National Library of Energy BETA

Sample records for tall oil waste

  1. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  2. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, Clayton J.

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  3. Evaluation of Gas Retention in Waste Simulants: Tall Column Experiments

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Shimskey, Rick W.; Denslow, Kayte M.; Powell, Michael R.; Boeringa, Gregory K.; Bontha, Jagannadha R.; Karri, Naveen K.; Fifield, Leonard S.; Tran, Diana N.; Sande, Susan; Heldebrant, David J.; Meacham, Joseph E.; Smet, Dave; Bryan, Wesley E.; Calmus, Ronald B.

    2014-05-16

    Gas generation in Hanford’s underground waste storage tanks can lead to gas accumulation within the layer of settled solids (sludge) at the tank bottom. The gas, which typically has hydrogen as the major component together with other flammable species, is formed principally by radiation-driven chemical reactions. Accumulation of these gases within the sludge in a waste tank is undesirable and limits the amount of tank volume for waste storage. Further, accumulation of large amounts of gas in the sludge may potentially result in an unacceptable release of the accumulated gas if the sludge-layer density is reduced to less than that of the overlying sludge or that of the supernatant liquid. Rapid release of large amounts of flammable gases could endanger personnel and equipment near the tank. For this reason, a thorough understanding of the circumstances that can lead to a potentially problematic gas accumulation in sludge layers is needed. To respond to this need, the Deep Sludge Gas Release Event Program (DSGREP) was commissioned to examine gas release behavior in sludges.

  4. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  5. Combating oil spill problem using plastic waste

    SciTech Connect (OSTI)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  6. Process for preparing lubricating oil from used waste lubricating oil

    DOE Patents [OSTI]

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  7. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  8. Controlled waste-oil biodegradation at existing drying beds

    SciTech Connect (OSTI)

    Hary, L.F.

    1982-01-01

    A feasibility study at the Portsmouth Uranium Enrichment Facility to determine if sludge drying beds at a sewage treatment plant could be used as controlled waste oil biodegradation plots has been completed. A greenhouse-like enclosure would be constructed over three 9.1 meter by 21.3 meter beds to allow for year-round use, and any waste oil runoff would be collected by existing leachate piping. It has been determined that this proposed facility could dispose of existing radioactive waste oil generation (7200 liters/year) from the Gaseous Diffusion Plant (GDP); however, it would be inadequate to handle radioactive waste oils from the new Gas Centrifuge Enrichment Plant (GCEP) as well. The study reviewed nuclear criticality constraints, biodegradation technology, and the capital cost for an enclosed biodegradation facility.

  9. Method for reclaiming waste lubricating oils

    DOE Patents [OSTI]

    Whisman, Marvin L.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

  10. Soil stabilization using oil-shale solid waste

    SciTech Connect (OSTI)

    Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

    1994-04-01

    Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

  11. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-03-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-08-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-10-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  15. Waste oil reclamation. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 228 citations and includes a subject term index and title list.)

  16. Waste oil reclamation. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  17. Magnetic survey of D-Area oil basin waste unit

    SciTech Connect (OSTI)

    Cumbest, R.J.; Marcy, D.; Hango, J.; Bently, S.; Hunter, B.; Cain, B.

    1994-10-01

    The D-Area Oil Basin RCRA Waste Unit is located north of D-Area on Savannah River Site. This Waste Unit was known, based on aerial photography and other historical data, to be the location for one or more trenches used for disposal of oil in steel drums and other refuse. In order to define the location of possible trenches on the site and to assess the possibility of the presence of additional buried objects a magnetic survey was conducted by the Environmental Monitoring Section/Groundwater Group during July, 1993, at the request of the Environmental Restoration Department. Prior to the conduct of the magnetic survey a Ground Penetrating Radar survey of the site consisting of several lines identified several areas of disturbed soil. Based on these data and other historical information the general orientation of the trenches could be inferred. The magnetic survey consists of a rectangular grid over the waste unit designed to maximize resolution of the trench edges. This report describes the magnetic survey of the D-Area Oil Basin Waste Unit.

  18. Mercury and tritium removal from DOE waste oils

    SciTech Connect (OSTI)

    Klasson, E.T.

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  19. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  20. Biodegradation of oil refinery wastes under OPA and CERCLA

    SciTech Connect (OSTI)

    Gamblin, W.W.; Banipal, B.S.; Myers, J.M.

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).

  1. Tall Corn Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Tall Corn Ethanol LLC Jump to: navigation, search Name: Tall Corn Ethanol LLC Place: Coon Rapids, Iowa Zip: 50058 Product: Farmer owned bioethanol production company which owns a...

  2. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect (OSTI)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  3. Waste oils utilized as coal liquefaction solvents on differing ranks of coal

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Y.; Liang, J.

    1995-12-31

    To determine the feasibility of using different waste oils as solvent media for coals of differing rank, oil from automobile crankcases, oil derived from the vacuum pyrolysis of waste rubber tires, and oil derived from the vacuum pyrolysis of waste plastics, have been heated to 430{degrees}C with coal in tubing reactors a hydrotreated for 1 hour. Analysis of the solvents indicates the presence of heavy metals in the waste automobile oil. Analysis of the plastic oil shows the presence of iron and calcium. The analysis of the tire oil shows the presence of zinc. Conversion yields are compared and results of analysis for the presence of metals in the liquid products are reported.

  4. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  5. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-01-27

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  6. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like ...

  7. Evaluation of potential mixed wastes containing lead, chromium, or used oil

    SciTech Connect (OSTI)

    Siskind, B.; MacKenzie, D.R.; Bowerman, B.S.; Kempf, C.R.; Piciulo, P.L.

    1987-01-01

    This paper presents the results of follow-on studies conducted by Brookhaven National Laboratory (BNL) for the Nuclear Regulatory Commission (NRC) on certain kinds of low-level waste (LLW) which could also be classified as hazardous waste subject to regulation by the Environmental Protection Agency (EPA). Such LLW is termed ''mixed waste.'' Additional data have been collected and evaluated on two categories of potential mixed waste, namely LLW containing metallic lead and LLW containing chromium. Additionally, LLW with organic liquids, especially liquid scintillation wastes, are reviewed. In light of a proposed EPA rule to list used oil as hazardous waste, the potential mixed waste hazard of used oil contaminated with radionuclides is discussed. It is concluded that the EPA test for determining whether a solid waste exhibits the hazardous characteristic of extraction procedure toxicity does not adequately simulate the burial environment at LLW disposal sites, and in particular, does not adequately assess the potential for dissolution and transport of buried metallic lead. Also, although chromates are, in general, not a normal or routine constitutent in commercial LLW (with the possible exception of chemical decontamination wastes), light water reactors which do use chromates might find it beneficial to consider alternative corrosion inhibitors. In addition, it is noted that if used oil is listed by the EPA as hazardous waste, LLW oil may be managed by a scheme including one or more of the following processes: incineration, immobilization, sorption, aqueous extraction and glass furnace processing.

