 1701 therefore allowing optimizing the blow-down cycles. 27. Implement Title II design of campus cooling tower CT

Wechsler, Risa H.

189

STANFORD LINEAR ACCELERATOR CENTER Winter 1999, Vol. 29, No. 3  

E-Print Network (OSTI)

Energy. It has been my pleasure to collaborate with Hans D. Gouger, Kevan D. Weaver and J. Steven Herring

California at Santa Cruz, University of

190

2010 Annual Planning Summary for Stanford Linear Accelerator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Planning Summary for National Nuclear Security Administration Service Center (NNSA-SC) 2010 Annual Planning Summary for Nevada Site Office Energy.gov Careers & Internships...

191

DOE - Office of Legacy Management -- Stanford Linear Accelerator...  

Office of Legacy Management (LM)

Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to clean up soils and...

192

RHIC | Accelerator Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Accelerators RHIC Accelerators The Relativistic Heavy Ion Collider complex is actually composed of a long "chain" of particle accelerators Heavy ions begin their travels in the Electron Beam Ion Source accelerator (1). The ions then travel to the small, circular Booster (3) where, with each pass, they are accelerated to higher energy. From the Booster, ions travel to the Alternating Gradient Synchrotron (4), which then injects the beams via a beamline (5) into the two rings of RHIC (6). In RHIC, the beams get a final accelerator "kick up" in energy from radio waves. Once accelerated, the ions can "orbit" inside the rings for hours. RHIC can also conduct colliding-beam experiments with polarized protons. These are first accelerated in the Linac (2), and further in the Booster (3), AGS (4), and

193

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

GEM - GeV Electron Microtron (design report 1982) The GEM design report describes a novel six-sided CW microtron for accelerating electrons to 4 GeV. This accelerator design was...

194

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

195

Accelerator technology for the Los Alamos ATW (accelerator transmutation of nuclear waste) system  

SciTech Connect

The Los Alamos concept for accelerator transmutation of nuclear waste (ATW) employs a high-power proton linear accelerator to generate intense fluxes of thermal neutrons (>10{sup 16} n/cm{sup 2}-s) through spallation on a lead-bismuth target. The nominal beam energy for an ATW accelerator is 1.6 GeV, with average current requirements ranging from 250 mA to 30 mA, depending on application specifics. A recent study of accelerator production of tritium (APT) led to the development of a detailed point design for a 1.6 GeV, 250 mA cw proton linac. The accelerator design was reviewed by the Energy Research Advisory Board (ERAB) and found to be technically sound. The Panel concluded that linac of this power level could now be implemented within the existing technology base, given an adequate component development program and an integrated engineering demonstration of the front end.

Lawrence, G.P.

1991-01-01T23:59:59.000Z

196

Far field acceleration  

SciTech Connect

Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

Fernow, R.C.

1995-07-01T23:59:59.000Z

197

What is an accelerator operator?  

NLE Websites -- All DOE Office Websites (Extended Search)

is an accelerator operator? First I'll explain the education one must have in order to be considered for an Accelerator Operator position. Jefferson Lab's typical Accelerator...

198

Linear Thermite Charge  

The Linear Thermite Charge (LTC) is designed to rapidly cut through concrete and steel structural components by using extremely high temperature thermite reactions jetted through a linear nozzle. 

199

Physics considerations for laser-plasma linear colliders  

SciTech Connect

Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

2010-06-11T23:59:59.000Z

200

High-power accelerator technology and requirements  

SciTech Connect

Designs of high-power proton linear accelerators (linacs) for accelerator transmutation of waste (ATW) are being actively studied at Los Alamos National Laboratory and at several other laboratories worldwide. Beam parameters cover the 100- to 300-mA range in average current and 800 to 1600 MeV in energy. While ideas for such accelerators have been discussed for decades, the technology base has recently advanced to the point that the feasibility of machines in the ATW power class is now generally conceded. Factors contributing to this advance have been the following: experience gained with medium-power research accelerators, especially the LAMPF linac at Los Alamos; major improvements in the theory and technology of high-intensity high-brightness accelerators fostered by the SDIO Neutral Particle Beam program; and development of high-power continuous-wave (cw) radio-frequency (rf) generators for high-energy colliding-beam rings. The reference ATW accelerator concept described in this paper is based on room-temperature copper accelerating cavities. Advances in superconducting niobium cavity technology have opened the possibility of application to ATW-type linacs. Useful efficiency gains could be realized, especially for lower current systems, and there may be technical advantages as well. Technology issues that need to be addressed for superconducting rf linac designs include the development of high-power rf couplers, appropriate cavity designs, and superconducting focusing elements, as well as concerns about beam damage of niobium structures and dynamic rf control with high beam currents.

Lawrence, G.P. (Los Alamos National Lab., NM (United States))

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Homepage Lee Teng Scholarship Program USPAS Argonne Department of Education Fermilab Education Office For Students Many scientific advances are made using accelerators. The world of High Energy Particle Physics has driven this field and continues to depend largely on accelerators. Increasingly advances in materials science, chemistry, biology and environmental science are being made at accelerators using x-ray and neutrons to probe matter. Accelerators have a number of commercial applications including isotope production for use in medicine, cancer treatment, processing semiconductor chips, and so on. Presently there are around 15,000 accelerators worldwide. Approximately 97% of these are used for commercial applications. However several hundred are in use

202

SLAC National Accelerator Laboratory - Director of Accelerator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee on Appropriations asked the US Department of Energy (DOE) to submit a strategic plan for accelerator R&D by June 2012. The DOE asked me to lead a task force to...

203

Acceleration in astrophysics  

SciTech Connect

The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

Colgate, S.A.

1993-12-31T23:59:59.000Z

204

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs  

iency solar cells that leverage the well-established design and manufacturing technology of silicon cells while delivering the performance previously achievable only by far more complex and expensive tandem solar cells. 

205

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

The Argonne Accelerator History Document Collection The Argonne Accelerator History Document Collection The Argonne Accelerator Institute (AAI) has established a special collection of archived documents which describe notable Argonne accelerator work of the past 50 years. A list of such Argonne Accelerator Projects is given below. Each project is described briefly, with links to archived documents in this collection. This collection includes important Argonne accelerator documents which may have become difficult to locate, as well as ones which have broad scope. In keeping with its historical purpose, this collection only covers work done 10 or more years ago. Many of the listed documents are available online. We hope to make more of them available online in the future. [For several of the projects, interesting additional online documents can be found by

206

accelerators for ATI  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Accelerator Analogs Building Accelerator Analogs Some QuarkNet centers have built "accelerators." No, they are not real but can be used as analogs to real particle accelerators. The real learning comes, of course, when you plan and experiment on your own, but this may give you some starting points. Things to Think About What are your objectives? To make an analogy for particle accelerators? To use classical physics qualitatively? To use classical physics quantitatively? To measure forces, speed, etc.? _______________ Who is your target audience— in an Associate Teacher Institute or their students or both? What do the participants need to know before beginning? Jawbreaker Accelerator Pressurized gas shoots jawbreakers through PVC pipe into a fixed target (brick) or into each other. The original speeds and masses are measured as are those of the resulting particles.

207

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities in Northern Illinois Advance accelerator technology Oversee a selected, strategic, lab-wide, and acclaimed accelerator R&D portfolio In order to accomplish the above goals, the institute has established five objectives. These are coupled to programmatic objectives, and are dependent on each other, but they serve to identify important areas for the institute to focus its activities. Educate the "next generation" of accelerator physicists and engineers Work with area Universities to establish Joint Appointments and Adjunct Professorships Identify students Provide research opportunities at Argonne Work with the US Particle Accelerator School

208

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

209

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome In 2006, Argonne laboratory director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. I invite you to look around the content of this web site. Accelerators at Argonne describes our rich heritage in this field, particularly with respect to the development and support of user facilities. Initiatives describes the things we are hoping to do, and Research & Development discusses our research portfolio. If you are a graduate or undergraduate student wishing to pursue a career in accelerator science or technology, please see Educational

210

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

211

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

212

ACCELERATION RESPONSIVE SWITCH  

DOE Patents (OSTI)

An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

Chabrek, A.F.; Maxwell, R.L.

1963-07-01T23:59:59.000Z

213

Science Accelerator : User Account  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Office of Science Office of Scientific and Technical Information Website PoliciesImportant Links Science Accelerator science.gov WorldWideScience.org Deep Web Technologies...

214

The Accelerator Chain  

NLE Websites -- All DOE Office Websites (Extended Search)

Watch video of Fermilab's Accelerators to learn more. Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: April 22, 2001...

215

WIPP - CBFO Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

more information, access DOE Environmental Management site at: http:www.em.doe.govclosure For more information regarding the Accelerating Cleanup: Paths to Closure, contact...

216

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

ICFA Beam Dynamics Mini-Workshop on DeflectingCrabbing Cavity Applications in Accelerators April 21-23, 2010, Cockcroft Institute, Daresbury Laboratory, Warrington, UK Sixth...

217

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng...

218

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

(1971). (Located in the Argonne Research Library) Lee Teng Autobiography: Accelerators and I, Beam Dynamics Newsletter, No. 35, p 8-19, December (2004). (Located in Beam...

219

Market Acceleration (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

Not Available

2010-09-01T23:59:59.000Z

220

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

- Document Access Guide ATLAS: A Proposal for a Precision Heavy Ion Accelerator, Argonne National Laboratory, February (1978). (Located in the DOE Information Bridge) The...

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute: For Industrial Collaborators -- Working with Argonne This link is addressed to...

222

Acceleration of polarized protons in circular accelerators  

SciTech Connect

The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

Courant, E.D.; Ruth, R.D.

1980-09-12T23:59:59.000Z

223

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24T23:59:59.000Z

224

The Accelerated Universe and the Moon  

E-Print Network (OSTI)

Cosmologically motivated theories that explain small acceleration rate of the Universe via modification of gravity at very large, horizon or super-horizon distances, can be tested by precision gravitational measurements at much shorter scales, such as the Earth-Moon distance. Contrary to the naive expectation the predicted corrections to the Einsteinian metric near gravitating sources are so significant that fall within sensitivity of the proposed Lunar Ranging experiments. The key reason for such corrections is the van Dam-Veltman-Zakharov discontinuity present in linearized versions of all such theories, and its subsequent absence at the non-linear level ala Vainshtein.

Gia Dvali; Andrei Gruzinov; Matias Zaldarriaga

2002-12-04T23:59:59.000Z

225

Investigation of Cd1-XMgxTe Alloys for Tandem Solar Cell Applications: Preprint  

DOE Green Energy (OSTI)

Theoretical modeling of two-junction tandem solar cells shows that for optimal device performance, the bandgap of the top cell should be in the range of 1.6 to 1.8 eV. Cd1-xMgxTe (CMT) alloys have a lattice constant close to that of CdTe, and the addition of a small amount of Mg changes the bandgap considerably. In this paper, we present our work on developing CMT for solar cell applications. CMT films were prepared by vacuum deposition with co-evaporation of CdTe and Mg on substrates heated to 300-400 C. Films with a composition in the range of x = 0 to 0.66 were fabricated, and optical analysis of the films showed that the bandgap of the samples ranged from 1.5 to 2.3 eV and varied linearly with composition. For the fabrication of devices using these alloy films, we also investigated the effect of post-deposition CdCl2 heat treatment. We have investigated junctions between CdS and CMT alloys in the bandgap range of 1.5 to 1.8 eV for tandem cell applications. We have also worked on the ohmic contacts to the CMT alloy films using Cu/Au bilayers, and the preliminary data shows a significant effect of the contact processing on the device performance.

Dhere, R.; Ramanathan, K.; Scharf, J.; Moutinho, H.; To, B.; Duda, A.; Noufi, R.

2006-05-01T23:59:59.000Z

226

Microscale acceleration history discriminators  

DOE Patents (OSTI)

A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

227

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

5 08//00 5 08//00 Study of Beam Energy Spectrum Measurement in the NLC Extraction Line August 2000 Yuri Nosochkov and Tor Raubenheimer Stanford Linear Accelerator Center Stanford, CA Abstract: The NLC extraction line optics includes a secondary focal point with a very small _- function and 2 cm dispersion which can be used for measurement of outgoing beam energy spread. In this study, we performed tracking simulations to transport the NLC disrupted beam from the Interaction Point (IP) to the extraction line secondary focus (the IP image), `measure' the transverse beam pro_le at the IP image and reconstruct the beam energy spectrum. The resultant distribution was compared with the original energy spectrum at the IP. Study of Beam Energy Spectrum Measurement

228

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

2 03/12/99 2 03/12/99 PEP-II RF Cavity Revisited December 3, 1999 R. Rimmer, G. Koehler, D. Li, N. Hartmann, N. Folwell, J. Hodgson, B. McCandless Lawrence Berkeley National Laboratory Stanford Linear Accelerator Center Berkeley, CA, USA Stanford, CA, USA Abstract: This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall

229

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 10/03/00 4, 10/03/00 Luminosity for NLC Design Variations March 10, 1999 K.A. Thompson and T.O. Raubenheimer Stanford Linear Accelerator Center Stanford, CA, USA Abstract: In this note we give Guineapig simulation results for the luminosity and luminosity spectrum of three baseline NLC designs at 0.5~TeV and 1.0~TeV and compare the simulation results with analytic approximations. We examine the effects of varying several design parameters away from the NLC-B-500 and NLC-B-1000 designs, in order to study possible trade-offs of parameters that could ease tolerances, increase luminosity, or help to optimize machine operation for specific physics processes. Luminosity for NLC Design Variations K.A. Thompson and T.O.Raubenheimer INTRODUCTION In this note we give Guineapig [l] simulation results for the luminosity and

230

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes LCC - 0038 29/04/00 CBP Tech Note - 234 Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler 29 April 2000 17 J. Corlett and S. Marks Lawrence Berkeley National Laboratory M. C. Ross Stanford Linear Accelerator Center Stanford, CA Abstract: The primary effort for damping ring wiggler studies has been to develop a credible radiation hard electromagnet wiggler conceptual design that meets NLC main electron and positron damping ring physics requirements [1]. Based upon an early assessment of requirements, a hybrid magnet similar to existing designs satisfies basic requirements. However, radiation damage is potentially a serious problem for the Nd-Fe-B permanent magnet material, and cost remains an issue for samarium cobalt magnets. Superconducting magnet designs have not been

231

Collider-Accelerator Department  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Tunnel and Magnets RHIC Tunnel and Magnets RHIC Tunnel and Magnets AGS Tunnel and Magnets NSRL Beamline RF Kicker Snake 200-MeV LINAC AGS Cold Snake Magnet About the Collider-Accelerator Department The mission of the Collider-Accelerator Department is to develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; to support the experimental program including design, construction and operation of the beam transports to the experiments plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of over 1500 scientists. The department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach.

232

Jar mechanism accelerator  

SciTech Connect

This patent describes an accelerator for use with a jar mechanism in a well pipe string to enhance the jarring impact delivered to a stuck object wherein the jar mechanism includes inner and outer members for connection, respectively, between the well pipe string the stuck object. The jar mechanism members are constructed to (1) restrict relative longitudinal movement therebetween to build up energy in the well pipe string and accelerator and then (2) to release the jar mechanism members for unrestrained, free relative longitudinal movement therebetween to engage jarring surfaces on the jar mechanism members for delivering a jarring impact to the stuck object. The accelerator includes: inner and outer telescopically connected members relatively movable longitudinally to accumulate energy in the accelerator; the inner and outer accelerator members each having means for connecting the accelerator in the well pipe string; means associated with the inner and outer members for initially accomodating a predetermined minimum length of unrestrained, free relative longitudinal movement between the inner and outer accelerator members.

