National Library of Energy BETA

Sample records for tall tower wind

  1. Tall Tower Wind Energy Monitoring and Numerical Model Validation in Northern Nevada

    SciTech Connect (OSTI)

    Koracin, D.; Kaplan, M.; Smith, C.; McCurdy, G.; Wolf, A.; McCord, T.; King, K.; Belu, R.; Horvath, K.

    2015-10-01

    The main objectives of this project were to conduct a tall-tower and sodar field campaign in complex terrain, investigate wind properties relevant to wind energy assessment, and evaluate high-resolution models with fixed and adaptive grid structures. Two 60-m towers at Virginia Peak ridges near Washoe Valley, Nevada, were instrumented with cup and vane anemometers as well as sonic anemometers, and an acoustic sounder (hereafter sodar) was installed near one of the towers. The towers were located 2,700 m apart with a vertical distance of 140 m elevation between their bases. Each tower had a downhill exposure of rolling complex terrain, with the nearby valley floor 3,200 m to the west and 800 m below the summit. Cup anemometers were installed at both towers at 20, 40, and 60 m, wind vanes at 20 and 60 m, and sonic anemometers at 20 and 60 m. The sodar measurements were nominally provided every 10 m in vertical distance from 40 to 200 m with the quality of the data generally decreasing with height. Surface air temperature, atmospheric pressure, and radiation measurements were conducted at 1.5 m AGL at both of the towers. Although the plan was to conduct a 1-year period of data collection, we extended the period (October 5, 2012 through February 24, 2014) to cover for possible data loss from instrument or communication problems. We also present a preliminary analysis of the towers and sodar data, including a detailed inventory of available and missing data as well as outliers. The analysis additionally includes calculation of the Weibull parameters, turbulence intensity, and initial computation of wind power density at various heights.

  2. Wind Energy Assessment Study for Nevada -- Tall Tower Deployment (Stone Cabin): 26 June 2005 - 31 December 2007

    SciTech Connect (OSTI)

    Koracin, D.; Reinhardt, R.; McCurdy, G.; Liddle, M.; McCord, T.; Vellore, R.; Minor, T.; Lyles, B.; Miller, D.; Ronchetti, L.

    2009-12-01

    The objective of this work effort was to characterize wind shear and turbulence for representative wind-developable areas in Nevada.

  3. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  4. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More ...

  5. Simulation of lightning attachment to open ground, tall towers and aircraft

    SciTech Connect (OSTI)

    Ratnamahilan, P.; Hoole, P. . Dept. of Electrical and Telecommunications Engineering); Ratnajeevan, S.; Hoole, H. . Dept. of Engineering)

    1993-04-01

    The characteristics of lightning waveforms are important in taking protective measures against it. However, many of these characteristics cannot be measured. This paper employs a mathematical model of lightning currents to write a software package to simulate all manner of lightning flashes. The capabilities available to us through this are demonstrated by extracting the behavior of lightning waveforms following attachment to open ground, tall towers and aircraft.

  6. Ewiiaapaayp Band of Kumeyaay Indians - Wind Meteorological Tower...

    Office of Environmental Management (EM)

    Band of Kumeyaay Indians Meteorlogical Tower Deployment and Data Measurement and Analysis ... from the previously collected raw wind data and correlations among the towers show: * ...

  7. New North Dakota Factory to Produce Wind Towers, Jobs

    Broader source: Energy.gov [DOE]

    Wind tower factory could bring back some of the jobs lost when a machine manufacturing plant closed.

  8. Wind turbine tower for storing hydrogen and energy

    DOE Patents [OSTI]

    Fingersh, Lee Jay

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  9. Lifting system and apparatus for constructing wind turbine towers

    DOE Patents [OSTI]

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  10. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  11. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design | Department of Energy in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Technical Assessment of Cryo-Compressed Hydrogen Storage

  12. Wind Turbine Tower for Storing Hydrogen and Energy - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Wind Energy Wind Energy Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Wind Turbine Tower for Storing Hydrogen and Energy National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Around the world, there is an increasing demand for satisfying energy requirements in ways that use less or no fossil fuels. These alternatives need to be reliable, cost effective, and environmentally

  13. NREL: MIDC/National Wind Technology Center M2 Tower (39.91 N, 105.235 W,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1855 m, GMT-7) National Wind Technology Center M2 Tower

  14. New Report Shows Domestic Offshore Wind Industry Potential, 21...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuing to increase in size, the average offshore wind turbine installed in 2014 had a 377-foot-diameter rotor on a 279-foot-tall tower. The average capacity of offshore wind ...

  15. Characteristics study of Transmission Line Mechanical Research Center (TLMRC) wind tower data. Notes on field-wind loading experiments

    SciTech Connect (OSTI)

    Shan, L.

    1992-10-01

    To initiate and develop EPRI`s wind loading research program, an experimental wind tower was erected at the TLMRC site. A number of anemometers were placed at different elevation levels of the wind tower. Strain gages were also mounted on the leg posts of the tower. The purposes of this experiment were to establish the wind characteristics at the TLMRC site, and to gain experience using different types of instrumentation and data acquisition techniques in field-wind loading experiments. Three sets of wind data collected from the TLMRC wind tower were validated and analyzed in this study. Since the characteristics of wind and response data can be described in different terms and by various methods, the study describes the concept, Identifies the focal point, and discusses the results of each method used in this report. In addition, some comments are provided on how to conduct the field-wind loading experiments as well as how to analyze the wind and response data. The results of this study show that: (1) the magnitudes of wind velocity and direction can vary considerably during a short period of time; (2) the mean vertical wind profile does not hold constant as usually assumed; (3) the turbulence intensity and the gust factor increase as the height above ground decreases; (4) the averaging time can greatly influence the results of wind data analysis; (5) although wind contains lime energy beyond 1 Hz, structural responses above 1 Hz can be excited; (6) strong relationships exist between the wind velocity and the responses in the leg posts of the wind tower. System identification, a tool for establishing models of dynamic systems based in observed data, is successfully used in a trial application which estimates the relationship between the wind velocity and the responses in the wind tower.

  16. Characteristics study of Transmission Line Mechanical Research Center (TLMRC) wind tower data

    SciTech Connect (OSTI)

    Shan, L. )

    1992-10-01

    To initiate and develop EPRI's wind loading research program, an experimental wind tower was erected at the TLMRC site. A number of anemometers were placed at different elevation levels of the wind tower. Strain gages were also mounted on the leg posts of the tower. The purposes of this experiment were to establish the wind characteristics at the TLMRC site, and to gain experience using different types of instrumentation and data acquisition techniques in field-wind loading experiments. Three sets of wind data collected from the TLMRC wind tower were validated and analyzed in this study. Since the characteristics of wind and response data can be described in different terms and by various methods, the study describes the concept, Identifies the focal point, and discusses the results of each method used in this report. In addition, some comments are provided on how to conduct the field-wind loading experiments as well as how to analyze the wind and response data. The results of this study show that: (1) the magnitudes of wind velocity and direction can vary considerably during a short period of time; (2) the mean vertical wind profile does not hold constant as usually assumed; (3) the turbulence intensity and the gust factor increase as the height above ground decreases; (4) the averaging time can greatly influence the results of wind data analysis; (5) although wind contains lime energy beyond 1 Hz, structural responses above 1 Hz can be excited; (6) strong relationships exist between the wind velocity and the responses in the leg posts of the wind tower. System identification, a tool for establishing models of dynamic systems based in observed data, is successfully used in a trial application which estimates the relationship between the wind velocity and the responses in the wind tower.

  17. First U.S. Grid-Connected Offshore Wind Turbine Installed Off...

    Broader source: Energy.gov (indexed) [DOE]

    A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a ... Academy and Cianbro to launch a deepwater offshore floating wind turbine near Bangor. ...

  18. Validation of SWAY Wind Turbine Response in FAST, with a Focus on the Influence of Tower Wind Loads: Preprint

    SciTech Connect (OSTI)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, R.; Yin Kwee Ng, E.

    2015-04-23

    Need to modify simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions. without the new tower-load capability to examine its influence on the response characteristics of the system. This is important in situations when the turbine is parked in survival conditions. The simulation results were then compared to measured data from the SWAY system in both turbine operating and nonoperating conditions. Mixed results were observed when comparing the simulated system behavior to the measured data, but the tower wind loads improved the comparison for nonoperating conditions.

  19. NREL: Technology Deployment - Resource Maps for Taller Towers Reveal New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Areas for Wind Project Development Resource Maps for Taller Towers Reveal New Areas for Wind Project Development News Mapping the Frontier of New Wind Power Potential Publications Southeastern Wind Coalition fact sheets Southeast Wind Energy Fact Sheet Enabling Wind Power Nationwide Wind Vision: A New Era for Wind Power in the United States Sponsors AWS Truepower Southeastern Wind Coalition Key Partners U.S. Department of Energy Contact Ian Baring-Gould, 303-384-7021 A picture of a tall wind

  20. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  1. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  2. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China

    SciTech Connect (OSTI)

    Yuechun, Y.; Jixue, W.; Hongfang, W.; Guimin, L.; Bolin, Y.; Scott, G.; Elliott, D.; Kline, D.

    2012-01-01

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In view of this, HydroChina Corporation and the United States National Renewable Energy Laboratory (NREL) conducted a comparative test near a wind farm in Hebei Province, China. We present the results of an analysis characterizing the measurement performance of a state-of-the-art Sound Detection and Ranging (sodar) device when compared to a traditional tower measurement program. NREL performed the initial analysis of a three-month period and sent the results to HydroChina. When another month of data became available, HydroChina and their consultant Beijing Millenium Engineering Software (MLN) repeated NREL's analysis on the complete data set, also adding sensitivity analysis for temperature, humidity, and wind speed (Section 6). This report presents the results of HydroChina's final analysis of the four-month period.

  3. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; et al

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water solublemore » fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was estimated to be ~ 0.15 for the

  4. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    SciTech Connect (OSTI)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water soluble fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode.

    The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments.

    The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv, ws value related to the water soluble (ws) fraction was

  5. Description of the Columbia Basin Wind Energy Study (CBWES)

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

    2012-10-01

    The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energy’s Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

  6. DOE Taking Wind Forecasting to New Heights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taking Wind Forecasting to New Heights DOE Taking Wind Forecasting to New Heights May 18, 2015 - 3:24pm Addthis A 2013 study conducted for the U.S. Department of Energy (DOE) by the National Oceanic and Atmospheric Administration (NOAA), AWS Truepower, and WindLogics in the Great Plains and Western Texas, demonstrated that wind power forecasts can be improved substantially using data collected from tall towers, remote sensors, and other devices, and incorporated into improved forecasting models

  7. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  8. Concrete Company Aims Higher for More Wind Energy

    Broader source: Energy.gov [DOE]

    Today, most steel towers that support utility-scale turbines stand about 80 meters tall, but the Tindall Corporation wants to go higher using precast concrete to raise turbines over 100 meters in height to capture stronger, steadier winds - and more energy.

  9. University of Wisconsin--Madison Final Report: WiscWind

    Broader source: Energy.gov (indexed) [DOE]

    Energy Time-lapse of the University of Minnesota's wind turbine construction, from September 6 - 23, 2011. | Courtesy of the University of Minnesota College of Science and Engineering Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? The American-made Clipper Liberty wind turbine and a 426-foot tall meteorological tower will allow researchers to work on improving wind turbine efficiency and will help train a new

  10. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Dana, S.; Damiani, R.; vanDam, J.

    2015-05-18

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.

  11. Raw Data from National Wind Technology Center M2 Tower (2001...

    Open Energy Info (EERE)

    such as global PSP (Wm2) and meteorological data, such as temperature, pressure, and wind speed and direction (at 2m, 5m, 10m, 20m, 50m, and 80m). Included here is a portion...