  8. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  9. Bioremediation of petroleum wastes from the refining of lubricant oils

    SciTech Connect (OSTI)

    Prince, M.; Sambasivam, Y. )

    1993-02-01

    The results of an initial feasibility study on the bioremediation of sludge are presented. The sludge used in the study was taken from a site containing waste produced during the refining of lubricant oils to which sulfuric acid had been added. The effectiveness of bioremediation was examined using shake flask experiments with indigenous and other bacteria sources and nutrient supplementation. The initial results show limited effectiveness of biological treatment at conditions employing indigenous bacteria and low (2%) sludge concentrations in Bushnell-Haas media. In addition, the indigenous bacteria were seen to degrade the polycyclic aromatic hydrocarbons naphthalene, penanthrene and pyrene which are present at some locations at the site. No apparent degradation of material was seen using conditions of high (30%) sludge concentrations in Bushnell-Haas medium under a variety of conditions. In addition, nutrients were rapidly depleted at these sludge concentrations, with the exception of sulfates which were produced when high sludge concentrations were used. 23 refs., 8 figs., 3 tabs.

  10. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  11. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  12. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  13. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  14. New information on disposal of oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  15. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  16. NREL and Colombian Oil Firm Unlocking Agricultural Waste Feedstocks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... greenhouse gases and reducing reliability on foreign sources of oil, Elander said. The experience gained in processing these two biomass feedstocks will be directly applicable to ...

  17. Oil-tanker waste-disposal practices: A review

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    In the spring of 1991, the Environmental Protection Agency, Region 10 (EPA), launched an investigation into tanker waste disposal practices for vessels discharging ballast water at the Alyeska Pipeline Services Company's Ballast Water Treatment (BWT) facility and marine terminal in Valdez, Alaska. It had been alleged that the Exxon Shipping Company was transferring 'toxic wastes originating in California' to Valdez. In response, EPA decided to examine all waste streams generated on board and determine what the fate of these wastes were in addition to investigating the Exxon specific charges. An extensive Information Request was generated and sent to the shipping companies that operate vessels transporting Alaska North Slope Crude. Findings included information on cargo and fuel tank washings, cleaning agents, and engine room waste.

  18. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect (OSTI)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  19. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect (OSTI)

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  20. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle ...

  1. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  2. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  3. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect (OSTI)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  4. Froth flotation of oil-bearing metal sulfide wastes

    SciTech Connect (OSTI)

    Miller, R.L.; Atwood, R.L.; Ye, Yi

    1991-12-01

    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  5. Froth flotation of oil-bearing metal sulfide wastes

    SciTech Connect (OSTI)

    Miller, R.L. ); Atwood, R.L.; Ye, Yi )

    1991-01-01

    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  6. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  7. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  8. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  9. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  10. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  11. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  12. The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining

    SciTech Connect (OSTI)

    Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K.

    2008-10-15

    In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

  13. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  14. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    SciTech Connect (OSTI)

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q.

    2014-12-15

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  15. Solidification Tests Conducted on Transuranic Mixed Oil Waste (TRUM) at the Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect (OSTI)

    Brunkow, W. G.; Campbell, D.; Geimer, R.; Gilbreath, C.; Rivera, M.

    2002-02-25

    Rocky Flats Environmental Technology Site (RFETS) near Golden, Colorado is the first major nuclear weapons site within the DOE complex that has been declared a full closure site. RFETS has been given the challenge of closing the site by 2006. Key to meeting this challenge is the removal of all waste from the site followed by site restoration. Crucial to meeting this challenge is Kaiser-Hill's (RFETS Operating Contractor) ability to dispose of significant quantities of ''orphan'' wastes. Orphan wastes are those with no current disposition for treatment or disposal. Once such waste stream, generically referred to as Transuranic oils, poses a significant threat to meeting the closure schedule. Historically, this waste stream, which consist of a variety of oil contaminated with a range of organic solvents were treated by simply mixing with Environstone. This treatment method rendered a solidified waste form, but unfortunately not a TRUPACT-II transportable waste. So for the last ten years, RFETS has been accumulating these TRU oils while searching for a non-controversial treatment option.

  16. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  17. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  18. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    SciTech Connect (OSTI)

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  19. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

  20. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect (OSTI)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  1. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  2. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  3. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    SciTech Connect (OSTI)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95 wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.

  4. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  5. MODEL REDUCTION WITH MAPREDUCE-ENABLED TALL AND SKINNY SINGULAR...

    Office of Scientific and Technical Information (OSTI)

    AND SKINNY SINGULAR VALUE DECOMPOSITION. Citation Details In-Document Search Title: MODEL REDUCTION WITH MAPREDUCE-ENABLED TALL AND SKINNY SINGULAR VALUE DECOMPOSITION. Abstract ...

  6. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect (OSTI)

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  7. Scientific American: "Tall Trees Sucked Dry by Global Warming"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods. June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle describing how water

  8. Risk analyses for disposing of nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.

  9. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect (OSTI)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  10. An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale

    SciTech Connect (OSTI)

    Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

    1989-01-01

    This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

  11. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  12. Public-health assessment for Whitehouse Waste Oil Pits, Whitehouse, Duval County, Florida, Region 4, CERCLIS No. FLD980602767. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-09-14

    The Whitehouse Waste Oil Pits National Priorities List (NPL) site is located about 0.5 mile northwest of the community of Whitehouse in western Duval County, Florida. After waste oil spilled into the northeast tributary of McGirts Creek in 1968 and 1976, the Environmental Protection Agency stabilized and covered the remaining waste oil from the abandoned oil recycling business. Soils and ground water at the site are contaminated with heavy metals, primarily lead. The residents are particularly concerned about children who play on the site being exposed to toxic chemicals and about contamination of their private potable wells. Dermal contact with the exposed waste oil is a likely exposure pathway for children and other trespassers on the site. Dermal contact with the waste oil by remediation workers and ingestion of contaminated ground water by nearby residents are potential exposure pathways. The data and information have been evaluated for appropriate health follow-up activities by the Agency for Toxic Substances and Disease Registry (ATSDR).