Anderson, E.A.; Webb, D.D.

1989-07-11T23:59:59.000Z

233

BNL | Accelerating Particles Accelerates Science - With Big Benefits...  

NLE Websites -- All DOE Office Websites (Extended Search)

program focused on developing the next crop of bold accelerator scientists and engineers. Photo of CASE participants The Center for Accelerator Science and Education (CASE)...

234

Tandem Catalysis in Nanocrystal Interfaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tandem Catalysis in Nanocrystal Interfaces Tandem Catalysis in Nanocrystal Interfaces Tandem Catalysis in Nanocrystal Interfaces July 18, 2011 - 2:45pm View(active tab) Edit Workflow Addthis A unique new bilayer nanocatalyst system. | Image courtesy of Yang group A unique new bilayer nanocatalyst system. | Image courtesy of Yang group What does this mean for me? A prime example of these applications is artificial photosynthesis -- the effort to capture energy from the sun and transform it into electricity or chemical fuels. Catalysts (substances that speed up the rates of chemical reactions without themselves being chemically changed) are used to initiate virtually every industrial manufacturing process that involves chemistry. With the advent of nano-sized catalysts, metal and metal oxide catalysts have surged in

235

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Organization The Argonne Accelerator Institute is a matrixed organization. Its members and fellows reside in programmatic Argonne divisions. The Institute reports to the Associate Laboratory Director for Photon Science), and the administrative functions of the Institute are within the PSC directorate. Director: Rodney Gerig Associate Director: Hendrik Weerts ( Director of High Energy Physics Division) Associate Director: Sasha Zholents (Director of Accelerator Systems Division) Associate Director: Robert Janssens ( Director of Argonne Physics Division)

236

Superfund accelerated cleanup model  

SciTech Connect

In an effort to speed and maximize cleanup of the worst sites first, the Environmental Protection Agency (EPA) developed the Superfund Accelerated Cleanup Model (SACM). SACM streamlines the Superfund process so hazardous waste sites can be addressed quicker and in a more cost effective manner. EPA Regional offices developed a number of pilot projects to test the principles of SACM. Although many pilots are underway in the Regions, the pilots described here involve four areas: accelerating cleanup through early actions; integrating site assessments; using Regional Decision Teams to establish priorities; and accelerating cleanup through the use of new technology.

Not Available

1994-08-01T23:59:59.000Z

237

The Fast Lane: Fermilab's Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Lane: Accelerators at Fermilab Introduction Introduction to Accelerators Accelerator Chain Cockcroft-Walton How it works How it looks Linac How it works How it looks Booster How it...

238

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

239

Accelerator technology for the LANL ATW system  

Science Conference Proceedings (OSTI)

The Los Alamos National Laboratory concept for accelerator transmutation of nuclear waste (ATW) employs a high-power proton linear accelerator to generate intense fluxes of thermal neutrons (> 10{sup 16} n/cm{sup 20} {center dot} s) through spallation on a lead-bismuth target. The nominal beam energy for a ATW accelerator is 1.6 GeV, and the average current requirements range from 250 to 30 mA, depending on application specifics. A recent study of accelerator production of tritium (APT) led to the development of a detailed point design for a 1.6-GeV, 250-mA cw proton linac. The accelerator design was reviewed by the Energy Research Advisory Board and found to be technically sound. The panel concluded that a linac of this power level could now be implemented within the existing technology base, given an adequate component development program and an integrated engineering demonstration of the front end. The APT linac can be taken as representing the upper bound of ATW power requirements.

Lawrence, G.P. (Los Alamos National Lab., NM (United States))

1991-01-01T23:59:59.000Z

240

Summary of the MARS tandem-mirror reactor design  

SciTech Connect

A recently completed two-year study of a commercial tandem-mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped-particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24 T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted. General characteristics of the MARS tandem mirror and STARFIRE tokamak reactor design are compared. A design of an upgrade of MFTF-B incorporating many of the MARS features is discussed.

Logan, B.G.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The evolution of high energy accelerators  

SciTech Connect

Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

Courant, E.D.

1994-08-01T23:59:59.000Z

242

The Particle Adventure | Accelerators and Particle Detectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Waves and particles The world's meterstick Mass and energy Energy-mass conversion Accelerators How to obtain particles to accelerate Accelerating particles Accelerating...

243

Linear Collider Collaboration Tech Notes LCC-0100  

NLE Websites -- All DOE Office Websites (Extended Search)

100 100 August 2002 Systematic Ground Motion and Macroalignment for Linear Colliders Rainer Pitthan Stanford Linear Accelerator Center Stanford University Stanford, CA 94309, USA Abstract: Future colliders with their µm-range operational tolerances still need to be classically aligned to the 50 - 100 µm range, and kept there, over the km range. This requirement will not be a show-stopper, but not be trivial either. 50 µm movements over a betatron wavelength is a the range where systematic long term motions can prevent efficient operation. Systematic Ground Motion and Macro-Alignment for Linear Colliders Complete talk at: http://www-project.slac.stanford.edu/lc/wkshp/snowmass2001/t6/info/pitthan july

244

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Quarterly Meetings Quarterly Meetings November 29, 2011 Held at the Advanced Photon Source, Argonne, IL DOE Accelerator R&D Task Force - M. White February 17, 2010 Held at the Advanced Photon Source, Argonne, IL June 16, 2009 General Updates - R. Gerig Accelerator Developments in Physics Division - R. Janssens Proposal for Argonne SRF Facility - M. Kelly Accelerator Developments in HEP Division - W. Gai Beam Activities of the DOD Project Office-Focus on the Navy FEL - S. Biedron AAI Historical Collection - T. Fields November 24, 2008 Strategic Theme Forum Meeting - This meeting was held to gather information on the Accelerator Science and Technology Theme to establish the Argonne's Strategic Plan January 9, 2008 Opening Remarks - R. Gerig ILC Planning - J. Carwardine Argonne Participation in Project X - P. Ostroumov

245

Charged particle accelerator grating  

DOE Patents (OSTI)

A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

Palmer, R.B.

1985-09-09T23:59:59.000Z

246

Accelerated Aging of Roofing Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio CRRC, Arizona CRRC, Florida CRRC, Ohio 6 | Building Technologies Office eere.energy.gov Approach: develop accelerated aging method Accelerated soiling (atmospheric...

247

Physics Out Loud - Particle Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

Nucleus Previous Video (Nucleus) Physics Out Loud Main Index Next Video (Particle Resonance) Particle Resonance Particle Accelerator Andrew Hutton, Director of Accelerators at...

248

Linear phase compressive filter  

DOE Patents (OSTI)

A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

McEwan, Thomas E. (Livermore, CA)

1995-01-01T23:59:59.000Z

249

Detroit as linear city.  

E-Print Network (OSTI)

??Detroit is a city in decline. Through strategic withdrawal into a linear city its main artery -Woodward Avenue- becomes an assembly line that holds different… (more)

Kuys, J.I.

2012-01-01T23:59:59.000Z

250

Linear Graphene Plasmons  

Science Conference Proceedings (OSTI)

The coupling of the plasmon spectra of graphene and a nearby thick plasma is examined here in detail. The coupled modes include linear plasmons. Keywords: Graphene, plasmons, surface

N. J.M. Horing

2010-11-01T23:59:59.000Z

251

CEBAF accelerator achievements  

Science Conference Proceedings (OSTI)

In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

2011-06-01T23:59:59.000Z

252

Accelerating Turing Machines  

Science Conference Proceedings (OSTI)

Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of ? contains n consecutive 7s, ... Keywords: ?-machine, Chinese room argument, Church–Turing thesis, accelerating Turing machine, decision problem, effective procedure, halting problem, hypercomputation, hypercomputer, infinity machine, oracle machine, super-task

B. Jack Copeland

2002-05-01T23:59:59.000Z

253

Klystron switching power supplies for the Internation Linear Collider  

Science Conference Proceedings (OSTI)

The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

Fraioli, Andrea; /Cassino U. /INFN, Pisa

2009-12-01T23:59:59.000Z

254

Physics of Laser-driven plasma-based acceleration  

SciTech Connect

The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

Esarey, Eric; Schroeder, Carl B.

2003-06-30T23:59:59.000Z

255

Steady-State Solutions in Nonlinear Diffusive Shock Acceleration  

E-Print Network (OSTI)

Stationary solutions to the equations of non-linear diffusive shock acceleration play a fundamental role in the theory of cosmic-ray acceleration. Their existence usually requires that a fraction of the accelerated particles be allowed to escape from the system. Because the scattering mean-free-path is thought to be an increasing function of energy, this condition is conventionally implemented as an upper cut-off in energy space -- particles are then permitted to escape from any part of the system, once their energy exceeds this limit. However, because accelerated particles are responsible for substantial amplification of the ambient magnetic field in a region upstream of the shock front, we examine an alternative approach in which particles escape over a spatial boundary. We use a simple iterative scheme that constructs stationary numerical solutions to the coupled kinetic and hydrodynamic equations. For parameters appropriate for supernova remnants, we find stationary solutions with efficient acceleration w...

Reville, B; Duffy, P

2008-01-01T23:59:59.000Z

256

Advanced test accelerator: a high-current induction linac  

SciTech Connect

The Advanced Test Accelerator (ATA) is a linear induction accelerator being built at Lawrence Livermore National Laboratory. The aim of the ATA, together with its associated physics program is the research and development necessary to resolve whether particle-beam propagation is possible. Since the accelerator is the tool needed to do the basic propagation experiment, many of its design parameters are specified by the physics. The accelerator parameters are: 50 MeV, 10 kA, 70 ns pulse width (FWHM), and a 1 kHz rep-rate during a ten-pulse burst. In addition, beam quality and pulse-to-pulse repeatability must be excellent. The unique features of the accelerator are the 10 kA beam and the 1 kHz burst frequency.

Cook, E.G.; Birx, D.L.; Reginato, L.L.

1982-11-01T23:59:59.000Z

257

High transformer ratio drive beams for wakefield accelerator studies  

Science Conference Proceedings (OSTI)

For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Max Planck Institute for Physics, 80805 Munich (Germany); University of California Los Angeles, Los Angeles, CA 90095 (United States); Tsinghua University, Beijing (China)

2012-12-21T23:59:59.000Z

258

About Us: Accelerator Operations and Technology, AOT: LANL  

NLE Websites -- All DOE Office Websites (Extended Search)

About AOT Accelerator and Operations Technology AOT Division provides operations and related support for the Los Alamos Neutron Science Center (LANSCE), conducting fundamental and applied research and development needed to improve its operations support efforts. AOT's R&D efforts include plasma physics, ion beam generation; accelerator physics; linear-accelerator-structure engineering, design; high-space-charge proton-accumulator/compressor-ring physics; beam-transport-lattice physics, engineering; particle-beam-diagnostics physics, engineering; high- and low-power-radio-frequency-system engineering; high-voltage and -current, pulsed-power engineering; magnet-power-system engineering; mechanical engineering, design (e.g., precision alignment technology);

259

ADJUSTED FIELD PROFILE FOR THE CHROMATICITY CANCELLATION IN FFAG ACCELERATORS.  

SciTech Connect

In an earlier report they have reviewed four major rules to design the lattice of Fixed-Field Alternating-Gradient (FFAG) accelerators. One of these rules deals with the search of the Adjusted Field Profile, that is the field non-linear distribution along the length and the width of the accelerator magnets, to compensate for the chromatic behavior, and thus to reduce considerably the variation of betatron tunes during acceleration over a large momentum range. The present report defines the method for the search of the Adjusted Field Profile.

RUGGIERO, A.G.

2004-10-13T23:59:59.000Z

260

LLNL-TR-408176 The Axisymmetric Tandem Mirror: A  

E-Print Network (OSTI)

LLNL-TR-408176 The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror of Magnetic Mirror Status #12;Berkeley Workshop Participants Others Interested David Baldwin, LLNL/GA Rick, LLNL George Miley, U. Illinois Ron Cohen, LLNL Gary Porter, LLNL Don Correll, LLNL John Santarius, U

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plasma-based accelerator structures  

SciTech Connect

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Schroeder, Carl B.

1999-12-01T23:59:59.000Z

262

Collective Acceleration in Solar Flares  

E-Print Network (OSTI)

Laboratory UNIVERSITY OF CALIFORNIA Accelerator & FusionLaboratory, University of California, Berkeley, CA 94720 (2)

Barletta, W.

2008-01-01T23:59:59.000Z

263

A Proposal for a TESLA Accelerator Module Test Facility W.D.Moeller, B.Petersen, B.Sparr  

E-Print Network (OSTI)

1 A Proposal for a TESLA Accelerator Module Test Facility W.D.Moeller, B.Petersen, B.Sparr Deutsches Elektronen Synchrotron TESLA Report No. 2001-08 Abstract The Tera-eV Energy Superconducting Linear Accelerator (TESLA), a 32 km long superconducting linear electron/positron collider of 500 GeV (upgradeable

264

Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators  

SciTech Connect

Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

2010-05-17T23:59:59.000Z

265

User Agreement Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

*required 5. Which user facility will be hosting you? *required Advanced Leadership Computing Facility (ALCF) Advanced Photon Source (APS) Argonne Tandem Linear Accelerator...

266

NUFO 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's national user facilities: Advanced Photon Source (APS), Argonne Leadership Computing Facility (ALCF), Argonne Tandem Linear Accelerator System (ATLAS), ARM Climate...

267

User Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facilities Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Electron Microscopy Center...

268

Accelerator Update | Archive | 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Accelerator Update Archive 2 Accelerator Update Archive April 27, 2012 - April 30, 2012 NuMI reported receiving 7.67E18 protons on target for the period from 4/23/12 to 4/30/12. The Booster developed an aperture restriction that required lower beam intensity Main Injector personnel completed their last study The shutdown begins Linac, MTA, and Booster will continue using beam for one or two more weeks Linac will supply the Neutron Therapy Facility beam for most of the shutdown April 25, 2012 - April 27, 2012 Booster beam stop problem repaired Beam to all experiments will shut off at midnight on Monday morning, 4/30/12. Main Injector will continue to take beam until 6 AM on Monday morning. Linac, the Neutron Therapy Facility, MTA, and Booster will continue using beam for one or two more weeks. The Fermi Accelerator Complex will be in shutdown for approximately one year

269

BNL | Our History: Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

> See also: Reactors > See also: Reactors A History of Leadership in Particle Accelerator Design Cosmotron Cosmotron (1952-1966) Early in Brookhaven Lab history, the consortium of universities responsible for founding the new research center, decided that Brookhaven should provide leading facilities for high energy physics research. In April 1948, the Atomic Energy Commission approved a plan for a proton synchrotron to be built at Brookhaven. The new machine would accelerate protons to previously unheard of energies-comparable to the cosmic rays showering the earth's outer atmosphere. It would be called the Cosmotron. The Cosmotron was the first accelerator in the world to send particles to energies in the billion electron volt, or GeV, region. The machine reached its full design energy of 3.3 GeV in 1953.