  12. SMART Wind Consortium Support Structures Subgroup Virtual Meeting: Tower and Foundation Design

    Broader source: Energy.gov [DOE]

    Funded by the U.S. Department of Commerce, the SMART Wind Consortium is connecting collaborators to form consensus on near-term and mid-term plans needed to increase cost competitiveness of U.S....

  13. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  14. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  15. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  16. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  17. First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine | Department of Energy First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - 12:33pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a floating platform in the ocean. Castine, Maine - On May 31, 2013, the University of Maine's

  18. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  19. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  20. SunTower Power Tower and Receiver

    Broader source: Energy.gov [DOE]

    This photograph shows a Sierra SunTower power tower, one of two towers at eSolar’s 5 megawatt (MW) commercial CSP plant in Lancaster, California.

  1. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  2. Small Wind Electric Systems | Department of Energy

    Energy Savers [EERE]

    A wind electric system is made up of a wind turbine mounted on a tower to provide better access to stronger winds. In addition to the turbine and tower, small wind electric systems ...

  3. Vortex-augmented cooling tower - windmill combination

    DOE Patents [OSTI]

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  4. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Energy Savers [EERE]

    and Lower Cost of Energy" intends to support partnerships that lead to innovative designs and processes for wind turbine tower manufacturing and turbine system installation. ...

  5. American Tower Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: American Tower Company Address: P.O. Box 29 Place: Shelby, Ohio Zip: 44875 Sector: Wind energy Product: Agriculture;Business and legal...

  6. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve ...

  7. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  8. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  9. DOE - NNSA/NFO -- News & Views Bren Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At 1,527 Feet, BREN Tower Dominates Nevada National Security Site Skyline Photo - 1,527-foot BREN Tower The BREN Tower 1,527 feet tall, has been a focal point of attention ever since it was erected on the Nevada National Security Site in 1962. During its 30 years, it has been part of the Yucca and Jackass Flat skylines, and a platform for two important experiments --Bare Reactor Experiment, Nevada (BREN), and the High Energy Neutron Reactions Experiment (HENRE). It was built by the Dresser-Ideco

  10. Tall Corn Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Tall Corn Ethanol LLC Jump to: navigation, search Name: Tall Corn Ethanol LLC Place: Coon Rapids, Iowa Zip: 50058 Product: Farmer owned bioethanol production company which owns a...

  11. Wind Development on the Rosebud

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Owl Feather War Bonnet Wind Farm, 30Mw Met towers installed in 2003 Met towers installed in 2009 Proposed North Antelope Highlands Wind Farm, 190Mw 750 Kilowatt ...

  12. Assiniboine & Sioux Tribes of the Fort Peck Reservation - Wind...

    Office of Environmental Management (EM)

    " " sites have over 5 years of 40 meter sites have over 5 years of 40 meter tower wind data tower wind data * * Utility scale wind farms in planning stages Utility scale wind ...

  13. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect (OSTI)

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  14. WINDExchange: Potential Wind Capacity

    Wind Powering America (EERE)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  15. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect (OSTI)

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational

  16. Resolution of critical environmental issues with WARP{trademark} wind power systems

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Rainey, D.L.; Burns, R.E.

    1996-11-01

    A modular patented wind power technology, the TARP{trademark} Windframe{trademark}, forms the basis for environmentally complying electric energy generation and power plants. A TARP Windframe provides two highly amplified wind flow fields to a set of two tailored conventional, low risk, small diameter wind turbines. It also serves as a support for the wind turbines, yaw assembly and protective housing for a core tower and other internal sub-systems. Wind Amplified Rotor Platforms (WARP{trademark}) Systems are tall TARP module arrays about a core tower. These intelligent towers can be flexibly and incrementally deployed into multi-megawatt size wind power plants. While heavily building on proven windmill technology, WARP systems may be shown to surpass current technology windmills in all aspects of system characteristics. WARPs have improved features as a result of amplified gearless and shrouded turbine performance, user friendly operation and maintenance, and high reliability and operation and maintenance, and high reliability and low risk due to small, simple and robust dynamic components. Environmental benefits include an order of magnitude less land requirement, absence of bird kill potential, attractive appearance, lower far field noise and EMI/TV interference, and improved rotor safety through containment means. Operation under extreme icing is also afforded due to both rotor shielding and inherent self-sustaining tower anti-icing shielding and inherent self-sustaining tower anti-icing capability. This avoids the large rotor imbalance and ice shedding predicaments of conventional windmills. System components are suited for low cost volume production, ease of transportation, erection and servicing.

  17. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like ...

  18. Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Power Tower Power Tower DOE funds solar research and development (R&D) in power tower (central receiver) systems as one of four concentrating solar ...

  19. Upcoming Funding Opportunity for Tower Manufacturing and Installation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tower Manufacturing and Installation Upcoming Funding Opportunity for Tower Manufacturing and Installation December 18, 2013 - 11:25am Addthis The DOE Wind Program has issued a Notice of Intent for a funding opportunity that it intends to post early in 2014, pending Congressional appropriations. The funding opportunity, tentatively titled "U.S. Wind Manufacturing: Taller Hub Heights to Access Higher Wind Resources, and Lower Cost of Energy" intends to support

  20. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  1. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  2. Armor Tower, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mr. Edward Rosenbloom Chief Executive Officer Armor Tower, Inc. P.O. Box 49779 Charlotte, North Carolina 28277 WEL-2015-06 Dear Mr. Rosenbloom: The Office of Enterprise Assessments' Office of Enforcement has completed an investigation into an electrical shock incident involving an Armor Tower, Inc. (Armor Tower) employee at the Brookhaven National Laboratory (BNL). Armor Tower is a second-tier subcontractor to Brookhaven Science Associates, LLC (BSA), which is the Department of Energy's (DOE)

  3. Vortex-augmented cooling tower-windmill combination

    DOE Patents [OSTI]

    McAllister, Jr., John E.

    1985-01-01

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  4. Vortex-augmented cooling tower-windmill combination

    SciTech Connect (OSTI)

    McAllister Jr., J. E.

    1985-02-12

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  5. NREL-Wind Resource Assessment Handbook | Open Energy Information

    Open Energy Info (EERE)

    or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 50 m) for a...

  6. Flow Distortion Study Completed for the Chesapeake Light Tower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With the light tower similar in profile to offshore oil platforms, one concern was whether its bulky cross section would disturb the wind blowing around it so that measurements on ...

  7. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  8. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle ...

  9. Tower Camera Handbook

    SciTech Connect (OSTI)

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  10. Wind Program R&D Newsletter: Fourth Quarter 2013 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ... consider the characteristics of wind power with its variability and forecasting errors. ... New DOE Wind Program Funding Opportunity - Taller Towers for Lower Energy Costs On January ...

  11. Xinjiang Huitong Wind Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Xinjiang Autonomous Region, China Sector: Wind energy Product: A Chinese wind turbine component supplier, products inculde rotors, spindles and towers....

  12. Meteorological Towers Display for Windows NT

    Energy Science and Technology Software Center (OSTI)

    1999-05-20

    The Towers Display Program provides a convenient means of graphically depicting current wind speed and direction from a network of meteorological monitoring stations. The program was designed primarily for emergency response applications and, therefore, plots observed wind directions as a transport direction, i.e., the direction toward which the wind would transport a release of an atmospheric contaminant. Tabular summaries of wind speed and direction as well as temperature, relative humidity, and atmospheric turbulence measured atmore » each monitoring station can be displayed. The current implementation of the product at SRS displays data from eight Weather INformation and Display (WIND) System meteorological towers at SRS, meteorological stations established jointly by SRS/WSRC and the Augusta/Richmond County Emergency Management Agency in Augusta, GA, and National Weather Service stations in Augusta, GA. Wind speed and direction are plotted in a Beaufort scale format at the location of the station on a geographic map of the area. A GUI provides for easy specification of a desired date and time for the data to be displayed.« less

  13. False Pass Wind Resource Report

    Energy Savers [EERE]

    False Pass Wind Resource Report False Pass meteorological tower, view to the east, D. ... Eagle River, Alaska D r a f t 1 False Pass Wind Resource Report P a g e | 2 Summary The ...

  14. Wind Development on the Rosebud

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFP was issued in Fall of 2007 Rosebud Sioux Tribe and Citizens Wind entered into an MOA ... WAPA 115 kv, and Cherry Todd Substation RST Met tower installed Fall of 2003 Citizens Wind ...

  15. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect (OSTI)

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  16. Composite Tower Solutions | Open Energy Information

    Open Energy Info (EERE)

    needs, including meteorological towers, weather towers, and data collection and instrumentation towers. Coordinates: 40.233765, -111.668509 Show Map Loading map......

  17. China Solar Tower Development | Open Energy Information

    Open Energy Info (EERE)

    Tower Development Jump to: navigation, search Name: China Solar Tower Development Place: China Sector: Solar Product: Joint venture for development of solar towers in China,...

  18. NREL: Wind Research - Advanced Research Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and meteorological towers upwind are instrumented to collect data. The National Wind Technology Center (NWTC) uses two large turbines to conduct advanced controls research. ...

  19. Concentrating Solar Power Tower Technology

    Broader source: Energy.gov [DOE]

    In this b-roll, solar power towers' are systems that use an array of mirrors to focus the sun's energy on a tower-mounted heat exchanger to generate electricity.

  20. Reduction in performance due to recirculation in mechanical-draft cooling towers

    SciTech Connect (OSTI)

    Kroger, D.G. )

    1989-01-01

    The influence of recirculating warm plume air on the performance of mechanical-draft cooling towers is investigated analytically, numerically and experimentally. It is shown that the amount of recirculation that occurs is a function of the flow and the thermal and geometric characteristics of the tower. The presence of a wind wall tends to reduce the mount of recirculation. An equation is presented with which the performance effectiveness due to recirculation can be evaluated approximately for a mechanical-draft cooling tower.

  1. Rosebud Sioux Tribes - Wind Development on the Rosebud

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 th , 2012, Denver, Colorado 20 communities with an elected council person representing each community, they serve 3 year terms, along with the Tribal Chairman, Vice Chair, Secretary and Treasurer Rosebud Sioux Indian Reservation Met tower installed in1999 Akicita Cikala 750 Kw turbine, commissioned March 2003 Met tower installed in 2001 Proposed Owl Feather War Bonnet Wind Farm, 30Mw Met towers installed in 2003 Met Met Met Met towers installed in 2009 Met towers installed installed in 2009 in

  2. Small Wind Guidebook/What are the Basic Parts of a Small Wind...

    Open Energy Info (EERE)

    are prone to cracking and should be avoided. Most turbine manufacturers provide wind energy system packages that include a range of tower options.3 Balance of System Costs...

  3. DOE Report Evaluates Potential for Wind Power in All 50 States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind potential to 1.8 million square miles. Technological advancements, such as taller wind turbine towers of 110 and 140 meters and larger rotors-currently under...

  4. Wind Energy Transmission | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Transmission Jump to: navigation, search Photoshop art created from two NREL-PIX photos (10929 & 15185) of a sunset view of electrical power towers combined with wind...

  5. Northern Cheyenne Tribe - Wind Power Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Cheyenne Tribe Wind Power Project Program Review 2006 Ingrid Gardner Project Overview * Project began in 2002 * Sole decision maker and final authority » NORTHERN CHEYENNE TRIBE * Technical Participant » Distributed Generation Systems, Inc. * Tribal Participant » TRIBAL EDA COMMITTEE » TRIBAL EDA PLANNER Project Design * Development Phase Approach - Long Term Wind Data Collected »RAWS SITE »AIR QUALITY SITES »ON-SITE MET TOWERS 50 meter tower 20 meter tower Project Design Cont. *

  6. Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program

    SciTech Connect (OSTI)

    Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V.

    1997-04-01

    This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs.