  13. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOE Patents [OSTI]

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  14. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect (OSTI)

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  15. Chemical composition of biomass from tall perennial tropical grasses

    SciTech Connect (OSTI)

    Prine, G.M.; Stricker, J.A.; Anderson, D.L.

    1995-11-01

    The tall perennial tropical grasses, elephantgrass (Pennisetum purpureum Schum.), sugarcane and energycane (Saccharum sp.) and erianthus (Erianthus arundenaceum (Retz) Jesw.) have given very high oven dry biomass yields in Florida and the warm Lower South USA. No good complete analyses of the chemical composition of these grasses for planning potential energy use was available. We sampled treatments of several tall grass demonstrations and experiments containing high-biomass yielding genotypes of the above tall grass crops at several locations in Florida over the two growing seasons, 1992 and 1993. These samples were analyzed for crude protein, NDF, ADF, cellulose, hemicellulose, lignin, and IVDMD or IVOMD. The analysis for the above constituents are reported, along with biomass yields where available, for the tall grass accessions in the various demonstrations and experiments. Particular attention is given to values obtained from the high-yielding tall grasses grown on phosphatic clays in Polk County, FL, the area targeted by a NREL grant to help commercialize bioenergy use from these crops.

  16. Superfund record of decision (EPA Region 4): Whitehouse Waste Oil Pits Site, Duval County, Jacksonville, FL. (First remedial action), (Amendment), June 1992. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-06-16

    The 7-acre Whitehouse Waste Oil Pits site was used by Allied Petroleum Products (Allied) to dispose of acidic waste oil sludges from its oil reclamation process in Whitehouse, Duval County, Florida. A cypress swamp system and residential area are immediately adjacent to the site. The acid sludge produced in the first step and clay used to decolorize the oil were dumped into the unlined pits at the site. A 1985 ROD addressed source control as a containment remedy consisting of a slurry wall construction, soil cap, and a ground water recovery and treatment system; however, EPA has re-evaluated the 1985 ROD selection and determined that the containment remedy failed to meet the requirements of SARA. As a result, the ROD Amendment focuses on an alternative for treating Whitehouse wastes by eliminating direct contact risk associated with pit soil/sludge wastes and preventing contaminated ground water in the surficial aquifer from migrating laterally. The primary contaminants of concern that affect the soil, sediment, surface water, and ground water are VOCs, including benzene, toluene, and xylenes; organics, including PCBs and phenols; and metals, including arsenic, chromium, and lead. The amended remedial action for the site are included.

  17. Health assessment for Whitehouse Waste Oil Pits, Whitehouse, Florida, Region 4. CERCLIS No. FLD980602767. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-03-16

    The Whitehouse Waste Oil Pits National Priorities List site is located in Whitehouse, Duval County, Florida. The site is located in a low density residential area. There are volatile organic compounds and several heavy metals present in the groundwater, surface water, soil, and leachate. The Record of Decision (ROD) signed May 1985 mandated several remedial actions which included the construction of a slurry wall around the entire site, the recovery and treatment of contaminated groundwater within the walled area, the removal of contaminated sediments, and surface capping of the entire area. The project is currently in the design phase. The Environmental Protection Agency is considering altering the ROD to conform with the requirements in the Superfund Amendments and Reauthorization Act of 1986 for permanent remedial actions.

  18. Project report: Tritiated oil repackaging highlighting the ISMS process. Historical radioactive and mixed waste disposal request validation and waste disposal project

    SciTech Connect (OSTI)

    Schriner, J.A.

    1998-08-01

    The Integrated Safety Management System (ISMS) was established to define a framework for the essential functions of managing work safely. There are five Safety Management Functions in the model of the ISMS process: (1) work planning, (2) hazards analysis, (3) hazards control, (4) work performance, and (5) feedback and improve. Recent activities at the Radioactive and Mixed Waste Management Facility underscored the importance and effectiveness of integrating the ISMS process to safely manage high-hazard work with a minimum of personnel in a timely and efficient manner. This report describes how project personnel followed the framework of the ISMS process to successfully repackage tritium-contaminated oils. The main objective was to open the boxes without allowing the gaseous tritium oxide, which had built up inside the boxes, to release into the sorting room. The boxes would be vented out the building stack until tritium concentration levels were acceptable. The carboys would be repackaged into 30-gallon drums and caulked shut. Sealing the drums would decrease the tritium off-gassing into the RMWMF.

  19. Assessment of solid-waste characteristics and control technology for oil-shale retorting. Final report for September 1983-February 1985

    SciTech Connect (OSTI)

    Agarwal, A.K.

    1986-05-01

    The report presents information on oil-shale deposits in the eastern and western parts of the United States, their geological subdivisions, locations, tonnage, and physical and chemical characteristics. Characteristics of solid and liquid wastes produced from various oil-shale-processing technologies and control methods are presented. Also included are results from an experimental study to construct liners and covers for disposal of spent shale. A compilation of available data on the auto-ignition potential of raw and spent shales indicates a similarity between raw-shale fines and bituminous coals.

  20. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei

    1997-12-31

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  1. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    SciTech Connect (OSTI)

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  2. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Yearly report, July 1, 1992--June 30, 1993

    SciTech Connect (OSTI)

    Bedient, P.B.

    1993-07-30

    The project consists of 3 tasks: (1) Developing a Production Environmental Database (PED) with the purpose of investigating the current industry waste storage and disposal practices by different regions, states and types of waste and investigating the environmental impacts associated with these practices; (2) Evaluating the suitability of available and developing technologies for treating produced water and identifying applicable unit process configurations; and (3) Evaluating the costs associated with various degrees of treatment achievable by different configurations. Records of wells drilled during the years 1986 through 1991 were compiled from industry reports. Overall, drilling has decreased from an average of 60,000 wells/yr for the period 1981 through 1985 to 20,000/yr during 1986 through 1991. A produced water database was developed from data and information provided by the various state and federal agencies. Currently, the database has information on the production of oil, gas and brines from 24 states. The data from the produced water database indicate that for the most part, Class II Injection seemed to be the common disposal method. Other methods included evaporation, surface disposal via NPDES permit, road spreading, hauling out-of-state, and annular disposal. A survey of oil and gas operators has been developed, reviewed and edited. The survey is divided-by topic into three sections. (1) drilling wastes; (2) associated wastes; and (3) produced water. The objective of the survey is to develop more current information on the waste volumes and disposal methods used during 1986 through 1991. The possible treatment scenarios for produced water have been identified. Organic and inorganic contaminant removal, liquid/solid separation and liquid/emulsified oil separation have been identified as the main objectives of the treatment of produced water.