270

High intensity hadron accelerators  

SciTech Connect

This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

Teng, L.C.

1989-05-01T23:59:59.000Z

271

Interfacing to accelerator instrumentation  

SciTech Connect

As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

Shea, T.J.

1995-12-31T23:59:59.000Z

272

An accelerator technology legacy  

Science Conference Proceedings (OSTI)

Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production.

Heighway, E.A.

1994-11-01T23:59:59.000Z

273

Linear Collider Collaboration Tech Notes LCC-70  

NLE Websites -- All DOE Office Websites (Extended Search)

70 70 August 2001 Design Studies of Positron Collection for the NLC Yuri K. Batygin, Ninod K. Bharadwaj, David C. Schultz ,John C. Sheppard Stanford Linear Accelerator Center Stanford, CA Abstract: The positron source for the NLC project utilizes a 6.2 GeV electron beam interacting in a high-Z positron production target. The electromagnetic shower in the target results in large energy deposition which can cause damage to the target. Optimization of the collection system is required to insure long-term operation of the target with needed high positron yield into the 6-dimensional acceptance of the subsequent pre-damping ring. Positron tracking through the accelerating system indicates a dilution of the initial positron phase space density. Results of simulations indicate that a

274

On the integrability of stellar motion in an accelerated logarithmic potential  

E-Print Network (OSTI)

An accelerated logarithmic potential models the mean motion of stars in a galaxy that sustains a wind system. For stars outside the galactic wind launching region, the asymmetric removal of linear momentum by the wind is seen as a perturbing acceleration superimposed onto the galactic potential. We provide numerical evidence that motion in an accelerated logarithmic potential is non-integrable. Large scale chaotic diffusion occurs in the outer part of the galaxy inside the truncation radius where the galactic acceleration balances the wind-induced acceleration.

Namouni, Fathi; Lega, Elena

2007-01-01T23:59:59.000Z

275

Linear Motor Powered Transportation  

E-Print Network (OSTI)

This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

Thornton, Richard D.

276

Edges and linearization  

E-Print Network (OSTI)

This thesis is concerned with how grammar determines the phonological consequence of syntactic dislocation. It centers on a hypothesis regarding the linearization of movement chains - the Edge Condition on Copy Deletion, ...

Trinh, Tue H. (Tue Huu)

2011-01-01T23:59:59.000Z

277

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, Mark L. (Livermore, CA); Davis, Jay C. (Livermore, CA)

1993-01-01T23:59:59.000Z

278

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, M.L.; Davis, J.C.

1993-02-23T23:59:59.000Z

279

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

This invention is comprised of an apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radiofrequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and {sup 3}He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, M.L.; Davis, J.C.

1991-12-31T23:59:59.000Z

280

International linear collider reference design report  

Science Conference Proceedings (OSTI)

The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

Aarons, G.

2007-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Charge Diagnostics for Laser Plasma Accelerators  

SciTech Connect

The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

2010-06-01T23:59:59.000Z

282

Charge Diagnostics for Laser Plasma Accelerators  

Science Conference Proceedings (OSTI)

The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/ps/mm{sup 2}, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within {+-}10%.

Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

2010-11-04T23:59:59.000Z

283

Accelerating News Issue 5  

E-Print Network (OSTI)

In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

Szeberenyi, A

2013-01-01T23:59:59.000Z

284

Linear Collider Physics Resource Book Snowmass 2001  

Science Conference Proceedings (OSTI)

The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.

Ronan (Editor), M.T.

2001-06-01T23:59:59.000Z

285

Applications of large-scale computation to particle accelerators  

SciTech Connect

The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation, and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples from the above categories to illustrate the methods used, and discuss the significance of the work to the project. We also briefly discuss the accelerator project itself. The examples that will be discussed are: The design of accelerator structures for electron-positron linear colliders and circular colliding beam systems, simulation of the wake fields from multibunch electron beams for linear colliders. Particle-in-cell simulation of space-charge dominated beams for an experimental linear induction accelerator for Heavy Ion Fusion.

Herrmannsfeldt, W.B.

1991-05-01T23:59:59.000Z

286

Linear Collider Collaboration Tech Notes LCC-0110  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 December 2002 Post-Target Beamline Design for Proposed FFTB Experiment with Polarized Positrons Y. K. Batygin and J. C. Sheppard Stanford Linear Accelerator Center Stanford University Menlo Park, CA 04025 Abstract: The beamline after positron production target for the proposed experiment E-166 is discussed. The beamline includes bending magnets and solenoid to deliver polarized positron beam from the target to polarimeter. Results of simulation indicate that transmission efficiency of 1...3 % with beam polarization of 60...80 % can be obtained if beam energy resolution is required while the transmission of 40...77 % and polarization of 40% can be obtained without beam energy resolution. 13 December 2002

287

Linear Collider Collaboration Tech Notes LCC-0099  

NLE Websites -- All DOE Office Websites (Extended Search)

099 099 August 2002 Space Charge Dynamics of Bright Electron Beams Alexander W. Chao, Rainer Pitthan, Toshiki Tajima, Dian Yeremian Stanford Linear Accelerator Center Stanford University Abstract: The longitudinal dynamics and its coupling with the transverse dynamics of bunched beams with strong space charge are analyzed. We introduce a self-consistent Vlasov description for the longitudinal phase space similar to the familiar description for the transverse phase space using a Kapchinskij-Vladimirskij (K-V) distribution [1]. A longitudinal beam envelope equation is derived. An exact solution is then obtained when coupling to the transverse dynamics is ignored. This longitudinal envelope equation is coupled to the transverse envelope

288

The effect of fluid acceleration on sediment transport in the surf zone  

E-Print Network (OSTI)

The surf zone is defined by highly non-linear, breaking waves that have very different acceleration signatures beneath their respective crests and troughs. The consequences of this dissimilarity on sediment transport is ...

Durham, William McKinney

2007-01-01T23:59:59.000Z

289

A very thin havar film vacuum window for heavy ions to perform radiobiology studies at the BNL Tandem  

Science Conference Proceedings (OSTI)

Heavy ion beams from the BNL Tandem Van de Graaff accelerators will be made available for radiobiology studies on cell cultures. Beam energy losses need to be minimized both in the vacuum window and in the air in order to achieve the ranges required for the cells to be studied. This is particularly challenging for ions heavier than iron. The design is presented of a 0.4-inch diameter Havar film window that will satisfy these requirements. Films as thin as 80 microinches were successfully pressure tested. The final thickness to be used may be slightly larger to help in achieving pin hole free windows. We discuss design considerations and present pressure and vacuum test results as well as tests with heavy ion beams.

Thieberger, P.; Abendroth, H.; Alessi, J.; Cannizzo, L.; Carlson, C.; Gustavsson, A.; Minty, M.; Snydstrup, L.

2011-03-28T23:59:59.000Z

290

Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)  

SciTech Connect

Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

Leemans, Wim (LOASIS Program, AFRD)

2008-07-08T23:59:59.000Z

291

Single P-N junction tandem photovoltaic device  

SciTech Connect

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2012-03-06T23:59:59.000Z

292

Single P-N junction tandem photovoltaic device  

SciTech Connect

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2011-10-18T23:59:59.000Z

293

III-V/Silicon Lattice-Matched Tandem Solar Cells  

DOE Green Energy (OSTI)

A two-junction device consisting of a 1.7-eV GaNPAs junction on a 1.1-eV silicon junction has the theoretical potential to achieve nearly optimal efficiency for a two-junction tandem cell. We have demonstrated a monolithic III-V-on-silicon tandem solar cell in which most of the III-V layers are nearly lattice-matched to the silicon substrate. The cell includes a GaNPAs top cell, a GaP-based tunnel junction (TJ), and a diffused silicon junction formed during the epitaxial growth of GaNP on the silicon substrate. To accomplish this, we have developed techniques for the growth of high crystalline quality lattice-matched GaNPAs on silicon by metal-organic vapor-phase epitaxy.

Geisz, J.; Olson, J.; Friedman, D.; Kurtz, S.; McMahon, W.; Romero, M.; Reedy, R.; Jones, K.; Norman, A.; Duda, A.; Kibbler, A.; Kramer, C.; Young, M.

2005-01-01T23:59:59.000Z

294

Subcritical Fission Reactor Based on Linear  

E-Print Network (OSTI)

The beams of Linear Collider after main collision can be utilized to build an accelerator–driven sub–critical reactor. ? The project of Linear Collider (LC) contains one essential element that is not present in other colliders. Here each electron (or positron or photon) bunch will be used only once, and physical collision leave two very dense and strongly collimated beams of high energy electrons or/and photons with precisely known time structure. We consider, for definiteness, electron beam parameters of the TESLA project [1] particle energy Ee = 250 GeV, number of electrons per second Ne = 2.7 · 10 14 /s, mean beam power Pb ? 11 MWt, transverse size and angular spread negligible. (1) In the Photon Collider mode the used beams contain photons, electrons and

I. F. Ginzburg

2005-01-01T23:59:59.000Z

295

Linear source approximation in CASMO5  

Science Conference Proceedings (OSTI)

A Linear Source (LS) approximation has been implemented in the two-dimensional Method of Characteristics (MOC) transport solver in a prototype version of CASMO5. The LS approximation, which relies on the computation of trajectory-based spatial moments over source regions to obtain the linear source expansion coefficients, improves the solution accuracy relative to the 'flat' or constant source approximation. In addition, the LS formulation is capable of treating arbitrarily-shaped source regions and is compatible with standard Coarse-Mesh Finite Difference (CMFD) acceleration. Numerical tests presented in this paper for the C5G7 MOX benchmark show that, for comparable accuracy with respect to the reference solution, the LS approximation can reduce the run time by a factor of four and the memory requirements by a factor often relative to the FS scheme. (authors)

Ferrer, R.; Rhodes, J. [Studsvik Scandpower, Inc., 504 Shoup Ave., Idaho Falls, ID 83402 (United States); Smith, K. [Dept. of Nuclear Science and Engineering, Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

2012-07-01T23:59:59.000Z

296

Bubble Acceleration in the Ablative Rayleigh-Taylor Instability  

Science Conference Proceedings (OSTI)

The highly nonlinear evolution of the single-mode Rayleigh-Taylor instability (RTI) at the ablation front of an accelerated target is investigated in the parameter range typical of inertial confinement fusion implosions. A new phase of the nonlinear bubble evolution is discovered. After the linear growth phase and a short constant-velocity phase, it is found that the bubble is accelerated to velocities well above the classical value. This acceleration is driven by the vorticity accumulation inside the bubble resulting from the mass ablation adn vorticity convection off the ablation front. While the albative growth rates are slower than their classical values in the linear regime, the ablative RTI grows faster than the classical RTI in the nonlinear regime for deuterium and tritium ablators.

Betti, R.; Sanz, J.

2006-11-20T23:59:59.000Z

297

Bubble Acceleration in the Ablative Rayleigh-Taylor Instability  

SciTech Connect

The highly nonlinear evolution of the single-mode Rayleigh-Taylor instability (RTI) at the ablation front of an accelerated target is investigated in the parameter range typical of inertial confinement fusion implosions. A new phase of the nonlinear bubble evolution is discovered. After the linear growth phase and a short constant-velocity phase, it is found that the bubble is accelerated to velocities well above the classical value. This acceleration is driven by the vorticity accumulation inside the bubble resulting from the mass ablation and vorticity convection off the ablation front. While the ablative growth rates are slower than their classical values in the linear regime, the ablative RTI grows faster than the classical RTI in the nonlinear regime for deuterium and tritium ablators.

Betti, R.; Sanz, J. [Fusion Science Center for Extreme States of Matter and Fast Ignition Physics, Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

2006-11-17T23:59:59.000Z

298

Accelerator and rf system development for NLC  

Science Conference Proceedings (OSTI)

An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, prebuncher, preaccelerator, focussing elements and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented.

Vlieks, A.E.; Callin, R.; Deruyter, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

1993-04-01T23:59:59.000Z

299

Tightly Coupled Accelerators Architecture for Minimizing Communication Latency among Accelerators  

Science Conference Proceedings (OSTI)

In recent years, heterogeneous clusters using accelerators have been widely used in high performance computing systems. In such clusters, inter-node communication among accelerators requires several memory copies via CPU memory, and the communication ... Keywords: GPGPU, Accelerator Computing, Interconnection Network, PCI Express, Remote DMA, CUDA, GPU Direct

Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato

2013-05-01T23:59:59.000Z

300

Efficient heterogeneous execution on large multicore and accelerator platforms: Case study using a block tridiagonal solver  

Science Conference Proceedings (OSTI)

The algorithmic and implementation principles are explored in gainfully exploiting GPU accelerators in conjunction with multicore processors on high-end systems with large numbers of compute nodes, and evaluated in an implementation of a scalable block ... Keywords: Accelerator, GPU, Heterogeneous execution, Linear algebra, Memory management, Tridiagonal solver

Alfred J. Park, Kalyan S. Perumalla

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Accelerations in Steep Gravity Waves  

Science Conference Proceedings (OSTI)

Surface accelerations can be measured in at least two ways: 1) by a fixed vertical wave guage, 2) by a free-floating buoy. This gives rise to two different vertical accelerations, called respectively “apparent” and “real”, or Langrangian. This ...

M. S. Longuet-Higgins

1985-11-01T23:59:59.000Z

302

BNL | Accelerators for Scientific Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the development of the next crop of accelerator scientists and engineers, promises to train even more. With its history of building world-class accelerators and its proximity to...

303

SSRL Accelerator Phycics Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

(29047 bytes) ICFA2000t.gif (31362 bytes) Home Page LCLS Accelerator Physics at SSRL The field tha t can be covered by the Accelerator Physics activities at SSRL is limited...

304

Progress in High-Performance PV: Polycrystalline Thin-Film Tandem Cells  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of PV for cost-competitive applications. The goal is that PV will contribute significantly to the U.S. and world energy supply and environmental enhancement in the 21st century. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course, to accelerate and enhance their impact in the marketplace. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. This paper will describe progress of the subcontractor and in-house R&D on critical pathways for a PV technology having a high potential to reach cost-competitiveness goals: 25%-efficient, low-cost polycrystalline thin-film tandems for large-area, flat-plate modules.

Symko-Davies, M.