  7. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  8. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  9. Concentrating Solar Power: Power Towers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the principles, applications, and benefits of generating electricity using power towers, a concentrating solar power (CSP) technology. A brief animation explains...

  10. Eastern Shoshone Tribe - Wind Feasibility Study on the Wind River...

    Energy Savers [EERE]

    Wind Data Gathering 2 sites were evaluated - Bighorn Flats - Sheldon Dome - 3 rd tower on Boysen Peak was blown over 4 more sites to be evaluated - Crow Creek (upper) - ...

  11. Wind Development on the Rosebud

    Broader source: Energy.gov (indexed) [DOE]

    Rosebud D Akicita Cikala 750 Kw turbine Proposed Owl Feather War Bonnet Wind Farm, 30Mw ... towers installed in 2009 Akicita Cikala Turbine Neg Micon 750kw Commissioned March 2003 ...

  12. NREL: Wind Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Photoshop art created from two NREL-Image Gallery photos of sunset view of electrical power towers combined with wind machines. Photo Illustration by Raymond David / NREL At the National Wind Technology Center (NWTC), partners can study the interactions between wind power technologies and the utility grid to gain a greater understanding of how variable generation resources such as wind energy, impact the utility grid and how to increase the percentage of wind generation in our

  13. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  14. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  15. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  16. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  17. MODEL REDUCTION WITH MAPREDUCE-ENABLED TALL AND SKINNY SINGULAR...

    Office of Scientific and Technical Information (OSTI)

    AND SKINNY SINGULAR VALUE DECOMPOSITION. Citation Details In-Document Search Title: MODEL REDUCTION WITH MAPREDUCE-ENABLED TALL AND SKINNY SINGULAR VALUE DECOMPOSITION. Abstract ...

  18. How to Build a Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  19. Wind Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Text Version Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent

  20. Scientific American: "Tall Trees Sucked Dry by Global Warming"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods. June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle describing how water

  1. NREL: Wind Research - NREL and Sandia National Laboratories to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories to Sharpen Wind Farm Turbine Controls A meteorological tower in the background, one wind turbine in the front, and one turbine to the right. A view ...

  2. SLIDESHOW: America's Wind Testing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology

  3. Concentrating Solar Power Tower System Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, ...

  4. SMUD Kokhala Power Tower Study

    SciTech Connect (OSTI)

    Price, Henry W.; Whitney, Daniel D.; Beebe, H.I.

    1997-06-01

    Kokhala is the name of a new hybridized power tower design which integrates a nitrate-salt solar power tower with a gas turbine combined-cycle power plant. This integration achieves high value energy, low costs, and lower investor risk than a conventional solar only power tower plant. One of the primary advantages of this system is that it makes small power tower plants much more economically competitive with conventional power generation technologies. This paper is an overview of a study that performed a conceptual evaluation of a small (30 MWe) commercial plant suitable for the Sacramento Municipal Utility District`s (SMUD) Rancho Seco power plant site near Sacramento, California. This paper discusses the motivation for using a small hybrid solar plant and provides an overview of the analysis methodology used in the study. The results indicate that a power tower integrated with an advanced gas turbine, combined with Sacramento`s summer solar resource, could produce a low- risk, economically viable power generation project in the near future.

  5. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  6. A I K E N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    communications tower. The dan- ger is from more than just strong wind, but also the corrosion of underground anchors that help support these tall structures. Anchors can become...

  7. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  8. Best Management Practice #10: Cooling Tower Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cooling towers dissipate heat from recirculating water used to cool chillers, air conditioners, or other process equipment to the ambient air. Heat is rejected to the environment from cooling towers through the process of evaporation. Therefore, by design, cooling towers use significant amounts of water.

  9. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo by Rick Driscoll, NREL 25660 Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource. According to the National Offshore ...

  10. Cooling Towers: Understanding Key Components of Cooling Towers and How to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Water Efficiency | Department of Energy Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Fact sheet covers the key components of cooling towers and how to improve water efficiency. waterfs_coolingtowers.pdf (3.16 MB) More Documents & Publications Guidelines for Estimating Unmetered Industrial Water Use Side Stream Filtration for

  11. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

  12. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-05-01

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  13. An Industry/Academe Consortium for Achieving 20% wind by 2030 through Cutting-Edge Research and Workforce Training

    SciTech Connect (OSTI)

    Sotiropoulos, Fotis; Marr, Jeffrey D.G.; Milliren, Christopher; Kaveh, Mos; Mohan, Ned; Stolarski, Henryk; Glauser, Mark; Arndt, Roger

    2013-12-01

    In January 2010, the University of Minnesota, along with academic and industry project partners, began work on a four year project to establish new facilities and research in strategic areas of wind energy necessary to move the nation towards a goal of 20% wind energy by 2030. The project was funded by the U.S. Department of Energy with funds made available through the American Recovery and Reinvestment Act of 2009. $7.9M of funds were provided by DOE and $3.1M was provided through matching funds. The project was organized into three Project Areas. Project Area 1 focused on design and development of a utility scale wind energy research facility to support research and innovation. The project commissioned the Eolos Wind Research Field Station in November of 2011. The site, located 20 miles from St. Paul, MN operates a 2.5MW Clipper Liberty C-96 wind turbine, a 130-ft tall sensored meteorological tower and a robust sensor and data acquisition network. The site is operational and will continue to serve as a site for innovation in wind energy for the next 15 years. Project Areas 2 involved research on six distinct research projects critical to the 20% Wind Energy by 2030 goals. The research collaborations involved faculty from two universities, over nine industry partners and two national laboratories. Research outcomes include new knowledge, patents, journal articles, technology advancements, new computational models and establishment of new collaborative relationships between university and industry. Project Area 3 focused on developing educational opportunities in wind energy for engineering and science students. The primary outcome is establishment of a new graduate level course at the University of Minnesota called Wind Engineering Essentials. The seminar style course provides a comprehensive analysis of wind energy technology, economics, and operation. The course is highly successful and will continue to be offered at the University. The vision of U.S. DOE to

  14. Chemical composition of biomass from tall perennial tropical grasses

    SciTech Connect (OSTI)

    Prine, G.M.; Stricker, J.A.; Anderson, D.L.

    1995-11-01

    The tall perennial tropical grasses, elephantgrass (Pennisetum purpureum Schum.), sugarcane and energycane (Saccharum sp.) and erianthus (Erianthus arundenaceum (Retz) Jesw.) have given very high oven dry biomass yields in Florida and the warm Lower South USA. No good complete analyses of the chemical composition of these grasses for planning potential energy use was available. We sampled treatments of several tall grass demonstrations and experiments containing high-biomass yielding genotypes of the above tall grass crops at several locations in Florida over the two growing seasons, 1992 and 1993. These samples were analyzed for crude protein, NDF, ADF, cellulose, hemicellulose, lignin, and IVDMD or IVOMD. The analysis for the above constituents are reported, along with biomass yields where available, for the tall grass accessions in the various demonstrations and experiments. Particular attention is given to values obtained from the high-yielding tall grasses grown on phosphatic clays in Polk County, FL, the area targeted by a NREL grant to help commercialize bioenergy use from these crops.

  15. 24 m meteorological tower data report period: January through December, 1996

    SciTech Connect (OSTI)

    Freeman, D.; Bowen, J.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

    1997-12-01

    This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. This report presents results of the monitoring for January--December, 1996, providing: a status of the measurement systems during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

  16. The Inside of a Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Inside of a Wind Turbine The Inside of a Wind Turbine 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator.

  17. Rosebud Sioux Tribes - Next Steps Toward Wind Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Montileaux Rosebud Sioux Indian Reservation MET Tower Oct '03 At 50 meter height Ave. wind 19.25 mph MET Tower Oct '03 At 50 meter height Ave. wind 16.9 mph MET Tower May 2001 Rosebud Indian Reservation May, 2001 Owl Feather War Bonnet Wind F Little Soldier Turbine Farm Little Soldier Turbine  Commissioned in March '03  Neg Micon, Vestas, 750 Kw Turbine  Cost was $1,226,804.00  DOE grant of $566,000.00  RUS Loan of $660,804.00  Initial PPA with Basin Electric for 2.5 years 

  18. GreenTower | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Developer of a solar chimney technology, with greenhouses for food production. Hopes to deploy this in Namibia. References: GreenTower1 This article...

  19. ARM - Campaign Instrument - aerosol-tower-eml

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (AEROSOL-TOWER-EML) Instrument Categories Aerosols Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  20. Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business

    Broader source: Energy.gov [DOE]

    With the support of $850,000 in Phase I and II Small Business Innovation Research (SBIR) grants from the Department in 2002 and 2003, Wind Tower Systems was able to complete the final engineering design for the 100 meter wind turbine tower that GE now plans to market.

  1. Performance of tornado-type wind turbines with radial inflow supply

    SciTech Connect (OSTI)

    Hsu, C.T.; Ide, H.

    1982-09-01

    Wind tunnel tests were conducted for the performance of tornado-type wind turbines with radial inflow supply from the incoming wind. It was shown that the radial inflow supply was necessary for intensifying a vortex in the wind collecting tower and, consequently, for enhancing the power efficiencies. A maximum power efficiency of 3.8 was obtained for a circular-shaped tower as compared to the value of 0.4 for the conventional windmills.

  2. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect (OSTI)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  3. INL Wind Farm Project Description Document

    SciTech Connect (OSTI)

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  4. Cooling tower environmental considerations for cogeneration projects

    SciTech Connect (OSTI)

    Weaver, K.L.; Putnam, R.A.; Schott, G.A.

    1994-12-31

    Careful consideration must be given to the potential environmental impacts resulting from cooling tower operations in cogeneration projects. Concerns include visible plumes, fogging and icing of nearby roadways, emissions, water use, aesthetics, and noise. These issues must be properly addressed in order to gain public acceptance and allow for easier permitting of the facility. This paper discusses the various evaporative type cooling tower technologies from an environmental standpoint. In addition, typical concerns and questions raised by the public are presented, along with suggested guidelines for addressing these concerns. The use of modeling to predict the potential environmental impacts from cooling tower operations is sometimes required by regulatory agencies as a condition for obtaining approval for the facility. This paper discusses two of the models that are currently available for predicting cooling tower environmental impacts such as fogging, icing, salt deposition, and visible plumes. The lack of standardized models for cooling tower noise predictions, and the means by which the modeling requirements may be achieved are also addressed. An overview of the characteristics of cooling tower noise, the various measures used for noise control and the interdependency of the control measures and other cooling tower performance parameters are presented. Guidance is provided to design cost effective, low noise installations. The requirements for cooling tower impact assessments to support permitting of a cogeneration facility are also presented.

  5. Tower Water-Vapor Mixing Ratio

    SciTech Connect (OSTI)

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  6. Enforcement Letter, Armor Tower, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Armor Tower, Inc. Enforcement Letter, Armor Tower, Inc. December 4, 2015 Worker Safety and Health Enforcement Letter issued to Armor Tower, Inc. On December 4, 2015, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued an Enforcement Letter (WEL-2015-06) to Armor Tower, Inc., relating to a worker electrical shock that occurred while working on a meteorological tower at DOE's Brookhaven National Laboratory. Enforcement Letter, Armor Tower, Inc.

  7. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  8. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  9. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  10. Tower Temperature and Humidity Sensors (TWR) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee ...

  11. Assessment of Parabolic Trough and Power Tower Solar Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  12. Executive Summary: Assessment of Parabolic Trough and Power Tower...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  13. Technical Evaluation of Side Stream Filtration for Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Evaluation of Side Stream Filtration for Cooling Towers Technical Evaluation of Side Stream Filtration for Cooling Towers Fact sheet provides an overview of side stream ...

  14. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. ...

  15. Water-Efficient Technology Opportunity: Advanced Cooling Tower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls The Federal Energy Management Program (FEMP) identified advanced cooling tower controls as a water-saving ...

  16. Use of nanofiltration to reduce cooling tower water consumption...

    Office of Scientific and Technical Information (OSTI)

    Use of nanofiltration to reduce cooling tower water consumption. Citation Details In-Document Search Title: Use of nanofiltration to reduce cooling tower water consumption. ...

  17. Coagulation chemistries for silica removal from cooling tower...

    Office of Scientific and Technical Information (OSTI)

    Coagulation chemistries for silica removal from cooling tower water. Citation Details In-Document Search Title: Coagulation chemistries for silica removal from cooling tower water. ...

  18. Cooling tower water treatment and reuse. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Cooling tower water treatment and reuse. Citation Details In-Document Search Title: Cooling tower water treatment and reuse. No abstract prepared. Authors: Brady, Patrick Vane ; ...

  19. Session: What have studies of communications towers suggested regarding the impact of guy wires and lights on birds and bats

    SciTech Connect (OSTI)

    Kerlinger, Paul

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The paper ''Wind turbines and Avian Risk: Lessons from Communications Towers'' was given by Paul Kerlinger. The presenter outlined lessons that have been learned from research on communications (not cell) towers and about the impacts of guy wires and lights on birds and bats and how they could be useful to wind energy developers. The paper also provided specific information about a large 'fatality' event that occurred at the Mountaineer, WC wind energy site in May 2003, and a table of Night Migrant Carcass search findings for various wind sites in the US.

  20. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Wind Turbine Technology Summary Slides Anatomy of a 1.5-MW wind turbine Nacelle enclosing: * Low-speed shaft * Gearbox * Generator, 1.5 MW * Electrical controls * Blade pitch controls Rotor Hub Tower, 80 m Minivan Rotor blades: * Shown feathered * Length, 37-m Larger and taller turbines are needed to capture optimal wind resources Wind power is competitive with wholesale prices Source: Wiser and Bolinger, 2009 Note: Wholesale price range reflects flat block of power across 23 pricing

  1. Wind Energy In America: Ventower Industries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 of 3 Finished wind tower sections await load-out at Ventower Industries, state-of-the-art fabrication facility in Monroe, MI. Image: Ventower Industries. 2 of 3 Ventower...

  2. Innovative Deepwater Platform Aims to Harness Offshore Wind and...

    Energy Savers [EERE]

    combine their floating offshore wind turbine platform with wave energy convertors, so ... The tower that supports the turbine is built on top of one of the columns that form the ...

  3. 2015 Key Wind Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... on taller towers and requires fewer of the expensive, hard-to-come-by rare earth magnets. ... Base-Excitation Testing System Using Spring Elements to Pivotally Mount Wind Turbine ...

  4. Bassett Mechanical Explores Mid-size Wind Market

    Broader source: Energy.gov [DOE]

    About five years ago, Wisconsin’s Bassett Mechanical began branching into renewable energy. The nearly 75-year-old company started producing components used to anchor the towers of wind turbines to their foundations.

  5. Energy Department Announces Funding to Access Higher Quality Wind Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Lower Costs | Department of Energy Access Higher Quality Wind Resources and Lower Costs Energy Department Announces Funding to Access Higher Quality Wind Resources and Lower Costs January 30, 2014 - 1:06pm Addthis The Energy Department today announced $2 million to help efficiently harness wind energy using taller towers. These projects will help strengthen U.S. wind turbine component manufacturing, reduce the cost of clean and renewable wind energy, and expand the geographic range of

  6. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack

  7. Wind turbine having a direct-drive drivetrain

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2011-02-22

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  8. Wind turbine/generator set and method of making same

    SciTech Connect (OSTI)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  9. Cooling Tower Report, October 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Tower Report, October 2008 Cooling Tower Report, October 2008 Electricity Reliability Impacts of a Mandatory Cooling Tower Rule for Existing Steam Generation Units Cooling Tower Report, October 2008 (1.94 MB) More Documents & Publications 2011: Air Quality Regulations Report 2011 Air Quality Regulations Report Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010

  10. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, Clayton J.

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  11. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei

    1997-12-31

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  12. Wind Monitoring Report for Fort Wainwright's Donnelly Training Area

    SciTech Connect (OSTI)

    Orrell, Alice C.; Dixon, Douglas R.

    2011-01-18

    Using the wind data collected at a location in Fort Wainwright’s Donnelly Training Area (DTA) near the Cold Regions Test Center (CRTC) test track, Pacific Northwest National Laboratory (PNNL) estimated the gross and net energy productions that proposed turbine models would have produced exposed to the wind resource measured at the meteorological tower (met tower) location during the year of measurement. Calculations are based on the proposed turbine models’ standard atmospheric conditions power curves, the annual average wind speeds, wind shear estimates, and standard industry assumptions.

  13. Concentrating Solar Power Projects - Power Tower Projects | Concentrating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power | NREL Power Tower Projects Aerial photo of a power tower system, showing numerous large, reflective mirrors in concentric circular rows. Tracking the sun, each mirror reflects onto the top of the tower at the center of the circle of mirrors. The receiver at the top of the tower is glowing. Stretched-membrane heliostats with silvered polymer reflectors surround the Solar Two power tower in Daggett, California. Credit: Sandia National Laboratories / PIX 00036 Concentrating solar

  14. Seismic response of offshore guyed towers

    SciTech Connect (OSTI)

    Jain, A.K.; Bisht, R.S.

    1993-12-31

    Seismic stresses in the offshore Guyed Tower assumes importance because of its flexural modes having smaller periods (in the range of 1 to 3 sec), which may attract considerable seismic forces. Since the displacement of the offshore Guyed Tower is generally guided by the rigid body mode corresponding to the fundamental period which lies between 20 to 40 sec., seismic excitation is relatively unimportant in relation to the towers` overall displacement behavior. The response of offshore Guyed Tower to ransom ground motion (E1 Centro earthquake, 1940) is investigated. The guyed tower is modeled as a uniform shear beam with a rotational spring at the base of the tower. The guylines are represented by a linearized spring whose force-excursion relationship is derived from a separate static analysis of the guylines. The dynamic equation of motion duly takes into account the pressure-drag effect produced due to fluid-structure interaction. The response is obtained in tim- domain using Newmark`s {beta} Time Integration Scheme.

  15. University of Minnesota and the Department of Energy Celebrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D ... Liberty wind turbine and a 426-foot-tall meteorological tower will enable industry ...

  16. Wind Spires as an Alternative Energy Source

    SciTech Connect (OSTI)

    Majid Rashidi, Ph.D., P.E.

    2012-10-30

    This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

  17. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  18. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect (OSTI)

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  19. Wind farm generating more renewable energy than expected for Pantex |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Wind farm generating more renewable energy than expected for Pantex Friday, April 22, 2016 - 10:30am Each of the five wind turbines at the Pantex Plant is 400 feet tall. They have generated 3 percent more electricity than was expected. The Texas Panhandle has some of the world's best winds for creating renewable energy, and the Wind Farm at the Pantex Plant is taking advantage of those winds, generating up to 60% of the energy needs of the

  20. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Wildlife Impacts Literature Database (WILD) What is WILD? The Wind-Wildlife Impacts Literature Database (WILD), developed and main- tained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic power systems, power lines, and communication and television towers on wildlife. For the wind energy sector, WILD serves as an

  1. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ARM: Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  2. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  3. ARM: Forty Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Forty Meter Tower: video camera Citation Details In-Document Search Title: ARM: Forty Meter Tower: video camera Forty Meter Tower: video camera Authors: Scott Smith ; Martin...

  4. 2014 Wind Program Peer Review Compiled Presentations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compiled Presentations 2014 Wind Program Peer Review Compiled Presentations View compiled presentations from the U.S. Department of Energy Wind Program's 2014 Peer Review meeting on March 24-27. Compiled Presentation Contents by Topic Accelerate Technology Transfer From the 2014 Wind Program Peer Reviews, download a complete compilation of presentations about accelerating the technology transfer of wind technologies. Development of On-Site Conical Spiral Welders for Large Turbine Towers-Eric

  5. Fill fouling experiences on both mechanical and natural draft towers

    SciTech Connect (OSTI)

    Fraze, R.O. )

    1992-01-01

    Fouling of the film fill in cooling towers is becoming an increasingly serious problem in the Utility Industry. This paper discusses Florida Power Corporation's experience with fouling of film type fill in two mechanical draft and two natural draft towers. The two mechanical draft towers were placed in service as helper towers at the Anclote Plant in 1981. The two natural draft towers went into service at the Crystal River North Site in 1982 and 1984 for closed cycle cooling. All the towers are on salt water systems.

  6. Negative Resists for Ultra-Tall, High Aspect Ratio Microstructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resists for Ultra-Tall, High Aspect Ratio Microstructures S. Lemke a , P. Goettert a , I. Rudolph a , J. Goettert b,* , B. Löchel a a Helmholtz-Zentrum Berlin (HZB) für Materialien und Energie GmbH, Institute for Nanometre Optics and Technology, Albert-Einstein-Str. 15, 12489 Berlin, Germany b Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806, USA *E-Mail: jost@lsu.edu Abstract In this joint research project,

  7. Winnebago Resource Study. Cooperative Research and Development Final Report, CRADA Number CRD-09-329

    SciTech Connect (OSTI)

    Jimenez, A.; Robichaud, R.

    2015-03-01

    Since 2005 the NREL Native American Tall Tower Loan program has assisted Native American tribes to assess their wind resource by lending tall (30m - 50m) anemometer. This program has allowed tribes a lower risk way to gather financeable wind data for potential utility scale wind energy projects. These projects offer Tribes a significant economic development opportunity.

  8. Phase Change Material Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Change Material Tower Phase Change Material Tower This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_erickson.pdf (1.04 MB) More Documents & Publications Direct s-CO2 Reciever Development High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 2014 SunShot Initiative Peer Review Report

  9. Reconstructing householder vectors from Tall-Skinny QR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstratemore » the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.« less

  10. Reconstructing householder vectors from Tall-Skinny QR

    SciTech Connect (OSTI)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstrate the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.

  11. Power Tower System Concentrating Solar Power Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The cool heat-transfer fluid exiting the turbine flows into a steam condenser to be cooled and sent back up the tower to the receiver. In power tower concentrating solar power ...

  12. Utility-Scale Power Tower Solar Systems: Performance Acceptance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines David ... DE-AC36-08GO28308 Utility-Scale Power Tower Solar Systems: Performance Acceptance Test ...

  13. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. You are accessing a ...

  14. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  15. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  16. Establishing a Comprehensive Wind Energy Program

    SciTech Connect (OSTI)

    Fleeter, Sanford

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  17. Project Profile: Brayton Cycle Baseload Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Baseload Power Tower Project Profile: Brayton Cycle Baseload Power Tower Wilson logo Wilson Solarpower, under the Baseload CSP FOA, proposed a utility-scale, Brayton cycle baseload power tower system with a capacity factor of at least 75% and LCOE of $0.09/kWh. Approach Photo of a tower in the background with slanted panels connected by a wire in the foreground. Wilson developed, built, tested, and evaluated two prototype components-an unpressurized thermal storage system and an

  18. Boise Air Traffic Control Tower: High Performance and sustainable Building Guiding Principles Technical Assistance

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Goel, Supriya; Henderson, Jordan W.

    2013-09-01

    Overview of energy efficiency opportunities for new FAA tower construction using the Boise Air Traffic Control Tower as an example.

  19. Wind resource characterization results to support the Sandia Wind Farm Feasibility Study : August 2008 through March 2009.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-01-01

    Sandia National Laboratories Wind Technology Department is investigating the feasibility of using local wind resources to meet the requirements of Executive Order 13423 and DOE Order 430.2B. These Orders, along with the DOE TEAM initiative, identify the use of on-site renewable energy projects to meet specified renewable energy goals over the next 3 to 5 years. A temporary 30-meter meteorological tower was used to perform interim monitoring while the National Environmental Policy Act (NEPA) process for the larger Wind Feasibility Project ensued. This report presents the analysis of the data collected from the 30-meter meteorological tower.

  20. Concentrating Solar Power Tower Plant Illustration

    Office of Energy Efficiency and Renewable Energy (EERE)

    This graphic illustrates numerous large, flat, sun-tracking mirrors, known as heliostats, that focus sunlight onto a receiver at the top of a tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity.

  1. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  2. Wind Energy Opportunities, Challenges, and Progress Within the Federal Government (Poster)

    SciTech Connect (OSTI)

    Robichaud, R.

    2009-05-01

    Wind Powering America (WPA) works with Federal agencies to increase their understanding of wind resources and assessment; facilitate project development activities through Met tower loans, wind data analysis, and technical assistance; and provide advice on RFP development and financing options. This poster provides an overview of WPA's activities with the federal sector.

  3. How Does a Wind Turbine Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Does a Wind Turbine Work? How Does a Wind Turbine Work? How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor Tower Nacelle

  4. U.S. Virgin Islands Wind Resources Update 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Resources Update 2014 U.S. Virgin Islands Wind Resources Update 2014 Summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. The report leverages previous feasibility studies conducted at NREL, including Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Analysis. U.S. Virgin Islands Wind Resources Update 2014 (11.47 MB) More Documents & Publications Wind Power

  5. Rosebud Sioux Tribe - Owl Feather War Bonnet Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anticipated Time Lines * Nov. 2005, Complete NEPA and Submit to BIA * Dec. 2005 Obtain Power Purchase Agreement * Jan 2006, BIA issues FONSI * Nov. 05- Jan 2006, Dev. financial structure, LLC and secure RST Tribal approval * Dec.05- Feb 2006, Engage Investors/Rural Utilities Service, USDA, Secure Loan, Est. Proj. Costs 46 million * July 2006 Construction underway * Dec 2006 Wind farm on line Old Bristow Ranch Met tower Tribal lands North Antelope Met Tower Tribal lands

  6. 2014 WIND POWER PROGRAM PEER REVIEW-ACCELERATE TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Technology Transfer March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Accelerate Technology Transfer Development of On-Site Conical Spiral Welders for Large Turbine Towers-Eric Smith, Keystone Tower Systems, Inc. High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization Systems-Stuart Nemster, Compact Membrane Systems Advanced Manufacturing Initiative-Daniel Laird, Sandia National Laboratories Manufacturing and Supply Chain R&D,

  7. Power coefficient of tornado-type wind turbines

    SciTech Connect (OSTI)

    Rangwalla, A.A.; Hsu, C.T.

    1983-11-01

    In a tornado-type wind turbine the wind collecting tower is equipped with adjustable vanes that can be opened on the windward side and closed on the leeward side. The wind enters the tower tangentially through these open vanes and exits from the top. As a result, a vortex is formed inside the tower. A vertical axis turbine which is located underneath the tower floor admits air vertically and exhausts it into the vortex core. The pressure drop in the vortex core can be high, depending upon the vortex concentration, thus enhancing manyfold the total pressure drop across the turbine. The power coefficient C /SUB p/ of this system depends mainly on how low a pressure can be created in the vortex core. A maximum C /SUB p/ of about 2.5 was obtained by Yen for a spiral shaped tower. This is about 6.25 times the C /SUB p/ of conventional windmills. Analytical studies have been carried out by several investigators to study the C /SUB p/ of this vortex machine. Loth considered the conservation of angular momentum and obtained a C /SUB p/ based on the tower frontal area, which is not impressive.

  8. Wind Energy Permitting Standards

    Broader source: Energy.gov [DOE]

    The base of any tower must be at least 110% of the maximum height of the tower away from any property line or public road. Towers must be at least 1,000 feet from residential dwelling or occupied...

  9. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining

  10. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  11. Side Stream Filtration for Cooling Towers

    SciTech Connect (OSTI)

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  12. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  13. Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

    2012-01-01

    Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

  14. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect (OSTI)

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  15. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  16. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect (OSTI)

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s?. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 510 m s?, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s?. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 1827 m s?. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s?. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  17. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Forty-Six-Foot Tall Needle Sculpture Rises Over Arts Quad > EMC2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section EMC2 News Archived News Stories Forty-Six-Foot Tall Needle Sculpture Rises Over Arts Quad September 14th, 2014 By ANUSHKA MEHROTRA Students walking around campus this...

  19. Animation: How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Energy Basics » Animation: How a Wind Turbine Works Animation: How a Wind Turbine Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player A wind turbine works on a simple principle. This animation shows how energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Wind turbines are mounted on a tower to capture the most energy. At 100

  20. Animation: How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Animation: How a Wind Turbine Works Animation: How a Wind Turbine Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player A wind turbine works on a simple principle. This animation shows how energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Wind turbines are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more above

  1. Side Stream Filtration for Cooling Towers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Side Stream Filtration for Cooling Towers Side Stream Filtration for Cooling Towers Report assesses side stream filtration options for cooling towers with an objective to assess key attributes that optimize energy and water savings and provide information about specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This report provides an overview of the characterization of

  2. Technical Evaluation of Side Stream Filtration for Cooling Towers

    SciTech Connect (OSTI)

    2012-10-01

    Cooling towers are an integral component of many refrigeration systems, providing comfort or process cooling across a broad range of applications. Cooling towers represent the point in a cooling system where heat is dissipated to the atmosphere through evaporation. Cooling towers are commonly used in industrial applications and in large commercial buildings to release waste heat extracted from a process or building system through evaporation of water.

  3. Project Profile: Solar Power Tower Improvements with the Potential to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Costs | Department of Energy Concentrating Solar Power » Project Profile: Solar Power Tower Improvements with the Potential to Reduce Costs Project Profile: Solar Power Tower Improvements with the Potential to Reduce Costs Pratt Whitney Rocketdyne logo Pratt & Whitney Rocketdyne, under the Baseload CSP FOA, designed and tested several components of a molten salt solar power tower that is in line with SunShot Initiative cost targets. Approach Receiver test panel design

  4. Integrated Layout and Optimization Tool for Solar Power Towers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power | NREL Integrated Layout and Optimization Tool for Solar Power Towers The Solar Power Tower Integrated Layout and Optimization Tool (SolarPILOT(tm)) generates and characterizes power tower (central receiver) systems. This software was developed by the National Renewable Energy Laboratory (NREL). SolarPILOT consists of a graphical user interface (GUI) and an application programming interface (API) through which external programs can access SolarPILOT's functionality.

  5. High-Temperatuer Solar Selective Coating Development for Power Tower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers | Department of Energy High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_ambrosini.pdf (3.05 MB) More Documents & Publications High-Temperature Solar Selective Coating Development for Power Tower

  6. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect (OSTI)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  7. NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell - Sandia Energy Energy Search Icon Sandia ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  8. Don Ana Sun Tower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG EnergyeSolar Location Dona Ana County, New Mexico Coordinates 32.485767,...

  9. Solar Power Tower Integrated Layout and Optimization Tool Background...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Tower Integrated Layout and Optimization Tool Background SolarPILOT(tm) offers several unique capabilities compared to other software tools. Unlike exclusively ...

  10. Building a Better Transmission Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Better Transmission Tower Building a Better Transmission Tower May 20, 2011 - 9:41am Addthis A helicopter hoists platforms for linemen during the construction of this single-circuit 500-kilovolt tower – one of hundreds on the McNary-John Day line saving BPA big bucks. | Photo courtesy of Bonneville Power Administration A helicopter hoists platforms for linemen during the construction of this single-circuit 500-kilovolt tower - one of hundreds on the McNary-John Day line saving BPA big

  11. Wind for Schools Program Adds Funding in Five States - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security Administration | (NNSA) Wind farm generating more renewable energy than expected for Pantex Friday, April 22, 2016 - 10:30am Each of the five wind turbines at the Pantex Plant is 400 feet tall. They have generated 3 percent more electricity than was expected. The Texas Panhandle has some of the world's best winds for creating renewable energy, and the Wind Farm at the Pantex Plant is taking advantage of those winds, generating up to 60% of the energy needs of the

  12. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  13. Tower Water-Vapor Mixing Ratio (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Tower Water-Vapor Mixing Ratio Citation Details In-Document Search Title: Tower Water-Vapor Mixing Ratio The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added ...

  14. Environmental assessment of air quality, noise and cooling tower drift from the Jersey City Total Energy Demonstration

    SciTech Connect (OSTI)

    Davis, W.T.; Kolb, J.O.

    1980-06-01

    This assessment covers three specific effects from the operation of the Total Energy (TE) demonstration: (1) air quality from combustion emissions of 600 kW diesel engines and auxiliary boilers fueled with No. 2 distillate oil, (2) noise levels from TE equipment operation, (3) cooling tower drift from two, 2220 gpm, forced-draft cooling towers. For the air quality study, measurements were performed to determine both the combustion emission rates and ground-level air quality at the Demonstration site. Stack analysis of NO/sub x/, SO/sub 2/, CO, particulates, and total hydrocarbons characterized emission rates over a range of operating conditions. Ground-level air quality was monitored during two six-week periods during the summer and winter of 1977. The noise study was performed by measuring sound levels in db(A) in the area within approximately 60 m of the CEB. The noise survey investigated the effects on noise distribution of different wind conditions, time of day or night, and condition of doors - open or closed - near the diesel engines in the CEB. In the cooling tower study, drift emission characteristics were measured to quantify the drift emission before and after cleaning of the tower internals to reduce fallout of large drift droplets in the vicinity of the CEB.

  15. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    SciTech Connect (OSTI)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  16. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. , Carlson; Bryan J. , Wingo; Robert M. , Robison; Thomas W.

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  17. Property:CoolingTowerWaterUseWinterConsumed | Open Energy Information

    Open Energy Info (EERE)

    gTowerWaterUseWinterConsumed Property Type Number Description Cooling Tower Water use (winter average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

  18. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  19. Property:CoolingTowerWaterUseAnnlAvgConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseAnnlAvgConsumed Property Type Number Description Cooling Tower Water use (annual average) (afday) Consumed. Retrieved from "http:...

  20. Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerConsumed Property Type Number Description Cooling Tower Water use (summer average) (afday) Consumed. Retrieved from "http:...

  1. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  2. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeStationary PowerEnergy Conversion EfficiencyWind EnergyOffshore Wind Offshore Wind Tara Camacho-Lopez 2016-0... March 2014, Barcelona, Spain, PO 225. Griffith, D.T., and ...

  3. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  4. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Quang A.

    1998-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards of downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  5. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Quang A.

    1999-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  6. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Q.A.

    1998-03-31

    An apparatus is disclosed for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material. The apparatus consists of a tower bioreactor which has mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  7. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Q.A.

    1999-03-30

    An apparatus is described for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  8. Kaneohe, Hawaii Wind Resource Assessment Report

    SciTech Connect (OSTI)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  9. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  10. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laboratory mission technologies and ... By admin| ... participating in the Wind Turbine Radar Interference ... Association AWEA WindPower 2015 event in Orlando, Florida. ...

  11. U.S. Virgin Islands Wind Resources Update 2014

    SciTech Connect (OSTI)

    Roberts, J. O.; Warren, A.

    2014-12-01

    This report summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. These results are an update to the previous feasibility study; the collected data are critical to the successful development of a wind project at either site.

  12. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  13. Leucaena and tall grasses as energy crops in humid lower south USA

    SciTech Connect (OSTI)

    Prine, G.M.; Woodard, K.R.; Cunilio, T.V.

    1994-12-31

    The tropical leguminous shrub/tree, leucaena (Leucaena spp. mainly leucocephala), and perennial tropical tall grasses such as elephantgrass (Pennisetum purpureum), sugarcane, and energycane (Saccharum spp.) are well adapted to the long growing seasons and high rainfall of the humid lower South. In much of the area the topgrowth is killed by frost during winter and plants regenerate from underground parts in spring. Selected accessions from a duplicated 373 accession leucaena nursery had an average annual woody stem dry matter production of 31.4 Mg ha{sup -1}. Average oven dry stem wood yields from selected accessions adjusted for environmental enrichment over the 4 growth seasons were 78.9 Mg ha{sup -1} total and average annual yield of 19.7 Mg ha{sup -1}. The tall perennial grasses have linear growth rates of 18 to 27 g m{sup 2}d{sup -1} for long periods (140 to 196 d and sometimes longer) each season. Oven dry biomass yields of tall grasses have varied from 20 to 45 Mg ha{sup -1} in mild temperature locations to over 60 Mg ha{sup -1} yr{sup -1} in warm subtropics of the lower Florida peninsula. Tall grasses and leucaena, once established, may persist for many seasons. A map showing the possible range of the crops in lower South is shown. Highest biomass yields of tall grasses have been produced when irrigated with sewage effluent or when grown on phosphatic clay and muck soils of south Florida. Several companies are considering using leucaena and/or tall grasses for bioenergy in the phosphatic mining area of Polk County, Florida.

  14. Dissipation of turbulence in the wake of a wind turbine

    SciTech Connect (OSTI)

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  15. Dissipation of turbulence in the wake of a wind turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  16. NREL Research Puts the Wind at an Industry's Back - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Puts the Wind at an Industry's Back August 29, 2016 A wide aerial view of a wind turbine testing site and the landscape surrounding it. One large wind turbine is in the foreground with four other wind turbines behind it, as well as several buildings and met towers. Mountains are in the background Aerial view of NREL's National Wind Technology Center (NWTC). Photo by Dennis Schroeder, NREL The National Wind Technology Center (NWTC), located at the base of the foothills just south of

  17. Is a Small Wind Energy System Right for You? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Is a Small Wind Energy System Right for You? Is a Small Wind Energy System Right for You? November 17, 2010 - 5:32pm Addthis When I think of wind technology, an image comes to mind of a towering fleet of turbines. Although I've never seen a wind farm up close, I've heard from several people that it's an awe-inspiring sight. I may not have the chance to see a large-scale wind farm anytime soon, but I have had the opportunity to examine a small wind energy system-an alternative source of energy

  18. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect (OSTI)

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  19. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect (OSTI)

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  20. Aleutian Pribilof Islands Association - Wind Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 By Connie Fredenberg Aleutian Pribilof Islands Association 201 East 3 rd Avenue Anchorage, AK 99501 " " The Birthplace of the Wind The Birthplace of the Wind " " PROJECT STATUS Phase Met Tower Status Data Collection Feasibility Study Status Funding Status Construction Planned Sand Point TDX Power Installed 5/04 Complete 20 mph Complete AEA $1.47 million Additional ? Summer 07 St. George City of St. George Installed 8/04 Complete 21.5 mph Complete ? ? King Cove City of King

  1. Wind turbine having a direct-drive drivetrain

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  2. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect (OSTI)

    Jimenez, A. C.

    2013-12-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  3. Exxon's guyed tower nears load-out date

    SciTech Connect (OSTI)

    Glasscock, M.S.; Finn, L.D.

    1983-04-01

    Exxon's Lena guyed tower, installed in 1,000ft. water in the Gulf of Mexico, is discussed. The Lena tower is designed to move in response to wave forces rather than resist them rigidly, as is the case with conventional platforms. Selection of tower components to satisfy requirements resulted in a complex geometry which presented design challenges. Buoyancy will serve as a stabilizing force for the tower by adding to the restoring force of the guying system. Flexible J-tube pipeline risers were developed to avoid excessive stresses in the pipelines and J-tube pipelines and J-tubes at the mudline. Exxon's Lena platform is to-date in the second deepest water in the world, and at 1,305 ft total height, is the tallest.

  4. Alpine SunTower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    www.renewableenergyfocus.comview2513pge-and-nrg-energy-collaborate-on-92-mw-solar-thermal-power Retrieved from "http:en.openei.orgwindex.php?titleAlpineSunTowerSola...

  5. CDX 4608, Guard Tower Power and Fiber Reroute (4608)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guard Tower Power and Fiber Reroute (4608) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to design and re-route power and fiber to 9949-AR (Guard...

  6. Project Profile: CSP Tower Air Brayton Combustor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power » Project Profile: CSP Tower Air Brayton Combustor Project Profile: CSP Tower Air Brayton Combustor SWRI logo -- This project is inactive -- The Southwest Research Institute (SWRI) and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing an external combustor capable of operating at much higher temperatures than the current state-of-the-art technology. Approach Illustration with a horizontal

  7. Environmental Impacts from the Operation of Cooling Towers at SRP

    SciTech Connect (OSTI)

    Smith, F.G. III

    2001-06-26

    An assessment has been made of the environmental effects that would occur from the operation of cooling towers at the SRP reactors. A more realistic numerical model of the cooling tower plume has been used to reassess the environmental impacts. The following effects were considered: (1) the occurrence of fog and ice and their impact on nearby structures, (2) drift and salt deposition from the plume, (3) the length and height of the visible plume, and (4) the possible dose from tritium.

  8. The Tower Shielding Facility: Its glorious past

    SciTech Connect (OSTI)

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  9. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  10. Wind Easements

    Broader source: Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  11. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  12. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW

  14. Is a Small Wind Energy System Right for You? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Is a Small Wind Energy System Right for You? Is a Small Wind Energy System Right for You? November 17, 2010 - 6:30am Addthis Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs When I think of wind technology, an image comes to mind of a towering fleet of turbines. Although I've never seen a wind farm up close, I've heard from several people that it's an awe-inspiring sight. I may not have the chance to see a large-scale wind farm anytime soon, but I

  15. SNL Wake Imaging System Solves Wind Turbine Wake Formation Mysteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SNL Wake Imaging System Solves Wind Turbine Wake Formation Mysteries SNL Wake Imaging System Solves Wind Turbine Wake Formation Mysteries May 18, 2015 - 4:20pm Addthis Illustration showing a utility-scale wind turbine in a field. A square brown steel shed behind the base of the turbine's tower houses the laser that emits a laser light sheet (illustrated by a green triangle) that travels from the shed to above the turbine downwind of the turbine. A white van parked

  16. Upcoming Funding Opportunity for Tower Manufacturing and Installation

    Broader source: Energy.gov [DOE]

    The DOE Wind Program has issued a Notice of Intent for a funding opportunity, tentatively titled U.S. Wind Manufacturing: Taller Hub Heights to Access Higher Wind Resources, and Lower Cost of Energy.

  17. Terrain and Ambient Wind Effects on the Warming Footprint of a Wind Machine

    SciTech Connect (OSTI)

    Mcmeeking, Gavin R.; Whiteman, Charles D.; Powell, Stuart G.; Clements, Craig B.

    2002-05-20

    An experiment in a vineyard in south-central Washington is described in which a vineyard wind machine used for frost protection was turned on and off while monitoring the air temperature in the vineyard. The wind machine fan, with a hub height of 12 m, rotated around a quasi-horizontal axis that was tilted downward into the vineyard at an angle of 6 degrees. The fan also rotated around a vertical axis once every 4 minutes to protect a roughly circular area surrounding the wind machine tower. A temperature inversion of about 3.5 C occurred above the vineyard between the 3-m and hub-height levels during the experiments. The 300-m diameter warming footprint of the fan was displaced down the south-facing 1-2{sup o} slope of the vineyard when the ambient wind speed was low, showing the effect of the weak and shallow nighttime drainage flow that often occurred in the vineyard. When the ambient wind speed increased, the footprint was displaced downwind and downslope of the tower. The mean warming footprint magnitude when the fan was switched on was about 1-2 C, and the temperature excess in the footprint relative to the surroundings dissipated quickly when the fan was switched off.

  18. Performance of tornado-type wind turbines with radial inflow supply

    SciTech Connect (OSTI)

    Hsu, C.T.; Ide, H.

    1983-11-01

    Wind tunnel tests were conducted for the performance of tornado-type wind turbines (TTWT) with radial inflow supply from incoming wind. It was shown that the radial inflow supply was necessary for intensifying a vortex in the wind collecting tower and, consequently, for enhancing the power efficiencies, C /SUB p/, of the wind turbines. Maximum C /SUB p/ (based on turbine disk area) of 3.8 and 9 was obtained for circular- and spiral-shaped towers, respectively, as compared to 0.4 for conventional windmills. With the radial inflow supply, the maximum C /SUB p/ was increased about 100% for the circular model but only 15-30% for the spiral model since the spiral model provides the inflow effect by itself.

  19. Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Baker, D.; Jager, D.

    2010-02-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  20. Conversion of Solar Two to a Kokhala hybrid power tower

    SciTech Connect (OSTI)

    Price, H.W.

    1997-06-01

    The continued drop in energy prices and restructuring of the utility industry have reduced the likelihood that a follow-on commercial 100-MW, power tower project will be built immediately following the Solar Two demonstration project. Given this, it would be desirable to find a way to extend the life of the Solar Two project to allow the plant to operate as a showcase for future power tower projects. This paper looks at the possibility of converting Solar Two into a commercial Kokhala hybrid power tower plant at the end of its demonstration period in 1998. The study identifies two gas turbines that could be integrated into a Kokhala cycle at Solar Two and evaluates the design, expected performance, and economics of each of the systems. The study shows that a commercial Kokhala project at Solar Two could produce power at a cost of less than 7 e/kWhr.

  1. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  2. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    SciTech Connect (OSTI)

    Vick, B.D.; Clark, R.N.

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  3. Solar Two: A successful power tower demonstration project

    SciTech Connect (OSTI)

    REILLY,HUGH E.; PACHECO,JAMES E.

    2000-03-02

    Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

  4. 2010sr27[cooling_tower_complete].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Friday, September 17, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 952-6938 paivi.nettamo@srs.gov K Cooling Tower Project Reaches Completion Aiken, S.C. - One of the most visual milestones of cleanup projects underway within the Department of Energy's Office of Environmental Management was the demolition of the K-Reactor Cooling Tower at the Savannah River Site (SRS). Now, this American Recovery and Reinvestment Act project has been completed one month ahead of schedule, with debris

  5. MULTI-TUBE POWER LEADS TOWER FOR BEPCII IR MAGNETS.

    SciTech Connect (OSTI)

    JIA,L.X.; ZHANG,X.B.; WANG,L.; WANG,T.H.; YAO,Z.L.

    2004-05-11

    A power lead tower containing the multi-tube power leads is designed and under fabrication for the superconducting IR quadrupole magnets in the Beijing Electron Position Collider Upgrade (BEPCII). The lead tower consists of six pairs of gas-cooled leads for seven superconducting coils at various operating currents. The power lead is designed in a modular fashion, which can be easily applied to suit different operating current. The end copper block of the tube lead has a large cold mass that provide a large time constant in case of cooling flow interruption. A novel cryogenic electrical isolator is used for the leads.

  6. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  7. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect (OSTI)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  8. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Info (EERE)

    lingTowerWaterUseWinterGross Property Type Number Description Cooling Tower Water use (winter average) (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  9. Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  10. Wind Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Wind Turbine Manufacturing Transforms with Three-Dimensional Printing Wind Turbine Manufacturing Transforms with Three-Dimensional Printing May 19, 2016 - 12:57pm Addthis From medical devices to airplane components, three-dimensional (3-D) printing (also called additive manufacturing) is transforming the manufacturing industry. Now, research that supports the Energy Department's Atmosphere to Electrons (A2e) initiative is applying 3-D-printing processes to create wind

  11. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  12. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  13. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Wind Energy Wind Energy Tara Camacho-Lopez 2016-08-30T20:56:10+00:00 Increasing the viability of wind energy technology by applying research to improve wind turbine performance and reliability http://windworkshops.sandia.gov/ Rotor Innovation Advancing rotor technology such that they capture more energy, more reliably, with relatively lower system loads-all at a lower end cost. SWiFT Facility & Testing Improving the performance and reducing the

  14. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  15. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  16. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  17. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect (OSTI)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  18. Workers Safely Tear Down Towers at Manhattan Project Site

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – After decades dominating the Los Alamos National Laboratory skyline, two water towers were safely demolished by workers in a matter of hours recently, bringing EM’s Environmental Projects Office at Los Alamos a step closer to transferring the land for future commercial or industrial use.

  19. Add helper cooling towers to control discharge temperatures

    SciTech Connect (OSTI)

    Lander, J.; Christensen, G.

    1993-04-01

    This article describes the retrofitting of helper cooling towers to the Crystal River energy complex to reduce thermal pollution to the Gulf of Mexico. The topics of the article include the design concept, evaluation of design alternatives, a project description, economic evaluation, marine organism control, power requirements, and auxiliary systems.

  20. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  2. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  3. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  4. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  5. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  6. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  7. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the ...

  8. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  9. Duration Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2013-06-01

    This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

  10. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  11. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  12. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  13. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  14. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  15. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  16. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  17. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  18. Traer Wind | Open Energy Information

    Open Energy Info (EERE)

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  19. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  20. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  1. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  2. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  3. Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Baker, D.; Jager, D.

    2010-05-01

    This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  4. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy The DTU SpinnerLidar installed in the nacelle of the SWiFT facility A1 turbine Permalink Gallery First Wake Data Captured During Wake Steering Experiment at the SWiFT Facility News, Renewable Energy, SWIFT, Wind Energy, Wind News First Wake Data Captured During Wake Steering Experiment at the SWiFT Facility Researchers at Sandia National Laboratories and the National Renewable Energy Laboratory (NREL) have met a major project milestone as part of the Department of Energy Atmosphere

  5. Turbine-scale wind field measurements using dual-Doppler lidar

    SciTech Connect (OSTI)

    Newsom, Rob K.; Berg, Larry K.; Shaw, William J.; Fischer, Marc

    2015-02-01

    Spatially resolved measurements of micro-scale winds are retrieved using scanning dual-Doppler lidar, and validated against independent in situ wind measurements. Data for this study were obtained during a month-long field campaign conducted at a site in north-central Oklahoma in November of 2010. Observational platforms include one heavily instrumented 60-m meteorological tower and two scanning coherent Doppler lidars. The lidars were configured to perform coordinated dual-Doppler scans surrounding the 60-m tower, and the resulting radial velocity observations were processed to retrieve the 3-component velocity vector field on surfaces defined by the intersecting scan planes. Raw radial velocity measurements from the lidars were calibrated by direct comparison to a sonic anemometer located at the 60 m level on the tower. Wind retrievals were performed using both calibrated and uncalibrated measurements, and validated against the 60-m sonic anemometer observations. Retrievals using uncalibrated radial velocity data show a significant slow bias in the wind speed of about 14%; whereas the retrievals using the calibrated data show a much smaller slow bias of 1.2%. Retrievals using either the calibrated or uncalibrated data exhibit negligible bias in the wind direction (<0.2o), and excellent correlation in the wind speeds (>0.96).

  6. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  7. EA-1966: Sunflower Wind Project, Hebron, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

  8. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the

  9. Technical Evaluation of Side Stream Filtration for Cooling Towers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Towers (photo from Pacific Northwest National Laboratory) * Scaling: Scaling is the precipitation of dissolved mineral components that have become saturated in solution, which can lower effciency of the system. * Fouling: Fouling occurs when suspended particles or biologic growth forms an insulating flm on heat transfer surfaces. Common foulants include organic matter, process oils, and silt, which can also lower system performance. * Microbiological Activity: Microbiological activity

  10. Modal testing of a very flexible 110 m wind turbine structure

    SciTech Connect (OSTI)

    Carne, T.G.; Lauffer, J.P.; Gomez, A.J.; Benjannet, Hassine

    1988-01-01

    Modal Testing of immense and very flexible structures poses a number of problems. It requires innovative excitation techniques since the modal frequencies of these stuctures can be quite low. Also, substantial energy must be input to the structure to obtain reasonable levels of response. In this paper, results are presented from a modal test of the 110 m tall EOLE wind turbine which had four modal frequencies below 1.0 Hz. Step-relaxation and wind were used to excite the structure. 5 refs., 14 figs., 2 tabs.

  11. Wind turbine generator with improved operating subassemblies

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1985-01-01

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  12. AmeriFlux US-Wrc Wind River Crane Site

    SciTech Connect (OSTI)

    Bible, Ken; Wharton, Sonia

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.

  13. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  14. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  15. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  19. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  20. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  1. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  2. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  3. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  4. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  5. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  6. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  7. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  8. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  9. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems ...

  10. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  11. From: No Towers To: Congestion Study Comments Subject: No NIETC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The compensation cannot begin to cover the all of the losses, tangible and intangible that ... Third, the eastern states should develop the utility scale wind resources conveniently ...

  12. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in

  13. Wet cooling towers: rule-of-thumb design and simulation (Technical...

    Office of Scientific and Technical Information (OSTI)

    provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature, power requirements and construction cost. ...

  14. AmeriFlux US-Skr Shark River Slough (Tower SRS-6) Everglades...

    Office of Scientific and Technical Information (OSTI)

    The tower was offline until the following October in order to continue temporally consistent measurements. In post-hurricane conditions, ecosystem respiration rates and solar ...

  15. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  16. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  17. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay ...

  18. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced

  19. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  20. Wind Integration National Dataset (WIND) Toolkit

    Broader source: Energy.gov [DOE]

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  1. Coagulation chemistries for silica removal from cooling tower water.

    SciTech Connect (OSTI)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  2. ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS

    SciTech Connect (OSTI)

    Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; Ciardi, A.; Hartigan, P.; Lebedev, S. V.; Chittenden, J. P.

    2012-09-20

    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

  3. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  6. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  7. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  8. JD Wind 4 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  9. JD Wind 1 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  10. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Venture Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  12. MinWind I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  14. JD Wind 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  15. System and method for aligning heliostats of a solar power tower

    DOE Patents [OSTI]

    Convery, Mark R.

    2013-01-01

    Disclosed is a solar power tower heliostat alignment system and method that includes a solar power tower with a focal area, a plurality of heliostats that each reflect sunlight towards the focal area of the solar power tower, an off-focal area location substantially close to the focal area of the solar power tower, a communication link between the off-focal area location and a misaligned heliostat, and a processor that interprets the communication between the off-focal area location and the misaligned heliostat to identify the misaligned heliostat from the plurality of heliostats and that determines a correction for the identified misaligned heliostat to realign the misaligned heliostat to reflect sunlight towards the focal area of the solar power tower.

  16. A unified site evaluation system for wind energy conversion

    SciTech Connect (OSTI)

    Biro, G.G.

    1980-12-01

    The described evaluation system includes all field and office engineering work needed for proper site selections and for writing the environmental impact statement. Meteorological measurements with collapsible towers trucked to the site, the needed instrumentation, and data transmission with satellite telemetry for storing the meteorological data on a magnetic tape for direct input into the computer are described. A computer program WESES was developed to calculate the energy output of WECSs using the meteorological data on the magnetic tapes. A test site analysis using 7 years of wind velocity measurements is performed, and two 500-kW power wind energy conversion systems have been evaluated. The calculational results give the hourly fluctuations of energy output for any day of the measurements, which also can be used for comparing with load demands. It also calculates and shows in graphs the daily and monthly cumulative energy outputs and compares the energy outputs of different wind energy conversion systems for any desired time period.

  17. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  18. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  19. GL Wind | Open Energy Information

    Open Energy Info (EERE)

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  20. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  1. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  2. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  3. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  4. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  5. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - ...

  6. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  7. Candidate wind-turbine-generator site summarized meteorological data for December 1976-December 1981. [Program WIND listed

    SciTech Connect (OSTI)

    Sandusky, W.F.; Renne, D.S.; Hadley, D.L.

    1982-09-01

    Summarized hourly meteorological data for 16 of the original 17 candidate and wind turbine generator sites collected during the period from December 1976 through December 1981 are presented. The data collection program at some individual sites may not span this entire period, but will be contained within the reporting period. The purpose of providing the summarized data is to document the data collection program and provide data that could be considered representative of long-term meteorological conditions at each site. For each site, data are given in eight tables and a topographic map showing the location of the meteorological tower and turbine, if applicable. Use of information from these tables, along with information about specific wind turbines, should allow the user to estimate the potential for long-term average wind energy production at each site.

  8. DOE Tech. Memo. ARM VAP-002.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking Wind Forecasting to New Heights DOE Taking Wind Forecasting to New Heights May 18, 2015 - 3:24pm Addthis A 2013 study conducted for the U.S. Department of Energy (DOE) by the National Oceanic and Atmospheric Administration (NOAA), AWS Truepower, and WindLogics in the Great Plains and Western Texas, demonstrated that wind power forecasts can be improved substantially using data collected from tall towers, remote sensors, and other devices, and incorporated into improved forecasting models

  9. National Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: National Wind Place: Minneapolis, Minnesota Zip: 55402 Sector: Wind energy Product: Wind project developer in the upper Midwest and Plains...

  10. Coriolis Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Logo: Coriolis Wind Name: Coriolis Wind Place: Great Falls, Virginia Zip: 22066 Product: Mid-Scale Wind Turbine Year Founded: 2007 Website:...

  11. Horn Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Horn Wind Place: Windthorst, Texas Zip: 76389 Sector: Wind energy Product: Texas-based company that develops community-based industrial wind...

  12. Royal Wind | Open Energy Information

    Open Energy Info (EERE)

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  13. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  14. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  15. Jasper Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  16. WINDExchange: Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  17. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  18. An Exploration of Wind Energy & Wind Turbines

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  19. Towering oak, the sun - porch house winner of the ''1982 German research award''

    SciTech Connect (OSTI)

    Berndt, G.W.P.

    1983-12-01

    The design for this energy-efficient house was developed to suit a benign climate with much rain, wind, and fog. The building's basic construction guarantees the most limited energy-use possible. This is achieved through a unique houseform, which encloses and warms the living spaces with a thick thermal coat: walls = 6'' semi-rigid glass fiber boards, R-19; roof = 10'' foil faced fiber glass, R = 30. Windows are located only on the south side, to ensure optimal sun-ray capture. The housefront consists of a ''sun-porch'' (Sonnenhof), which is a further development of the well-known German ''Wintergarten'' (winter garden). In this climate region, one can only expect a yearly average of five days with a summer temperature of over 25/sup 0/C (77/sup 0/F); however, with a ''sun-porch'' the summer can make itself at home. In winter, the ''sun-porch'' protects against storms and always offers temperatures above the 7/sup 0/C (45/sup 0/F) minimum, a product of the compact roof and double glass with selective coating. On sunny winter days, one may even dine on the balconies. The estimation technique represented here is based on a procedure devised at the Los Alamos Scientific Laboratory, New Mexico, (Passive Solar Handbook, Vol. 2, J.D. Balcomb). ''Towering Oak's'' solar savings fraction = 49.0%; heating load = 2.56 BTU/sq. ft. Better results have yet to be achieved in Germany. In the USA, this could be increased to a solar fraction of up to 90%. Some modifications would, however, be necessary to suit the local climate (sun control devices, etc.).

  20. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    SciTech Connect (OSTI)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel

  1. Comparison of Second-Order Loads on a Tension-Leg Platform for Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Gueydon, S.; Wuillaume, P.; Jonkman, J.; Robertson, A.; Platt, A.

    2015-03-01

    The first objective of this work is to compare the two floating offshore wind turbine simulation packages {DIFFRAC+aNySIM} and {WAMIT+FAST}. The focus is on second-order wave loads, and so first- and second-order wave loads are applied to a structure sequentially for a detailed comparison and a more precise analysis of the effects of the second-order loads. aNySIM does not have the capability to model flexible bodies, and so the simulations performed in this tool are done assuming a rigid body. FAST also assumes that the platform is rigid, but can account for the flexibility of the tower. The second objective is to study the effects of the second-order loads on the response of a TLP floating wind turbine. The flexibility of the tower must be considered for this investigation, and therefore only FAST is used.

  2. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  3. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  4. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  5. Model Wind Ordinance

    Broader source: Energy.gov [DOE]

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  6. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See...

  7. Solar and Wind Easements

    Broader source: Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  8. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  9. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  10. Simulations on Head-Tail Radio Galaxies Using Magnetic Tower Model

    SciTech Connect (OSTI)

    Gan, Zhaoming; Li, Hui; Li, Shengtai; Yuan, Feng

    2015-08-19

    The presentation is a series of slides showing diagrams, equations, and various photographs. In summary, a detailed comparison was carried out between hydrodynamic jet and MHD jet models (the magnetic tower jet, more precisely), in an effort to understand the underlying physics of observed radio galaxies, and also its possible indications for jet feedback. It was found that the results of magnetic tower model usually lie in a reasonable regime, and in several aspects, the magnetic tower jet seems more preferred than pure hydrodynamic jet models.

  11. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry manufacturers,

  12. Distributed Wind Ordinances: Slides

    Wind Powering America (EERE)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  13. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  14. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind research and development projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our

  15. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  16. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Office of Environmental Management (EM)

    Competition must design a prototype wind turbine that fits inside the wind tunnel created ... The wire mesh screen prevents turbine pieces from getting sucked into the fan unit. Basic ...

  17. Cherokee Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cherokee Wind Presenter: Carol Wyatt Cherokee Nation Businesses, Inc. DOE Tribal Energy Program October 26, 2010 KA W PA W N EE TO NK AW A PO NC A OT OE -M IS S OU RI CH E RO KE E Acr es: 2,633 .348 CH E RO KE E Acr es: 1,641 .687 CHEROKEE NATION Kay County Chilocco Property DATA SOU RC ES: US Census Bureau (T iger Files ) D OQQ's , USGS D RG's, USGS Cherokee Nation Realty D epartment C herokee N ation GeoD ata C enter Date: 12/19/01 e:\project\land\c hilocc o N E W S Tribal Land Chilocco

  18. Midwest Consortium for Wind Turbine Reliability and Optimization

    SciTech Connect (OSTI)

    Scott R. Dana; Douglas E. Adams; Noah J. Myrent

    2012-05-11

    This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor wind speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.

  19. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  20. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that...

  1. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  2. Alaska Wind Update

    Energy Savers [EERE]

    Alaska Wind Update BIA Providers Conference Dec. 2, 2015 Unalakleet wind farm Energy Efficiency First Make homes, workplaces and communities energy efficient thru ...

  3. Articles about Wind Siting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.gov Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse http:energy.goveerewindarticlesmodel-examines-cumulative-impacts-wind-ener...

  4. Sandia Energy Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successfully-deployed-at-scaled-wind-fa...

  5. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  6. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  7. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  8. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative ...

  9. Winnebago Tribe - Wind Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winnebago Tribe of Nebraska Wind Energy Feasibility Project Update November 18, 2008 ... Nebraska 2008 All Rights Reserved DOE Wind Project: Purpose * To initiate a study to ...

  10. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  11. Requirements for Wind Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  12. DOE Wind Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Testing of residential wind turbines * Technology deployment partnerships with industry * Educational and market outreach on the benefits of wind technology on rural development. ...

  13. Workforce Development Wind Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the Wind and Water Power Technologies Office’s workforce development wind projects from fiscal years 2008 to 2014.

  14. Wind Energy Technology Basics

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

  15. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  16. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  17. New Framework Transforms FAST Wind Turbine Modeling Tool (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A recent overhaul of the tool makes it a powerful, robust, and flexible modeling software to aid the development of innovative wind and water power technologies. The U.S. Department of Energy's National Renewable Energy Labora- tory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineer- ing tool under a new modularization framework. The new release includes: an upgraded version of the AeroDyn aerodynamics module that includes tower drag loading; the

  18. Wind Vision: Continuing the Success of Wind Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision: Continuing the Success of Wind Energy Wind Vision: Continuing the Success of Wind Energy April 2, 2015 - 10:35am Addthis The Wind Vision Report describes potential ...

  19. Hull Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  20. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...

    Office of Scientific and Technical Information (OSTI)

    915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...

  1. Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-02-01

    Portable remote sensing devices are increasingly needed to cost effectively characterize the meteorology at a potential wind energy site as the size of modern wind turbines increase. A short term project co-locating a Sound Detection and Ranging System (SODAR) with a 200 meter instrumented meteorological tower at the Texas Tech Wind Technology Field Site was performed to collect and summarize wind information through an atmospheric layer typical of utility scale rotor plane depths. Data collected identified large speed shears and directional shears that may lead to unbalanced loads on the rotors. This report identifies suggestions for incorporation of additional data in wind resource assessments and a few thoughts on the potential for using a SODAR or SODAR data to quantify or investigate other parameters that may be significant to the wind industry.

  2. Sustainable Energy Solutions Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

  3. BREN Tower: A Monument to the Material Culture of Radiation Dosimetry Research

    SciTech Connect (OSTI)

    Susan Edwards

    2008-05-30

    With a height of more than 1,500 feet, the BREN (Bare Reactor Experiment, Nevada) Tower dominates the surrounding desert landscape of the Nevada Test Site. Associated with the nuclear research and atmospheric testing programs carried out during the 1950s and 1960s, the tower was a vital component in a series of experiments aimed at characterizing radiation fields from nuclear detonations. Research programs conducted at the tower provided the data for the baseline dosimetry studies crucial to determining the radiation dose rates received by the atomic bomb survivors of Hiroshima and Nagasaki, Japan. Today, BREN Tower stands as a monument to early dosimetry research and one of the legacies of the Cold War.

  4. SNR Denton US LLP 1301 K Street, NW Suite 600, East Tower Washington...

    Broader source: Energy.gov (indexed) [DOE]

    SNR Denton US LLP 1301 K Street, NW Suite 600, East Tower Washington, DC 20005-3364 USA Thomas C. Jensen Partner thomas.jensen@snrdenton.com D +1 202 408 3956 M 703 304 5211 T +1 ...

  5. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era ... Back to top Chapter 4: The Wind Vision Roadmap The Wind Vision includes a detailed roadmap ...

  6. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Wind Energy History of Wind Energy

  7. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Wind Energy History of Wind Energy

  8. Probabilistic Analysis of Power Tower Systems to Achieve SunShot Goals

    Office of Scientific and Technical Information (OSTI)

    (Presentation). (Conference) | SciTech Connect Conference: Probabilistic Analysis of Power Tower Systems to Achieve SunShot Goals (Presentation). Citation Details In-Document Search Title: Probabilistic Analysis of Power Tower Systems to Achieve SunShot Goals (Presentation). Abstract not provided. Authors: Ho, Clifford Kuofei ; Mehos, Mark ; Turchi, Craig ; Wagner, Michael Publication Date: 2013-09-01 OSTI Identifier: 1110670 Report Number(s): SAND2013-7783C 474170 DOE Contract Number:

  9. Cooling tower and plume modeling for satellite remote sensing applications

    SciTech Connect (OSTI)

    Powers, B.J.

    1995-05-01

    It is often useful in nonproliferation studies to be able to remotely estimate the power generated by a power plant. Such information is indirectly available through an examination of the power dissipated by the plant. Power dissipation is generally accomplished either by transferring the excess heat generated into the atmosphere or into bodies of water. It is the former method with which we are exclusively concerned in this report. We discuss in this report the difficulties associated with such a task. In particular, we primarily address the remote detection of the temperature associated with the condensed water plume emitted from the cooling tower. We find that the effective emissivity of the plume is of fundamental importance for this task. Having examined the dependence of the plume emissivity in several IR bands and with varying liquid water content and droplet size distributions, we conclude that the plume emissivity, and consequently the plume brightness temperature, is dependent upon not only the liquid water content and band, but also upon the droplet size distribution. Finally, we discuss models dependent upon a detailed point-by-point description of the hydrodynamics and thermodynamics of the plume dynamics and those based upon spatially integrated models. We describe in detail a new integral model, the LANL Plume Model, which accounts for the evolution of the droplet size distribution. Some typical results obtained from this model are discussed.

  10. An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project

    SciTech Connect (OSTI)

    REILLY, HUGH E.; KOLB, GREGORY J.

    2001-11-01

    This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project--what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next molten-salt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.

  11. Energy from the wind

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This document provides a brief description of the use of wind power. Windmills from the 18th century are described. Modern wind turbines and wind turbine arrays are discussed. Present and future applications of wind power in the US are explained. (JDH)

  12. Wind Energy Benefits: Slides

    Wind Powering America (EERE)

    1. Wind energy is cost competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind

  13. Your wind driven generator

    SciTech Connect (OSTI)

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  14. CX-005201: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern NevadaCX(s) Applied: A9, B3.1Date: 02/14/2011Location(s): Searchlight, NevadaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  15. WINDExchange: Collegiate Wind Competition

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project. The Competition provides students

  16. WINDExchange: Wind Energy Ordinances

    Wind Powering America (EERE)

    Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The nature of the project and its location will largely drive the levels of regulation required. Wind energy ordinances adopted by counties, towns, and other types of municipalities are one of the best ways for local governments to identify conditions and priorities for all types of wind development. These ordinances regulate aspects of wind projects such as their location, permitting

  17. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  18. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  19. EIS-0285-SA-38: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BPA plans to conduct vegetation control with the goal of removing tall growing vegetation ... resprouting noxious weeds and tall-growing species along access roads and tower sites. ...

  20. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  1. Comparing Pulsed Doppler LIDAR with SODAR and Direct Measurements for Wind Assessment

    SciTech Connect (OSTI)

    Kelley, N. D.; Jonkman, B. J.; Scott, G. N.; Pichugina, Y. L.

    2007-07-01

    There is a pressing need for good wind-speed measurements at greater and greater heights to assess the availability of the resource in terms of power production and to identify any frequently occurring atmospheric structural characteristics that may create turbulence that impacts the operational reliability and lifetime of wind turbines and their components. In this paper, we summarize the results of a short study that compares the relative accuracies of wind speeds derived from a high-resolution pulsed Doppler LIDAR operated by the National Oceanic and Atmospheric Administration (NOAA) and a midrange Doppler SODAR with wind speeds measured by four levels of tower-based sonic anemometry up to a height of 116 m.

  2. National Wind Assessments formerly Romuld Wind Consulting | Open...

    Open Energy Info (EERE)

    Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name: National Wind Assessments (formerly Romuld Wind Consulting) Place: Minneapolis, Minnesota Zip: 55416...

  3. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  4. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  5. Chaninik Wind Group Wind Heat Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  6. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  7. Palmetto Wind Research Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  8. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  9. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  10. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  11. Kansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Nevada/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Iowa/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. Small Wind Guidebook | Open Energy Information

    Open Energy Info (EERE)

    Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  16. Maine/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  18. Oregon/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. Montfort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  2. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Wildcat 1 Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Springview II Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  5. Shiloh Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Madison Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Somerset Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  10. Moraine Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. Thousand Springs Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Rosiere Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  19. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  5. Casper Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  6. Wallys Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  7. Cassia Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  10. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  11. Greensburg Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Wheatfield Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Ewington Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  14. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  15. Octotillo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  17. Minco Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Dunlap Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  19. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  20. Howard Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...