  3. Induction of MFO enzymes and production of bile metabolites in rainbow trout (Oncorhynchus mykiss) exposed to waste crankcase oil

    SciTech Connect (OSTI)

    Upshall, C.; Payne, J.F.; Hellou, J. . Dept. of Fisheries and Oceans)

    1993-11-01

    It is difficult to assess the toxicological significance of complex mixtures of contaminants in the environment because of paucity of dose-response studies. Rainbow trout (Oncorhynchus mykiss) were exposed per os to waste crankcase oil and analyzed for hydrocarbon classes, 26 polycyclic aromatic compounds (PACs) and 66 elements. MFO enzyme activity, measured as 7-ethoxyresorufin O-deethylase (EROD) was induced in liver, kidney, and heart. The threshold level for induction in liver was approximately 3 mg of PACs (sum of 26 PACs) per kilogram fish. A dose-response relationship was obtained for liver and kidney but not for the heart. In a time-response study, liver, kidney, and heart MFL activity increase (14-, 5-, and 3-fold, respectively), reaching a maximum between days 1 and 4, then decreased to basal levels by day 12. Analysis of bile metabolites, as glucuronide and sulfate conjugates, showed a pattern similar to that displayed by MFO induction, possibly with a slight delay. This study establishes time- and dose-response relationships for MFO enzyme induction and appearance of bile metabolites in fish exposed to an environmentally important source of PACs.

  4. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    SciTech Connect (OSTI)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  5. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Third quarterly report, April 1993--June 1993

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Rangarajan, S.; Skinner, Q.D.; Hasfurther, V.

    1993-08-11

    This report presents research objectives, discusses activities, and presents technical progress for the period April 1, 1993 through June 31, 1993 on Contract No. DE-FC21-86LC11084 with the Department of Energy, Laramie Project Office. The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  6. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Fourth quarterly report, July--September 1993

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1993-10-08

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  7. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Second quarterly report, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  8. Negative Resists for Ultra-Tall, High Aspect Ratio Microstructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resists for Ultra-Tall, High Aspect Ratio Microstructures S. Lemke a , P. Goettert a , I. Rudolph a , J. Goettert b,* , B. Löchel a a Helmholtz-Zentrum Berlin (HZB) für Materialien und Energie GmbH, Institute for Nanometre Optics and Technology, Albert-Einstein-Str. 15, 12489 Berlin, Germany b Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806, USA *E-Mail: jost@lsu.edu Abstract In this joint research project,

  9. Reconstructing householder vectors from Tall-Skinny QR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstratemore » the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.« less

  10. Reconstructing householder vectors from Tall-Skinny QR

    SciTech Connect (OSTI)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstrate the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.

  11. Biogas Upgrading and Waste-to-Energy | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Feedstocks We inventory WTE feedstocks-waste fat, oil, and greases; municipal solid wastes; biosolids (from wastewater treatment facilities); biorefinery residues and ...

  12. Forty-Six-Foot Tall Needle Sculpture Rises Over Arts Quad > EMC2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section EMC2 News Archived News Stories Forty-Six-Foot Tall Needle Sculpture Rises Over Arts Quad September 14th, 2014 By ANUSHKA MEHROTRA Students walking around campus this...

  13. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  14. Leucaena and tall grasses as energy crops in humid lower south USA

    SciTech Connect (OSTI)

    Prine, G.M.; Woodard, K.R.; Cunilio, T.V.

    1994-12-31

    The tropical leguminous shrub/tree, leucaena (Leucaena spp. mainly leucocephala), and perennial tropical tall grasses such as elephantgrass (Pennisetum purpureum), sugarcane, and energycane (Saccharum spp.) are well adapted to the long growing seasons and high rainfall of the humid lower South. In much of the area the topgrowth is killed by frost during winter and plants regenerate from underground parts in spring. Selected accessions from a duplicated 373 accession leucaena nursery had an average annual woody stem dry matter production of 31.4 Mg ha{sup -1}. Average oven dry stem wood yields from selected accessions adjusted for environmental enrichment over the 4 growth seasons were 78.9 Mg ha{sup -1} total and average annual yield of 19.7 Mg ha{sup -1}. The tall perennial grasses have linear growth rates of 18 to 27 g m{sup 2}d{sup -1} for long periods (140 to 196 d and sometimes longer) each season. Oven dry biomass yields of tall grasses have varied from 20 to 45 Mg ha{sup -1} in mild temperature locations to over 60 Mg ha{sup -1} yr{sup -1} in warm subtropics of the lower Florida peninsula. Tall grasses and leucaena, once established, may persist for many seasons. A map showing the possible range of the crops in lower South is shown. Highest biomass yields of tall grasses have been produced when irrigated with sewage effluent or when grown on phosphatic clay and muck soils of south Florida. Several companies are considering using leucaena and/or tall grasses for bioenergy in the phosphatic mining area of Polk County, Florida.

  15. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  16. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  17. Simulation of lightning attachment to open ground, tall towers and aircraft

    SciTech Connect (OSTI)

    Ratnamahilan, P.; Hoole, P. . Dept. of Electrical and Telecommunications Engineering); Ratnajeevan, S.; Hoole, H. . Dept. of Engineering)

    1993-04-01

    The characteristics of lightning waveforms are important in taking protective measures against it. However, many of these characteristics cannot be measured. This paper employs a mathematical model of lightning currents to write a software package to simulate all manner of lightning flashes. The capabilities available to us through this are demonstrated by extracting the behavior of lightning waveforms following attachment to open ground, tall towers and aircraft.

  18. Oil shale: The environmental challenges III

    SciTech Connect (OSTI)

    Petersen, K.K.

    1983-01-01

    This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

  19. An Industrial Membrane System Suitable for Distributed Used Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as thermal and chemical stability, including waste oil re-refining, coal tar oil clean-up, and FCC slurry upgrading. * In parallel, use these applications and know-how ...