2004-08-01T23:59:59.000Z

305

ACCELERATOR SAFETY ENVELOPE  

NLE Websites -- All DOE Office Websites (Extended Search)

BCASE-001, Ver. 2 BCASE-001, Ver. 2 Booster Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 2 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Booster Commissioning Accelerator Safety Envelope (BCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

306

Accelerator Update | Archive | 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Accelerator Update Archive 10 Accelerator Update Archive December 20, 2010 - December 22, 2010 - Three stores provided !32 hours of luminosity - Problems with two Linac quadrupole power supplies - Cryo system technicians work on TEV sector D1 wet engine - TEV quench during checkout - JASMIN's run at MTest ends December 17, 2010 - December 20, 2010 The Integrated Luminosity for the period from 12/13/10 to 12/20/10 was 66.31 inverse picobarns. NuMI reported receiving 7.62E18 protons on target during this same period. - Five Stores provided ~62 hours of luminosity - Operations had trouble with a Linac RF station (LRF3) - Operators tuned the Linac backup source (I- Source) December 15, 2010 - December 17, 2010 - Three stores provided ~36.1 hours of luminosity - MI-52 Septa repaired - NuMI recovered its target LCW system

307

ACCELERATOR SAFETY ENVELOPE  

NLE Websites -- All DOE Office Websites (Extended Search)

LCASE-001, Ver. 3 LCASE-001, Ver. 3 Linac Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 3 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Linac Commissioning Accelerator Safety Envelope (LCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

308

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

CWDD - Continuous Wave Deuterium Demonstrator CWDD - Continuous Wave Deuterium Demonstrator The Continuous Wave Deuterium Demonstrator (CWDD) accelerator, a cryogenically-cooled (26K) linac, was designed to accelerate 80 mA cw of D to 7.5 MeV. CWDD was being built to demonstrate the lauching of a beam with characteristics suitable for a space-based neutral particle-beam (NPB). A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding ended in October 1993. References - Document Access Guide Continuous Wave Deuterium Demonstrator Final Design Review, Grumman Space Systems, Grumman-Culham Laboratory, Los Alamos (1989). (Located in the Argonne Research Library) Recommissioning and first operation of the CWDD injector at Argonne

309

Accelerator Update | Archive | 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Accelerator Update Archive 9 Accelerator Update Archive December 18, 2009 - December 21, 2009 The integrated luminosity for the period from 12/14/09 to 12/21/09 was 51.27 inverse picobarns. NuMI reported receiving 6.38E18 protons on target during this same period. - Four stores provided ~62.25 hours of luminosity - Store 7444 had an AIL of 306E30 - BRF19 cavity suffered a vacuum failure and was removed - The Booster West Anode Power Supply suffered some problems December 16, 2009 - December 18, 2009 - Three stores provided ~45 hours of luminosity - PBar kicker problem - MI RF problems December 14, 2009 - December 16, 2009 - Four stores provided ~42 hours of luminosity - Recycler kicker repaired - Booster East Anode Power Supply trips due to BRF1, 2, & 8 December 11, 2009 - December 14, 2009

310

WIPP Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATING CLEANUP: ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. NTP Program Management

311

Plasma Wakefield Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

rpwa rpwa Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content Department of Energy Page Content Plasma Wakefield Acceleration

312

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

ZGS -- Zero Gradient Synchrotron (operation: 1963 - 1979) ZGS -- Zero Gradient Synchrotron (operation: 1963 - 1979) The ZGS was a 12 GeV weak-focusing proton synchrotron. It was the first high energy physics accelerator located between the U.S. coasts. The ZGS was also the first synchrotron to accelerate spin polarized protons and the first to use H-minus injection. Other noteworthy features of the ZGS program were the large number of university-based users and the pioneering development of large superconducting magnets for bubble chambers and beam transport. References - Document Access Guide History of the ZGS, Argonne, 1979, American Institute of Physics, AIP Conference Proceedings No. 60 (1980). (Located in the Argonne Research Library) High Energy Physics at Argonne National Laboratory, A. Crewe, R.

313

Review of ion accelerators  

Science Conference Proceedings (OSTI)

The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

Alonso, J.

1990-06-01T23:59:59.000Z

314

Accelerators for Cancer Therapy  

DOE R&D Accomplishments (OSTI)

The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

Lennox, Arlene J.

2000-05-30T23:59:59.000Z

315

Next Linear Collider Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission,...

316

Research | SLAC National Accelerator Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and Society Astrophysics & Cosmology Biology Elementary Particle Physics Environmental Science Materials, Chemistry & Energy Sciences Scientific Computing X-ray...

317

ION ACCELERATION SYSTEM  

DOE Patents (OSTI)

Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

Luce, J.S.; Martin, J.A.

1960-02-23T23:59:59.000Z

318

TRACKING ACCELERATOR SETTINGS.  

Science Conference Proceedings (OSTI)

Recording setting changes within an accelerator facility provides information that can be used to answer questions about when, why, and how changes were made to some accelerator system. This can be very useful during normal operations, but can also aid with security concerns and in detecting unusual software behavior. The Set History System (SHS) is a new client-server system developed at the Collider-Accelerator Department of Brookhaven National Laboratory to provide these capabilities. The SHS has been operational for over two years and currently stores about IOOK settings per day into a commercial database management system. The SHS system consists of a server written in Java, client tools written in both Java and C++, and a web interface for querying the database of setting changes. The design of the SHS focuses on performance, portability, and a minimal impact on database resources. In this paper, we present an overview of the system design along with benchmark results showing the performance and reliability of the SHS over the last year.

D OTTAVIO,T.; FU, W.; OTTAVIO, D.P.

2007-10-15T23:59:59.000Z

319

ACCELERATION INTEGRATING MEANS  

DOE Patents (OSTI)

An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

Wilkes, D.F.

1961-08-29T23:59:59.000Z

320

Proceedings of a workshop on Applications of Accelerators  

SciTech Connect

This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited.

Herrmannsfeldt, W.B. [ed.] [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A.M.; Alonso, J.R. [eds.] [Lawrence Berkeley Lab., CA (United States)

1994-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Accelerator Operations and Physics - Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Operations & Physics Accelerator Systems Division---Argonne National Laboratory Mission Statement Safe, reliable, attentive, and responsive operation of APS accelerator...

322

Frequency scaling of linear super-colliders  

SciTech Connect

The development of electron-positron linear colliders in the TeV energy range will be facilitated by the development of high-power rf sources at frequencies above 2856 MHz. Present S-band technology, represented by the SLC, would require a length in excess of 50 km per linac to accelerate particles to energies above 1 TeV. By raising the rf driving frequency, the rf breakdown limit is increased, thereby allowing the length of the accelerators to be reduced. Currently available rf power sources set the realizable gradient limit in an rf linac at frequencies above S-band. This paper presents a model for the frequency scaling of linear colliders, with luminosity scaled in proportion to the square of the center-of-mass energy. Since wakefield effects are the dominant deleterious effect, a separate single-bunch simulation model is described which calculates the evolution of the beam bunch with specified wakefields, including the effects of using programmed phase positioning and Landau damping. The results presented here have been obtained for a SLAC structure, scaled in proportion to wavelength.

Mondelli, A.; Chernin, D.; Drobot, A.; Reiser, M.; Granatstein, V.

1986-06-01T23:59:59.000Z

323

Accelerator technology program. Progress report, January-June 1981  

Science Conference Proceedings (OSTI)

This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report.

Knapp, E.A.; Jameson, R.A. (comps.)

1982-05-01T23:59:59.000Z

324

On the integrability of stellar motion in an accelerated logarithmic potential  

E-Print Network (OSTI)

An accelerated logarithmic potential models the mean motion of stars in a flat rotation curve galaxy that sustains a wind system. For stars outside the galactic wind launching region, the asymmetric removal of linear momentum by the wind is seen as a perturbing acceleration superimposed onto the galactic potential. We study the integrability of stellar motion in an accelerated logarithmic potential. We use surfaces of section of the dynamical system to probe the integrability of motion. We provide numerical evidence that motion in an accelerated logarithmic potential is non-integrable. Large scale chaotic diffusion occurs for lower values of the projected angular momentum along the direction of acceleration and persists at all values of the angular momentum in the outer part of the galaxy inside the truncation radius where the galactic acceleration balances the wind-induced acceleration.

Fathi Namouni; Massimiliano Guzzo; Elena Lega

2007-12-14T23:59:59.000Z

325

Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution  

E-Print Network (OSTI)

our pipeline (upper limit of 2 kbp or half the length of apipeline that identifies tandem repeats from a vari- ety of sequencing technologies with different read lengths (

2013-01-01T23:59:59.000Z

326

Fast Switching Ferroelectric Materials for Accelerator Applications  

SciTech Connect

Fast switching (<10 nsec) measurement results on the recently developed BST(M) (barium strontium titanium oxide composition with magnesium-based additions) ferroelectric materials are presented. These materials can be used as the basis for new advanced technology components suitable for high-gradient accelerators. A ferroelectric ceramic has an electric field-dependent dielectric permittivity that can be altered by applying a bias voltage. Ferroelectric materials offer significant benefits for linear collider applications, in particular, for switching and control elements where a very short response time of <10 nsec is required. The measurement results presented here show that the new BST(M) ceramic exhibits a high tunability factor: a bias field of 40-50 kV/cm reduces the permittivity by a factor of 1.3-1.5. The recently developed technology of gold biasing contact deposition on large diameter (110 cm) thin wall ferroelectric rings allowed {approx}few nsec switching times in witness sample experiments. The ferroelectric rings can be used at high pulsed power (tens of megawatts) for X-band components as well as at high average power in the range of a few kilowatts for the L-band phase-shifter, under development for optimization of the ILC rf coupling. Accelerator applications include fast active X-band and Ka-band high-power ferroelectric switches, high-power X-band and L-band phase shifters, and tunable dielectric-loaded accelerating structures.

Kanareykin, A.; Schoessow, P. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Nenasheva, E. [Ceramics Co. Ltd, St.Petersburg 194223 (Russian Federation); Yakovlev, V. [Omega-P Inc., New Haven, CT 06511 (United States); Dedyk, A.; Karmanenko, S.; Kozyrev, A.; Osadchy, V.; Kosmin, D.; Semenov, A. [St. Petersburg Electrical Engineering University, St. Petersburg 197376 (Russian Federation)

2006-11-27T23:59:59.000Z

327

The TESLA superconducting linear collider  

Science Conference Proceedings (OSTI)

This paper summarizes the present status of the studies for a superconducting Linear Collider (TESLA).

R. Brinkmann; the TESLA Collaboration

1997-01-01T23:59:59.000Z

328

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Collaboration Fermilab Collaboration Lee Teng Scholarship Program Useful Links The Argonne Accelerator Institute Historical Document Collection Document Access Guide The documents in this collection are held in several repositories, some of which have restricted access. This guide explains the different types of access, and specifies the access levels for each repository. Repositories Name Access Argonne National Laboratory Document Open Access Argonne Research Library Hard Copy Only Beam Dynamics Newsletter Open Access DOE Information Bridge Open Access IEEE Xplore Library Subscription Required JACoW Open Access Journal of Applied Physics Subscription Required Nuclear Instruments & Methods in Physics Research, Section A Subscription Required Physical Review A Subscription Required

329

Linear Solar Models  

E-Print Network (OSTI)

We present a new approach to study the properties of the sun. We consider small variations of the physical and chemical properties of the sun with respect to Standard Solar Model predictions and we linearize the structure equations to relate them to the properties of the solar plasma. By assuming that the (variation of) the present solar composition can be estimated from the (variation of) the nuclear reaction rates and elemental diffusion efficiency in the present sun, we obtain a linear system of ordinary differential equations which can be used to calculate the response of the sun to an arbitrary modification of the input parameters (opacity, cross sections, etc.). This new approach is intended to be a complement to the traditional methods for solar model calculation and allows to investigate in a more efficient and transparent way the role of parameters and assumptions in solar model construction. We verify that these Linear Solar Models recover the predictions of the traditional solar models with an high...

Villante, F L

2009-01-01T23:59:59.000Z

330

Accelerating Innovation Webinar Series - Energy Innovation Portal  

Accelerating Innovation Webinar Series. In partnership with the Battelle Commercialization Council, the Energy Innovation Portal is hosting an Accelerating Innovation ...

331

Scaling of Energy Gain with Plasma Parameters in a Plasma Wakefield Accelerator  

SciTech Connect

We have recently demonstrating the doubling of the energy of particles of the ultra-short, ultra-relativistic electron bunches of the Stanford Linear Accelerator Center [1]. This energy doubling occurred in a plasma only 85 cm-long with a density of {approx} 2.6 x 10{sup 17} e{sup -}/cm{sup -3}. This milestone is the result of systematic measurements that show the scaling of the energy gain with plasma length and density, and show the reproducibility and the stability of the acceleration process. We show that the energy gain increases linearly with plasma length from 13 to 31 cm. These are key steps toward the application of beam-driven plasma accelerators or plasma wakefield accelerators (PWFA) to doubling the energy of a future linear collider without doubling its length.

Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

2008-01-28T23:59:59.000Z

332

Broadband accelerator control network  

SciTech Connect

A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel.

Skelly, J.; Clifford, T.; Frankel, R.

1983-01-01T23:59:59.000Z

333

Producing thermochemical hydrogen with the tandem-mirror reactor  

SciTech Connect

Fusion power holds the promise to supply not only electricity but also fuels to meet the balance of our energy needs. A new integrated power and breeding blanket design is described for tandem mirror reactors. The blanket incorporates features that make it suitable for synthetic fuel production. In particular, it is matched to the thermal and electrical power requirements of the General Atomic water-splitting process for production of hydrogen. Some improvements to the high temperature chemical process steps are described. These improvements are expected to allow production of hydrogen at about $13/GJ wholesale, including financing costs, capital amortization, and profit.

Werner, R.W.; Hickman, R.G.

1982-05-07T23:59:59.000Z

334

Current- and lattice-matched tandem solar cell  

DOE Patents (OSTI)

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

Olson, J.M.

1985-10-21T23:59:59.000Z

335

Superconducting RF cavity R&D for future accelerators  

E-Print Network (OSTI)

High-beta superconducting radiofrequency (SRF) elliptical cavities are being developed for several accelerator projects including Project X, the European XFEL, and the International Linear Collider (ILC). Fermilab has recently established an extensive infrastructure for SRF cavity R&D for future accelerators, including cavity surface processing and testing and cavity assembly into cryomodules. Some highlights of the global effort in SRF R&D toward improving cavity performance, and Fermilab SRF cavity R&D in the context of global projects are reviewed.

C. M. Ginsburg

2009-10-22T23:59:59.000Z

336

Radiative Effects on Particle Acceleration in Electromagnetic Dominated Outflows  

E-Print Network (OSTI)

Plasma outflows from gamma-ray bursts (GRB), pulsar winds, relativistic jets, and ultra-intense laser targets radiate high energy photons. However, radiation damping is ignored in conventional PIC simulations. In this letter, we study the radiation damping effect on particle acceleration via Poynting fluxes in two-and-half-dimensional particle-in-cell (PIC) plasma simulation of electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle and reduces the net acceleration force. The emitted radiation is peaked within a few degrees from the direction of Poynting flux and strongly linear-polarized.

Koichi Noguchi; Edison Liang; Kazumi Nishimura

2004-12-14T23:59:59.000Z

337

RESEARCH AND DEVELOPMENT FOR AN X-BAND LINEAR COLLIDER* C. Adolphsen  

NLE Websites -- All DOE Office Websites (Extended Search)

AND DEVELOPMENT FOR AN AND DEVELOPMENT FOR AN X-BAND LINEAR COLLIDER* C. Adolphsen Stanford Linear Accelerator Center, Stanford University, Stanford CA 94309 USA Abstract At SLAC and KEK research is advancing toward a design for an electron-positron linear collider based on X-Band (11.4 GHz) rf accelerator technology. The nominal acceleration gradient in its main linacs will be about four times that in the Stanford Linear Collider (SLC). The design targets a 1.0 TeV center-of-mass energy but envisions initial operation at 0.5 TeV and allows for expansion to 1.5 TeV. A 10 34 cm -2 s -1 luminosity level will be achieved by colliding multiple bunches per pulse with bunch emittances about two orders of magnitude smaller than those in the SLC. The key components needed to realize such a collider are

338

MEASUREMENT OF LINEAR COUPLING RESONANCE IN RHIC.  

Science Conference Proceedings (OSTI)

Linear coupling is one of the factors that determine beam lifetime in RHIC. The traditional method of measuring the minimum tune separation requires a tune scan and can't be done parasitically or during the acceleration ramp. A new technique of using ac dipoles to measure linear coupling resonance has been developed at RHIC. This method measures the degree of coupling by comparing the amplitude of the horizontal coherent excitation with the amplitude of the vertical coherent excitation if the beam is excited by the vertical AC dipole and vice versa. One advantage of this method is that it can be done without changing tunes from the normal machine working points. In principle, this method can also localize the coupling source by mapping out the coupling driving terms throughout the ring. This is very useful for local decoupling the interaction regions in RHIC. A beam experiment of measuring linear coupling has been performed in RHIC during its 2003 run, and the analysis of the experimental data is discussed in this paper.

BAI,M.PILAT,F.SATOGATA,T.TOMAS,R.

2002-05-12T23:59:59.000Z

339

Magnetic Insulation for Electrostatic Accelerators  

Science Conference Proceedings (OSTI)

The voltage gradient which can be sustained between electrodes without electrical breakdowns is usually one of the most important parameters in determining the performance which can be obtained in an electrostatic accelerator. We have recently proposed a technique which might permit reliable operation of electrostatic accelerators at higher electric field gradients, perhaps also with less time required for the conditioning process in such accelerators. The idea is to run an electric current through each accelerator stage so as to produce a magnetic field which envelopes each electrode and its electrically conducting support structures. Having the magnetic field everywhere parallel to the conducting surfaces in the accelerator should impede the emission of electrons, and inhibit their ability to acquire energy from the electric field, thus reducing the chance that local electron emission will initiate an arc. A relatively simple experiment to assess this technique is being planned. If successful, this technique might eventually find applicability in electrostatic accelerators for fusion and other applications.

Grisham, L. R. [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, New Jersey 08543 (United States)

2011-09-26T23:59:59.000Z

340

Optical linear algebra  

SciTech Connect

Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.

Casasent, D.; Ghosh, A.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Studies in tandem mirror theory. Paper IAEA-CN-38/F-4  

SciTech Connect

This paper discusses the formation, maintenance, and microstability of thermal barriers, which have been introduced as a means for improving tandem mirror reactor performance at reduced technological demands. It also describes calculations of tandem mirror central-cell ..beta.. limits due to MHD ballooning modes.

Baldwin, D.E.; Cohen, R.H.; Cutler, T.A.

1980-06-02T23:59:59.000Z

342

Challenges in Accelerator Beam Instrumentation  

E-Print Network (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M

2009-01-01T23:59:59.000Z

343

Challenges in Accelerator Beam Instrumentation  

Science Conference Proceedings (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M.

2009-12-01T23:59:59.000Z

344

Ultrafast Accelerators for Pulse Radiolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

in this area agreed that it would be useful to organize a specialist's conference on ultrafast accelerators for pulse radiolysis, to discuss the common experiences and problems...

345

SLAC National Accelerator Laboratory - Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization PHOTO: Aerial view of SLAC Campus SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy's Office of Science. The...

346

BNL | Accelerators for Scientific Research  

NLE Websites -- All DOE Office Websites (Extended Search)

for Basic Research Brookhaven National Lab excels at the design, construction, and operation of large-scale accelerator facilities, a tradition that started with the Cosmotron and...

347

Science at SLAC National Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

matter and dark energy, and develop smaller, more efficient versions of particle accelerators widely used in research, medicine and industry. As our second half-century unfolds,...

348

Argonne's Accelerator Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

has significant expertise in modeling, design, and operation of both electron accelerators and free electron lasers; undulator design, fabrication, and measurement; control...

349

XML-based Test Accelerator  

Science Conference Proceedings (OSTI)

... A test accelerator that provides core reusable components, yet allows input and output formats to be defined by the user, will facilitate building ...

2011-12-02T23:59:59.000Z

350

Science Accelerator : User Login  

NLE Websites -- All DOE Office Websites (Extended Search)

Login Login The Science Accelerator ALERTS feature will automatically update you regarding newly available information in your specific area(s) of interest. Simply register for the service, then create a search strategy which will be run against information added to . Select a schedule (weekly, monthly, etc.) for receiving the email Alerts. If you are a new patron, Register to learn how to set up Alerts to meet your needs. If you are an existing patron, enter your user name and password in the boxes to login. Once logged in, you may review or modify your search, add a new search and see recent Alerts results. User Name: Password: Remember Me Remember me on this computer. Login Don't have a user name? Register! Forgot your password? Reset your password Alerts The Alerts function allows you to monitor a topic and receive timely

351

Science Accelerator : Your Selections  

NLE Websites -- All DOE Office Websites (Extended Search)

Your Selections Back To Previous Page Selections - of First Page Previous Page Next Page Last Page Back To Previous Page You have 0 selections. Click the checkboxes clipping.addClipping on the results or alert results pages to add to your selections. Some links on this page may take you to non-federal websites. Their policies may differ from this site. U.S. Department of Energy U.S. Department of Energy Office of Science Office of Scientific and Technical Information Website Policies/Important Links Science Accelerator science.gov WorldWideScience.org Deep Web Technologies Email Results Use this form to email your search results * Email this to: * Your Name: Comments: URL only?: Number of results: 10 20 50 100 200 All Email Format: HTML TEXT * Required field Print Results

352

HIGH ENERGY PARTICLE ACCELERATOR  

DOE Patents (OSTI)

An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

Courant, E.D.; Livingston, M.S.; Snyder, H.S.

1959-04-14T23:59:59.000Z

353

Muon Collider Progress: Accelerators  

SciTech Connect

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Zisman, Michael S.

2011-09-10T23:59:59.000Z

354

Accelerations in Steep Gravity Waves. II: Subsurface Accelerations  

Science Conference Proceedings (OSTI)

It is shown that the vertical acceleration of a particle beneath the crest of a step gravity wave does not always decrease monotonically with depth in the fluid. When the wave steepness ak exceeds 0.4, the acceleration at first increases with ...

M. S. Longuet-Higgins

1986-07-01T23:59:59.000Z

355

Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact on an ocean model  

E-Print Network (OSTI)

Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact by the QuikSCAT-SeaWinds scatterometer tandem mission (April­October 2003) and their impact on ocean model simulation. The diurnal variability captured by twice-daily scatterometer wind from the tandem mission

Talley, Lynne D.

356

Piecewise Linear Modeling and Analysis  

Science Conference Proceedings (OSTI)

From the Publisher:Piecewise Linear Modeling and Analysis explains in detail all possible model descriptions to efficiently store piecewise linear functions starting with the Chua descriptions. Detailed explanation on how the model parameter can be obtained ...

Domine M. W. Leenaerts; Wim M. Van Bokhoven

1998-07-01T23:59:59.000Z

357

Linearized Additive Classifiers  

E-Print Network (OSTI)

We revisit the additive model learning literature and adapt a penalized spline formulation due to Eilers and Marx, to train additive classifiers efficiently. We also propose two new embeddings based two classes of orthogonal basis with orthogonal derivatives, which can also be used to efficiently learn additive classifiers. This paper follows the popular theme in the current literature where kernel SVMs are learned much more efficiently using a approximate embedding and linear machine. In this paper we show that spline basis are especially well suited for learning additive models because of their sparsity structure and the ease of computing the embedding which enables one to train these models in an online manner, without incurring the memory overhead of precomputing the storing the embeddings. We show interesting connections between B-Spline basis and histogram intersection kernel and show that for a particular choice of regularization and degree of the B-Splines, our proposed learning algorithm closely appr...

Maji, Subhransu

2011-01-01T23:59:59.000Z

358

Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab  

Science Conference Proceedings (OSTI)

The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

2011-03-01T23:59:59.000Z

359

Linear Collider Collaboration Tech Notes LCC-0063  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 May 2001 Varying alpha/lambda in NLC Structures - BNS Damping and Emittance Growth G. Stupakov and Z. Li Stanford Linear Accelerator Center Stanford, CA Abstract: In this note we consider the effect of varying this iris opening in the NLC structures on the beam dynamics and the rf efficiency in the linac. Varying a/λ in NLC structures - BNS damping and emittance growth G. Stupakov and Z. Li SLAC, Stanford University, Stanford, CA 94309 In this note we consider the effect of the varying the iris opening a in the NLC structures on the beam dynamics and the RF efficiency in the linac. The most important consequence of the variation of the iris openings is the change of the longitudinal and transverse wakefields. Wake as a function of parameter a for the NLC structures has been previously calculated by K. Bane. Here we will use his

360

Linear Collider Collaboration Tech Notes LCC-0101  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 August 2002 Collimator Wakefield Calculations for ILC-TRC Report Peter Tenenbaum Stanford Linear Accelerator Center Stanford University Stanford, CA 94309, USA Abstract: We summarize the formalism of collimator wakefields and their effect on beams that are near the center of the collimator gap, and apply the formalism to the TESLA, NLC, and CLIC collimation systems. Collimator Wakefield Calculations for ILC-TRC Report P. Tenenbaum LCC-Note-0101 20-Aug-2002 Abstract We summarize the formalism of collimator wakefields and their effect on beams which are near the center of the collimator gap, and apply the formalism to the TESLA, NLC, and CLIC collimation systems. 1 Introduction One of the beam dynamics effects which must be evaluated for the

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The CEBAF cryogenic system: Continuous Electron Beam Accelerator Facility  

SciTech Connect

The CEBAF superconducting linear accelerator incorporates cryogenic refrigeration equipment at three locations within the site: the Central Helium Liquefier, located in the center of the accelerator; the experimental end station refrigerator; and the test laboratory refrigerator located in the Cryogenic Test Facility (CTF) adjacent to the test laboratory. The CEBAF cryogenic system will provide 2K refrigeration to the linacs of the accelerator and test laboratory and 4.5K refrigeration for the end station experimental halls. The Central Helium Liquefier and the test laboratory systems will produce 45K supercritical gaseous helium for shield refrigeration. Liquid nitrogen shields will also be incorporated in the test laboratory and end stations. 6 refs., 5 figs.

Chronis, W.C.; Arenius, D.; Kashy, D.; Keesee, M.; Rode, C.H.

1989-01-01T23:59:59.000Z

362

SPEAR3 Accelerator Physics Update  

NLE Websites -- All DOE Office Websites (Extended Search)

SPEAR3 ACCELERATOR PHYSICS UPDATE* SPEAR3 ACCELERATOR PHYSICS UPDATE* J. Safranek # , W.J. Corbett, R. Hettel, X. Huang, Y. Nosochkov, J. Sebek, A. Terebilo, SSRL/SLAC, Menlo Park, CA, U.S.A. Abstract The SPEAR3 [1,2] storage ring at Stanford Synchrotron Radiation Laboratory has been delivering photon beams for three years. We will give an overview of recent and ongoing accelerator physics activities, including 500 mA fills, work toward top-off injection, long-term orbit stability characterization and improvement, fast orbit feedback, new chicane optics, low alpha optics & short bunches, low emittance optics, and MATLAB software. The accelerator physics group has a strong program to characterize and improve SPEAR3 performance. INTRODUCTION In this summary of the past three years of accelerator

363

EXOTIC MAGNETS FOR ACCELERATORS.  

SciTech Connect

Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

WANDERER, P.

2005-09-18T23:59:59.000Z

364

RFQ accelerator tuning system  

DOE Patents (OSTI)

A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

Bolie, Victor W. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

365

Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)  

SciTech Connect

In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

Burlon, Alejandro A.; Valda, Alejandro A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); Girola, Santiago [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); Vidt Centro Medico, Vidt 1924 (1425), Buenos Aires (Argentina); Minsky, Daniel M.; Kreiner, Andres J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av Gral. Paz 1499, San Martin (1650) (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, M. Irigoyen 3100 (1650), San Martin (Argentina); CONICET, Av Rivadavia 1917 (1033), Buenos Aires (Argentina)

2010-08-04T23:59:59.000Z

366

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOE Patents (OSTI)

An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

1987-01-01T23:59:59.000Z

367

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOE Patents (OSTI)

An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

1988-01-01T23:59:59.000Z

368

Electron beam accelerator with magnetic pulse compression and accelerator switching  

DOE Patents (OSTI)

An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

Birx, D.L.; Reginato, L.L.

1984-03-22T23:59:59.000Z

369

The other high resolution post accelerator approach  

Science Conference Proceedings (OSTI)

There has been significant discussion in consideration of a high resolution mass separator followed by a RFQ and a linear accelerator as the basic format for IsoSpin Laboratory. There exists another strong possibility-namely a low-resolution mass separator coupled to a cyclotron. The major objection to this approach has been that the conversion from the +1 mass separator beam to a q/m beam of 1/4 to 1/3 is thought to be highly inefficient. Since we are in the fortunate position of having the two expensive components of this system available for tests (an on-line mass separator and an ECR source), we intend to couple these devices to actually measure these efficiencies and to test ideas for improving the efficiency. We present some specifics of this approach.

Moltz, D.M.; Tighe, R.J.; Rowe, M.W.; Ognibene, T.J.; Cerny, J.

1993-05-24T23:59:59.000Z

370

Status of High Performance PV: Polycrystalline Thin-Film Tandems  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

Symko-Davies, M.

2005-02-01T23:59:59.000Z

371

Tandem Catalysis in Nanocrystal Interfaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interfaces Interfaces Tandem Catalysis in Nanocrystal Interfaces July 18, 2011 - 2:45pm View(active tab) Edit Workflow Addthis A unique new bilayer nanocatalyst system. | Image courtesy of Yang group A unique new bilayer nanocatalyst system. | Image courtesy of Yang group What does this mean for me? A prime example of these applications is artificial photosynthesis -- the effort to capture energy from the sun and transform it into electricity or chemical fuels. Catalysts (substances that speed up the rates of chemical reactions without themselves being chemically changed) are used to initiate virtually every industrial manufacturing process that involves chemistry. With the advent of nano-sized catalysts, metal and metal oxide catalysts have surged in importance. Recently, researchers at the Department's Lawrence Berkeley National

372

Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts  

SciTech Connect

Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

Shuets, G.

2004-05-21T23:59:59.000Z

373

Linear induction pump  

DOE Patents (OSTI)

Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

Meisner, John W. (Newbury Park, CA); Moore, Robert M. (Canoga Park, CA); Bienvenue, Louis L. (Chatsworth, CA)

1985-03-19T23:59:59.000Z

374

Pulse - Accelerator Science in Medicine  

NLE Websites -- All DOE Office Websites (Extended Search)

t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. Breakthroughs in the technology of superconducting magnets, nanometer beams, laser instrumentation and information technology will give high-energy physicists new accelerators to explore the deepest secrets of the universe: the ultimate structure of matter and the nature of space and time. But breakthroughs in accelerator science may do more than advance the exploration of particles and forces. No field of science is an island. Physics, astronomy, chemistry, biology, medicine— all interact in the continuing human endeavor to explore and understand our world and ourselves. Research at high-energy physics laboratories will lead to the next generation of particle accelerators—and perhaps to new tools for medical science.