  20. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  1. Kinetics and mechanisms of hydroliquefaction and hydrogasification of lignite. [Cellulose, wood, manure, municipal waste, coal of various ranks, fuel oil and natural gas

    SciTech Connect (OSTI)

    Weiss, A.H.; Kranich, W.L.; Geureuz, K.

    1981-01-01

    A high pressure, continuous, stirred-tank reactor system has been constructed for the study of the catalytic liquefaction of North Dakota lignite slurried in anthracene oil. The conversion of lignite using a cobalt-molybdenum on alumina catalyst and the distribution of products as preasphaltenes, asphaltenes, oils and gases has been studied at the following conditions: temperature, 375 to 440/sup 0/C; pressure, 1000 to 1600 psig; agitator speed, 800 to 1500 rpm; catalyst concentration, 0 to 10% (based on lignite); initial lignite concentration, 5 to 30%; and space time, 16 to 52 minutes. At reactor pressures above 1500 psig and agitator speeds above 1000 rpm, reaction rate was essentially independent of pressure. At catalyst concentrations above 1% (based on lignite), the conversion of lignite was essentially independent of catalyst concentration. Experiments were conducted above these limits to find the effect on lignite conversion rate, of initial lignite concentration, and space time, or degree of conversion. The results at constant temperature were correlated by an equation which is given in the report. The relationship between the rate constant, K, and temperature, and between the maximum conversion and temperature was established. The effect of reaction conditions on the distribution of products was studied. In the presence of catalyst, the oil yield was increased, even under conditions where the catalyst did not affect overall lignite conversion. Under the most favorable conditions the oil yield was a little better than that obtained by Cronauer in the uncatalyzed hydroliquefaction of subbituminous coal at similar temperature and pressure.

  2. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  3. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  4. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium

  5. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  6. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  7. Hydrothermal Processing of Wet Wastes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of Wet Wastes James Oyler July 2014 Slide 1 Slide 2 Q: What is possible with Waste-to-Energy (WTE)? A: Up to 25% of US Liquid Fuel Supply. 25% Sounds High-Is That Possible? * Available technology and wet wastes can start toward this goal now * 285,000 barrels of oil per day by 2025 - 3.3 million bbl/d by 2045 (17% of US demand); also produces more than 6 million MCF/d of methane - Continue growing to 25% of US demand by adding more feedstocks (chart shown later) * Using wastes solves

  8. Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-08-10

    The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  9. Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

  10. Tall Tower Wind Energy Monitoring and Numerical Model Validation in Northern Nevada

    SciTech Connect (OSTI)

    Koracin, D.; Kaplan, M.; Smith, C.; McCurdy, G.; Wolf, A.; McCord, T.; King, K.; Belu, R.; Horvath, K.

    2015-10-01

    The main objectives of this project were to conduct a tall-tower and sodar field campaign in complex terrain, investigate wind properties relevant to wind energy assessment, and evaluate high-resolution models with fixed and adaptive grid structures. Two 60-m towers at Virginia Peak ridges near Washoe Valley, Nevada, were instrumented with cup and vane anemometers as well as sonic anemometers, and an acoustic sounder (hereafter sodar) was installed near one of the towers. The towers were located 2,700 m apart with a vertical distance of 140 m elevation between their bases. Each tower had a downhill exposure of rolling complex terrain, with the nearby valley floor 3,200 m to the west and 800 m below the summit. Cup anemometers were installed at both towers at 20, 40, and 60 m, wind vanes at 20 and 60 m, and sonic anemometers at 20 and 60 m. The sodar measurements were nominally provided every 10 m in vertical distance from 40 to 200 m with the quality of the data generally decreasing with height. Surface air temperature, atmospheric pressure, and radiation measurements were conducted at 1.5 m AGL at both of the towers. Although the plan was to conduct a 1-year period of data collection, we extended the period (October 5, 2012 through February 24, 2014) to cover for possible data loss from instrument or communication problems. We also present a preliminary analysis of the towers and sodar data, including a detailed inventory of available and missing data as well as outliers. The analysis additionally includes calculation of the Weibull parameters, turbulence intensity, and initial computation of wind power density at various heights.

  11. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  12. Venezuelan oil

    SciTech Connect (OSTI)

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  13. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  14. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  15. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  16. ShaCS: Shaped-Charge Stimulation for Low-Permeability Oil and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national security Applications and Industries Oilfield services Oil and gas production Geothermal production Carbon dioxide sequestration Deep subsurface waste disposal Any...

  17. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  18. Waste Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  19. Identification of radioactive mixed wastes in commercial low-level wastes

    SciTech Connect (OSTI)

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1986-01-01

    A literature review and survey were conducted on behalf of the US NRC Division of Waste Management to determine whether any commercial low-level radioactive wastes (LLW) could be considered hazardous as defined by EPA under 40 CFR Part 261. The purpose of the study was to identify broad categories of LLW which may require special management as radioactive mixed waste, and to help address uncertainties regarding the regulation of such wastes. Of 239 questionnaires sent out to reactor and non-reactor LLW generators, there were 91 responses representing 29% by volume of all low-level wastes disposed of at commercial disposal sites in 1984. The analysis of the survey results indicated that the following waste types generic to commercial LLW may be potential radioactive mixed wastes: Wastes containing oil, disposed of by reactors and industrial facilities, and representing 4.2% of the total LLW volume reported in the survey. Wastes containing organic liquids, disposed of by all types of generators, and representing 2.3% by volume of all wastes reported. Wastes containing lead metal, i.e., discarded shielding and lead containers, representing <0.1% by volume of all wastes reported. Wastes containing chromium, i.e., process wastes from nuclear power plants which use chromates as corrosion inhibitors; these represent 0.6% of the total volume reported in the survey. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well.

  20. Estimating Waste Inventory and Waste Tank Characterization |...

    Office of Environmental Management (EM)

    Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue ...

  1. Pyrolysis of waste tyres: A review

    SciTech Connect (OSTI)

    Williams, Paul T.

    2013-08-15

    Graphical abstract: - Highlights: Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. Product yields are influenced by reactor type, temperature and heating rate. Pyrolysis oils are complex and can be used as chemical feedstock or fuel. Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  2. Management of offshore wastes in the United States.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-10-22

    During the process of finding and producing oil and gas in the offshore environment operators generate a variety of liquid and solid wastes. Some of these wastes are directly related to exploration and production activities (e.g., drilling wastes, produced water, treatment workover, and completion fluids) while other types of wastes are associated with human occupation of the offshore platforms (e.g., sanitary and domestic wastes, trash). Still other types of wastes can be considered generic industrial wastes (e.g., scrap metal and wood, wastes paints and chemicals, sand blasting residues). Finally, the offshore platforms themselves can be considered waste materials when their useful life span has been reached. Generally, offshore wastes are managed in one of three ways--onsite discharge, injection, or transportation to shore. This paper describes the regulatory requirements imposed by the government and the approaches used by offshore operators to manage and dispose of wastes in the US.

  3. Tank Waste and Waste Processing | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled ...

  4. Waste minimization in an autobody repair shop

    SciTech Connect (OSTI)

    Baria, D.N.; Dorland, D.; Bergeron, J.T.

    1994-12-31

    This work was done to document the waste minimization incorporated in a new autobody repair facility in Hermantown, Minnesota. Humes Collision Center incorporated new waste reduction techniques when it expanded its old facilities in 1992 and it was able to achieve the benefits of cost reduction and waste reduction. Humes Collision Center repairs an average of 500 cars annually and is a very small quantity generator (VSQG) of hazardous waste, as defined by the Minnesota Pollution Control Agency (MPCA). The hazardous waste consists of antifreeze, batteries, paint sludge, refrigerants, and used oil, while the nonhazardous waste consists of cardboard, glass, paint filters, plastic, sanding dust, scrap metal, and wastewater. The hazardous and nonhazardous waste output were decreased by 72%. In addition, there was a 63% reduction in the operating costs. The waste minimization includes antifreeze recovery and recycling, reduction in unused waste paint, reduction, recovery and recycle of waste lacquer thinner for cleaning spray guns and paint cups, elimination of used plastic car bags, recovery and recycle of refrigerant, reduction in waste sandpaper and elimination of sanding dust, and elimination of waste paint filters. The rate of return on the investment in waste minimization equipment is estimated from 37% per year for the distillation unit, 80% for vacuum sanding, 146% for computerized paint mixing, 211% for the refrigerant recycler, to 588% per year for the gun washer. The corresponding payback time varies from 3 years to 2 months.

  5. Problems associated with solid wastes from energy systems

    SciTech Connect (OSTI)

    Chiu, S.Y.; Fradkin, L.; Barisas, S.; Surles, T.; Morris, S.; Crowther, A.; DeCarlo, V.

    1980-09-01

    Waste streams from many energy-related technologies including coal, oil shale, tar sands, geothermal, oil and gas extraction, and nuclear power generation are reviewed with an emphasis on waste streams from coal and oil shale technologies. This study has two objectives. The first objective is to outline the available information on energy-related solid wastes. Data on chemical composition and hazardous biological characteristics are included, supplemented by regulatory reviews and data on legally designated hazardous waste streams. The second objective is to provide disposal and utilization options. Solid waste disposal and recovery requirements specified under the RCRA are emphasized. Information presented herein should be useful for policy, environmental control, and research and development decision making regarding solid and hazardous wastes from energy production.

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  7. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  9. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  11. Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report

    SciTech Connect (OSTI)

    Zirker, L.R.; Francfort, J.E.

    2003-01-31

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  12. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  13. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  14. Summary of BNL studies regarding commercial mixed waste

    SciTech Connect (OSTI)

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1986-09-01

    Based on BNL's study it was concluded that there are low-level radioactive wastes (LLWs) which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November 1985, no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA permitted site. Currently generators of liquid scintillation wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes may also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed waste unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. While management options for handling potential mixed wastes are available, there is limited regulatory guidance for generators. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concerns can, at the same time, address stabilization and volume reduction concerns of NRC. 6 refs., 1 tab.

  15. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  16. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) (3.31 MB) More Documents & Publications PIA - WEB Physical ...

  17. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  18. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste

    Office of Environmental Management (EM)

    Analysis Plan | Department of Energy The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release

  19. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  20. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  1. Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date

    SciTech Connect (OSTI)

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  2. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect (OSTI)

    Randall, V.C.; Sims, A.M.

    1993-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  3. Radioactive Waste Management Information for 1992 and record-to-date

    SciTech Connect (OSTI)

    Litteer, D.L.; Randall, V.C.; Sims, A.M.; Taylor, K.A.

    1993-07-01

    This document provides detailed data and graphics on air borne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  4. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Yanlong; Ji, Qin; Anderson, L.L.; Eyring, E.M.

    1995-12-31

    Recent interest in coprocessing coal with hydrogen rich waste materials in order to produce liquid transportation fuels has given rise to interesting twists on standard coal liquefaction. In general, coprocessing coal with a waste material has been approached with the idea that the waste material would be mixed with the coal under liquefaction conditions with little or no preliminary processing of the waste material other than shredding into smaller size particles. Mixing the waste material with the coal would occur in the primary stage of liquefaction. The primary stage would accomplish the dissolution of the coal and breakdown of the waste material. The products would then be introduced into the secondary stage where upgrading of product would occur. This paper describes the usefulness of oil derived from pyrolysis of waste rubber tires as a reactant in coal coprocessing or coal liquefaction.

  5. Fruit production of Attalea colenda (Arecaceae) in coastal Ecuador - an alternative oil resource?

    SciTech Connect (OSTI)

    Feil, J.P.

    1996-07-01

    Attalea colenda is a monoecious palm found in pastures in coastal Ecuador. In dry regions, it is a valuable source of oil in self-sufficiency farming or in combination with cattle in pastures. The palm was studied over a gradient of dry to humid environments during two fruiting seasons. Palm growth, production of leaves, inflorescences, and infructescences, number of fruits per infructescence, and seed weight of five populations were evaluated. The individual of average size is 15 m tall, which corresponds to approximately 30-40 years of age. No difference in fruit production was recorded between wet and dry regions of coastal Ecuador. The average production of one hectare of pasture, with 50 palms, was 0.9 t of oil per year. One population that was part of an agroforestry system produced 50% more fruits than the average of all populations in pasture. 18 refs., 1 fig., 6 tabs.

  6. Oil & Gas Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional ... quantify potential risks associated with oil and gas resources in shale reservoirs that ...

  7. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  8. Oil Security Metrics Model

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  9. Oil shale mining processing, uses, and environmental impacts. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The bibliography contains citations concerning oil shale mining and retorting, uses, and related environmental aspects. References discuss pyrolyzed, gasified, and combusted oil shales. Product yields and oil quality, socioeconomic impacts, exploration, reclamation of mined lands, and waste disposal are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  11. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  12. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  13. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of ... (JHCM) technology Factors affecting waste loadings Waste loading requirements ...