375

Accelerated cleanup risk reduction  

Science Conference Proceedings (OSTI)

There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria initially degrade greater than 99% of the contaminant, to concentrations less than regulatory limit

Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

1998-02-01T23:59:59.000Z

376

Solving linear program as linear system in polynomial time  

Science Conference Proceedings (OSTI)

A physically concise polynomial-time iterative-cum-non-iterative algorithm is presented to solve the linear program (LP) Minc^txsubject toAx=b,x>=0. The iterative part-a variation of Karmarkar projective transformation algorithm-is essentially due to ... Keywords: Barnes algorithm, Error-free computation, Linear program, Linear system, Matlab program, Polynomial-time iterative-cum-non-iterative algorithm

Syamal K. Sen; Suja Ramakrishnan; Ravi P. Agarwal

2011-03-01T23:59:59.000Z

377

SNEAP 80: symposium of Northeastern Accelerator personnel  

SciTech Connect

Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

Billen, J.H. (ed.) ed.

1980-01-01T23:59:59.000Z

378

Laser Wakefield Particle Accelerators Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Acceleration Laser Wakefield Particle Acceleration Vorpal.jpg Key Challenges: Design of multiple-staged, 10-GeV laser-wakefield plasma accelerated next-generation hardware...

379

Steady-State Solutions in Nonlinear Diffusive Shock Acceleration  

E-Print Network (OSTI)

Stationary solutions to the equations of non-linear diffusive shock acceleration play a fundamental role in the theory of cosmic-ray acceleration. Their existence usually requires that a fraction of the accelerated particles be allowed to escape from the system. Because the scattering mean-free-path is thought to be an increasing function of energy, this condition is conventionally implemented as an upper cut-off in energy space -- particles are then permitted to escape from any part of the system, once their energy exceeds this limit. However, because accelerated particles are responsible for substantial amplification of the ambient magnetic field in a region upstream of the shock front, we examine an alternative approach in which particles escape over a spatial boundary. We use a simple iterative scheme that constructs stationary numerical solutions to the coupled kinetic and hydrodynamic equations. For parameters appropriate for supernova remnants, we find stationary solutions with efficient acceleration when the escape boundary is placed at the point where growth and advection of strongly driven non-resonant waves are in balance. We also present the energy dependence of the distribution function close to the energy where it cuts off - a diagnostic that is in principle accessible to observation.

B. Reville; J. G. Kirk; P. Duffy

2008-12-20T23:59:59.000Z

380

SuperB Progress Report for Accelerator  

Science Conference Proceedings (OSTI)

This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BNL | Accelerators for Applied Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators for Applied Research Accelerators for Applied Research Brookhaven National Lab operates several accelerator facilities dedicated to applied research. These facilities directly address questions and concerns on a tremendous range of fields, including medical imaging, cancer therapy, computation, and space exploration. Leading scientists lend their expertise to these accelerators and offer crucial assistant to collaborating researchers, pushing the limits of science and technology. Interested in gaining access to these facilities for research? See the contact number listed for each facility. RHIC tunnel Brookhaven Linac Isotope Producer The Brookhaven Linac Isoptope Producer (BLIP)-positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis-produces commercially unavailable radioisotopes for use by the

382

IMPACT-T: Accelerator Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPACTT General Description IMPACT-T (Integrated Map and Particle Accelerator Tracking-Time) is a parallel, three-dimensional, quasi-static beam dynamics code used to study...

383

Accelerating and rotating black holes  

E-Print Network (OSTI)

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z

384

What is SLAC National Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC National Accelerator Laboratory? The numbers tell the tale. SLAC began in 1962 with 200 employees. Nearly 1,700 people now work on staff plus 300 postdoctoral researchers and...

385

Electrodynamics acceleration of electrical dipoles  

E-Print Network (OSTI)

This article considers the acceleration of electric dipoles consisting of thin metal plates and dielectric (barium titanate). The dipoles are of a cylindrical shape with a diameter of the cylinder two centimeters and length one centimeter. Capacity of the parallel-plate capacitor is three hundred picofarads and it is charged up to the voltage of two hundred eighty kilovolts. Pre-acceleration of the electric dipoles till velocity one kilometer per second is reached by the gas-dynamic method. The finite acceleration is produced in a spiral waveguide, where the pulse is travelling with voltage amplitude seven hundreds kilovolts and power one hundred twenty-five megawatts. This pulse travels via the spiral waveguide and accelerates the injected electric dipoles in the longitudinal direction till the finite velocity eight and a half kilometers per second over length seven hundred and seventy meters.

Dolya, S N

2013-01-01T23:59:59.000Z

386

Science Accelerator | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Dataset Summary Description Science Accelerator is a gateway to science, including DOE R&D results, major R&D accomplishments, and recent research of interest to U.S. Department...

387

Residual Activation of Accelerator Components  

Science Conference Proceedings (OSTI)

Accelerators / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation

I. L. Rakhno; N. V. Mokhov; S. I. Striganov

388

APS Accelerator Systems Division Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source and pursues research and development profitable to the science of accelerators and future light source technologies. Featured Image Two 352-MHz1-kW CW solid...

389

Market Acceleration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Market Acceleration Market Acceleration Market Acceleration Photo of several men on a floating platform that is lowering monitoring tools into the ocean. The Water Power Program works to foster a commercial market for marine and hydrokinetic (MHK) energy devices in order to achieve its goal of the nation obtaining 15% of its electricity needs from all types of water power by 2030. Though marine and hydrokinetic energy is still in its infancy, the program is developing a robust portfolio of projects to accelerate wave, tidal and current project deployments and development of the MHK market in general. These projects include project siting activities, market assessments, environmental impact analyses, and research supporting technology commercialization. Learn more about the Water Power Program's work in the following areas of

390

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gen II Insight HEV Accelerated Testing - August 2012 Two model year 2010 Honda Generation II Insight hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in...

391

Science Accelerator content now includes multimedia  

Office of Scientific and Technical Information (OSTI)

Science Accelerator content now includes multimedia Science Accelerator has expanded its suite of collections to include ScienceCinema, which contains videos produced by the U.S....

392

Argonne National Laboratory's Accelerator Experimental Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Experimental Infrastructure Argonne National Laboratory is somewhat unique among the Office of Science National Laboratories in that it possesses active accelerator...

393

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt EREV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Volt extended range electric vehicles (EREVs) entered Accelerated testing during November 2012 in a fleet...

394

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Volt EREV Accelerated Testing - June 2013 Two model year 2011 Chevrolet Volt extended range electric vehicles (EREVs) entered Accelerated testing during March 2011 in a...

395

CRAD, Radiological Controls - Idaho Accelerated Retrieval Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Controls - Idaho Accelerated Retrieval Project Phase II CRAD, Radiological Controls - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix...

396

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Fusion Hybrid Electric Vehicle Accelerated Testing - May 2012 Two model year 2010 Ford Fusion hybrid electric vehicles (HEVs) entered Accelerated testing during August 2009 in...

397

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 Micro Hybrid Vehicle Accelerated Testing - December 2012 Two Mazda 3 European Micro Hybrid Vehicles (MHVs) entered accelerated testing during November 2010 in a fleet in...

398

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Volkswagen Golf Micro Hybrid Vehicle Accelerated Testing - December 2012 Two Volkswagen Golf European Micro Hybrid Vehicle (MHVs) entered accelerated testing during October 2010 in...

399

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicle Accelerated Testing (Model Year 2004) - October 2007 Two (Model Year 2004) Toyota Prius hybrid electric vehicles (HEVs) entered accelerated testing in a...

400

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart fortwo Micro Hybrid Vehicle Accelerated Testing - December 2012 Three Smart fortwo European Micro Hybrid Vehicles (MHVs) entered accelerated testing during October 2010 in a...

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Technology Commercialization and Partnerships | CASE Accelerates ...  

The Center for Accelerator Science and ... get hands-on experience using the accelerator and reporting their results. ... R&D funding is especially important for ...

402

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gen III Prius HEV Accelerated Testing - May 2012 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a...

403

Argonne Wakefield Accelerator Facility (AWA) Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility is dedicated to the study of advanced accelerator concepts based on electron beam driven wakefield acceleration and RF power generation. The facility employs an...

404

Terahertz radiation from laser accelerated electron bunches  

E-Print Network (OSTI)

NUMBER 5 MAY 2004 Terahertz radiation from laser acceleratedand millimeter wave radiation from laser acceleratedNo. 5, May 2004 Terahertz radiation from laser accelerated

2004-01-01T23:59:59.000Z

405

SLAC National Accelerator Laboratory - SLAC's Newest Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Max Planck Institute of Physics in Berlin will continue their efforts to make accelerators smaller and more efficient using a technique called plasma wakefield acceleration....

406

A Tunable Dielectric Wakefield Accelerating Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

a (11-13) GHz dielectric accelerating structure. INTRODUCTION The field of advanced accelerators is in search of novel revolutionary technologies to allow progress in particle...

407

SLAC National Accelerator Laboratory - Scientific Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Advanced Accelerator Research Particle accelerators are complicated machines, with hundreds of thousands of components that all need to be designed, engineered and...

408

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Civic CNG Accelerated Testing - June 2013 Four model year 2013 Honda Civic compressed natural gas (CNGs) entered Accelerated testing during November 2012 in a fleet in Arizona....

409

Fermi National Accelerator Laboratory April 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

into applications for the nation's health, wealth and security. Science at Fermilab Illinois Accelerator Research Center The Illinois Accelerator Research Center, or IARC, will...

410

CRAD, Emergency Management - Idaho Accelerated Retrieval Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Idaho Accelerated Retrieval Project Phase II CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C...

411

Beam Breakup (BBU) instability experiments on the Experimental Test Accelerator (ETA) and predictions for the Advanced Test Accelerator (ATA)  

SciTech Connect

In linear accelerators the maximum achievable beam current is often limited by the Beam Breakup (BBU) instability. This instability arises from the interaction of a transversely displaced beam with the dipole modes of the acceleration cavities. The modes of interest have non-zero transverse magnetic fields at the center of the cavity. This oscillating field imparts a time varying transverse impulse to the beam as it passes through the accelerating gap. Of the various modes possible only the TM/sub 130/ mode has been observed on the Experimental Test Accelerator (ETA) and it is expected to surface on the Advanced Test Accelerator (ATA). The amplitude of the instability depends sensitively on two cavity parameters; Q and Z/sub perpendicular//Q. Q is the well-known qualtiy factor which characterizes the damping rate of an oscillator. Z/sub perpendicular//Q is a measure of how well the beam couples to the cavity fields of the mode and in turn, how the fields act back on the beam. Lowering the values of both these parameters reduces BBU growth.

Caporaso, G.J.; Cole, A.G.; Struve, K.W.

1983-03-02T23:59:59.000Z

412

High-Intensity Proton Accelerator  

SciTech Connect

Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

Jay L. Hirshfield

2011-12-27T23:59:59.000Z

413

Photo of the Week: Lego Rendition of SLAC National Laboratory's Linear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lego Rendition of SLAC National Laboratory's Lego Rendition of SLAC National Laboratory's Linear Particle Accelerator Photo of the Week: Lego Rendition of SLAC National Laboratory's Linear Particle Accelerator February 4, 2013 - 10:26am Addthis At two miles long, SLAC's linear particle accelerator is a monster of a machine. But now, thanks to an old collection of Legos and some creative work by SLAC graphic designer Greg Stewart, the two-mile accelerator has been drastically reduced in size. After happening upon his Legos at home one night, Stewart decided to spend his evening designing, building and photographing this Lego diorama homage to the inside of the SLAC linac, a place that's 20 feet underground and not often seen by anyone besides the accelerator engineers who work there. SLAC's safety officers will even be pleased to see the Lego workers wearing their "PPE" (personal protective equipment, in this case helmets). See an actual photo of the SLAC linac. | Photo courtesy of Greg Stewart, SLAC National Accelerator Laboratory.

414

Mid-infrared amplitude and phase measurement of metamaterials using tandem interferometry.  

Science Conference Proceedings (OSTI)

A tandem interferometer system measuring the absolute phase and amplitude of planar split-ring resonators fabricated on a BaF2 substrate with a designed resonance at 10.5 {micro}m is presented.

Sinclair, Michael B.; Brener, Igal; Passmore, Brandon Scott; Wendt, Joel Robert; Anderson, John R.; Shaner, Eric Arthur; Ten Eyck, Gregory A.

2010-06-01T23:59:59.000Z

415

Gapped spectral dictionaries and their applications for database searches of tandem mass spectra  

Science Conference Proceedings (OSTI)

Generating all plausible de novo interpretations of a peptide tandem mass (MS/MS) spectrum (Spectral Dictionary) and quickly matching them against the database represent a recently emerged alternative approach to peptide identification However, ...

Kyowon Jeong; Sangtae Kim; Nuno Bandeira; Pavel A. Pevzner

2010-04-01T23:59:59.000Z

416

Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles  

DOE Green Energy (OSTI)

This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

Werner, R.W.; Ribe, F.L.

1981-01-21T23:59:59.000Z

417

Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer  

SciTech Connect

Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of a suitable low-bandgap polymer. Here, we demonstrate highly efficient single and tandem polymer solar cells featuring a low-bandgap conjugated polymer (PBDTT-DPP: bandgap, {approx}1.44 eV). A single-layer device based on the polymer provides a power conversion efficiency of {approx}6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which is, to the best of our knowledge, the highest certified efficiency for a polymer solar cell to date.

Dou, L.; You, J.; Yang, J.; Chen, C. C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y.

2012-03-01T23:59:59.000Z

418

The Temporal Aliasing Formulas for the Tandem Mission of Jason-1 and TOPEX/Poseidon  

Science Conference Proceedings (OSTI)

The temporal aliasing formulas are derived for the Tandem Mission of Jason-1 and the Ocean Topography Experiment (TOPEX)/Poseidon. Previously, aliasing formulas were derived for a single satellite or a constellation of coordinated satellites, ...

Chang-Kou Tai

2009-02-01T23:59:59.000Z

419

Tandem benzannulation-ring closing metathesis strategy for the synthesis of benzo-fused nitrogen heterocycles ;  

E-Print Network (OSTI)

A tandem benzannulation-ring closing metathesis strategy for the efficient synthesis of benzo-fused nitrogen heterocycles such as dihydroquinolines, benzazepines, and benzazocines has been developed. This strategy is based ...

Mak, Xiao Yin

2008-01-01T23:59:59.000Z

420

A New Volatility Tandem Differential Mobility Analyzer to Measure the Volatile Sulfuric Acid Aerosol Fraction  

Science Conference Proceedings (OSTI)

A volatility tandem differential mobility analyzer (VTDMA) was developed with the intention to measure the fraction of sulfuric acid in marine fine aerosols (Dp < 150 nm). This work focused on the design and calibration of an aerosol conditioner ...

D. A. Orsini; A. Wiedensohler; F. Stratmann; D. S. Covert

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Determination of the stellar (n,gamma) cross section of 40Ca with accelerator mass spectrometry  

E-Print Network (OSTI)

The stellar (n,gamma) cross section of 40Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing gamma-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the 7Li(p,n)7Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic 40Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, 40Ca can also play a secondary role as "neutron poison" for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of 30 keV= 5.73+/-0.34 mb.

I. Dillmann; C. Domingo-Pardo; M. Heil; F. Käppeler; A. Wallner; O. Forstner; R. Golser; W. Kutschera; A. Priller; P. Steier; A. Mengoni; R. Gallino; M. Paul; C. Vockenhuber

2009-07-01T23:59:59.000Z

422

LCLS CDR Chapter 7 - Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

The dominant error, which will likely arise in DL2, is anomalous linear dispersion or beta mismatch. Quadrupole field strength errors are the most likely cause. The various...

423

Implementing Distributed Systems Using Linear Naming  

E-Print Network (OSTI)

Linear graph reduction is a simple computational model in which the cost of naming things is explicitly represented. The key idea is the notion of "linearity". A name is linear if it is only used once, so with linear ...

Bawden, Alan

1993-03-01T23:59:59.000Z

424

Electron acceleration during three-dimensional relaxation of an electron beam-return current plasma system in a magnetic field  

E-Print Network (OSTI)

We investigate the effects of acceleration during non-linear electron-beam relaxation in magnetized plasma in the case of electron transport in solar flares. The evolution of electron distribution functions is computed using a three-dimensional particle-in-cell electromagnetic code. Analytical estimations under simplified assumptions are made to provide comparisons. We show that, during the non-linear evolution of the beam-plasma system, the accelerated electron population appears. We found that, although the electron beam loses its energy efficiently to the thermal plasma, a noticeable part of the electron population is accelerated. For model cases with initially monoenergetic beams in uniform plasma, we found that the amount of energy in the accelerated electrons above the injected beam-electron energy varies depending the plasma conditions and could be around 10-30% of the initial beam energy. This type of acceleration could be important for the interpretation of non-thermal electron populations in solar f...

Karlicky, M

2012-01-01T23:59:59.000Z

425

The Advanced Manufacturing Jobs and Innovation Accelerator ...  

Science Conference Proceedings (OSTI)

Page 1. Advanced Manufacturing Jobs and Innovation Accelerator Challenge – Application Guide & Document Checklist 1 of 4 ...

2012-06-26T23:59:59.000Z

426

Interconnection Network for Tightly Coupled Accelerators Architecture  

Science Conference Proceedings (OSTI)

In recent years, heterogeneous clusters using accelerators have entered widespread use in high-performance computing systems. In such clusters, inter-node communication between accelerators normally requires several memory copies via CPU memory, which ... Keywords: PCI Express, Interconnect for accelerators, GPU cluster, Accelerator computing, Remote DMA

Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato

2013-08-01T23:59:59.000Z

427

Tandem Differential Mobility Analyzer/Aerodynamic Particle Sizer (APS) Handbook  

SciTech Connect

The tandem differential mobility analyzer (TDMA) is a single instrument that cycles through a series of complementary measurements of the physical properties of size-resolved submicron particles. In 2008, the TDMA was augmented through the addition of an aerodynamic particle sizer (APS), which extends the upper limit of the measured size distribution into the supermicron range. These two instruments are operated in parallel, but because they are controlled by a common computer and because the size distributions measured by the two are integrated in the produced datastreams, they are described together here. Throughout the day, the TDMA sequentially measures submicron aerosol size distributions and size-resolved hygroscopic growth distributions. More specifically, the instrument is operated as a scanning DMA to measure size distributions and as a TDMA to measure size-resolved hygroscopicity. A typical measurement sequence requires roughly 45 minutes. Each morning additional measurements are made of the relative humidity (RH) dependent hygroscopicity and temperature-dependent volatility of size-resolved particles. When the outside temperature and RH are within acceptable ranges, the hydration state of size-resolved particles is also characterized. The measured aerosol distributions complement the array of aerosol instruments in the Aerosol Observing System (AOS) and provide additional details of the light-scattering and cloud-nucleating characteristics of the aerosol.

Collins, D

2010-06-18T23:59:59.000Z

428

Atomic hydrogen density measurements in the Tara tandem mirror experiment  

DOE Green Energy (OSTI)

Neutral and plasma density have been measured in the north well of the central cell of the Tara tandem mirror (Nucl. Fusion {bold 22}, 549 (1982)). The electron plasma density and temperature on the magnetic axis were measured by Thomson scattering to be about 3{times}10{sup 12} cm{sup {minus}3} and 70 eV, respectively. The corresponding axial neutral hydrogen density was found to be 1 {times}10{sup 9} cm{sup {minus}3}, while near the plasma edge at {ital r}=15 cm it reached 1{times}10{sup 10} cm{sup {minus}3}. The fill gas density at {ital r}{ge}22.5 cm was {approx}10{sup 11} cm{sup {minus}3}. Additional information from secondary electron detectors was used to estimate the radial ion temperature distribution, which was found to have about the same width, 12 cm, as the plasma density. The resulting ion pressure profile is peaked compared to the electron pressure profile. Charge exchange losses in the well are found to have a maximum at a radius equal to half the {ital e}-folding distance of the plasma density and ion temperature distributions.

Guss, W.C.; Yao, X.Z.; Pocs, L.; Mahon, R.; Casey, J.; Horne, S.; Lane, B.; Post, R.S.; Torti, R.P. (Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (USA))

1990-09-01T23:59:59.000Z

429

Pulse - Accelerator Science in Medicine  

NLE Websites -- All DOE Office Websites (Extended Search)

t the forefront of biomedical research, medical scientists use particle accelerators to explore the structure of biological molecules. They use the energy that charged particles emit when accelerated to nearly the speed of light to create one of the brightest lights on earth, 30 times more powerful than the sun and focused on a pinpoint. t the forefront of biomedical research, medical scientists use particle accelerators to explore the structure of biological molecules. They use the energy that charged particles emit when accelerated to nearly the speed of light to create one of the brightest lights on earth, 30 times more powerful than the sun and focused on a pinpoint. Deciphering the structure of proteins is key to understanding biological processes and healing disease. To determine a proteinÂ’s structure, researchers direct the beam from an accelerator called a synchrotron through a protein crystal. The crystal scatters the beam onto a detector. From the pattern of scattering, computers calculate the position of every atom in the protein molecule and create a 3-D image of the molecule.

430

Market Acceleration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Market Acceleration Market Acceleration Market Acceleration Photo of the Wanapum Dam. Hydropower contributes significantly to the nation's renewable energy portfolio; over the last decade, the United States obtained nearly 7% of its electricity from hydropower sources. Already the largest source of renewable electricity in the United States, there remains a vast untapped resource potential in hydropower. To achieve its vision of supporting 15% of our nation's electricity needs from water power by 2030, the Water Power Program works to address environmental and regulatory barriers that prevent significant amounts of deployment; to assess and quantify the value of hydropower to the nation's electric grid and its ability to integrate other variable renewable energy technologies; and to develop a vibrant U.S.

431

Accelerated Aging of Roofing Surfaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated aging of roofing surfaces Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http://HeatIsland.LBL.gov April 4, 2013 Development of Advanced Building Envelope Surface Materials & Integration of Artificial Soiling and Weathering in a Commercial Weatherometer New York Times, 30 July 2009 2010 2012 Challenge: speed the development of high performance building envelope materials that resist soiling, maintain high solar reflectance, and save energy 2 | Building Technologies Office eere.energy.gov

432

Reliability and Maintainability Issues for the Next Linear Collider  

Science Conference Proceedings (OSTI)

Large accelerators for high energy physics research traditionally have been designed using informal best design, engineering, and management practices to achieve acceptable levels of operational availability. However, the Next Linear Collider(NLC) project presents a particular challenge for operational availability due to the unprecedented size and complexity of the accelerator systems required to achieve the physics goals of high center-of-mass energy and high luminosity. Formal reliability and maintainability analysis, design, and implementation will be required to achieve acceptable operational availability for the high energy physics research program. This paper introduces some of the basic concepts of reliability analysis and applies them to the 2.6-cm microwave power system of the two 10-km-long, 250-GeV linacs that are currently proposed for the NLC design.

Wilson, Zane J.; Gold, Saul L.; Koontz, Ron F.; Lavine, Ted L.; /SLAC

2011-08-26T23:59:59.000Z

433

Thin Film Si Bottom Cells for Tandem Device Structures: Final Technical Report, 15 December 2003 - 15 October 2007  

DOE Green Energy (OSTI)

GIT and IEC developed thin-film Si bottom cell and showed that deposition of top cell in tandem device did not reduce bottom cell performance.

Yelundur, V.; Hegedus, S.; Rohatgi, A.; Birkmire, R.

2008-11-01T23:59:59.000Z

434

Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery  

DOE Patents (OSTI)

A method of fabricating series-connected and tandem junction series-connected solar cells into a solar battery with laser scribing.

Hanak, Joseph J. (Lawrenceville, NJ)

1981-01-01T23:59:59.000Z

435

Experimental and theoretical investigation of high gradient acceleration  

Science Conference Proceedings (OSTI)

This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-FG0291ER-40648. Experimental and Theoretical Investigations of High Gradient Acceleration.'' This grant supports three research tasks: Task A consists of the design and fabrication of a 17GHz of photocathode gun, Task B supports the testing of high gradient acceleration using a 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders. This report is organized as follows. The development of an rf gun design and research progress on the picosecond laser system is summarized in Sec. 2, the status of the studies of the LBL/Haimson high gradient structure, using a 50 MW free-electron laser is summarized in Sec. 3, and theoretical research progress is described in Sec. 4. Supporting material is contained in Appendices A-G.

Bekefi, G.; Chen, C.; Chen, S.; Danly, B.; Temkin, R.J.; Wurtele, J.S.

1992-02-01T23:59:59.000Z

436

Muon Acceleration with RLA and Non-scaling FFAG Arcs  

Science Conference Proceedings (OSTI)

Recirculating Linear Accelerators (RLA) are the most likely means to achieve the rapid acceleration of shortlived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper, we present a novel return-arc optics design based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice that allows 5 and 9 GeV/c muons of both charges to be transported in the same string of magnets. The return arcs are made up of super cells with each super cell consisting of three triplets. By employing combined function magnets with dipole, quadrupole, sextupole and octupole magnetic field components, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both 5 and 9 GeV/c muon momenta. This solution would reduce the number of arcs by a factor of 2, simplifying the overall design.

Vasiliy Morozov,Alex Bogacz,Dejan Trbojevic

2010-05-01T23:59:59.000Z

437

Accelerators for Intensity Frontier Research  

SciTech Connect

In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

Derwent, Paul; /Fermilab

2012-05-11T23:59:59.000Z

438

Accelerator Operators and Software Development  

SciTech Connect

At Thomas Jefferson National Accelerator Facility, accelerator operators perform tasks in their areas of specialization in addition to their machine operations duties. One crucial area in which operators contribute is software development. Operators with programming skills are uniquely qualified to develop certain controls applications because of their expertise in the day-to-day operation of the accelerator. Jefferson Lab is one of the few laboratories that utilizes the skills and knowledge of operators to create software that enhances machine operations. Through the programs written; by operators, Jefferson Lab has improved machine efficiency and beam availability. Because many of these applications involve automation of procedures and need graphical user interfaces, the scripting language Tcl and the Tk toolkit have been adopted. In addition to automation, some operator-developed applications are used for information distribution. For this purpose, several standard web development tools such as perl, VBScript, and ASP are used. Examples of applications written by operators include injector steering, spin angle changes, system status reports, magnet cycling routines, and quantum efficiency measurements. This paper summarizes how the unique knowledge of accelerator operators has contributed to the success of the Jefferson Lab control system. *This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150.

April Miller; Michele Joyce

2001-11-01T23:59:59.000Z

439

Accelerating lattice reduction with FPGAs  

Science Conference Proceedings (OSTI)

We describe an FPGA accelerator for the Kannan-Fincke-Pohst enumeration algorithm (KFP) solving the Shortest Lattice Vector Problem (SVP). This is the first FPGA implementation of KFP specifically targeting cryptographically relevant dimensions. In order ... Keywords: FPGA, euclidean lattices, shortest vector problem

Jérémie Detrey; Guillaume Hanrot; Xavier Pujol; Damien Stehlé

2010-08-01T23:59:59.000Z

440

GPU-accelerated path rendering  

Science Conference Proceedings (OSTI)

For thirty years, resolution-independent 2D standards (e.g. PostScript, SVG) have depended on CPU-based algorithms for the filling and stroking of paths. Advances in graphics hardware have largely ignored accelerating resolution-independent 2D graphics ... Keywords: OpenGL, path rendering, stencil buffer, vector graphics

Mark J. Kilgard; Jeff Bolz

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator  

E-Print Network (OSTI)

The BErkeley Lab Laser Accelerator (BELLA):A 10 GeV Laser Plasma Accelerator W.P. Leemans ' , R.of the design of a 10 GeV laser plasma accelerator (LPA)

Leemans, W.P.

2011-01-01T23:59:59.000Z

442

THE TWO-BEAM ACCELERATOR  

E-Print Network (OSTI)

IEEE Loew, "Measurements of Gradients in the SLAC (PartI)," SLAC AP-26, Nucl. Sci. NS-30. S.F. Jacobs, M.O. Scully,1986 Linear Accel. Conf. , SLAC, Jun 2-6, 1986. R. Marks, "

Sessler, A.M.

2008-01-01T23:59:59.000Z

443

Long ion chamber systems for the SLC (Stanford Linear Collider)  

Science Conference Proceedings (OSTI)

A Panofsky Long Ion Chamber (PLIC) is essentially a gas-filled coaxial cable, and has been used to protect the Stanford Linear Accelerator from damage caused by its electron beam, and as a sensitive diagnostic tool. This old technology has been updated and has found renewed use in the SLC. PLIC systems have been installed as beam steering aids in most parts of the SLC and are a part of the system that protects the SLC from damage by errant beams in several places. 5 refs., 3 figs., 1 tab.

Rolfe, J.; Gearhart, R.; Jacobsen, R.; Jenkins, T.; McComick, D.; Nelson, R.; Reagan, D.; Ross, M.

1989-03-01T23:59:59.000Z

444

Constructions of fault tolerant linear compressors and linear decompressors  

E-Print Network (OSTI)

Abstract — The constructions of optical buffers is one of the most critically sought after optical technologies in all-optical packet-switched networks, and constructing optical buffers directly via optical Switches and fiber Delay Lines (SDL) has received a lot of attention recently in the literature. A practical and challenging issue of the constructions of optical buffers that has not been addressed before is on the fault tolerant capability of such constructions. In this paper, we focus on the constructions of fault tolerant linear compressors and linear decompressors. The basic network element for our constructions is scaled optical memory cell, which is constructed by a 2 × 2 optical crossbar switch and a fiber delay line. We give a multistage construction of a self-routing linear compressor by a concatenation of scaled optical memory cells. We also show that if the delays, say d1, d2,..., dM, of the fibers in the scaled optical memory cells satisfy a certain condition (specifically, the condition in (A2) given in Section I), then our multistage construction can be operated as a self-routing linear compressor with maximum delay ? M?F even after up to F of the M scaled optical memory cells fail to function properly, where 0 ? F ? M ? 1. Furthermore, we prove that our multistage construction with the fiber delays d1, d2,..., dM given by the generalized Fibonacci series of order F is the best among all constructions of a linear compressor that can tolerate up to F faulty scaled optical memory cells by using M scaled optical memory cells. Similarly results are also obtained for the constructions of fault tolerant linear decompressors. I.

Cheng-shang Chang; Tsz-hsuan Chao; Jay Cheng; Duan-shin Lee

2007-01-01T23:59:59.000Z

445

Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude  

DOE Patents (OSTI)

A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.

Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.

1995-08-08T23:59:59.000Z

446

Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude  

DOE Patents (OSTI)

A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.

Bogaty, John M. (Lombard, IL); Clifft, Benny E. (Park Forest, IL); Bollinger, Lowell M. (Downers Grove, IL)

1995-01-01T23:59:59.000Z

447

SLAC/CERN High Gradient Tests of An X Band Accelerating Section  

Science Conference Proceedings (OSTI)

High frequency linear collider schemes envisage the use of rather high accelerating gradients: 50 to 100 MV/m for X-band and 80 MV/m for CLIC. Because these gradients are well above those commonly used in accelerators, high gradient studies of high frequency structures have been initiated and test facilities have been constructed at KEK [1], SLAC [2] and CERN [3]. The studies seek to demonstrate that the above mentioned gradients are both achievable and practical. There is no well-defined criterion for the maximum acceptable level of dark current but it must be low enough not to generate unacceptable transverse wakefields, disturb beam position monitor readings or cause RF power losses. Because there are of the order of 10,000 accelerating sections in a high frequency linear collider, the conditioning process should not be too long or difficult. The test facilities have been instrumented to allow investigation of field emission and RF breakdown mechanisms. With an understanding of these effects, the high gradient performance of accelerating sections may be improved through modifications in geometry, fabrication methods and surface finish. These high gradient test facilities also allow the ultimate performance of high frequency/short pulse length accelerating structures to be probed. This report describes the high gradient test at SLAC of an X-band accelerating section built at CERN using technology developed for CLIC.

Loewen, Roderick J

2003-06-13T23:59:59.000Z

448

SunShot Initiative: Linear Fresnel  

NLE Websites -- All DOE Office Websites (Extended Search)

Linear Fresnel to someone by Linear Fresnel to someone by E-mail Share SunShot Initiative: Linear Fresnel on Facebook Tweet about SunShot Initiative: Linear Fresnel on Twitter Bookmark SunShot Initiative: Linear Fresnel on Google Bookmark SunShot Initiative: Linear Fresnel on Delicious Rank SunShot Initiative: Linear Fresnel on Digg Find More places to share SunShot Initiative: Linear Fresnel on AddThis.com... Concentrating Solar Power Systems Parabolic Trough Linear Fresnel Power Tower Dish Engine Components Competitive Awards Staff Photovoltaics Systems Integration Balance of Systems Linear Fresnel DOE funds solar research and development (R&D) in linear Fresnel systems as one of four CSP technologies aiming to meet the goals of the SunShot Initiative. Linear Fresnel systems, which are a type of linear

449

Ion-Hose Instability in Long Pulse Induction Accelerators  

E-Print Network (OSTI)

The ion-hose (or fast-ion) instability sets limits on the allowable vacuum in a long-pulse, high current accelerator. Beam-induced ionization of the background gas leads to the formation of an ion channel which couples to the transverse motion of the beam. The instability is studied analytically and numerically for several ion frequency distributions. The effects of beam envelope oscillations on the growth of the instability will be discussed. The saturated non-linear growth of the instability is derived analytically and numerically for two different ion frequency distributions. 1

George J. Caporaso; Jim F. Mccarrick

2000-01-01T23:59:59.000Z

450

Flame acceleration and transition to detonation in channels  

DOE Green Energy (OSTI)

Experimental results are reported for combustion of pre-mixed H/sub 2/-air mixtures in a 136 m/sup 3/ channel and a 1:12.6 linear scale model. Test variables include H/sub 2/-air equivalence ratio, obstacles and degree of transverse venting. The results show that flame acceleration is increased by sensitive mixtures, presence of obstacles, large scales, and insufficient venting. The results also support the hypothesis that deflagration to detonation transition (DDT) can occur if the ratio of detonation cell width to channel width is less than a critical value, provided that the flame speed prior to transition has approached the isobaric sound speed.

Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

1987-01-01T23:59:59.000Z

451

Multi-Anticipative Piecewise-Linear Car-Following Model  

E-Print Network (OSTI)

We propose in this article an extension of the piecewise linear car-following model to multi-anticipative driving. As in the one-car-anticipative model, the stability and the stationary regimes are characterized thanks to a variational formulation of the car-dynamics. We study the homogeneous driving case. We show that in term of the stationary regime, the multi-anticipative model guarantees the same macroscopic behavior as for the one-car-anticipative one. Nevertheless, in the transient traffic, the variance in car-velocities and accelerations is mitigated by the multi-anticipative driving, and the car-trajectories are smoothed. A parameter identification of the model is made basing on NGSIM data and using a piecewise linear regression approach.

Nadir Farhi; Habib Haj-Salem; Jean-Patrick Lebacque

2013-02-01T23:59:59.000Z

452

Non-linear image processing  

SciTech Connect

Processing of nuclear medicine images is generally performed by essentially linear methods with the non-negativity condition being applied as the only non-linear process. The various methods used: matrix methods in signal space and Fourier or Hadamard transforms in frequency or sequency space are essentially equivalent. Further improvement in images can be obtained by the use of inherently non-linear methods. The recent development of an approximation to a least-difference method (as opposed to a least-square method) has led to an appreciation of the effects of data bounding and to the development of a more powerful process. Data bounding (modification of statistically improbable data values) is an inherently non-linear method with considerable promise. Strong bounding depending on two-dimensional least-squares fitting yields a reduction of mottling (buttermilk effect) not attainable with linear processes. A pre- bounding process removing very bad points is used to protect the strong bounding process from incorrectly modifying data points due to the weight of an extreme but yet unbounded point as the fitting area approaches it. (auth)

Bell, P.R.; Dillon, R.S.; Bell, M.R.

1976-01-01T23:59:59.000Z

453

Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator  

Science Conference Proceedings (OSTI)

Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped electrons. Next, the sixth chapter introduces suggestions for future trapped electron experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to electron trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel plasma, which if produced could solve some of the remaining issues for a plasma-based collider.

Kirby, Neil; /SLAC

2009-10-30T23:59:59.000Z

454

Photo of the Week: Inside the Tandem Mirror Experiment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inside the Tandem Mirror Experiment Inside the Tandem Mirror Experiment Photo of the Week: Inside the Tandem Mirror Experiment December 28, 2012 - 2:22pm Addthis This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at both ends of a central magnetic tube. Very hot and dense plasmas inside each mirror enhanced the confinement of another plasma inside the central tube, where the bulk of the fusion would occur. | Photo courtesy of Lawrence Livermore National Laboratory. This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at

455

Lattice-Matched GaNPAs-On-Silicon Tandem Solar Cells  

DOE Green Energy (OSTI)

A two-junction device consisting of a 1.7-eV GaNPAs junction on a 1.1-eV silicon junction has the theoretical potential to achieve nearly optimal efficiency for a two-junction tandem cell. We have demonstrated a monolithic III-V-on-silicon tandem solar cell in which most of the III-V layers are nearly lattice-matched to the silicon substrate. The cell includes a 1.8 eV GaNPAs top cell, a GaP-based tunnel junction (TJ), and a diffused silicon junction formed during the epitaxial growth of GaNP on the silicon substrate. This tandem on silicon has a Voc of 1.53 V and an AM1.5G efficiency of 5.2% without any antireflection coating. Low currents in the top cell are the primary limitation to higher efficiency at this point.

Geisz, J. F.; Olson, J. M.; Friedman, D. J.; Jones, K. M.; Reedy, R. C.; Romero, M. J.

2005-02-01T23:59:59.000Z

456

LINEAR COUNT-RATE METER  

DOE Patents (OSTI)

A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

Henry, J.J.

1961-09-01T23:59:59.000Z

457

2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)  

Energy.gov (U.S. Department of Energy (DOE))

Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

458

Characterization of the deuteron beam current in a linear accelerator for nuclear-diagnostic calibrations  

E-Print Network (OSTI)

In Inertial Confinement Fusion (ICF) research, passive detection systems are often required in several applications for observing fusion-product spectra from an ICF-capsule implosion. These detection devices can be calibrated ...

Denis, Daniel (Daniel B.)

2009-01-01T23:59:59.000Z

459

Science Accelerator Widget | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Accelerator Widget BusinessUSA DataTools Apps Challenges Let's Talk BusinessUSA You are here Data.gov Communities BusinessUSA Data Science Accelerator Widget...

460

Elucidating mechanisms of accelerated neurological aging  

E-Print Network (OSTI)

C. (2005). Mechanisms of aging in senescence- accelerated2.2 Strain-specific aging gene-expression profiles…………………..C. (2005). Mechanisms of aging in senescence-accelerated

Greenhall, Jennifer Anne

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Survey of Advanced Dielectric Wakefield Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

out wakefield accelerator research. Wakefield Acceleration at AATF The AATF had an electron beam produced by an L- band thermionic RF gun followed by two traveling-wave linac...

462

Accelerator and Fusion Research Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Historical photo of Laboratory founder and cyclotron inventor Ernest Orlando Lawrence at his desk OUR SCIENTIFIC PROGRAMS Accelerator Physics for the ALS Center for Beam Physics LOASIS Laboratory Fusion Science and Ion Beam Technology Superconducting Magnets Free Electron Laser R&D News: AFRD's Jean-Luc Vay and former AFRD scientist Kwang-Je Kim share the US Particle Accelerator School Prize. Andre Anders places two articles among the year's top 30 in the Journal of Applied Physics. AFRD personnel win an R&D 100 in a joint project with industry; the laser at the heart of BELLA sets a world record for laser power. Employees: Safety tips regarding the mountain lion are available. The results from our two most recent Self-Assessment Focus Groups are up, covering emergency preparedness and ergonomics while working offsite.

463

Fermilab's Accelerator and Research Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

July 19, 1996 July 19, 1996 Number 14 Fixed-target experimenters not only expect Fermilab's Accelerator and Research Divisions to turn water into wine-they need 10 different vintages. Providing beam to fixed-target experiments presents the challenge of converting high-inten- sity protons into 10 separate beams of varying intensities and particles, from kaons to neu- trinos. The Accelerator Division generates and splits the beam, and then hands the protons off to the Research Division, which converts them into beams of different particles. The process begins with a breath of hydrogen gas. Eventually the hydrogen atoms lose their outer electrons and become a stream of protons-the formation of the beam. Physicists measure two characteristics of the beam: its energy (eV) and its intensity. Intensity

464

Radiological Training for Accelerator Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-2002 8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Accelerator Facilities

465

Standards Acceleration to Jumpstart Adoption of Cloud ...  

Science Conference Proceedings (OSTI)

... Standards Acceleration to Jumpstart Adoption of Cloud Computing (SAJACC). The goal of the SAJACC initiative is to drive ...

2013-07-02T23:59:59.000Z

466

Available Technologies: Acceleration of Carbon Dioxide ...  

APPLICATIONS OF TECHNOLOGY: Carbon dioxide capture and sequestration; ADVANTAGES: Accelerated capture of carbon dioxide; Effective at extremely dilute (nanomolar ...

467

Fermi National Accelerator Laboratory Technology Marketing ...  

Fermi National Accelerator Laboratory Technology Marketing Summaries. Here you’ll find marketing summaries for technologies available for licensing ...

468

Accelerating Innovation Webinar Series - Energy Innovation ...  

Accelerating Innovation Webinar Series. In partnership with the Battelle Commercialization Council, the Energy Innovation Portal is hosting an ...

469

SLAC National Accelerator Laboratory Technology Marketing ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... SLAC National Accelerator Laboratory Technology M ...

470

Accelerator Mass Spectrometry: Extreme Sensitivity in Biological ...  

THE LLNL TECHNOLOGY COMPANY PRODUCT 24 Partnering Today: Technology Transfer Highlights Accelerator Mass Spectrometry: Extreme Sensitivity in Biological Research

471

SLAC National Accelerator Laboratory Technology Marketing ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... SLAC National Accelerator Laboratory Technology Marketing Summaries.

472

Fermi National Accelerator Laboratory Technologies Available ...  

... Energy Innovation Portal on Google; Bookmark Fermi National Accelerator Laboratory Technologies Available for Licensing - Energy Innovation Portal ...

473

Accelerated Weathering of Fluidized Bed Steam Reformation ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions by E.M. Pierce ...

474

Accelerated Materials Evaluation for Nuclear Application Utilizing ...  

Science Conference Proceedings (OSTI)

Jul 15, 2013... of accelerated nuclear materials testing for fission and fusion reactors. Presentations combining experiment with theory, modeling and ...

475

Powering Up America: Accelerating an Interoperable Smart ...  

Science Conference Proceedings (OSTI)

Powering Up America: Accelerating an Interoperable Smart Grid (+18 FTE, +$5,000,000). image: Shutterstock, copyright Photoroller. Challenge. ...

2010-10-05T23:59:59.000Z

476

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Makela, J

2005-01-01T23:59:59.000Z

477

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Jarmo Makela

2005-06-16T23:59:59.000Z

478

Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Aceleradores Avanzar Volver Principal ESTOY PERDIDO Los aceleradores le resuelven a los fsicos dos problemas. En primer lugar, dado que todas las partculas se comportan como...

479

Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator  

SciTech Connect

The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

2011-08-19T23:59:59.000Z

480

Energy Measurement in a Plasma Wakefield Accelerator  

SciTech Connect

In the E-167 plasma wakefield acceleration experiment, electrons with an initial energy of 42GeV are accelerated in a meter-scale lithium plasma. Particles are leaving plasma with a large energy spread. To determine the spectrum of the accelerated particles, a two-plane spectrometer has been set up.

Ischebeck, R

2007-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "tandem linear accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Proton acceleration experiments with Z-Petawatt.  

Science Conference Proceedings (OSTI)

The outline of this presentation: (1) Proton acceleration with high-power lasers - Target Normal Sheath Acceleration concept; (2) Proton acceleration with mass-reduced targets - Breaking the 60 MeV threshold; (3) Proton beam divergence control - Novel focusing target geometry; and (4) New experimental capability development - Proton radiography on Z.

Arefiev, A. (University of Texas at Austin); Schaumann, G. (Technische Universitat Darmstadt, Germany); Deppert, O. (Technische Universitat Darmstadt, Germany); Rambo, Patrick K.; Roth, M. (Technische Universitat Darmstadt, Germany); Geissel, Matthias; Schwarz, Jens; Sefkow, Adam B.; Atherton, Briggs W.; Kimmel, Mark W.; Schollmeier, Marius; Breizman, B. (University of Texas at Austin)

2010-08-01T23:59:59.000Z

482

Current Sheet Canting in Pulsed Electromagnetic Accelerators  

E-Print Network (OSTI)

Current Sheet Canting in Pulsed Electromagnetic Accelerators Thomas Edward Markusic A DISSERTATION #12;Current Sheet Canting in Pulsed Electromagnetic Accelerators Prepared by: Thomas Edward Markusic of current sheet canting in pulsed electromagnetic accelerators is the de- parture of the plasma sheet

Choueiri, Edgar

483

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Integrated Project Team RM...

484

Fermilab | Plan for the Future | Fermilab accelerator complex...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Fermilab accelerator complex Fermilab's accelerator complex comprises ten particle accelerators and storage rings. It produces the world's most powerful, high-energy neutrino...