  14. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  15. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  16. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Largest friction hoist in the world when it was built in 1985 Hoist deck footprint: approximately 3m wide x 5m long Hoist deck height: approximately 3m wide x 7m high Access height to the waste hoist deck is limited by a 4 m high door

  17. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck

  18. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  19. World Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  20. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  1. Used oil and its regulation in the United States. Master's thesis

    SciTech Connect (OSTI)

    Ledbetter, G.H.

    1988-09-30

    The Environmental Protection Agency (EPA) took the first significant steps toward the federal regulation of waste and used oil by: (1) promulgating the final rule for the Burning of Waste Fuel and Used Oil Fuel in Boilers and Industrial Furnaces; (2) proposing a rule to establish standards for used oil which is recycled; and (3) proposing a rule to amend the regulations for hazardous waste management under Subtitle C of the Resource Conservation and Recovery Act (hereafter referred to as RCRA) by listing used oil as a hazardous waste. These efforts by EPA are particularly interesting because of both the nature of the prodding from Congress it took to obtain EPA action and the unprecedented volume, degree, and breadth of public opposition these actions generated once taken.

  2. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Advancing a Novel Microbial Reverse Electrodialysis ...

  3. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis technology ... Bio-Electrochemical Integration of Waste Heat Recovery, Waste-To-Energy Conversion, ...

  4. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  5. Innovative filter polishes oil refinery wastewater

    SciTech Connect (OSTI)

    Irwin, J.; Finkler, M.

    1982-07-01

    Describes how, after extensive testing of 4 different treatment techniques, a Hydro Clear rapid sand filter was installed at the Sohio oil refinery in Toledo, Ohio. This filtration system has proven to be more cost-effective than conventional approaches. The system handles the refinery's wastewater flow of 10.3 mgd. With the aid of the polishing filter, readily meets the NPDES permit limitations. The Toledo refinery is a highly integrated petroleum processing complex. It processes 127,000 barrels per day of crude oil, including 40,000 barrels per day of sour crude. Tables give dissolved air flotation performance data; biological system performance data; filter performance data; and refinery waste treatment unit compared with NPDES-BPT limitations. Diagram shows the Sohio refinery wastewater treatment facility. Through a separate backwash treatment system complete control is brought to the suspended solids in the effluent which also tends to control chemical oxygen demand and oil/grease levels.

  6. Tall order in Arizona

    SciTech Connect (OSTI)

    Wright, A.G.

    1997-03-10

    A 7-year, $470 million project to retrofit scrubber units on a coal-fired power plant is summarized. The scrubbers will be retooled at the 2250-MW Navajo Generating Station in a clean air agreement between the US federal government and Salt River Project. A forced oxidation flue gas desulfurization system was selected for the retrofit; design and construction aspects are summarized in the article. Negotiations between the US Environmental Protection Agency, the Environmental Defense Fund, and the Navajo Nation leading to the retrofit action are also outlined.

  7. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil ...

  8. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect (OSTI)

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  9. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect (OSTI)

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  10. State of Illinois 1982 annual coal, oil and gas report

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    This data compilation contains statistics from the coal industry and petroleum industry of Illinois. Data are given on the production, accidents, explosives, and mechanization of coal mines. Metal mines are only briefly described. The report from the Division of Oil and Gas contains data on oil well completions, oil wells plugged, water input wells, and salt water and waste disposal wells. The results of hearings in the division are included. The Land Reclamation Division reports data on permits and acreage affected by surface mining of coal, limestone, shale, clay, sand, and gravel. 2 figures, 76 tables.

  11. Power Plays: Geothermal Energy In Oil and Gas Fields

    Office of Energy Efficiency and Renewable Energy (EERE)

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  12. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  13. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  14. EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste...

    Office of Environmental Management (EM)

    Tank Waste Subcommittee Report for SRS Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS Hanford Tank Waste Review Environmental Management Advisory Board EM ...

  15. EM's Defense Waste Processing Facility Achieves Waste Cleanup...

    Office of Environmental Management (EM)

    Defense Waste Processing Facility Achieves Waste Cleanup Milestone EM's Defense Waste Processing Facility Achieves Waste Cleanup Milestone January 14, 2016 - 12:10pm Addthis The ...

  16. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Disposal Facility Operating Unit #11 Aerial view of IDF looking south. Note semi-truck trailer for scale. There are risks to groundwater in the future from secondary waste, according to modeling. Secondary waste would have to be significantly mitigated before it could be disposed at IDF. Where did the waste come from? No waste is stored here yet. IDF will receive vitrified waste when the Waste Treatment Plant starts operating. It may also receive secondary waste resulting from

  17. More Recycling Means Less Waste for Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Means Less Waste for Complex What do batteries, lead bricks, and mineral oil have in common? They are all on the list of recently recycled materials at the Nevada National Security Site (NNSS). The goal of these recycling efforts is to minimize waste volumes at the site and encourage the repurposing of materials across the U.S. Department of Energy (DOE) Complex. In September 2011, a total of 33,000 pounds of lead was shipped from the NNSS to the recycling company, Toxco Inc. A portion

  18. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  19. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NMSW - New Mexico Special Waste MSW - Municipal Solid Waste C&D - Construction and ... Proposed waste streams that could generate hazardous wastes are reviewed regularly to ...

  20. Legacy Waste | Department of Energy

    Office of Environmental Management (EM)

    Services Legacy Waste Legacy Waste Legacy Waste The Environmental Management Los Alamos Field Office's (EM-LA) Solid Waste Stabilization and Disposition Project Team is ...

  1. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  2. South American oil

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  3. Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  4. US Crude oil exports

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since ...

  5. Crude Oil Characteristics Research

    Broader source: Energy.gov (indexed) [DOE]

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The ...

  6. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  7. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  8. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  9. Oil-futures markets

    SciTech Connect (OSTI)

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  10. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  11. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  12. Waste remediation

    SciTech Connect (OSTI)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  13. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  14. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  15. Delivery of Vegetable Oil Suspensions in a Shear Thinning Fluid for Enhanced Bioremediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin; Li, Yusong; Lea, Alan S.; Yan, Xiulan

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability, oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.

  16. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  17. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  18. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management ...

  19. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  20. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  1. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  2. Tritium contamination and decontamination of sealing oil for vacuum pump

    SciTech Connect (OSTI)

    Takeishi, T.; Kotoh, K.; Kawabata, Y.; Tanaka, J.I.; Kawamura, S.; Iwata, M.

    2015-03-15

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontamination was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.

  3. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    SciTech Connect (OSTI)

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  4. DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules

    Broader source: Energy.gov [DOE]

    An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers.

  5. Permian Basin`s operators examine alternatives for disposing of wastes

    SciTech Connect (OSTI)

    1995-10-01

    Waste from the production of oil is not toxic, but operators still have to make arrangements to get rid of it. Drilling and production wastes aren`t harmful, but they must be treated in some way to comply with environmental laws.

  6. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  7. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste ...

  8. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, David J.

    1995-01-01

    A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

  9. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, D.J.

    1995-03-07

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

  10. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, D.J.

    1993-01-01

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

  11. E-Alerts: Environmental pollution and control (solid waste pollution and control). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    The paper discusses pollution by solid wastes including garbage, scrap, junked automobiles, spoil, sludge, containers; Disposal methods such as composts or land application, injection wells, incineration, sanitary landfills; Mining wastes; Processing for separation and materials recovery; Solid waste utilization; Recycling; Biological and ecological effects; Superfund (Records of Decision, etc.); SITE technology; Laws, legislation, and regulations; Public administration; Economics; Land use. The discussion includes disposal of concentrated or pure liquids such as brines, oils, chemicals, and hazardous materials.

  12. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  13. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  14. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Progress report, December 1991--February 1992

    SciTech Connect (OSTI)

    Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

    1992-03-01

    The objective is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Easter oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. Accomplishments for this period are presented for the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. 24 figs., 19 tabs. (AT)

  15. Shale oil dearsenation process

    SciTech Connect (OSTI)

    Brickman, F.E.; Degnan, T.F.; Weiss, C.S.

    1984-10-29

    This invention relates to processing shale oil and in particular to processing shale oil to reduce the arsenic content. Specifically, the invention relates to treating shale oil by a combination of processes - coking and water washing. Many shale oils produced by conventional retorting processes contain inorganic materials, such as arsenic, which interfere with subsequent refining or catalytic hydroprocessing operations. Examples of these hydroprocessing operations are hydrogenation, denitrogenation, and desulfurization. From an environmental standpoint, removal of such contaminants may be desirable even if the shale oil is to be used directly as a fuel. Hence, it is desirable that contaminants such as arsenic be removed, or reduced to low levels, prior to further processing of the shale oil or prior to its use as a fuel.

  16. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE ) ) ss: COUNTY OF ) That I, , am the...

  17. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  18. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  19. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  20. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  1. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  2. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  3. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  4. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  5. Infectious waste feed system

    DOE Patents [OSTI]

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  6. A Canadian Solution for Management of Mixed Liquid Waste - 13384

    SciTech Connect (OSTI)

    Suryanarayan, Sriram; Husain, Aamir

    2013-07-01

    Mixed liquid wastes (MLW) from Canadian nuclear facilities consist of solvents, PCB (Poly Chlorinated Biphenyls) and non-PCB contaminated oils and aqueous wastes. Historically, MLW drums were shipped to a licensed US facility for destruction via incineration. This option is relatively expensive considering the significant logistics and destruction costs involved. In addition, commercial waste destruction facilities in US cannot accept PCB wastes from non-US jurisdictions. Because of this, Kinectrics has recently developed a novel and flexible process for disposing both PCB as well as non-PCB contaminated MLW within Canada. This avoids the need for cross-border shipments which significantly reduces the complexity and cost for waste disposal. This paper presents an overview of the various approaches and activities undertaken to date by Kinectrics for successfully processing and disposing the MLW drums. A summary of the results, challenges and how they were overcome are also presented. (authors)

  7. Lower oil prices also cutting winter heating oil and propane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    see even lower natural gas and heating oil bills this winter than previously expected ... said the average household heating with oil will experience a 41% drop in heating oil ...

  8. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  9. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  10. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  11. Upgrading heavy gas oils

    SciTech Connect (OSTI)

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  12. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect (OSTI)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  13. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  14. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment and Immobilization Plant (vit plant) Operating Unit #10 Aerial view of construction, July 2011 Where will the waste go? LAW canisters will go to shallow disposal at Hanford's Integrated Disposal Facility. HLW canisters will go to a For scale, here's the parking lot! Safe disposition of our nation's most dangerous waste relies on the vit plant's safe completion and ability to process waste for 20+ years. * Permitted for storage and treatment of Hanford's tank waste in unique

  15. Nuclear waste solidification

    DOE Patents [OSTI]

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  16. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  17. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  18. STEO September 2012 - oil production

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil ...

  19. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  20. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program Acceptance Process Waste Shipment Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Shipment Approval Email Email Page | Print Print

  1. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  2. Vegetable oil as fuel

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  3. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  4. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    SciTech Connect (OSTI)

    Jill S. Buckley; Norman R. Morrow

    2004-05-01

    aqueous and oleic phases appeared to have little influence over surfactant interactions with the mica surface; the solubility in water of all three structures appeared to be very limited. Commercial emulsifiers for both SBM and OBM formulations are blends of tall oil fatty acids and their polyaminated derivatives. In part three of this report, we integrate observations on smooth surfaces with those in Berea sandstone cores to show the effects of low concentrations of these products with and without the added complexity of adsorbed material from crude oils. Unlike the polyethoxylated amines studied in part two, there are significant non-equilibrium effects that can occur when water first contacts oil with dissolved surfactant. Very oil-wet conditions can be produced on first contact. Surfactant dissolved in oil had less effect on wetting alteration for one combination of crude oil and surfactant, although the generality of this observation can only be assessed by additional tests with crude oils of different composition. The wettability-altering effect of surfactants on both mica and Berea sandstone was most significant when they contacted surfaces after adsorption of crude oil components. Tests without crude oil might underestimate the extent of wetting change possible with these SBM and OBM emulsifiers.

  5. Corrosivity Of Pyrolysis Oils

    SciTech Connect (OSTI)

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  6. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/25/16 WIPP Home Page About WIPP Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. CH and RH Waste WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. It consists of clothing, tools,

  7. Waste management progress report

    SciTech Connect (OSTI)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management.

  8. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  9. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. ...

  10. Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant HLW Waste Vitrification Facility (742.54 KB) Summary - WTP HLW Waste Vitrification Facility (137.99 KB) More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste