Sample records for tailored gc5 non-equilibrium

  1. Local non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Jinwoo, Lee

    2015-01-01T23:59:59.000Z

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  2. Local non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Lee Jinwoo; Hajime Tanaka

    2015-01-16T23:59:59.000Z

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  3. Equilibrium and non-equilibrium properties of superfluids and superconductors

    E-Print Network [OSTI]

    Walter F. Wreszinski

    2015-06-26T23:59:59.000Z

    We review some rigorous results on the equilibrium and non-equilibrium properties of superfluids and superconductors.

  4. Equilibrium and non-equilibrium properties of superfluids and superconductors

    E-Print Network [OSTI]

    Walter F. Wreszinski

    2015-07-05T23:59:59.000Z

    We review some rigorous results on the equilibrium and non-equilibrium properties of superfluids and superconductors.

  5. Equilibrium and non-equilibrium properties of superfluids and superconductors

    E-Print Network [OSTI]

    Walter F. Wreszinski

    2015-06-19T23:59:59.000Z

    We review some rigorous results on the equilibrium and non-equilibrium properties of superfluids and superconductors.

  6. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    SciTech Connect (OSTI)

    Philip, Bobby [ORNL; Wang, Zhen [ORNL; Berrill, Mark A [ORNL; Rodriguez Rodriguez, Manuel [ORNL; Pernice, Michael [Idaho National Laboratory (INL)

    2013-01-01T23:59:59.000Z

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  7. Stimulated emission with a non-equilibrium state of radiation

    E-Print Network [OSTI]

    L. Accardi; K. Imafuku; S. V. Kozyrev

    2001-04-24T23:59:59.000Z

    The stimulated emission from an atom interacting with radiation in non-equilibrium state is considered. The stochastic limit, applied to the non-relativistic Hamiltonian describing the interaction, shows that the state of atoms, driven by some non-equilibrium state of the field approaches a stationary state which can continuously emit photon, unlike the case with an equilibrium state.

  8. Lithium-ion battery modeling using non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Ferguson, Todd R. (Todd Richard)

    2014-01-01T23:59:59.000Z

    The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

  9. Non-Equilibrium Thermodynamics of Self-Replicating Protocells

    E-Print Network [OSTI]

    Harold Fellermann; Bernat Corominas-Murtra; Per Lyngs Hansen; John Hjort Ipsen; Ricard Solé; Steen Rasmussen

    2015-03-16T23:59:59.000Z

    We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology.

  10. Fluctuation Spectra Underlie the Behaviour of Non-equilibrium Systems

    E-Print Network [OSTI]

    Alpha A Lee; Dominic Vella; John S Wettlaufer

    2015-05-26T23:59:59.000Z

    A diverse set of important physical phenomena, ranging from hydrodynamic turbulence to the collective behaviour of bacteria, are intrinsically far from equilibrium and hence cannot be described by equilibrium statistical physics. The defining feature of such systems is the presence of a constant energy source that drives them into their respective steady states. Despite their ubiquity, there are few general theoretical results that describe these non-equilibrium steady states. Here we argue that a generic signature of non-equilibrium systems is nontrivial fluctuation spectra. Based on this observation, we derive a general relation for the force exerted by a non-equilibrium system on two embedded walls. We find that for a narrow, unimodal spectrum, the force depends solely on the width and the position of the peak in the fluctuation spectrum, and will, in general, oscillate between repulsion and attraction. We demonstrate the generality of our framework by examining two apparently disparate examples. In the first we study the spectrum of wind-water interactions on the ocean surface to reveal force oscillations underlying the Maritime Casimir effect. In the second, we demonstrate quantitative agreement with force generation in recent simulations of active Brownian particles. A key implication of our work is that important non-equilibrium interactions are encoded in the fluctuation spectrum. In this sense the noise becomes the signal.

  11. Steady quantum coherence in non-equilibrium environment

    E-Print Network [OSTI]

    Sheng-Wen Li; C. Y. Cai; C. P. Sun

    2014-07-16T23:59:59.000Z

    We study the steady state of a three-level system in contact with a non-equilibrium environment, which is composed of two independent heat baths at different temperatures. We derive a master equation to describe the non-equilibrium process of the system. For the three level systems with two dipole transitions, i.e., the $\\Lambda$-type and V-type, we find that the interferences of two transitions in a non-equilibrium environment can give rise to non-vanishing steady quantum coherence, namely, there exist non-zero off-diagonal terms in the steady state density matrix (in the energy representation). Moreover, the non-vanishing off-diagonal terms increase with the temperature difference of the two heat baths. Such interferences of the transitions were usually omitted by secular approximation, for it was usually believed that they only take effect in short time behavior and do not affect the steady state. Here we show that, in non-equilibrium systems, such omission would lead to the neglect of the steady quantum coherence.

  12. Effective Temperature of Non-equilibrium Dense Matter in Holography

    E-Print Network [OSTI]

    Hironori Hoshino; Shin Nakamura

    2015-03-03T23:59:59.000Z

    We study properties of effective temperature of non-equilibrium steady states by using the anti-de Sitter spacetime/conformal field theory (AdS/CFT) correspondence. We consider non-equilibrium systems with a constant flow of current along an electric field, in which the current is carried by both the doped charges and those pair created by the electric field. We find that the effective temperature agrees with that of the Langevin systems if we take the limit where the pair creation is negligible. The effect of pair creation raises the effective temperature whereas the current by the doped charges contributes to lower the effective temperature in a wide range of the holographic models.

  13. Non-equilibrium Condensation Process in a Holographic Superconductor

    E-Print Network [OSTI]

    Keiju Murata; Shunichiro Kinoshita; Norihiro Tanahashi

    2010-05-04T23:59:59.000Z

    We study the non-equilibrium condensation process in a holographic superconductor. When the temperature T is smaller than a critical temperature T_c, there are two black hole solutions, the Reissner-Nordstrom-AdS black hole and a black hole with a scalar hair. In the boundary theory, they can be regarded as the supercooled normal phase and the superconducting phase, respectively. We consider perturbations on supercooled Reissner-Nordstrom-AdS black holes and study their non-linear time evolution to know about physical phenomena associated with rapidly-cooled superconductors. We find that, for Tsuperconducting order parameter. Finally, we study the time evolution of event and apparent horizons and discuss their correspondence with the entropy of the boundary theory. Our result gives a first step toward the holographic understanding of the non-equilibrium process in superconductors.

  14. Non-equilibrium Entanglement and Noise in Coupled Qubits

    E-Print Network [OSTI]

    N. Lambert; R. Aguado; T. Brandes

    2006-02-03T23:59:59.000Z

    We study charge entanglement in two Coulomb-coupled double quantum dots in thermal equilibrium and under stationary non-equilibrium transport conditions. In the transport regime, the entanglement exhibits a clear switching threshold and various limits due to suppression of tunneling by Quantum Zeno localisation or by an interaction induced energy gap. We also calculate quantum noise spectra and discuss the inter-dot current correlation as an indicator of the entanglement in transport experiments.

  15. Diffusive mass transfer by non equilibrium fluctuations: Fick's law revisited

    E-Print Network [OSTI]

    Doriano Brogioli; Alberto Vailati

    2000-06-09T23:59:59.000Z

    Recent experimental and theoretical works have shown that giant fluctuations are present during diffusion in liquid systems. We use linearized fluctuating hydrodynamics to calculate the net mass transfer due to these non equilibrium fluctuations. Surprisingly the mass flow turns out to coincide with the usual Fick's one. The renormalization of the hydrodynamic equations allows us to quantify the gravitational modifications of the diffusion coefficient induced by the gravitational stabilization of long wavelength fluctuations.

  16. Thermostat for non-equilibrium multiparticle collision dynamics simulations

    E-Print Network [OSTI]

    Chien-Cheng Huang; Anoop Varghese; Gerhard Gompper; Roland G. Winkler

    2015-01-23T23:59:59.000Z

    Multiparticle collision dynamics (MPC), a particle-based mesoscale simulation technique for com- plex fluid, is widely employed in non-equilibrium simulations of soft matter systems. To maintain a defined thermodynamic state, thermalization of the fluid is often required for certain MPC variants. We investigate the influence of three thermostats on the non-equilibrium properties of a MPC fluid under shear or in Poiseuille flow. In all cases, the local velocities are scaled by a factor, which is either determined via a local simple scaling approach (LSS), a Monte Carlo-like procedure (MCS), or by the Maxwell-Boltzmann distribution of kinetic energy (MBS). We find that the various scal- ing schemes leave the flow profile unchanged and maintain the local temperature well. The fluid viscosities extracted from the various simulations are in close agreement. Moreover, the numerically determined viscosities are in remarkably good agreement with the respective theoretically predicted values. At equilibrium, the calculation of the dynamic structure factor reveals that the MBS method closely resembles an isothermal ensemble, whereas the MCS procedure exhibits signatures of an adi- abatic system at larger collision-time steps. Since the velocity distribution of the LSS approach is non-Gaussian, we recommend to apply the MBS thermostat, which has been shown to produce the correct velocity distribution even under non-equilibrium conditions.

  17. Non-equilibrium Statistical Approach to Friction Models

    E-Print Network [OSTI]

    Shoichi Ichinose

    2015-05-18T23:59:59.000Z

    A geometric approach to the friction phenomena is presented. It is based on the holographic view which has recently been popular in the theoretical physics community. We see the system in one-dimension-higher space. The heat-producing phenomena are most widely treated by using the non-equilibrium statistical physics. We take 2 models of the earthquake. The dissipative systems are here formulated from the geometric standpoint. The statistical fluctuation is taken into account by using the (generalized) Feynman's path-integral.

  18. Is Soret equilibrium a non-equilibrium effect?

    E-Print Network [OSTI]

    Alois Würger

    2014-01-29T23:59:59.000Z

    Recent thermophoretic experiments on colloidal suspensions revived an old debate, namely whether the Soret effect is properly described by thermostatics, or necessarily requires non-equilibrium thermodynamics. Based on colloidal transport theory and the entropy production of the related viscous flow, our analysis leads to the conclusion that the equilibrium approach may work for small ions, yet fails for colloidal particles and polymers. Regarding binary molecular mixtures, our results shed some doubt on the validity of thermostatic approaches that derive the Soret coefficient from equilibrium potentials.

  19. Non-equilibrium thermodynamics approach to open quantum systems

    E-Print Network [OSTI]

    Vitalii Semin; Francesco Petruccione

    2014-11-11T23:59:59.000Z

    Open quantum systems are studied from the thermodynamical point of view unifying the principle of maximum informational entropy and the hypothesis of relaxation times hierarchy. The result of the unification is a non-Markovian and local in time master equation that provides a direct connection of dynamical and thermodynamical properties of open quantum systems. The power of the approach is illustrated with the application to the damped harmonic oscillator and the damped driven two-level system resulting in analytical expressions for the non-Markovian and non-equilibrium entropy and inverse temperature.

  20. Relation of classical non-equilibrium dynamics and quantum annealing

    E-Print Network [OSTI]

    Hidetosni Nishimori

    2015-03-07T23:59:59.000Z

    Non-equilibrium dynamics of the Ising model is a classical stochastic process whereas quantum mechanics has no stochastic elements in the classical sense. Nevertheless, it has been known that there exists a close formal relationship between these two processes. We reformulate this relationship and use it to compare the efficiency of simulated annealing that uses classical stochastic processes and quantum annealing to solve combinatorial optimization problems. It is shown that classical dynamics can be efficiently simulated by quantum-mechanical processes whereas the converse is not necessarily true. This may imply that quantum annealing may be regarded as a more powerful tool than simulated annealing for optimization problems.

  1. Ethanol reforming in non-equilibrium plasma of glow discharge

    E-Print Network [OSTI]

    Levko, D

    2012-01-01T23:59:59.000Z

    The results of a detailed kinetic study of the main plasma chemical processes in non-equilibrium ethanol/argon plasma are presented. It is shown that at the beginning of the discharge the molecular hydrogen is mainly generated in the reaction of ethanol H-abstraction. Later hydrogen is formed from active H, CH2OH and CH3CHOH and formaldehyde. Comparison with experimental data has shown that the used kinetic mechanism predicts well the concentrations of main species at the reactor outlet.

  2. Non-equilibrium evolution of a "Tsunami" Dynamical Symmetry Breaking

    E-Print Network [OSTI]

    Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.

    1998-01-01T23:59:59.000Z

    We propose to study the non-equilibrium features of heavy-ion collisions by following the evolution of an initial state with a large number of quanta with a distribution around a momentum |\\vec k_0| corresponding to a thin spherical shell in momentum space, a `tsunami'. An O(N); ({\\vec \\Phi}^2)^2 model field theory in the large N limit is used as a framework to study the non-perturbative aspects of the non-equilibrium dynamics including a resummation of the effects of the medium (the initial particle distribution). In a theory where the symmetry is spontaneously broken in the absence of the medium, when the initial number of particles per correlation volume is chosen to be larger than a critical value the medium effects can restore the symmetry of the initial state. We show that if one begins with such a symmetry-restored, non-thermal, initial state, non-perturbative effects automatically induce spinodal instabilities leading to a dynamical breaking of the symmetry. As a result there is explosive particle pro...

  3. Non-equilibrium evolution of a `Tsunami': Dynamical Symmetry Breaking

    E-Print Network [OSTI]

    Daniel Boyanovsky; Hector J. de Vega; Richard Holman; S. Prem Kumar; Robert D. Pisarski

    1997-11-06T23:59:59.000Z

    We propose to study the non-equilibrium features of heavy-ion collisions by following the evolution of an initial state with a large number of quanta with a distribution around a momentum |\\vec k_0| corresponding to a thin spherical shell in momentum space, a `tsunami'. An O(N); ({\\vec \\Phi}^2)^2 model field theory in the large N limit is used as a framework to study the non-perturbative aspects of the non-equilibrium dynamics including a resummation of the effects of the medium (the initial particle distribution). In a theory where the symmetry is spontaneously broken in the absence of the medium, when the initial number of particles per correlation volume is chosen to be larger than a critical value the medium effects can restore the symmetry of the initial state. We show that if one begins with such a symmetry-restored, non-thermal, initial state, non-perturbative effects automatically induce spinodal instabilities leading to a dynamical breaking of the symmetry. As a result there is explosive particle production and a redistribution of the particles towards low momentum due to the nonlinearity of the dynamics. The asymptotic behavior displays the onset of Bose condensation of pions and the equation of state at long times is that of an ultrarelativistic gas although the momentum distribution is non-thermal.

  4. Non-equilibrium Theory of Arrested Spinodal Decomposition

    E-Print Network [OSTI]

    José Manuel Olais-Govea; Leticia López-Flores; Magdaleno Medina-Noyola

    2015-05-03T23:59:59.000Z

    The Non-equilibrium Self-consistent Generalized Langevin Equation theory of irreversible relax- ation [Phys. Rev. E (2010) 82, 061503; ibid. 061504] is applied to the description of the non- equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermo- dynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, intersects the spinodal curve at lower temperatures and densities, and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line we can recognize two distinct domains with qualitatively different temperature dependence of the localization length. In the shallow-quench domain the localization length diverges as a power law as the tempera- ture T approaches the spinodal temperature Ts, whereas in the deep-quench domain, immediately above the glass-glass line, the localization length increases exponentially with T. We conjecture that the upper domain might correspond to full gas-liquid phase separation conditions, whereas the deep-quench domain might correspond to the formation of physical gels by arrested spinodal decomposition.

  5. Strongly interacting Fermi gases : non-equilibrium dynamics and dimensional crossover

    E-Print Network [OSTI]

    Sommer, Ariel T. (Ariel Tjodolv)

    2013-01-01T23:59:59.000Z

    Experiments using ultracold atomic gases address fundamental problems in many-body physics. This thesis describes experiments on strongly-interacting gases of fermionic atoms, with a focus on non-equilibrium physics and ...

  6. The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments

    E-Print Network [OSTI]

    R. Dean Astumian

    2005-12-01T23:59:59.000Z

    There has been great interest in applying the results of statistical mechanics to single molecule experiements. Recent work has highlighted so-called non-equilibrium work-energy relations and Fluctuation Theorems which take on an equilibrium-like (time independent) form. Here I give a very simple heuristic example where an equilibrium result (the barometric law for colloidal particles) arises from theory describing the {\\em thermodynamically} non-equilibrium phenomenon of a single colloidal particle falling through solution due to gravity. This simple result arises from the fact that the particle, even while falling, is in {\\em mechanical} equilibrium (gravitational force equal the viscous drag force) at every instant. The results are generalized by appeal to the central limit theorem. The resulting time independent equations that hold for thermodynamically non-equilibrium (and even non-stationary) processes offer great possibilities for rapid determination of thermodynamic parameters from single molecule experiments.

  7. Non-equilibrium solidification and ferrite in d-TRIP steel

    E-Print Network [OSTI]

    Cambridge, University of

    Non-equilibrium solidification and ferrite in d-TRIP steel H. L. Yi1 , S. K. Ghosh1 , W. J. Liu1, designed on the basis of equilibrium to contain substantial amounts of d-ferrite, reveal zero or much transformation of d-ferrite into austenite occurs without the required partitioning of solutes

  8. Thermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta,b,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Australia Abstract Thermal recovery from a hot dry rock reservoir viewed as a deformable fractured mediumThermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta phase being made by impermeable solid blocks separated by saturated fractures. The finite element

  9. A Coupled Model for Radiative Transfer: Doppler Effects, Equilibrium and Non-Equilibrium Diffusion Asymptotics

    E-Print Network [OSTI]

    Goudon, Thierry

    A Coupled Model for Radiative Transfer: Doppler Effects, Equilibrium and Non-Equilibrium Diffusion. The interaction terms take into account both scattering and absorption/emission phenomena, as well as Doppler-diffusion equations. Key words. Hydrodynamic limits. Diffusion approximation. Radiative transfer. Doppler correction

  10. Small angle neutron scattering (SANS) under non-equilibrium conditions R. C. Oberthr

    E-Print Network [OSTI]

    Boyer, Edmond

    663 Small angle neutron scattering (SANS) under non-equilibrium conditions R. C. Oberthür Institut with the times obtained from quasi- elastic neutron and light scattering, which yield information about neutrons aux petits angles (DNPA) pour l'étude des systèmes hors d'équi- libre thermodynamique est

  11. Lyapunov functions, stationary distributions, and non-equilibrium potential for chemical reaction networks

    E-Print Network [OSTI]

    Lyapunov functions, stationary distributions, and non-equilibrium potential for chemical reaction reac- tion systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well known Lyapunov function of chemical reaction network theory as a scaling limit of the non

  12. Strongly anisotropic non-equilibrium phase transition in Ising models with friction

    E-Print Network [OSTI]

    Sebastian Angst; Alfred Hucht; Dietrich E. Wolf

    2012-05-22T23:59:59.000Z

    The non-equilibrium phase transition in driven two-dimensional Ising models with two different geometries is investigated using Monte Carlo methods as well as analytical calculations. The models show dissipation through fluctuation induced friction near the critical point. We first consider high driving velocities and demonstrate that both systems are in the same universality class and undergo a strongly anisotropic non-equilibrium phase transition, with anisotropy exponent \\theta=3. Within a field theoretical ansatz the simulation results are confirmed. The crossover from Ising to mean field behavior in dependency of system size and driving velocity is analyzed using crossover scaling. It turns out that for all finite velocities the phase transition becomes strongly anisotropic in the thermodynamic limit.

  13. Non-equilibrium phase transition in an exactly solvable driven Ising model with friction

    E-Print Network [OSTI]

    Alfred Hucht

    2009-11-04T23:59:59.000Z

    A driven Ising model with friction due to magnetic correlations has recently been proposed by Kadau et al. (Phys. Rev. Lett. 101, 137205 (2008)). The non-equilibrium phase transition present in this system is investigated in detail using analytical methods as well as Monte Carlo simulations. In the limit of high driving velocities $v$ the model shows mean field behavior due to dimensional reduction and can be solved exactly for various geometries. The simulations are performed with three different single spin flip rates: the common Metropolis and Glauber rates as well as a multiplicative rate. Due to the non-equilibrium nature of the model all rates lead to different critical temperatures at $v>0$, while the exact solution matches the multiplicative rate. Finally, the cross-over from Ising to mean field behavior as function of velocity and system size is analysed in one and two dimensions.

  14. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity

    E-Print Network [OSTI]

    Roberto Cerbino; Yifei Sun; Aleksandar Donev; Alberto Vailati

    2015-02-12T23:59:59.000Z

    Diffusion processes are accompanied by the appearance of non-equilibrium fluctuations, whose size distribution on Earth is strongly affected by the gravity force. In microgravity and at steady state, these fluctuations exhibit generic scale invariance and their size is only limited by the finite dimension of the system. In this work, we investigate experimentally and computationally the development of non-equilibrium fluctuations during a thermophoretic process in microgravity. Both experiments and simulations show that during the onset of fluctuations the scale invariance is present at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length scale of the dominant mode are determined by the thickness of the diffuse layer.

  15. Non-equilibrium thermodynamics of damped Timoshenko and damped Bresse systems

    E-Print Network [OSTI]

    Manh Hong Duong

    2015-03-06T23:59:59.000Z

    In this paper, we cast damped Timoshenko and damped Bresse systems into a general framework for non-equilibrium thermodynamics, namely the GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible Coupling) framework. The main ingredients of GENERIC consist of five building blocks: a state space, a Poisson operator, a dissipative operator, an energy functional, and an entropy functional. The GENERIC formulation of damped Timoshenko and damped Bresse systems brings several benefits. First, it provides alternative ways to derive thermodynamically consistent models of these systems by construct- ing building blocks instead of invoking conservation laws and constitutive relations. Second, it reveals clear physical and geometrical structures of these systems, e.g., the role of the energy and the entropy as the driving forces for the reversible and irreversible dynamics respectively. Third, it allows us to introduce a new GENERIC model for damped Timoshenko systems that is not existing in the literature.

  16. Quantum Statistical Mechanics. IV. Non-Equilibrium Probability Operator and Stochastic, Dissipative Schrodinger Equation

    E-Print Network [OSTI]

    Phil Attard

    2014-06-23T23:59:59.000Z

    The probability operator for a generic non-equilibrium quantum system is derived. The corresponding stochastic, dissipative Schr\\"odinger equation is also given. The dissipative and stochastic propagators are linked by the fluctuation-dissipation theorem that is derived from the unitary condition on the time propagator. The dissipative propagator is derived from thermodynamic force and entropy fluctuation operators that are in general non-linear.

  17. On the use of stochastic differential geometry for non-equilibrium thermodynamics modeling and control

    E-Print Network [OSTI]

    Paolo Muratore-Ginanneschi

    2012-10-03T23:59:59.000Z

    We discuss the relevance of geometric concepts in the theory of stochastic differential equations for applications to the theory of non-equilibrium thermodynamics of small systems. In particular, we show how the Eells-Elworthy-Malliavin covariant construction of the Wiener process on a Riemann manifold provides a physically transparent formulation of optimal control problems of finite-time thermodynamic transitions. Based on this formulation, we turn to an evaluative discussion of recent results on optimal thermodynamic control and their interpretation.

  18. Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere

    E-Print Network [OSTI]

    J. Leenaarts; M. Carlsson; V. Hansteen; R. J. Rutten

    2007-09-24T23:59:59.000Z

    The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) Non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Halpha, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements and above quiet internetwork. d) The hydrogen n = 2 population and column density are persistently high in dynamic fibrils, suggesting that these obtain their visibility from being optically thick in Halpha also at low temperature.

  19. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    E-Print Network [OSTI]

    Liu, Yunqi; Wang, Bin

    2015-01-01T23:59:59.000Z

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U(1) gauge field. We start with an asymptotic Anti-de-Sitter(AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value Tc, the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge field on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the or...

  20. Canonical Quantization for a Relativistic Neutral Scalar Field in Non-equilibrium Thermo Field Dynamics

    E-Print Network [OSTI]

    Yuichi Mizutani; Tomohiro Inagaki; Yusuke Nakamura; Yoshiya Yamanaka

    2011-09-05T23:59:59.000Z

    A relativistic neutral scalar field is investigated in non-equilibrium thermo field dynamics. The canonical quantization is applied to the fields out of equilibrium. Because the thermal Bogoliubov transformation becomes time-dependent, the equations of motion for the ordinary unperturbed creation and annihilation operators are modified. This forces us to introduce a thermal counter term in the interaction Hamiltonian which generates additional radiative corrections. Imposing the self-consistency renormalization condition on the total radiative corrections, we obtain the quantum Boltzmann equation for the relativistic scalar field.

  1. Non-Equilibrium Thermo Field Dynamics for Relativistic Complex Scalar and Dirac Fields

    E-Print Network [OSTI]

    Yuichi Mizutani; Tomohiro Inagaki

    2012-05-02T23:59:59.000Z

    Relativistic quantum field theories for complex scalar and Dirac fields are investigated in non-equilibrium thermo field dynamics. The thermal vacuum is defined by the Bogoliubov transformed creation and annihilation operators. Two independent Bogoliubov parameters are introduced for a charged field. Its difference naturally induces the chemical potential. Time-dependent thermal Bogoliubov transformation generates the thermal counter terms. We fix the terms by the self-consistency renormalization condition. Evaluating the thermal self-energy under the self-consistency renormalization condition, we derive the quantum Boltzmann equations for the relativistic fields.

  2. Boltzmann Equation for Relativistic Neutral Scalar Field in Non-equilibrium Thermo Field Dynamics

    E-Print Network [OSTI]

    Yuichi Mizutani; Tomohiro Inagaki

    2011-03-18T23:59:59.000Z

    A relativistic neutral scalar field is investigated on the basis of the Schwinger-Dyson equation in the non-equilibrium thermo field dynamics. A time evolution equation for a distribution function is obtained from a diagonalization condition for the Schwinger-Dyson equation. An explicit expression of the time evolution equation is calculated in the $\\lambda\\phi^4$ interaction model at the 2-loop level. The Boltzmann equation is derived for the relativistic scalar field. We set a simple initial condition and numerically solve the Boltzmann equation and show the time evolution of the distribution function and the relaxation time.

  3. Similarity of coupled non-equilibrium flows behind normal shock waves

    E-Print Network [OSTI]

    Dalton, James Verne

    1968-01-01T23:59:59.000Z

    at constant pressure Dissociation energy per molecule Average energy gained by vibra- tion due to recombination (per unit mass) Average energy lost from vibra- tion due to dissociation (per unit mass) Vibrational energy per unit mass Same as E (T... reverse reaction-rate cons tant N [N&] p Length of non-equilibrium zone Mach number Mass of an atom of nitrogen Number of vibrational levels in- cluded in dissociation energy Concentration of ni trogen Pressure moles/cc dynes/cmE vii Dei R...

  4. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    SciTech Connect (OSTI)

    Wu, Wei [Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); Wang, Jin, E-mail: jin.wang.1@stonybrook.edu [Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China and College of Physics, Jilin University, 130021 Changchun (China)

    2014-09-14T23:59:59.000Z

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.

  5. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    E-Print Network [OSTI]

    Benjamin Doyon

    2014-10-01T23:59:59.000Z

    Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb-Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of "nonlinear sound velocities", which specialize to the sound velocity near equilibrium in non-integrable models, and "generalized sound velocities", which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb-Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  6. Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects

    E-Print Network [OSTI]

    Yanbiao Gan; Aiguo Xu; Guangcai Zhang; Sauro Succi

    2015-05-11T23:59:59.000Z

    A discrete Boltzmann model (DBM) is developed to investigate the hydrodynamic and thermodynamic non-equilibrium (TNE) effects in phase separation processes. The interparticle force drives changes and the gradient force, induced by gradients of macroscopic quantities, opposes them. In this paper, we investigate the interplay between them by providing detailed inspection of various non-equilibrium observables. Based on the TNE features, we define a TNE strength which roughly estimates the deviation amplitude from the thermodynamic equilibrium. The time evolution of the TNE intensity provides a convenient and efficient physical criterion to discriminate the stages of the spinodal decomposition and domain growth. Via the DBM simulation and this criterion, we quantitatively study the effects of latent heat and surface tension on phase separation. It is found that, the TNE strength attains its maximum at the end of the spinodal decomposition stage, and it decreases when the latent heat increases from zero. The surface tension effects are threefold, to prolong the duration of the spinodal decomposition stage, decrease the maximum TNE intensity, and accelerate the speed of the domain growth stage.

  7. A definition of thermodynamic entropy valid for non-equilibrium states and few-particle systems

    E-Print Network [OSTI]

    Gian Paolo Beretta; Enzo Zanchini

    2014-11-19T23:59:59.000Z

    From a new rigorous formulation of the general axiomatic foundations of thermodynamics we derive an operational definition of entropy that responds to the emergent need in many technological frameworks to understand and deploy thermodynamic entropy well beyond the traditional realm of equilibrium states of macroscopic systems. The new definition is achieved by avoiding to resort to the traditional concepts of "heat" (which restricts $a$ $priori$ the traditional definitions of entropy to the equilibrium domain) and of "thermal reservoir" (which restricts $in$ $practice$ our previous definitions of non-equilibrium entropy to the many-particle domain). The measurement procedure that defines entropy is free from intrinsic limitations and can be applied, $in$ $principle$, even to non-equilibrium states of few-particle systems, provided they are separable and uncorrelated. The construction starts from a previously developed set of carefully worded operational definitions for all the basic concepts. Then, through a new set of fully spelled-out fundamental hypotheses (four postulates and five assumptions) we derive the definitions of energy and entropy of any state, and of temperature of any stable equilibrium state. Finally, we prove the principle of entropy non-decrease, the additivity of entropy differences, the maximum entropy principle, and the impossibility of existence of a thermal reservoir.

  8. Non-equilibrium transition from dissipative quantum walk to classical random walk

    E-Print Network [OSTI]

    Marco Nizama; Manuel O. Cáceres

    2012-06-26T23:59:59.000Z

    We have investigated the time-evolution of a free particle in interaction with a phonon thermal bath, using the tight-binding approach. A dissipative quantum walk can be defined and many important non-equilibrium decoherence properties can be investigated analytically. The non-equilibrium statistics of a pure initial state have been studied. Our theoretical results indicate that the evolving wave-packet shows the suppression of Anderson's boundaries (ballistic peaks) by the presence of dissipation. Many important relaxation properties can be studied quantitatively, such as von Neumann's entropy and quantum purity. In addition, we have studied Wigner's function. The time-dependent behavior of the quantum entanglement between a free particle -in the lattice- and the phonon bath has been characterized analytically. This result strongly suggests the non-trivial time-dependence of the off-diagonal elements of the reduced density matrix of the system. We have established a connection between the quantum decoherence and the dissipative parameter arising from interaction with the phonon bath. The time-dependent behavior of quantum correlations has also been pointed out, showing continuous transition from quantum random walk to classical random walk, when dissipation increases.

  9. Laser induced plasma on copper target, a non-equilibrium model

    SciTech Connect (OSTI)

    Oumeziane, Amina Ait, E-mail: a.aitoumeziane@gmail.com; Liani, Bachir [Laboratoire de Physique Théorique, Abou Beker Blekaid University, Tlemcen (Algeria)] [Laboratoire de Physique Théorique, Abou Beker Blekaid University, Tlemcen (Algeria); Parisse, Jean-Denis [IUSTI UMR CNRS 7343, Aix-Marseille University, Marseille (France)] [IUSTI UMR CNRS 7343, Aix-Marseille University, Marseille (France)

    2014-02-15T23:59:59.000Z

    The aim of this work is to present a comprehensive numerical model for the UV laser ablation of metal targets, it focuses mainly on the prediction of laser induced plasma thresholds, the effect of the laser-plasma interaction, and the importance of the electronic non-equilibrium in the laser induced plume and its expansion in the background gas. This paper describes a set of numerical models for laser-matter interaction between 193-248 and 355?nm lasers and a copper target. Along with the thermal effects inside the material resulting from the irradiation of the latter with the pulsed laser, the laser-evaporated matter interaction and the plasma formation are thoroughly modelled. In the laser induced plume, the electronic nonequilibrium and the laser beam absorption have been investigated. Our calculations of the plasmas ignition thresholds on copper targets have been validated and compared to experimental as well as theoretical results. Comparison with experiment data indicates that our results are in good agreement with those reported in the literature. Furthermore, the inclusion of electronic non-equilibrium in our work indicated that this important process must be included in models of laser ablation and plasma plume formation.

  10. Manipulating shear-induced non-equilibrium transitions by feedback control

    E-Print Network [OSTI]

    Tarlan A. Vezirov; Sascha Gerloff; Sabine H. L. Klapp

    2014-11-04T23:59:59.000Z

    Using Brownian Dynamics (BD) simulations we investigate non-equilibrium transitions of sheared colloidal films under controlled shear stress $\\sigma_{\\mathrm{xz}}$. In our approach the shear rate $\\dot\\gamma$ is a dynamical variable, which relaxes on a timescale $\\tau_c$ such that the instantaneous, configuration-dependent stress $\\sigma_{\\mathrm{xz}}(t)$ approaches a pre-imposed value. Investigating the dynamics under this "feedback-control" scheme we find unique behavior in regions where the flow curve $\\sigma_{\\mathrm{xz}}(\\dot\\gamma)$ of the uncontrolled system is monotonic. However, in non-monotonic regions our method allows to {\\em select} between dynamical states characterized by different in-plane structure and viscosities. Indeed, the final state strongly depends on $\\tau_c$ relative to an {\\em intrinsic} relaxation time of the uncontrolled system. The critical values of $\\tau_c$ are estimated on the basis of a simple model.

  11. Dilution and resonance enhanced repulsion in non-equilibrium fluctuation forces

    E-Print Network [OSTI]

    Bimonte, Giuseppe; Kruger, Matthias; Kardar, Mehran

    2011-01-01T23:59:59.000Z

    In equilibrium, forces induced by fluctuations of the electromagnetic field between electrically polarizable objects (microscopic or macroscopic) in vacuum are always attractive. The force may, however, become repulsive for microscopic particles coupled to thermal baths with different temperatures. We demonstrate that this non-equilibrium repulsion can be realized also between macroscopic objects, as planar slabs, if they are kept at different temperatures. It is shown that repulsion can be enhanced by (i) tuning of material resonances in the thermal region, and by (ii) reducing the dielectric contrast due to "dilution". This can lead to stable equilibrium positions. We discuss the realization of these effects for aerogels, yielding repulsion down to sub-micron distances at realistic porosities.

  12. Dilution and resonance enhanced repulsion in non-equilibrium fluctuation forces

    E-Print Network [OSTI]

    Giuseppe Bimonte; Thorsten Emig; Matthias Kruger; Mehran Kardar

    2011-07-08T23:59:59.000Z

    In equilibrium, forces induced by fluctuations of the electromagnetic field between electrically polarizable objects (microscopic or macroscopic) in vacuum are always attractive. The force may, however, become repulsive for microscopic particles coupled to thermal baths with different temperatures. We demonstrate that this non-equilibrium repulsion can be realized also between macroscopic objects, as planar slabs, if they are kept at different temperatures. It is shown that repulsion can be enhanced by (i) tuning of material resonances in the thermal region, and by (ii) reducing the dielectric contrast due to "dilution". This can lead to stable equilibrium positions. We discuss the realization of these effects for aerogels, yielding repulsion down to sub-micron distances at realistic porosities.

  13. Exponential approach to, and properties of, a non-equilibrium steady state in a dilute gas

    E-Print Network [OSTI]

    Eric A. Carlen; Joel L. Lebowitz; Clement Mouhot

    2014-06-16T23:59:59.000Z

    We investigate a kinetic model of a system in contact with several thermal reservoirs at different temperatures $T_\\alpha$. Our system is a spatially uniform dilute gas whose internal dynamics is described by the nonlinear Boltzmann equation with Maxwellian collisions. Similarly, the interaction with reservoir $\\alpha$ is represented by a Markovian process that has the Maxwellian $M_{T_\\alpha}$ as its stationary state. We prove existence and uniqueness of a non-equilibrium steady state (NESS) and show exponential convergence to this NESS in a metric on probability measures introduced into the study of Maxwellian collisions by Gabetta, Toscani and Wenberg (GTW). This shows that the GTW distance between the current velocity distribution to the steady-state velocity distribution is a Lyapunov functional for the system. We also derive expressions for the entropy production in the system plus the reservoirs which is always positive.

  14. Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion

    SciTech Connect (OSTI)

    Philip, Bobby [ORNL] [ORNL; Wang, Zhen [ORNL] [ORNL; Berrill, Mark A [ORNL] [ORNL; Rodriguez Rodriguez, Manuel [ORNL] [ORNL; Pernice, Michael [Idaho National Laboratory (INL)] [Idaho National Laboratory (INL)

    2014-01-01T23:59:59.000Z

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.

  15. Will there be future deceleration? A study of particle creation mechanism in non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Supriya Pan; Subenoy Chakraborty

    2015-04-12T23:59:59.000Z

    The paper deals with non-equilibrium thermodynamics based on adiabatic particle creation mechanism with the motivation of considering it as an alternative choice to explain the recent observed accelerating phase of the universe. Using Friedmann equations, it is shown that the deceleration parameter ($q$) can be obtained from the knowledge of the particle production rate ($\\Gamma$). Motivated from thermodynamical point of view, cosmological solutions are evaluated for the particle creation rates in three cosmic phases, namely, inflation, matter dominated and present late time acceleration. The deceleration parameter ($q$) is expressed as a function of the redshift parameter ($z$), and its variation is presented graphically. Also, statefinder analysis has been presented graphically in three different phases of the universe. Finally, two non-interacting fluids with different particle creation rates are considered as cosmic substratum, and deceleration parameter ($q$) is evaluated. It is examined whether more than one transition of $q$ is possible or not by graphical representations.

  16. Non-equilibrium statistical field theory for classical particles: Basic kinetic theory

    E-Print Network [OSTI]

    Viermann, Celia; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2014-01-01T23:59:59.000Z

    Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.

  17. NON-EQUILIBRIUM THERMODYNAMIC PROCESSES: SPACE PLASMAS AND THE INNER HELIOSHEATH

    SciTech Connect (OSTI)

    Livadiotis, G.; McComas, D. J., E-mail: glivadiotis@swri.edu [Southwest Research Institute, San Antonio, TX (United States)

    2012-04-10T23:59:59.000Z

    Recently, empirical kappa distribution, commonly used to describe non-equilibrium systems like space plasmas, has been connected with non-extensive statistical mechanics. Here we show how a consistent definition of the temperature and pressure is developed for stationary states out of thermal equilibrium, so that the familiar ideal gas state equation still holds. In addition to the classical triplet of temperature, pressure, and density, this generalization requires the kappa index as a fourth independent thermodynamic variable that characterizes the non-equilibrium stationary states. All four of these thermodynamic variables have key roles in describing the governing thermodynamical processes and transitions in space plasmas. We introduce a novel characterization of isothermal and isobaric processes that describe a system's transition into different stationary states by varying the kappa index. In addition, we show how the variation of temperature or/and pressure can occur through an 'iso-q' process, in which the system remains in a fixed stationary state (fixed kappa index). These processes have been detected in the proton plasma in the inner heliosheath via specialized data analysis of energetic neutral atom (ENA) observations from Interstellar Boundary Explorer. In particular, we find that the temperature is highly correlated with (1) kappa, asymptotically related to isothermal ({approx}1,000,000 K) and iso-q ({kappa} {approx} 1.7) processes; and (2) density, related to an isobaric process, which separates the 'Ribbon', P Almost-Equal-To 3.2 pdyn cm{sup -2}, from the globally distributed ENA flux, P Almost-Equal-To 2 pdyn cm{sup -2}.

  18. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir

    E-Print Network [OSTI]

    Boyer, Edmond

    artificially fractured hot dry rock (HDR) reservoirs requires three main ingredients: (1) a proper thermoA thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir Rachel Geleta,b , Benjamin Loreta, , Nasser Khalilib aLaboratoire Sols, Solides, Structures, B

  19. Single-Photon Detection, Kinetic Inductance, and Non-Equilibrium Dynamics in Niobium and Niobium Nitride Superconducting Nanowires

    E-Print Network [OSTI]

    Devoret, Michel H.

    Abstract Single-Photon Detection, Kinetic Inductance, and Non-Equilibrium Dynamics in Niobium and Niobium Nitride Superconducting Nanowires Anthony Joseph Annunziata 2010 This thesis is a study of superconducting niobium and niobium nitride nanowires used as single optical and near-infrared photon detectors

  20. Cosmological QCD phase transition in steady non-equilibrium dissipative Ho?ava-Lifshitz early universe

    E-Print Network [OSTI]

    M. Khodadi; H. R. Sepangi

    2014-05-20T23:59:59.000Z

    We study the phase transition from quark-gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about $1-10\\mu s$ old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Ho\\v{r}ava-Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann-Robertson-Walker Universe filled with a non-causal and causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Ho\\v{r}ava-Lifshitz gravity, $\\lambda$, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature $T$, scale factor $a$, deceleration parameter $q$ and dimensionless ratio of the bulk viscosity coefficient to entropy density $\\frac{\\xi}{s}$. We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel-Stewart fluid, respectively.

  1. Radiation-induced non-equilibrium redox chemistry of plutonium: implications for environmental migration

    SciTech Connect (OSTI)

    Haschke, J M; Siekhaus, W J

    2009-02-11T23:59:59.000Z

    Static concentrations of plutonium oxidation states in solution and at surfaces in oxide-water systems are identified as non-equilibrium steady states. These kinetically controlled systems are described by redox cycles based on irreversible disproportionation of Pu(IV), Pu(V), and Pu(VI) in OH-bridged intermediate complexes and at OH-covered oxide surfaces. Steady state is fixed by continuous redox cycles driven by radioactivity-promoted electron-transfer and energetically favorable reactions of Pu(III) and Pu(VII) disproportionation products with H2O. A model based on the redox cycles accounts for the high steady-state [Pu] coexisting with Pu(IV) hydrous oxide at pH 0-15 and for predominance of Pu(V) and Pu(VI) in solution. The steady-state [Pu] depends on pH and the surface area of oxide in solution, but not on the initial Pu oxidation state. PuO{sub 2+x} formation is attributed to high Pu(V) concentrations existing at water-exposed oxide surfaces. Results infer that migration of Pu in an aqueous environment is controlled by kinetic factors unique to that site and that the predominant oxidation states in solution are Pu(V) and Pu(VI).

  2. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    SciTech Connect (OSTI)

    B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice

    2014-04-01T23:59:59.000Z

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  3. Cosmological QCD phase transition in steady non-equilibrium dissipative Ho?ava–Lifshitz early universe

    SciTech Connect (OSTI)

    Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir

    2014-07-15T23:59:59.000Z

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 ?s old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Ho?ava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Ho?ava–Lifshitz gravity, ?, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (?)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Ho?ava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.

  4. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    SciTech Connect (OSTI)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-07-20T23:59:59.000Z

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10{sup 5} cm{sup -3} for magnetic models and 10{sup 6} cm{sup -3} in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T){sup 1/2}. The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H{sup +}{sub 3} ion. This significantly lower value implies that ambipolar diffusion operates faster.

  5. Non-equilibrium structure and dynamics in a microscopic model of thin film active gels

    E-Print Network [OSTI]

    D. A. Head; W. J. Briels; G. Gompper

    2014-02-26T23:59:59.000Z

    In the presence of ATP, molecular motors generate active force dipoles that drive suspensions of protein filaments far from thermodynamic equilibrium, leading to exotic dynamics and pattern formation. Microscopic modelling can help to quantify the relationship between individual motors plus filaments to organisation and dynamics on molecular and supra-molecular length scales. Here we present results of extensive numerical simulations of active gels where the motors and filaments are confined between two infinite parallel plates. Thermal fluctuations and excluded-volume interactions between filaments are included. A systematic variation of rates for motor motion, attachment and detachment, including a differential detachment rate from filament ends, reveals a range of non-equilibrium behaviour. Strong motor binding produces structured filament aggregates that we refer to as asters, bundles or layers, whose stability depends on motor speed and differential end-detachment. The gross features of the dependence of the observed structures on the motor rate and the filament concentration can be captured by a simple one-filament model. Loosely bound aggregates exhibit super-diffusive mass transport, where filament translocation scales with lag time with non-unique exponents that depend on motor kinetics. An empirical data collapse of filament speed as a function of motor speed and end-detachment is found, suggesting a dimensional reduction of the relevant parameter space. We conclude by discussing the perspectives of microscopic modelling in the field of active gels.

  6. Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors

    E-Print Network [OSTI]

    Noé Cuneo; Jean-Pierre Eckmann; Christophe Poquet

    2014-11-03T23:59:59.000Z

    We consider a chain of three rotors (rotators) whose ends are coupled to stochastic heat baths. The temperatures of the two baths can be different, and we allow some constant torque to be applied at each end of the chain. Under some non-degeneracy condition on the interaction potentials, we show that the process admits a unique invariant probability measure, and that it is ergodic with a stretched exponential rate. The interesting issue is to estimate the rate at which the energy of the middle rotor decreases. As it is not directly connected to the heat baths, its energy can only be dissipated through the two outer rotors. But when the middle rotor spins very rapidly, it fails to interact effectively with its neighbors due to the rapid oscillations of the forces. By averaging techniques, we obtain an effective dynamics for the middle rotor, which then enables us to find a Lyapunov function. This and an irreducibility argument give the desired result. We finally illustrate numerically some properties of the non-equilibrium steady state.

  7. Response Theory for Equilibrium and Non-Equilibrium Statistical Mechanics: Causality and Generalized Kramers-Kronig relations

    E-Print Network [OSTI]

    Valerio Lucarini

    2007-10-04T23:59:59.000Z

    We consider the general response theory proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions allows for writing a set of Kramers-Kronig relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of observable susceptibilities obey Kramers-Kronig relations. Specific results are provided for arbitrary order harmonic response, which allows for a very comprehensive Kramers-Kronig analysis and the establishment of sum rules connecting the asymptotic behavior of the susceptibility to the short-time response of the system. These results generalize previous findings on optical Hamiltonian systems and simple mechanical models, and shed light on the general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks for any experimental and model generated dataset. In order to connect the response theory for equilibrium and non equilibrium systems, we rewrite the classical results by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. We briefly discuss how these results, taking into account the chaotic hypothesis, might be relevant for climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, Kramers-Kronig relations might be more robust tools for the definition of a self-consistent theory of climate change.

  8. Influence of Penning effect on the plasma features in a non-equilibrium atmospheric pressure plasma jet

    SciTech Connect (OSTI)

    Chang, Zhengshi; Zhang, Guanjun [School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Jiang, Nan; Cao, Zexian, E-mail: zxcao@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-14T23:59:59.000Z

    Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10?cm wide active electrode and a frequency of applied voltage down to 0.5?Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH{sub 3} into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.

  9. A complete cosmic scenario from inflation to late time acceleration: Non-equilibrium thermodynamics in the context of particle creation

    E-Print Network [OSTI]

    Subenoy Chakraborty; Subhajit Saha

    2015-07-06T23:59:59.000Z

    The paper deals with the mechanism of particle creation in the framework of irreversible thermodynamics. The second order non-equilibrium thermodynamical prescription of Israel and Stewart has been presented with particle creation rate, treated as the dissipative effect. In the background of a flat FRW model, we assume the non-equilibrium thermodynamical process to be isentropic so that the entropy per particle does not change and consequently the dissipative pressure can be expressed linearly in terms of the particle creation rate. Here the dissipative pressure behaves as a dynamical variable having a non-linear inhomogeneous evolution equation and the entropy flow vector satisfies the second law of thermodynamics. Further, using the Friedmann equations and by proper choice of the particle creation rate as a function of the Hubble parameter, it is possible to show (separately) a transition from the inflationary phase to the radiation era and also from matter dominated era to late time acceleration. Also, in analogy to analytic continuation, it is possible to show a continuous cosmic evolution from inflation to late time acceleration by adjusting the parameters. It is found that in the de Sitter phase, the comoving entropy increases exponentially with time, keeping entropy per particle unchanged. Subsequently, the above cosmological scenarios has been described from field theoretic point of view by introducing a scalar field having self interacting potential. Finally, we make an attempt to show the cosmological phenomenon of particle creation as Hawking radiation, particularly during the inflationary era.

  10. Spectral tailoring device

    DOE Patents [OSTI]

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05T23:59:59.000Z

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  11. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow: a non-equilibrium molecular dynamics study

    E-Print Network [OSTI]

    Lemarchand, Claire A; Todd, Billy D; Daivis, Peter J; Hansen, Jesper S

    2015-01-01T23:59:59.000Z

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear is investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity and normal stress differences of the bitumen mixture are computed at different shear rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid. The corresponding molecular structure is studied at the same shear rates and temperatures. The Cooee bitumen is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules. These nanoaggregates are immersed in a solvent of saturated hydrocarbon molecules. The nanoaggregates are shown to break up at very high shear rates, leading only to a minor effect on the viscosity of the mixture. At low shear rates, bitumen can be seen as a colloidal suspension of nanoaggregates in a solvent. The slight anisotropy of the whole sample due to the nanoaggregates is considered and quantified...

  12. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    E-Print Network [OSTI]

    de Visser, P J; Guruswamy, T; Goldie, D J; Withington, S; Neto, A; Llombart, N; Baryshev, A M; Klapwijk, T M; Baselmans, J J A

    2015-01-01T23:59:59.000Z

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice this is the first measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.

  13. Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions

    SciTech Connect (OSTI)

    Lindskog, M., E-mail: martin.lindskog@teorfys.lu.se; Wacker, A. [Mathematical Physics, Lund University, Box 118, 22100 Lund (Sweden); Wolf, J. M.; Liverini, V.; Faist, J. [ETH Institute for Quantum Electronics, ETH-Zürich, 8093 Zürich (Switzerland); Trinite, V.; Maisons, G.; Carras, M. [III-V Lab, 1 Avenue Augustin Fresnel, 91767 Palaiseau (France); Aidam, R.; Ostendorf, R. [Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, 79108 Freiburg (Germany)

    2014-09-08T23:59:59.000Z

    We study the operation of an 8.5??m quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents, agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.

  14. Tailoring PDC speckle structure

    E-Print Network [OSTI]

    G. Brida; M. Genovese; A. Meda; I. Ruo-Berchera; E. Predazzi

    2009-04-07T23:59:59.000Z

    Speckle structure of parametric down conversion light has recently received a large attention due to relevance in view of applications to quantum imaging The possibility of tailoring the speckle size by acting on the pump properties is an interesting tool for the applications to quantum imaging and in particular to the detection of weak object under shot-noise limit. Here we present a systematic detailed experimental study of the speckle structure produced in type II PDC with particular attention to its variation with pump beam properties.

  15. Tailoring PDC speckle structure

    E-Print Network [OSTI]

    Brida, G; Meda, A; Predazzi, E; Ruo-Berchera, I

    2008-01-01T23:59:59.000Z

    Speckle structure of parametric down conversion light has recently received a large attention due to relevance in view of applications to quantum imaging The possibility of tailoring the speckle size by acting on the pump properties is an interesting tool for the applications to quantum imaging and in particular to the detection of weak object under shot-noise limit. Here we present a systematic detailed experimental study of the speckle structure produced in type II PDC with particular attention to its variation with pump beam properties

  16. Predicting the stellar and non-equilibrium dust emission spectra of high-resolution simulated galaxies with DART-Ray

    E-Print Network [OSTI]

    Natale, Giovanni; Tuffs, Richard J; Debattista, Victor P; Fischera, Jörg; Grootes, Meiert W

    2015-01-01T23:59:59.000Z

    We describe the calculation of the stochastically heated dust emission using the 3D ray-tracing dust radiative transfer code DART-Ray, which is designed to solve the dust radiative transfer problem for galaxies with arbitrary geometries. In order to reduce the time required to derive the non-equilibrium dust emission spectra from each volume element within a model, we implemented an adaptive SED library approach, which we tested for the case of axisymmetric galaxy geometries. To show the capabilities of the code, we applied DART-Ray to a high-resolution N-body+SPH galaxy simulation to predict the appearance of the simulated galaxy at a set of wavelengths from the UV to the sub-mm. We analyse the results to determine the effect of dust on the observed radial and vertical profiles of the stellar emission as well as on the attenuation and scattering of light from the constituent stellar populations. We also quantify the proportion of dust re-radiated stellar light powered by young and old stellar populations, bo...

  17. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow: a non-equilibrium molecular dynamics study

    E-Print Network [OSTI]

    Claire A. Lemarchand; Nicholas P. Bailey; Billy D. Todd; Peter J. Daivis; Jesper S. Hansen

    2015-01-03T23:59:59.000Z

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear is investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity and normal stress differences of the bitumen mixture are computed at different shear rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid. The corresponding molecular structure is studied at the same shear rates and temperatures. The Cooee bitumen is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules. These nanoaggregates are immersed in a solvent of saturated hydrocarbon molecules. The nanoaggregates are shown to break up at very high shear rates, leading only to a minor effect on the viscosity of the mixture. At low shear rates, bitumen can be seen as a colloidal suspension of nanoaggregates in a solvent. The slight anisotropy of the whole sample due to the nanoaggregates is considered and quantified. The alignment of docosane molecules due to form and intrinsic birefringence and its effect on the rheological properties of the mixture are discussed. The stress optical rule is shown to be valid only in a limited range of shear rates at high temperatures, because this rule neglects the presence of other molecule types than docosane at high shear rates and the effect of intermolecular alignment, which gets more pronounced at high shear rates.

  18. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines

    SciTech Connect (OSTI)

    Yang, Lin [Institute of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900 (China); Tan, Xiaohua; Wan, Xiang; Chen, Lei; Jin, Dazhi; Qian, Muyang [Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [Institute of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2014-04-28T23:59:59.000Z

    Two Stark broadening parameters including FWHM (full width at half maximum) and FWHA (full width at half area) of isotope hydrogen alpha lines are simultaneously introduced to determine the electron density of a pulsed vacuum arc jet. To estimate the gas temperature, the rotational temperature of the C{sub 2} Swan system is fit to 2500?±?100?K. A modified Boltzmann-plot method with b{sub i}-factor is introduced to determine the modified electron temperature. The comparison between results of atomic and ionic lines indicates the jet is in partial local thermodynamic equilibrium and the electron temperature is close to 13?000?±?400?K. Based on the computational results of Gig-Card calculation, a simple and precise interpolation algorithm for the discrete-points tables can be constructed to obtain the traditional n{sub e}-T{sub e} diagnostic maps of two Stark broadening parameters. The results from FWHA formula by the direct use of FWHM?=?FWHA and these from the diagnostic map are different. It can be attributed to the imprecise FWHA formula form and the deviation between FWHM and FWHA. The variation of the reduced mass pair due to the non-equilibrium effect contributes to the difference of the results derived from two hydrogen isotope alpha lines. Based on the Stark broadening analysis in this work, a corrected method is set up to determine n{sub e} of (1.10?±?0.08)?×?10{sup 21}?m{sup ?3}, the reference reduced mass ?{sub 0} pair of (3.30?±?0.82 and 1.65?±?0.41), and the ion kinetic temperature of 7900?±?1800?K.

  19. THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS

    SciTech Connect (OSTI)

    Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Glover, Simon C. O., E-mail: mordecai@amnh.org, E-mail: glover@uni-heidelberg.de [Zentrum der Astrophysik der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Strasse 2, 69120 Heidelberg (Germany)

    2012-02-20T23:59:59.000Z

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R{sub mol} and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H{sub 2} from cold atomic gas. The formation timescale for H{sub 2} is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H{sub 2} formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H{sub 2} formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H{sub 2}. The observed correlation of R{sub mol} with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R{sub mol} with density. If we examine the value of R{sub mol} in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  20. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. I. BASIC MAGNETIC AND NON-MAGNETIC MODELS AND PARAMETER STUDIES

    SciTech Connect (OSTI)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-07-01T23:59:59.000Z

    We combine dynamical and non-equilibrium chemical modeling of evolving prestellar molecular cloud cores and investigate the evolution of molecular abundances in the contracting core. We model both magnetic cores, with varying degrees of initial magnetic support, and non-magnetic cores, with varying collapse delay times. We explore, through a parameter study, the competing effects of various model parameters in the evolving molecular abundances, including the elemental C/O ratio, the temperature, and the cosmic-ray ionization rate. We find that different models show their largest quantitative differences at the center of the core, whereas the outer layers, which evolve slower, have abundances which are severely degenerate among different dynamical models. There is a large range of possible abundance values for different models at a fixed evolutionary stage (central density), which demonstrates the large potential of chemical differentiation in prestellar cores. However, degeneracies among different models, compounded with uncertainties induced by other model parameters, make it difficult to discriminate among dynamical models. To address these difficulties, we identify abundance ratios between particular molecules, the measurement of which would have maximal potential for discrimination among the different models examined here. In particular, we find that the ratios between NH{sub 3} and CO, NH{sub 2} and CO, and NH{sub 3} and HCO{sup +} are sensitive to the evolutionary timescale, and that the ratio between HCN and OH is sensitive to the C/O ratio. Finally, we demonstrate that measurements of the central deviation (central depletion or enhancement) of abundances of certain molecules are good indicators of the dynamics of the core.

  1. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    SciTech Connect (OSTI)

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)

    2013-11-21T23:59:59.000Z

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of ?-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the ?-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  2. On Tailoring PDC speckle structure

    E-Print Network [OSTI]

    Brida, G; Meda, A; Ruo-Berchera, I; Predazzi, E

    2008-01-01T23:59:59.000Z

    Speckle structure of parametric down conversion light has recently received a large attention due to relevance in view of applications to quantum imaging The possibility of tailoring the speckle size by acting on the pump properties is an interesting tool for the applications to quantum imaging and in particular to the detection of weak object under shot-noise limit. Here we present a systematic detailed experimental study of the speckle structure produced in type II PDC with particular attention to its variation with pump beam properties.

  3. Property Prediction Tools for Tailored Polymer Composite Structures...

    Energy Savers [EERE]

    2.pdf More Documents & Publications Property Prediction Tools for Tailored Polymer Composite Structures Engineering Property Prediction Tools for Tailored Polymer Composite...

  4. Property Prediction Tools for Tailored Polymer Composite Structures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.pdf More Documents & Publications Engineering Property Prediction Tools for Tailored Polymer Composite Structures Engineering Property Prediction Tools for Tailored Polymer...

  5. Linear tailored gain broad area semiconductor lasers

    SciTech Connect (OSTI)

    Lindsey, C.P.; Mehuys, D.; Yariv, A.

    1987-06-01T23:59:59.000Z

    Tailored gain semiconductor lasers capable of high-power operation with single-lobed, nearly diffraction limited beamwidths only a few degrees wide have been demonstrated in proton implanted chirped arrays and ''halftone'' broad area lasers. The authors analyze lasers with a linear gain gradient, and obtain analytic approximations for their unsaturated optical eigenmodes. Unlike a uniform array, the fundamental mode of a linear tailored gain laser is the mode at threshold. Mode discrimination may be controlled by lasing the spatial gain gradient. All modes of asymmetric tailored gain waveguides have single-lobed far-field patterns offset from 0/sup 0/. Finally, they utilize tailored gain broad area lasers to make a measurement of the antiguiding parameter, and find b = 2.5 +- 0.5, in agreement with previous results.

  6. Temporal pulse tailoring in laser manufacturing technologies

    E-Print Network [OSTI]

    Peinke, Joachim

    5 Temporal pulse tailoring in laser manufacturing technologies Razvan Stoian1 , Matthias. Ultrafast lasers have gained momentum in material processing technolo- gies in response to requirements for quality material processing. 5.1 Introduction The demand for precision in laser material processing

  7. Tailored Materials for High Efficiency CIDI Engines (Caterpillar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  8. Engineering Property Prediction Tools for Tailored Polymer Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting lm068nguyen2012o.pdf More Documents & Publications Engineering Property Prediction Tools for Tailored Polymer Composite Structures Property...

  9. Tailored mixing inside a translating droplet

    E-Print Network [OSTI]

    Rodolphe Chabreyrie; Dmitri Vainchtein; Cristel Chandre; Pushpendra Singh; Nadine Aubry

    2008-03-03T23:59:59.000Z

    Tailored mixing inside individual droplets could be useful to ensure that reactions within microscopic discrete fluid volumes, which are used as microreactors in ``digital microfluidic'' applications, take place in a controlled fashion. In this article we consider a translating spherical liquid drop to which we impose a time periodic rigid-body rotation. Such a rotation not only induces mixing via chaotic advection, which operates through the stretching and folding of material lines, but also offers the possibility of tuning the mixing by controlling the location and size of the mixing region. Tuned mixing is achieved by judiciously adjusting the amplitude and frequency of the rotation, which are determined by using a resonance condition and following the evolution of adiabatic invariants. As the size of the mixing region is increased, complete mixing within the drop is obtained.

  10. Tailoring the properties of organic aerogels

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    We have recently succeeded in producing a new class of organic (or carbon) aerogels whose electrical, mechanical, and other properties are superior to those of the metal alkoxides. By tailoring properties to specific applications, we hope to achieve aerogels with even better performance. We have already tested carbon aerogels for use in inertial-confinement fusion targets and are currently studying applications to other technologies, such as battery electrodes, catalyst supports, and gas filters. In several of these applications, the permeability of the carbon aerogels-that is, their resistance to fluid flow-is crucial to their performance. Here, we describe briefly the synthesis of organic aerogels and present the results of our permeability studies.

  11. Tailored ion energy distributions on plasma electrodes

    SciTech Connect (OSTI)

    Economou, Demetre J. [Plasma Processing Laboratory, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States)] [Plasma Processing Laboratory, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States)

    2013-09-15T23:59:59.000Z

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.

  12. Engineering Property Prediction Tools for Tailored Polymer Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm11smith.pdf More Documents & Publications Property Prediction Tools for Tailored Polymer...

  13. aeroelastically tailored small: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the airfoil camper or wing pitch... Rogers, Jesse Byron 2012-06-07 3 CMMi for Small Business: Initial Tailoring of a Mexican organization. Francisco Alvarez R, Jaime Muoz A,...

  14. 1 INTRODUCTION Wireless sensor networks tailored for structural

    E-Print Network [OSTI]

    Lynch, Jerome P.

    1 INTRODUCTION Wireless sensor networks tailored for structural monitoring applications have grown motivated researchers to explore wireless sensor networks for structural monitoring applications. Wireless in popularity since their initial introduction in the mid-1990s. Wireless sensors have the potential

  15. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect (OSTI)

    Grant, G.J.; Jana, S.

    2012-03-30T23:59:59.000Z

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

  16. Problems on Non-Equilibrium Statistical Physics 

    E-Print Network [OSTI]

    Kim, Moochan

    2011-08-08T23:59:59.000Z

    weakly interacting Boson gas. In the single-photon heat engine, we have derived the equation of state similar to that in classical ideal gas and applied it to construct the Carnot cycle with a single photon, and showed the Carnot efficiency in this single...

  17. Entanglement Production in Non-Equilibrium Thermodynamics

    E-Print Network [OSTI]

    V. Vedral

    2007-06-21T23:59:59.000Z

    We define and analyse the concept of entanglement production during the evolution of a general quantum mechanical dissipative system. While it is important to minimise entropy production in order to achieve thermodynamical efficiency, maximising the rate of change of entanglement is important in quantum information processing. Quantitative relations are obtained between entropy and entanglement productions, under specific assumptions detailed in the text. We apply these to the processes of dephasing and decay of correlations between two initially entangled qubits. Both the Master equation treatment as well as the higher Hilbert space analysis are presented. Our formalism is very general and contains as special cases many reported individual instance of entanglement dynamics, such as, for example, the recently discovered notion of the sudden death of entanglement.

  18. Master thesis Non-equilibrium Solidification

    E-Print Network [OSTI]

    Cambridge, University of

    Metallurgy Graduate Institute of Ferrous Technology Pohang University of Science and Technology 2011 #12 ferrite fraction is increased under higher cooling rates, the accuracy of diffusivity database or the cell and ferrite of the same composition have the same free energy As , but accounting for the stored energy

  19. Problems on Non-Equilibrium Statistical Physics

    E-Print Network [OSTI]

    Kim, Moochan

    2011-08-08T23:59:59.000Z

    energy functional, similar to the problem in dimensional scaling in the H-atom. For the C-atom, we got the ground state energy -37:82 eV with a relative error less than 6 %. The simplest molecular ion, H+ 2 , has been investigated by the quasi...

  20. Non-equilibrium thermodynamics of gravitational screens

    E-Print Network [OSTI]

    Laurent Freidel; Yuki Yokokura

    2014-05-19T23:59:59.000Z

    We study the Einstein gravity equations projected on a timelike surface, which represents the time evolution of what we call a gravitational screen. We show that such a screen possesses a surface tension and an internal energy, and that the Einstein equations reduce to the thermodynamic equations of a viscous bubble. We also provide a complete dictionary between gravitational and thermodynamical variables. In the non-viscous cases there are three thermodynamic equations which characterise a bubble dynamics: These are the first law, the Marangoni flow equation and the Young-Laplace equation. In all three equations the surface tension plays a central role: In the first law it appears as a work term per unit area, in the Marangoni flow its gradient drives a force, and in the Young-Laplace equation it contributes to a pressure proportional to the surface curvature. The gravity equations appear as a natural generalization of these bubble equations when the bubble itself is viscous and dynamical. In particular, it shows that the mechanism of entropy production for the viscous bubble is mapped onto the production of gravitational waves. We also review the relationship between surface tension and temperature, and discuss the usual black-hole thermodynamics from this point of view.

  1. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys &8-5070P3.TailoredTailored

  2. "Tailoring synthesis of new materials at multiple length scales."

    E-Print Network [OSTI]

    Acton, Scott

    for a lithium-ion battery cathode material. · Published a method to tailor the transition metal composition in battery electrode materials. · Published a previously unreported safety issue with a popular lithium-ion to dramatically increase the energy density of lithium-ion batteries. We employ a hierarchical, multiscale

  3. TAILORING HEALTH MESSAGES 123 Delivering Automated Health Monitoring via Telephone

    E-Print Network [OSTI]

    Dale, Robert

    can be tailored by a health care provider, using predefined dialog schemata that make it possible a problem during a conversation, then it connects the patient to a health care provider who can attend from the health care provider and the manner of its delivery (Burley and Hampton 2003; Gorney

  4. GSpace: Tailorable Data Distribution in Shared Data Space Systems

    E-Print Network [OSTI]

    Mousavi, Mohammad

    GSpace: Tailorable Data Distribution in Shared Data Space Systems Giovanni Russello1, Michel. The shared data space model has proven to be an effective paradigm for building distributed applications. However, building an efficient distributed implementation remains a challenge. A plethora of different

  5. Aeroelastic tailoring in wind-turbine blade applications

    SciTech Connect (OSTI)

    Veers, P.; Lobitz, D. [Sandia National Labs., Albuquerque, NM (United States); Bir, G. [National Renewable Energy Lab., Golden, CO (United States). National Wind Technology Center

    1998-04-01T23:59:59.000Z

    This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.

  6. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

  7. Stimuli-Tailored Dispersion State of Aqueous Carbon Nanotube Suspensions and Solid Polymer Nanocomposites 

    E-Print Network [OSTI]

    Etika, Krishna

    2012-02-14T23:59:59.000Z

    state. The ability to tailor nanoparticle dispersion state in liquid and solid media can ultimately provide a powerful method for tailoring the properties of solution processed nanoparticle-filled polymer composites. This dissertation reports the use...

  8. Recent progress in tailoring trap-based positron beams

    SciTech Connect (OSTI)

    Natisin, M. R.; Hurst, N. C.; Danielson, J. R.; Surko, C. M. [Physics Department, University of California, San Diego La Jolla CA 92093-0319 (United States)

    2013-03-19T23:59:59.000Z

    Recent progress is described to implement two approaches to specially tailor trap-based positron beams. Experiments and simulations are presented to understand the limits on the energy spread and pulse duration of positron beams extracted from a Penning-Malmberg (PM) trap after the particles have been buffer-gas cooled (or heated) in the range of temperatures 1000 {>=} T {>=} 300 K. These simulations are also used to predict beam performance for cryogenically cooled positrons. Experiments and simulations are also presented to understand the properties of beams formed when plasmas are tailored in a PM trap in a 5 tesla magnetic field, then non-adiabatically extracted from the field using a specially designed high-permeability grid to create a new class of electrostatically guided beams.

  9. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag: Safety DisplayingTailored

  10. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag: Safety DisplayingTailored Terahertz

  11. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys &8-5070P3.Tailored Terahertz

  12. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys &8-5070P3.Tailored

  13. Vehicle Technologies Office Merit Review 2015: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about active, tailorable...

  14. Vehicle Technologies Office Merit Review 2014: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Active, tailorable...

  15. Single contact tailored gain phased array of semiconductor lasers

    SciTech Connect (OSTI)

    Lindsey, C.P.; Kapon, E.; Katz, J.; Margalit, S.; Yariv, A.

    1984-10-01T23:59:59.000Z

    We demonstrate a single contact tailored gain-guided array in which the gain profile across the array is made strongly asymmetric by varying the width of the contact stripes. A proton isolated array of six (GaAl)As lasers with 5-..mu..m separations and widths varying linearly between 3 and 8 ..mu..m had a single lobed far field 2/sup 0/ wide, close to the diffraction limit for a single supermode. Fabrication of this device is simple, and suited to large-scale processing techniques. We also show that in such an asymmetric gain-guided array the fundamental mode is favored over higher order modes, and that higher order modes can have single lobed far-field patterns differing only slightly from that of the fundamental.

  16. High gain photoconductive semiconductor switch having tailored doping profile zones

    DOE Patents [OSTI]

    Baca, Albert G. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Mar, Alan (Albuquerque, NM); Zutavern, Fred J (Albuquerque, NM); Hjalmarson, Harold P. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); O'Malley, Martin W. (Edgewood, NM); Helgeson, Wesley D. (Albuquerque, NM); Denison, Gary J. (Sandia Park, NM); Brown, Darwin J. (Albuquerque, NM); Sullivan, Charles T. (Albuquerque, NM); Hou, Hong Q. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

  17. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect (OSTI)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15T23:59:59.000Z

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  18. Tailored Displays to Compensate for Visual Aberrations Vitor F. Pamplona1

    E-Print Network [OSTI]

    Aliaga, Daniel G.

    optics are performed. We propose tailored displays for daily tasks where using eyeglasses are unfeasible-order aberrations that eyeglasses are not able to. Keywords: tailored displays, optics, light-field displays Links-standard eyesight. Acuity enhance- ment options range from simple eyeglasses to laser eye surgery. Wearable optical

  19. Fuel Source Isotopic Tailoring Impact on ITER Design, Operation and Safety

    E-Print Network [OSTI]

    1 Fuel Source Isotopic Tailoring and Its Impact on ITER Design, Operation and Safety M. J. Gouge, W. The isotopic tailoring concept consists of utilizing a tritium-rich pellet source for core fueling and a deuterium- rich gas source for edge fueling. Because of the improved particle confinement associated

  20. Mechanical Properties of Aluminum Tailor Welded Blanks at Superplastic Temperatures

    SciTech Connect (OSTI)

    Davies, Richard W.; Vetrano, John S.; Smith, Mark T.; Pitman, Stan G.

    2002-10-06T23:59:59.000Z

    This paper describes an investigation of the mechanical properties of weld material in aluminum tailor welded blanks (TWB) at superplastic temperatures and discusses the potential application of TWBs in superplastic forming operations. Aluminum TWBs consist of multiple sheet materials of different thickness or alloy that are butt-welded together into a single, variable thickness blank. To evaluate the performance of the weld material in TWBs, a series of tensile tests were conducted at superplastic temperatures with specimens that contained weld material in the gage area. The sheet material used in the study was Sky 5083 aluminum alloy, which was joined to produce the TWBs by gas tungsten arc welding using an AA5356 filler wire. The experimental results show that, in the temperature range of 500?C to 550?C and at strain rates ranging from 10-4 sec-1 to 10-2 sec-1, the weld material has a higher flow stress and lower ductility than the monolithic sheet material. The weld material exhibited elongations of 40% to 60% under these conditions, whereas the monolithic sheet achieved 220% to 360% elongation. At the same temperatures and strain rates, the weld material exhibited flow stresses 1.3 to 4 times greater than the flow stress in the monolithic sheet. However, the weld material did show a substantial increase in the strain rate sensitivity and ductility when compared to the same material formed at room temperature.

  1. Tailored quantum statistics from broadband states of light

    E-Print Network [OSTI]

    S. Hartmann; F. Friedrich; A. Molitor; M. Reichert; W. Elsäßer; R. Walser

    2014-12-19T23:59:59.000Z

    We analyze the statistics of photons originating from amplified spontaneous emission generated by a quantum dot superluminescent diode. Experimentally detectable emission properties are taken into account by parametrizing the corresponding quantum state as a multi-mode phase-randomized Gaussian density operator. The validity of this model is proven in two subsequent experiments using fast two-photon-absorption detection observing second order equal-time- as well as second order fully time-resolved intensity correlations on femtosecond timescales. In the first experiment, we study the photon statistics when the number of contributing longitudinal modes is systematically reduced by applying well-controlled optical feedback. In a second experiment, we add coherent light from a single-mode laserdiode to quantum dot superluminescent diode broadband radiation. Tuning the power ratio, we realize tailored second order correlations ranging from Gaussian to Poissonian statistics. Both experiments are very well matched by theory, thus giving first insights into quantum properties of radiation from quantum dot superluminescent diodes.

  2. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01T23:59:59.000Z

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  3. Targeted versus tailored multimedia patient engagement to enhance depression recognition and treatment in primary care: randomized controlled trial protocol for the AMEP2 study

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    P: Tailored interactive multimedia computer programs toof an interactive multimedia program to influence eatingTargeted versus tailored multimedia patient engagement to

  4. Experimental and numerical investigations on tailored tempering process of a U-channel component with tailored mechanical properties

    SciTech Connect (OSTI)

    Tang, B. T., E-mail: tbtsh@hotmail.com [Shandong Jianzhu University, Fengming Rd., Jinan, 250101 (China); Bruschi, S.; Ghiotti, A.; Bariani, P. F. [University of Padova, Via Venezia 1, Padova, 35131 (Italy)

    2013-12-16T23:59:59.000Z

    Hot stamping of quenchenable ultra high strength steels currently represents a promising forming technology for the manufacturing of safety and crash relevant parts. For some applications, such as B-pillars and other structural components that may undergo impact loading, it may be desirable to create regions of the part with tailored mechanical properties. In the paper, a laboratory-scale hot stamped U-channel was manufactured by using a segmented die, which was heated by cartridge heaters and cooled by water channels independently. Local hardness values as low as 289 HV can be achieved using a heated die temperature of 400°C while maintaining a hardness level of 490 HV in the fully cooled region. If the die temperature was increased to 450°C, the Vickers hardness of elements in the heated region was 227 HV, with a reduction in hardness of more than 50%. Optical microscopy was used to verify the microstructure of the as-quenched phases with respect to the heated die temperatures. The FE model of the lab-scale process was developed to capture the overall hardness trends that were observed in the experiments.

  5. Developing & tailoring multi-functional carbon foams for multi-field response

    E-Print Network [OSTI]

    Sarzynski, Melanie Diane

    2009-05-15T23:59:59.000Z

    anisotropy and coatings to provide comprehensive information to guide processing researchers in their pursuit of tailorable performance. Several illustrations are undertaken at multiple scales to explore the response of multi-functional carbon foams under...

  6. Developing & tailoring multi-functional carbon foams for multi-field response 

    E-Print Network [OSTI]

    Sarzynski, Melanie Diane

    2009-05-15T23:59:59.000Z

    anisotropy and coatings to provide comprehensive information to guide processing researchers in their pursuit of tailorable performance. Several illustrations are undertaken at multiple scales to explore the response of multi-functional carbon foams under...

  7. Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds

    E-Print Network [OSTI]

    Lee, James

    , Tieying Yin1, Bochu Wang1, James C-M Lee3 and Qingsong Yu2,4 1 Bioengineering College of Chongqing with well-tailored architectures and patterns were successfully prepared from biodegradable poly

  8. Hard and tough electrodeposited aluminum-manganese alloys with tailored nanostructures

    E-Print Network [OSTI]

    Ruan, Shiyun

    2010-01-01T23:59:59.000Z

    Tailoring the nanostructure of electrodeposited Al-Mn films to achieve high hardness and toughness is the overarching goal of this thesis. Binary Al-Mn alloys are electrodeposited using a conventional current waveform in ...

  9. Tailoring Action Parameterizations to Their Task Contexts Freek Stulp and Michael Beetz

    E-Print Network [OSTI]

    Cremers, Daniel

    Tailoring Action Parameterizations to Their Task Contexts Freek Stulp and Michael Beetz Intelligent Autonomous Systems Group, Technische Universit¨at M¨unchen Boltzmannstrasse 3, D-85747 Munich, Germany {stulp,beetz

  10. Towards a Tailored Sensor Network for Fire Emergency Monitoring in Large buildings 

    E-Print Network [OSTI]

    Upadhyay, Rochan

    2007-10-02T23:59:59.000Z

    In this presentation, we describe some of the ongoing efforts in developing a wireless sensor network tailored specifically for fire emergency monitoring. Network simulations of a dense sensor network with a flat architecture ...

  11. Fundamental lateral mode oscillation via gain tailoring in broad area semiconductor lasers

    SciTech Connect (OSTI)

    Lindsey, C.; Derry, P.; Yariv, A.

    1985-09-15T23:59:59.000Z

    We show that by employing gain tailoring in a broad area semiconductor laser we achieve fundamental lateral mode operation with a diffraction-limited single-lobed far-field pattern. We demonstrate a tailored gain broad area laser 60 ..mu..m wide which emits 450 mW per mirror into a stable, single-lobed far-field pattern 3 1/2/sup 0/ wide at 5.3 I/sub th/.

  12. Supersonic turbulent boundary layers with periodic mechanical non-equilibrium 

    E-Print Network [OSTI]

    Ekoto, Isaac Wesley

    2007-04-25T23:59:59.000Z

    questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface...

  13. Non-equilibrium singlettriplet Kondo effect in carbon nanotubes

    E-Print Network [OSTI]

    Loss, Daniel

    ­2 ­1 0 1 2 Si gate SiO2 Source Drain Nanotube a c b Figure 1 Experimental setup and shell/Au source and drain electrodes, spaced 250nm apart. Highly doped silicon below the SiO2 cap layer acted as a back-gate electrode. Room-temperature measurements of conductance as a function of back-gate voltage

  14. Is Soret Equilibrium a Non-Equilibrium Effect? Alois Wrger

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'Aquitaine, Université de Bordeaux & CNRS, 351 cours de la Libération, 33405 Talence, France Recent thermophoretic

  15. Non-equilibrium fluctuation induced-phenomena in quantum electrodynamics

    E-Print Network [OSTI]

    Golyk, Vladyslav Alexander

    2014-01-01T23:59:59.000Z

    We study fluctuation-induced phenomena in systems out of thermal equilibrium, resulting from the stochastic nature of quantum and thermal fluctuations of electromagnetic currents and waves. Specifically, we study radiative ...

  16. Non-Equilibrium Pathways during Electrochemical Phase Transformations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    level, where incomplete reactions and failure are prone to occur. Micrometric-sized lithium-manganese spinel cathode material - Li1+xMn2-xO4 - is one of the state-of-the-art...

  17. Equilibrium and non-equilibrium emission of complex fragments

    SciTech Connect (OSTI)

    Bowman, D.R.

    1989-08-01T23:59:59.000Z

    Complex fragment emission (Z{gt}2) has been studied in the reactions of 50, 80, and 100 MeV/u {sup 139}La + {sup 12}C, and 80 MeV/u {sup 139}La + {sup 27}Al, {sup nat}Cu, and {sup 197}Au. Charge, angle, and energy distributions were measured inclusively and in coincidence with other complex fragments, and were used to extract the source rapidities, velocity distributions, and cross sections. The experimental emission velocity distributions, charge loss distributions, and cross sections have been compared with calculations based on statistical compound nucleus decay. The binary signature of the coincidence events and the sharpness of the velocity distributions illustrate the primarily 2-body nature of the {sup 139}La + {sup 12}C reaction mechanism between 50 and 100 MeV/u. The emission velocities, angular distributions, and absolute cross sections of fragments of 20{le}Z{le}35 at 50 MeV/u, 19{le}Z{le}28 at 80 MeV/u, and 17{le}Z{le}21 at 100 MeV/u indicate that these fragments arise solely from the binary decay of compound nuclei formed in incomplete fusion reactions in which the {sup 139}La projectile picks up about one-half of the {sup 12}C target. In the 80 MeV/u {sup 139}La + {sup 27}Al, {sup nat}Cu, and {sup 197}Au reactions, the disappearance of the binary signature in the total charge and velocity distributions suggests and increase in the complex fragment and light charged particle multiplicity with increasing target mass. As in the 80 and 100 MeV/u {sup 139}La + {sup 12}C reactions, the lighter complex fragments exhibit anisotropic angular distributions and cross sections that are too large to be explained exclusively by statistical emission. 143 refs., 67 figs.

  18. Supersonic turbulent boundary layers with periodic mechanical non-equilibrium

    E-Print Network [OSTI]

    Ekoto, Isaac Wesley

    2007-04-25T23:59:59.000Z

    questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface...

  19. Non-equilibrium Lorentz gas on a curved space

    E-Print Network [OSTI]

    Felipe Barra; Thomas Gilbert

    2007-01-12T23:59:59.000Z

    The periodic Lorentz gas with external field and iso-kinetic thermostat is equivalent, by conformal transformation, to a billiard with expanding phase-space and slightly distorted scatterers, for which the trajectories are straight lines. A further time rescaling allows to keep the speed constant in that new geometry. In the hyperbolic regime, the stationary state of this billiard is characterized by a phase-space contraction rate, equal to that of the iso-kinetic Lorentz gas. In contrast to the iso-kinetic Lorentz gas where phase-space contraction occurs in the bulk, the phase-space contraction rate here takes place at the periodic boundaries.

  20. Thermal non-equilibrium transport in colloids Alois Wrger

    E-Print Network [OSTI]

    Boyer, Edmond

    to an Onsager cross coefficient that describes the coupling between heat and particle flows. In the last decade. Boundary layer approximation 6 B. Double-layer forces 7 C. Transport velocity 8 D. Non-uniform electrolyte condition 15 I. Size dependence 16 III. Dispersion and depletion forces 18 A. Colloid-polymer mixtures 18 B

  1. Non-equilibrium sedimentation of colloids on the particle scale

    E-Print Network [OSTI]

    C. Patrick Royall; Joachim Dzubiella; Matthias Schmidt; Alfons van Blaaderen

    2007-03-30T23:59:59.000Z

    We investigate sedimentation of model hard sphere-like colloidal dispersions confined in horizontal capillaries using laser scanning confocal microscopy, dynamical density functional theory, and Brownian dynamics computer simulations. For homogenized initial states we obtain quantitative agreement of the results from the respective approaches for the time evolution of the one-body density distribution and the osmotic pressure on the walls. We demonstrate that single particle information can be obtained experimentally in systems that were initialized further out-of-equilibrium such that complex lateral patterns form.

  2. Non-Equilibrium Pathways during Electrochemical Phase Transformations in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 NewsSecurityNomination

  3. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    SciTech Connect (OSTI)

    Zhao, Dongxing; Wu, Jiarui [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gu, Ying, E-mail: ygu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-09-15T23:59:59.000Z

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.

  4. Inhibition of Aurora-kinases for Tailored Risk Adapted Treatment of Multiple Myeloma

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Inhibition of Aurora-kinases for Tailored Risk Adapted Treatment of Multiple Myeloma Dirk Hose1 associated with Aurora-kinase expression in several cancer entities, including multiple myeloma. Therefore, the expression of Aurora-A, -B and -C was determined by Affymetrix DNA-microarrays in 784 samples including two

  5. Blood. Author manuscript Inhibition of aurora kinases for tailored risk-adapted treatment of multiple

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Blood. Author manuscript Page /1 14 Inhibition of aurora kinases for tailored risk.hose@med.uni-heidelberg.de> Abstract Genetic instability and cellular proliferation have been associated with Aurora-kinase expression by Affymetrix DNA-microarrays in 784 samplesAurora-A -B -C including two independent sets of 233 and 345 CD138

  6. Tailored Macroporous SiCN and SiC Structures for High-Temperature Fuel Reforming**

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Tailored Macroporous SiCN and SiC Structures for High-Temperature Fuel Reforming** By In-Kyung Sung such as the reforming of hydrocarbon fuels (e.g., die- sel or JP-8) into hydrogen for use in portable power sources the reaction rate of endothermic reactions (such as the steam reforming of hydrocarbons), at the macroscale

  7. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08T23:59:59.000Z

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  8. Computational Nanophotonics: Model Optical Interactions and Transport in Tailored Nanosystem Architectures

    SciTech Connect (OSTI)

    Stockman, Mark [Georgia State University Research Foundation] [Georgia State University Research Foundation; Gray, Steven [Argon National Laboratory] [Argon National Laboratory

    2014-02-21T23:59:59.000Z

    The program is directed toward development of new computational approaches to photoprocesses in nanostructures whose geometry and composition are tailored to obtain desirable optical responses. The emphasis of this specific program is on the development of computational methods and prediction and computational theory of new phenomena of optical energy transfer and transformation on the extreme nanoscale (down to a few nanometers).

  9. EDUCATION: Energy capital's colleges tailor new programs to oil and gas

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    EDUCATION: Energy capital's colleges tailor new programs to oil and gas industry (Wednesday and prospective computer science majors interested in careers with the oil and gas industry. "The hardest in oil and gas activity. This city's entire network of academic institutions is busy remaking itself

  10. Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation

    E-Print Network [OSTI]

    activity at the surface of implants, mainly by modifying their topography and physicochemical properties, such as its surface chemistry and energy, roughness, and topography [6]. It is generally accepted that roughTailoring the surface properties of Ti6Al4V by controlled chemical oxidation Fabio Variola a,b , Ji

  11. The automated generation of Web documents that are tailored to the individual reader

    E-Print Network [OSTI]

    DiMarco, Chrysanne

    for the management and presentation of Web documents would be a very important enhance- ment of the Web's current in a system for the manage- ment and presentation of Web documents would be a very important enhancementThe automated generation of Web documents that are tailored to the individual reader Chrysanne Di

  12. Policy Levers Tailoring Patent Law to Biotechnology: Comparing U.S. and

    E-Print Network [OSTI]

    Loudon, Catherine

    435 Policy Levers Tailoring Patent Law to Biotechnology: Comparing U.S. and European Approaches Geertrui Van Overwalle* In their animated book The Patent Crisis and How the Courts Can Solve It, Dan Burk and Mark Lemley give an account of their quest into the judicial treatment of patents in different industry

  13. Mentor-lite Customizability: Tailoring a Light-Weight Workflow Management System

    E-Print Network [OSTI]

    Mentor-lite Customizability: Tailoring a Light-Weight Workflow Management System to Workflow://www-dbs.cs.uni-sb.de E-mail: {gillmann,weissenfels,shegalov,wonner,weikum}@cs.uni-sb.de Abstract The Mentor of Mentor-lite is its ability to customize its workflow administration capabilities like worklist management

  14. Parameter sensitivity analysis of tailored-pulse loading stimulation of Devonian gas shale

    SciTech Connect (OSTI)

    Barbour, T.G.; Mihalik, G.R.

    1980-11-01T23:59:59.000Z

    An evaluation of three tailored-pulse loading parameters has been undertaken to access their importance in gas well stimulation technology. This numerical evaluation was performed using STEALTH finite-difference codes and was intended to provide a measure of the effects of various tailored-pulse load configurations on fracture development in Devonian gas shale. The three parameters considered in the sensitivity analysis were: loading rate; decay rate; and sustained peak pressures. By varying these parameters in six computations and comparing the relative differences in fracture initiation and propagation the following conclusions were drawn: (1) Fracture initiation is directly related to the loading rate aplied to the wellbore wall. Loading rates of 10, 100 and 1000 GPa/sec were modeled. (2) If yielding of the rock can be prevented or minimized, by maintaining low peak pressures in the wellbore, increasing the pulse loading rate, to say 10,000 GPa/sec or more, should initiate additional multiple fractures. (3) Fracture initiation does not appear to be related to the tailored-pulse decay rate. Fracture extension may be influenced by the rate of decay. The slower the decay rate, the longer the crack extension. (4) Fracture initiation does not appear to be improved by a high pressure plateau in the tailored-pulse. Fracture propagation may be enhanced if the maintained wellbore pressure plateau is of sufficient magnitude to extent the range of the tangential tensile stresses to greater radial distances. 26 figures, 2 tables.

  15. FAME-DBMS: Tailor-made Data Management Solutions for Embedded Systems

    E-Print Network [OSTI]

    Apel, Sven

    FAME-DBMS: Tailor-made Data Management Solutions for Embedded Systems Marko Rosenm¨uller1 , Norbert our ongoing work on FAME-DBMS, a re- search project that explores techniques to implement highly line ap- proach. With this approach a concrete instance of a DBMS is derived by composing features

  16. Tailoring the plateau burning rates of composite propellants by the use of nanoscale additives

    E-Print Network [OSTI]

    Stephens, Matthew Aaron

    2009-05-15T23:59:59.000Z

    tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount...

  17. TAILORING THE PLATEAU BURNING RATES OF COMPOSITE PROPELLANTS BY THE USE OF NANOSCALE ADDITIVES

    E-Print Network [OSTI]

    Stephens, Matthew

    2010-07-14T23:59:59.000Z

    tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount...

  18. TAILORING OF NANO-AND MICROSTRUCTURE IN BIOMIMETICALLY SYNTHESIZED CERAMIC FILMS

    E-Print Network [OSTI]

    Cho, Junghyun

    TAILORING OF NANO- AND MICROSTRUCTURE IN BIOMIMETICALLY SYNTHESIZED CERAMIC FILMS Guangneng Zhang University of New York at Binghamton Binghamton, NY 13902-6000 ABSTRACT A novel ceramic thin film deposition approach through which inorganic materials were deposited on a functionalized organic matrix from aqueous

  19. Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes

    E-Print Network [OSTI]

    Mather, Patrick T.

    Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes Qiongyu Guo a 2009 Keywords: POSS Biodegradable polymer Drug delivery Drug-eluting stents Highly adjustable and precisely controllable drug release from a biodegradable stent coating was achieved using a unique family

  20. Oce@Nyd: A new Tailorable Groupware for Digital Media collection for Underwater Virtual Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Oce@Nyd: A new Tailorable Groupware for Digital Media collection for Underwater Virtual architecture devoted to the collection of Digital media for underwater virtual environ- ments. The proposed- ferent digital media (image, video, audio, 3D models, etc.), and on the other hand, certain services can

  1. TAILORING THE PLATEAU BURNING RATES OF COMPOSITE PROPELLANTS BY THE USE OF NANOSCALE ADDITIVES 

    E-Print Network [OSTI]

    Stephens, Matthew

    2010-07-14T23:59:59.000Z

    tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount...

  2. Tailoring the plateau burning rates of composite propellants by the use of nanoscale additives 

    E-Print Network [OSTI]

    Stephens, Matthew Aaron

    2009-05-15T23:59:59.000Z

    tailoring additive may be due to differences in how the additive was produced. Doping the TiO2 with small amounts of metallic elements (Al, Fe, or Gd) showed additional effects on the burning rate that depend on the doping material and the amount...

  3. Spectrum tailoring of the neutron energy spectrum in the context of delayed neutron detection

    SciTech Connect (OSTI)

    Koehler, William E [Los Alamos National Laboratory; Tobin, Steve J [Los Alamos National Laboratory; Sandoval, Nathan P [Los Alamos National Laboratory; Fensin, Mike L [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    For the purpose of measuring plutonium mass in spent fuel, a delayed neutron instrument is of particular interest since, if properly designed, the delayed neutron signal from {sup 235}U is significantly stronger than the signature from {sup 239}Pu or {sup 241}Pu. A key factor in properly designing a delayed neutron instrument is to minimize the fission of {sup 238}U. This minimization is achieved by keeping the interrogating neutron spectrum below {approx} 1 MeV. In the context of spent fuel measurements it is desirable to use a 14 MeV (deuterium and tritium) neutron generator for economic reasons. Spectrum tailoring is the term used to describe the inclusion of material between the 14 MeV neutrons and the interrogated object that lower the neutron energy through nuclear reactions and moderation. This report quantifies the utility of different material combination for spectrum tailoring.

  4. Material system for tailorable white light emission and method for making thereof

    DOE Patents [OSTI]

    Smith, Christine A. (Livermore, CA); Lee, Howard W. H. (Fremont, CA)

    2009-05-19T23:59:59.000Z

    A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.

  5. Formation of electron bunches with tailored current profiles using multi-frequency linacs

    SciTech Connect (OSTI)

    Piot, P.; Behrens, C.; Gerth, C.; Lemery, F.; Mihalcea, D.; Stoltz, P. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States) and Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85 D-22607 Hamburg (Germany); Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States); Tech-X Corporation, Boulder, CO 80303 (United States)

    2012-12-21T23:59:59.000Z

    Tailoring an electron bunch with specific current profile can provide substantial enhancement of the transformer ratio in beam-driven acceleration methods. We present a method relying on the use of a linac with accelerating sections operating at different frequencies followed by a magnetic bunch compressor. The experimental verfification of the technique in a two-frequency linac is presented. The compatibility of the proposed technique with the formation and acceleration of a drive and witness bunches is numerically demonstrated.

  6. Material system for tailorable white light emission and method for making thereof

    DOE Patents [OSTI]

    Smith, Christine A.; Lee, Howard W.

    2004-08-10T23:59:59.000Z

    A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.

  7. Post-Synthesis Crystallinity Tailoring of Water-Soluble Polymer Encapsulated CdTe Nanoparticles using Rapid Thermal Annealing

    E-Print Network [OSTI]

    Post-Synthesis Crystallinity Tailoring of Water-Soluble Polymer Encapsulated CdTe Nanoparticles CdTe NPs have been demonstrated suitable for use in applications involving efficient solar cells

  8. A Lightweight and Flexible Mobile Agent Platform Tailored to Management Applications

    E-Print Network [OSTI]

    Gavalas, Damianos

    2011-01-01T23:59:59.000Z

    Mobile Agents (MAs) represent a distributed computing technology that promises to address the scalability problems of centralized network management. A critical issue that will affect the wider adoption of MA paradigm in management applications is the development of MA Platforms (MAPs) expressly oriented to distributed management. However, most of available platforms impose considerable burden on network and system resources and also lack of essential functionality. In this paper, we discuss the design considerations and implementation details of a complete MAP research prototype that sufficiently addresses all the aforementioned issues. Our MAP has been implemented in Java and tailored for network and systems management applications.

  9. Computational model, method, and system for kinetically-tailoring multi-drug chemotherapy for individuals

    DOE Patents [OSTI]

    Gardner, Shea Nicole (San Leandro, CA)

    2007-10-23T23:59:59.000Z

    A method and system for tailoring treatment regimens to individual patients with diseased cells exhibiting evolution of resistance to such treatments. A mathematical model is provided which models rates of population change of proliferating and quiescent diseased cells using cell kinetics and evolution of resistance of the diseased cells, and pharmacokinetic and pharmacodynamic models. Cell kinetic parameters are obtained from an individual patient and applied to the mathematical model to solve for a plurality of treatment regimens, each having a quantitative efficacy value associated therewith. A treatment regimen may then be selected from the plurlaity of treatment options based on the efficacy value.

  10. Method for tailoring the two-dimensional spatial gain distribution in optoelectronic devices and its application to tailored gain broad area semiconductor lasers capable of high power operation with very

    SciTech Connect (OSTI)

    Lindsey, C.P.; Yariv, A.

    1988-12-13T23:59:59.000Z

    This patent describes a broad area injection semiconductor laser having a predetermined two-dimensional pattern of injecting and noninjecting contacts over a broad area of the device in which laser the two-dimensional spatial gain profile is tailored over the broad area to conform to a predetermined tailored pattern of varying injection by a predetermined contact pattern of injecting and noninjecting areas over the broad area of the contact pattern being achieved by variation in the fractional surface coverage per unit area of injecting to noninjecting contact, thereby achieving the predetermined pattern of two-dimensional spatial gain profile.

  11. Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses

    SciTech Connect (OSTI)

    Doster, J.; Baraldi, G.; Gonzalo, J.; Solis, J.; Hernandez-Rueda, J.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)

    2014-04-14T23:59:59.000Z

    We demonstrate that the broad surface plasmon resonance (SPR) of a single layer of near-coalescence silver nanoparticles (NPs), embedded in a dielectric matrix can be tailored by irradiation with a single nanosecond laser pulse into a distribution featuring a sharp resonance at 435?nm. Scanning electron microscopy studies reveal the underlying mechanism to be a transformation into a distribution of well-separated spherical particles. Additional exposure to multiple femtosecond laser pulses at 400?nm or 800?nm wavelength induces polarization anisotropy of the SPR, with a peak shift that increases with laser wavelength. The spectral changes are measured in-situ, employing reflection and transmission micro-spectroscopy with a lateral resolution of 4??m. Spectral maps as a continuous function of local fluence can be readily produced from a single spot. The results open exciting perspectives for dynamically tuning and switching the optical response of NP systems, paving the way for next-generation applications.

  12. Tailoring of a metastable material: alfa-FeSi2 thin film

    SciTech Connect (OSTI)

    Cao, Guixin [ORNL; Singh, David J [ORNL; Zhang, Xiaoguang [ORNL; Samolyuk, German D [ORNL; Qiao, Liang [ORNL; Parish, Chad M [ORNL; Ke, Jin [The University of Tennessee; Zhang, Yanwen [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Guo, Hangwen [ORNL; Tang, Siwei [ORNL; Wang, Wenbin [ORNL; Yi, Jieyu [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Cantoni, Claudia [ORNL; Siemons, Wolter [ORNL; Payzant, E Andrew [ORNL; Biegalski, Michael D [ORNL; Ward, Thomas Zac [ORNL; Sales, Brian C [ORNL; Mandrus, D. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Stocks, George Malcolm [ORNL; Gai, Zheng [ORNL

    2015-01-01T23:59:59.000Z

    The epitaxially stabilized metallic -FeSi2 thin films on Si(001) were grown using pulsed laser deposition. While the bulk material of -FeSi2 is a high temperature metastable phase and nonmagnetic, the thin film is stabilized at room temperature and shows unusual electronic transport and magnetic properties due to strain modification. The transport renders two different conducting states with a strong crossover at 50 K accompanied by an onset of ferromagnetism as well as a substantial magnetocaloric effect and magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of -FeSi2 obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our findings provide an example of a tailored material with interesting physics properties for practical applications.

  13. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach

    SciTech Connect (OSTI)

    Khansur, Neamul H.; Daniels, John E. [School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Groh, Claudia; Jo, Wook; Webber, Kyle G. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Reinhard, Christina [Diamond Light Source, Beamline I12 JEEP, Didcot, Oxfordshire OX11 0DE (United Kingdom); Kimpton, Justin A. [The Australian Synchrotron, Clayton, Victoria 3168 (Australia)

    2014-03-28T23:59:59.000Z

    The electric-field-induced strain response mechanism in a polycrystalline ceramic/ceramic composite of relaxor and ferroelectric materials has been studied using in situ high-energy x-ray diffraction. The addition of ferroelectric phase material in the relaxor matrix has produced a system where a small volume fraction behaves independently of the bulk under an applied electric field. Inter- and intra-grain models of the strain mechanism in the composite material consistent with the diffraction data have been proposed. The results show that such ceramic/ceramic composite microstructure has the potential for tailoring properties of future piezoelectric materials over a wider range than is possible in uniform compositions.

  14. Inhomogeneity Mitigation at 7 Tesla using Sparsity-Enforced Spatially-Tailored Slice-Selective Excitation Pulses A. C. ZELINSKI

    E-Print Network [OSTI]

    Goyal, Vivek K

    In Vivo B1 + Inhomogeneity Mitigation at 7 Tesla using Sparsity-Enforced Spatially-Tailored Slice's duration & B1 + is in Tesla/volt. Let R(r) (r)·B1 - (r). With a reset pulse [5], IV(r) = c·R(r)·[1-E1(r

  15. Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and

    E-Print Network [OSTI]

    Li, Mo

    Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and infrastructure. The development of ultra-high performance concrete of buildings or structures to dynamic loading and fire. Overview of research program on UHPC or CEP (concrete

  16. Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses

    SciTech Connect (OSTI)

    Weng, S. M., E-mail: weng-sm@ile.osaka-u.ac.jp; Murakami, M.; Azechi, H.; Wang, J. W.; Tasoko, N. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)] [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Chen, M. [Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China and Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 20040 (China)] [Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China and Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 20040 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China and SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)] [Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China and SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mulser, P. [Theoretical Quantum Electronics (TQE), Technische Universität Darmstadt, D-64289 Darmstadt (Germany)] [Theoretical Quantum Electronics (TQE), Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Yu, W.; Shen, B. F. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-01-15T23:59:59.000Z

    It is proposed that laser hole-boring at a steady speed in inhomogeneous overdense plasma can be realized by the use of temporally tailored intense laser pulses, producing high-fluence quasi-monoenergetic ion beams. A general temporal profile of such laser pulses is formulated for arbitrary plasma density distribution. As an example, for a precompressed deuterium-tritium fusion target with an exponentially increasing density profile, its matched laser profile for steady hole-boring is given theoretically and verified numerically by particle-in-cell simulations. Furthermore, we propose to achieve fast ignition by the in-situ hole-boring accelerated ions using a tailored laser pulse. Simulations show that the effective energy fluence, conversion efficiency, energy spread, and collimation of the resulting ion beam can be significantly improved as compared to those found with un-tailored laser profiles. For the fusion fuel with an areal density of 1.5?g cm{sup –2}, simulation indicates that it is promising to realize fast ion ignition by using a tailored driver pulse with energy about 65?kJ.

  17. Strong, Tough Ceramics Containing Microscopic Reinforcements: Tailoring In-Situ Reinforced Silicon Nitride Ceramics

    SciTech Connect (OSTI)

    Becher, P.F.

    1999-06-27T23:59:59.000Z

    Ceramics with their hardness, chemical stability, and refractoriness could be used to design more efficient energy generation and conversion systems as well as numerous other applications. However, we have needed to develop a fundamental understanding of how to tailor ceramics to improve their performance, especially to overcome their brittle nature. One of the advances in this respect was the incorporation of very strong microscopic rod-like reinforcements in the form of whiskers that serve to hold the ceramic together making it tougher and resistant to fracture. This microscopic reinforcement approach has a number of features that are similar to continuous fiber-reinforced ceramics; however, some of the details are modified. For instance, the strengths of the microscopic reinforcements must be higher as they typically have much stronger interfaces. For instance, single crystal silicon carbide whiskers can have tensile strengths in excess of {ge}7 GPa or >2 times that of continuous fibers. Furthermore, reinforcement pullout is limited to lengths of a few microns in the case of microscopic reinforcement due as much to the higher interfacial shear resistance as to the limit of the reinforcement lengths. On the other hand, the microscopic reinforcement approach can be generated in-situ during the processing of ceramics. A remarkable example of this is found in silicon nitride ceramics where elongated rod-like shape grains can be formed when the ceramic is fired at elevated temperatures to form a dense component.

  18. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect (OSTI)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de; Sachs, M., E-mail: karl-ernst.wirth@fau.de; Winzer, B., E-mail: karl-ernst.wirth@fau.de; Peukert, W., E-mail: karl-ernst.wirth@fau.de; Wirth, K.-E., E-mail: karl-ernst.wirth@fau.de [Institute of Particle Technology, University of Erlangen-Nuremberg (Germany)

    2014-05-15T23:59:59.000Z

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  19. Multipole and field uniformity tailoring of a 750 MHz rf dipole

    SciTech Connect (OSTI)

    Delayen, Jean R. [JLAB, Old Dominion University; Castillo, Alejandro [JLAB, Old Dominion University

    2014-12-01T23:59:59.000Z

    In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependency is suitable both for fabrication and surface treatment. The rf dipole geometry can also be optimized for lowering multipacting risk and multipole tailoring to meet machine specific field uniformity tolerances. In the present work a survey of field uniformities, and multipole contents for a set of 750 MHz rf dipole designs is presented as both a qualitative and quantitative analysis of the inherent flexibility of the structure and its limitations.

  20. Electrodeposition of InSb branched nanowires: Controlled growth with structurally tailored properties

    SciTech Connect (OSTI)

    Das, Suprem R.; Mohammad, Asaduzzaman; Janes, David B., E-mail: janes@ecn.purdue.edu [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Akatay, Cem [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Khan, Mohammad Ryyan; Alam, Muhammad A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Maeda, Kosuke [Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta–cho, Midori-ku, Yokohama 226-8502 (Japan); Advanced Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Deacon, Russell S.; Ishibashi, Koji [Advanced Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Chen, Yong P. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 (United States); Sands, Timothy D. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-28T23:59:59.000Z

    In this article, electrodeposition method is used to demonstrate growth of InSb nanowire (NW) arrays with hierarchical branched structures and complex morphology at room temperature using an all-solution, catalyst-free technique. A gold coated, porous anodic alumina membrane provided the template for the branched NWs. The NWs have a hierarchical branched structure, with three nominal regions: a “trunk” (average diameter of 150?nm), large branches (average diameter of 100?nm), and small branches (average diameter of sub-10?nm to sub-20?nm). The structural properties of the branched NWs were studied using scanning transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and Raman spectroscopy. In the as-grown state, the small branches of InSb NWs were crystalline, but the trunk regions were mostly nanocrystalline with an amorphous boundary. Post-annealing of NWs at 420?°C in argon produced single crystalline structures along ?311? directions for the branches and along ?111? for the trunks. Based on the high crystallinity and tailored structure in this branched NW array, the effective refractive index allows us to achieve excellent antireflection properties signifying its technological usefulness for photon management and energy harvesting.

  1. Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly

    SciTech Connect (OSTI)

    Chen, S. N., E-mail: sophia.chen@polytechnique.edu; Brambrink, E.; Mancic, A.; Romagnani, L.; Audebert, P.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Robinson, A. P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Antici, P. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France) [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Dipartimento SBAI, Università di Roma « La Sapienza », Via Scarpa 14-16, 00165 Roma (Italy); INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada); D'Humières, E. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States) [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); University of Bordeaux—CNRS—CEA, CELIA, UMR5107, 33405 Talence (France); Gaillard, S. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Grismayer, T.; Mora, P. [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France)] [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Pépin, H. [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)] [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)

    2014-02-15T23:59:59.000Z

    A double foil assembly is shown to be effective in tailoring the maximum energy produced by a laser-accelerated proton beam. The measurements compare favorably with adiabatic expansion simulations, and particle-in-cell simulations. The arrangement proposed here offers for some applications a simple and passive way to utilize simultaneously highest irradiance lasers that have best laser-to-ion conversion efficiency while avoiding the production of undesired high-energy ions.

  2. Highlights from theHighlights from the YamboYambo project:project: Excitonic polarons and non-equilibriumExcitonic polarons and non-equilibrium

    E-Print Network [OSTI]

    Marini, Andrea

    -gap insulators, PRB(R) 70,insulators, PRB(R) 70, 081103 (2004)081103 (2004) 2005 The Self-Consistent Module. TheThe band gap problem in DFT.band gap problem in DFT. PRB(R) 74, 161013 (2006)PRB(R) 74, 161013 (2006) ACFDT

  3. Preoperative Portal Vein Embolization Tailored to Prepare the Liver for Complex Resections: Initial Experience

    SciTech Connect (OSTI)

    Baere, T. de, E-mail: debaere@igr.fr; Robinson, J. M.; Deschamps, F.; Rao, P.; Teriitheau, C.; Goere, D.; Elias, D. [Institut Gustave Roussy, Department of Radiology (France)

    2010-10-15T23:59:59.000Z

    The purpose of this study was to evaluate the safety and efficacy of preoperative portal vein embolization (PVE) tailored to prepare the liver for complex and extended resections. During the past 5 years, 12 PVEs were performed in noncirrhotic patients with liver metastases from colon cancer (n = 10), choroidal melanoma (n = 1), and leiomyosarcoma (n = 1) to prepare complex anatomical liver resections in patients with small future remnant livers. These liver resections planned to preserve only segment IV in four patients, segments IV, V, and VIII in four patients, segments II, III, VI, and VII in three patients, and segments V and VI in one patient. PVE was performed under general anesthesia with a flow-guided injection of a mixture of cyanoacrylate and Lipiodol using a 5-Fr catheter. All portal branches feeding the liver segments to be resected were successfully embolized with cyanoacrylate except one, which was occluded with coils due to the risk of reflux with cyanoacrylate. After a mean of 32 days, CT volumetry revealed a mean hypertrophy of the unembolized liver of 47 {+-} 25% (range, 21-88%). Liver resections could be performed in 10 patients but were canceled in 2, due to the occurrence of a new hepatic tumor in one and an insufficiently increased volume in the other. Among the 10 patients who underwent the liver resection, 1 died of postoperative sepsis, 3 died 3 to 32 months after surgery, including 1 death unrelated to cancer, and 6 were alive after 6 to 36 months after surgery. In conclusion, in this preliminary report, PVE appears to be feasible and able to induce hypertrophy of the future remnant liver before a complex and extended hepatectomy. Further evaluation is needed in a larger cohort.

  4. AN ANALYTICAL MODEL OF INTERSTELLAR GAS IN THE HELIOSPHERE TAILORED TO INTERSTELLAR BOUNDARY EXPLORER OBSERVATIONS

    SciTech Connect (OSTI)

    Lee, Martin A.; Kucharek, Harald; Moebius, Eberhard; Wu Xian [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Bzowski, Maciej [Space Research Centre, Polish Academy of Sciences, 00-716 Warsaw (Poland); McComas, David, E-mail: marty.lee@unh.edu [Engineering and Space Science Division, Southwest Research Institute, San Antonio, TX 78228 (United States)

    2012-02-01T23:59:59.000Z

    The stationary distribution of interstellar neutral gas in the heliosphere subject to solar gravity, solar radiation pressure, photoionization, and charge exchange is investigated analytically assuming ionization rates and radiation pressure that are proportional to R{sup -2}, where R is the heliocentric radius. The collisionless hyperbolic trajectories of the individual atoms including ionization losses are combined with Liouville's Theorem to construct the heliospheric phase-space distribution function of an interstellar gas species in the solar reference frame under the assumption that the distribution is a drifting Maxwellian at large distances from the Sun. The distribution is transformed to the Earth (essentially Interstellar Boundary Explorer (IBEX)) frame as a function of solar longitude. The expression is then tailored to the latitudinal scan of IBEX as a function of longitude using the fact that IBEX detects each atom close to perihelion in its hyperbolic orbit. The distribution is further adapted to IBEX by integrating the differential intensity over the entrance aperture solid angle of the IBEX-Lo collimator, and over energy to predict the IBEX count rate of helium. The major features of the predicted count rate are described, including a peak in longitude, a peak in latitude at each longitude, and the widths of the major peak in both latitude and longitude. Analytical formulae for these features are derived for comparison with IBEX observations in order to determine the temperature and bulk velocity of the gas in interstellar space. Based in part on these formulae, the results for helium are presented in the companion paper by Moebius et al.

  5. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds

    SciTech Connect (OSTI)

    Barua, Radhika, E-mail: barua.r@husky.neu.edu; Jiménez-Villacorta, Félix; Lewis, L. H. [Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07T23:59:59.000Z

    In this work, we demonstrate that the magnetocaloric response of FeRh-based compounds may be tailored for potential magnetic refrigeration applications by chemical modification of the FeRh lattice. Alloys of composition Fe(Rh{sub 1?x}A{sub x}) or (Fe{sub 1?x}B{sub x})Rh (A?=?Cu, Pd; B?=?Ni; 0?

  6. Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring

    SciTech Connect (OSTI)

    Wang, Lei; Chen, Qi-Dai, E-mail: chenqd@jlu.edu.cn, E-mail: hbsun@jlu.edu.cn; Yang, Rui; Xu, Bin-Bin; Wang, Hai-Yu [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Yang, Hai; Huo, Cheng-Song; Tu, Hai-Ling [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Sun, Hong-Bo, E-mail: chenqd@jlu.edu.cn, E-mail: hbsun@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Physics, Jilin University, 119 Jiefang Road, Changchun 130023 (China)

    2014-01-20T23:59:59.000Z

    The goal of creation of large-area deep sub-wavelength nanostructures by femtosecond laser irradiation onto various materials is being hindered by the limited coherence length. Here, we report solution of the problem by light field tailoring of the incident beam with a phase mask, which serves generation of wavelets. Direct interference between the wavelets, here the first-order diffracted beams, and interference between a wavelet and its induced waves such as surface plasmon polariton are responsible for creation of microgratings and superimposed nanogratings, respectively. The principle of wavelets interference enables extension of uniformly induced hybrid structures containing deep sub-wavelength nanofeatures to macro-dimension.

  7. Design and Testing of a 10B4C Capsule for Spectral-Tailoring in Mixed-Spectrum Reactors

    SciTech Connect (OSTI)

    Greenwood, Lawrence R.; Wittman, Richard S.; Metz, Lori A.; Finn, Erin C.; Friese, Judah I.

    2014-04-11T23:59:59.000Z

    A boron carbide capsule highly enriched in 10B has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. New experiments show that enriching the boron to 96% B-10 results in additional absorption of neutrons in the resonance region thereby producing a neutron spectrum that is much closer to a pure 235U fission spectrum. A cadmium outer cover was used to reduce thermal heating. The neutron spectrum calculated with MCNP was found to be in very good agreement with measured activation rates from neutron fluence monitors.

  8. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    SciTech Connect (OSTI)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31T23:59:59.000Z

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical origins of this phenomenon is therefore needed for designing cathode materials with optimal surface chemistry. We quantitatively assessed the elastic and electrostatic interactions of the dopant with the surrounding lattice as the key driving forces for segregation on model perovskite compounds, LnMnO3 (host cation Ln=La, Sm). Our approach combines surface chemical analysis with X-ray photoelectron and Auger electron spectroscopy on model dense thin films, and computational analysis with density functional theory (DFT) calculations and analytical models. Elastic energy differences were systematically induced in the system by varying the radius of the selected dopants (Ca, Sr, Ba) with respect to the host cations (La, Sm) while retaining the same charge state. Electrostatic energy differences were introduced by varying the distribution of charged oxygen and cation vacancies in our models. Varying the oxygen chemical potential in our experiments induced changes in both the elastic energy and electrostatic interactions. Our results quantitatively demonstrate that the mechanism of dopant segregation on perovskite oxides includes both the elastic and electrostatic energy contributions. A smaller size mismatch between the host and dopant cations and a chemically expanded lattice were found to reduce the segregation level of the dopant and to enable more stable cathode surfaces. Ca-doped LaMnO3 was found to have the most stable surface composition with the least cation segregation among the compositions surveyed. The diffusion kinetics of the larger dopants, Ba and Sr, was found to be slower, and can kinetically trap the segregation at reduced temperatures despite the larger elastic energy driving force. Lastly, scanning probe image-contrast showed that the surface chemical heterogeneities made of dopant oxides upon segregation were electronically insulating. The consistency between the results obtained from experiments, DFT calculations and analytical theory in this work provides a predictive capability to tailor the cathode surface compositions for high-performance SO

  9. Mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films

    SciTech Connect (OSTI)

    Fu, Yu, E-mail: yu.fu@uni-due.de, E-mail: cangcangzhulin@gmail.com; Meckenstock, R.; Farle, M. [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Barsukov, I., E-mail: ibarsuko@uci.edu [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lindner, J. [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstr. 400, 01328 Dresden (Germany); Raanaei, H. [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Hjörvarsson, B. [Department of Physics and Astronomy, Uppsala University, Box 516 SE-75120 Uppsala (Sweden)

    2014-02-17T23:59:59.000Z

    The mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films was investigated by ferromagnetic resonance (FMR) on samples deposited without an applied magnetic field, with an out-of-plane field and an in-plane field. Analysis of FMR spectra profiles, high frequency susceptibility calculations, and statistical simulations using a distribution of local uniaxial magnetic anisotropy reveal the presence of atomic configurations with local uniaxial anisotropy, of which the direction can be tailored while the magnitude remains at an intrinsically constant value of 3.0(2) kJ/m{sup 3}. The in-plane growth field remarkably sharpens the anisotropy distribution and increases the sample homogeneity. The results benefit designing multilayer spintronic devices based on highly homogeneous amorphous layers with tailored magnetic anisotropy.

  10. Sensitivity Analysis and Stochastic Simulations of Non-equilibrium Plasma Flow

    SciTech Connect (OSTI)

    Lin, Guang; Karniadakis, George E.

    2009-11-05T23:59:59.000Z

    We study parametric uncertainties involved in plasma flows and apply stochastic sensitivity analysis to rank the importance of all inputs to guide large-scale stochastic simulations. Specifically, we employ different gradient-based sensitivity methods, namely Morris, multi-element probabilistic collocation method (ME-PCM) on sparse grids, Quasi-Monte Carlo, and Monte Carlo methods. These approaches go beyond the standard ``One-At-a-Time" sensitivity analysis and provide a measure of the nonlinear interaction effects for the uncertain inputs. The objective is to perform systematic stochastic simulations of plasma flows treating only as {\\em stochastic processes} the inputs with the highest sensitivity index, hence reducing substantially the computational cost. Two plasma flow examples are presented to demonstrate the capability and efficiency of the stochastic sensitivity analysis. The first one is a two-fluid model in a shock tube while the second one is a one-fluid/two-temperature model in flow past a cylinder.

  11. Non-Equilibrium Magnetohydrodynamic Behavior of Plasmas having Complex, Evolving Morphology

    SciTech Connect (OSTI)

    Bellan, Paul M. [Caltech] [Caltech

    2014-03-13T23:59:59.000Z

    Our main activity has been doing lab experiments where plasmas having morphology and behavior similar to solar and astrophysical plasmas are produced and studied. The solar experiment is mounted on one end of a large vacuum chamber while the astrophysical jet experiment is mounted on the other end. Diagnostics are shared between the two experiments. The solar experiment produces arched plasma loops that behave very much like solar corona loops. The astrophysical jet experiment produces plasma jets that are very much like astrophysical jets. We have also done work on plasma waves, including general wave dispersions, and specific properties of kinetic Alfven waves and of whistler waves.

  12. Radiative transfer within non Beerian porous media with semitransparent and opaque phases in non equilibrium;

    E-Print Network [OSTI]

    Boyer, Edmond

    equilibrium; Application to reflooding of a nuclear reactor. Miloud Chahlafia,b,c , Fabien Belleta,b , Florian Transfer 55, 13-14 (2012) 3666-3676" DOI : 10.1016/j.ijheatmasstransfer.2012.02.067 #12;nuclear reactor flux Indexes - At the calculation point -+ Dimensionless 3 hal-00680676,version1-19Mar2012 #12;-(j) jth

  13. High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetak’s new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetak’s use of semiconductor manufacturing methods leads to less material use—facilitating cheaper production.

  14. The Application of Dynamic Nuclear Polarization Enhanced NMR to Non-Equilibrium Systems

    E-Print Network [OSTI]

    Bowen, Sean Michael

    2012-02-14T23:59:59.000Z

    tool for kinetic analysis. It is shown that the DNP-NMR method agrees with the conventional UV method within the uncertainty of the measurement. Hyperpolarization in this modality presents both challenges and opportunities, each of which motivate...

  15. Adjoint-Based Aerothermodynamic Shape Design of Hypersonic Vehicles in Non-Equilibrium Flows

    E-Print Network [OSTI]

    Alonso, Juan J.

    switch parameter 0 Lax-Friedrich artificial dissipation parameter Domain boundary Diagonal matrix aerodynamic performance metrics (lift, drag, stability, etc.) and surface thermal conditions that are fed

  16. Geometry and temperature dependent thermal conductivity of diamond nanowires: A non-equilibrium molecular dynamics study

    E-Print Network [OSTI]

    Melnik, Roderick

    plasma etching of polycrystalline diamond films [7], microwave plasma assisted chemical vapor deposition. For theoretical calculations of proper- ties of nanosized diamond materials, polycrystalline diamond thin filmsGeometry and temperature dependent thermal conductivity of diamond nanowires: A non

  17. The behavior of matter under non-equilibrium conditions: Fundamental aspects and applications

    SciTech Connect (OSTI)

    Prigogine, I.

    1992-04-01T23:59:59.000Z

    This report briefly discusses concepts of chaotic systems. The topics discusses are: Bernoulli maps; mathematical aspects of the complex spectral representations; and large poincare systems. (LSP)

  18. Calculating free energy profiles in biomolecular systems from fast non-equilibrium processes

    E-Print Network [OSTI]

    Forney, Michael; Kosztin, Ioan

    2008-01-01T23:59:59.000Z

    Often gaining insight into the functioning of biomolecular systems requires to follow their dynamics along a microscopic reaction coordinate (RC) on a macroscopic time scale, which is beyond the reach of current all atom molecular dynamics (MD) simulations. A practical approach to this inherently multiscale problem is to model the system as a fictitious overdamped Brownian particle that diffuses along the RC in the presence of an effective potential of mean force (PMF) due to the rest of the system. By employing the recently proposed FR method [I. Kosztin et al., J. of Chem. Phys. 124, 064106 (2006)], which requires only a small number of fast nonequilibrium MD simulations of the system in both forward and time reversed directions along the RC, we reconstruct the PMF: (1) of deca-alanine as a function of its end-to-end distance, and (2) that guides the motion of potassium ions through the gramicidin A channel. In both cases the computed PMFs are found to be in good agreement with previous results obtained by ...

  19. Isospin-tracing: A probe of non-equilibrium in central heavy-ion collisions

    E-Print Network [OSTI]

    F. Rami; Y. Leifels; B. de Schauenburg; A. Gobbi; B. Hong; the FOPI Collaboration

    1999-11-09T23:59:59.000Z

    Four different combinations of $^{96}_{44}$Ru and $^{96}_{40}$Zr nuclei, both as projectile and target, were investigated at the same bombarding energy of 400$A$ MeV using a $4 \\pi$ detector. The degree of isospin mixing between projectile and target nucleons is mapped across a large portion of the phase space using two different isospin-tracer observables, the number of measured protons and the ${\\rm t}/^{3}{\\rm He}$ yield ratio. The experimental results show that the global equilibrium is not reached even in the most central collisions. Quantitative measures of stopping and mixing are extracted from the data. They are found to exhibit a quite strong sensitivity to the in-medium (n,n) cross section used in microscopic transport calculations.

  20. Preparation of Non-equilibrium Nuclear Spin States in Double Quantum Dots

    E-Print Network [OSTI]

    M. Gullans; J. J. Krich; J. M. Taylor; B. I. Halperin; M. D. Lukin

    2014-07-25T23:59:59.000Z

    We theoretically study the dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. In our prior work [Phys. Rev. Lett. 104, 226807 (2010)] we identified three regimes of long-term dynamics, including the build up of a large difference in the Overhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called "dark states," and the elimination of the difference field. In particular, when the dots are different sizes we found that the Overhauser field becomes larger in the smaller dot. Here we present a detailed theoretical analysis of these problems including a model of the polarization dynamics and the development of a new numerical method to efficiently simulate semiclassical central-spin problems. When nuclear spin noise is included, the results agree with our prior work indicating that large difference fields and dark states are stable configurations, while the elimination of the difference field is unstable; however, in the absence of noise we find all three steady states are achieved depending on parameters. These results are in good agreement with dynamic nuclear polarization experiments in double quantum dots.

  1. Formulation of a Model Accounting for Capillary Non-Equilibrium in Naturally Fractured Subsurface Formations

    E-Print Network [OSTI]

    Russell, Thomas F.

    , in the matrix. To #12;x ideas, consider a typical set of mass-conservation equations for a two-phase oil in Darcy's law usually being most important, followed by gravitational and capillary forces denote water and oil phases, respectively. Assuming that water is the wetting phase, the capillary

  2. Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining

    SciTech Connect (OSTI)

    Leonard, T.; Lander, B.; Seifert, U. [II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)] [II. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Speck, T. [Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)] [Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)

    2013-11-28T23:59:59.000Z

    We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for the work still hold albeit for a different, apparent, change of free energy.

  3. Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions

    SciTech Connect (OSTI)

    Malhotra, Vivak

    2014-06-30T23:59:59.000Z

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ? T ? 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (? 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ? T ? 300oC, however, when the coal was pressurized with CO2 at ambient ? P ? 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.

  4. Hydrodynamic multi-phase model for simulation of laser-induced non-equilibrium phase transformations

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    atomistic simulations of the complete sequence of melting ­ liquid flow ­ resolidification are not practical-gas coexistence, as well as for explicit tracking of interfaces between the phases. The model accounts for both propagation of the liquid-crystal interface in recrystallization. Computational results are in a good

  5. A non-equilibrium model for fixed-bed multi-component adiabatic adsorption

    E-Print Network [OSTI]

    Harwell, Jeffrey Harry

    1979-01-01T23:59:59.000Z

    to enter the bed. Solutions along a z ~ constant char- acteristic are the history of the. volumn element of the bed located a s constant, This physical interpretat1on is a physical approximation of the real world where adsorber discontinuities... 1 3. 3. 2 3e3e3 3. 3. 4 3. 3. 5 Solution of the multi-component adiabatic adsorption equation, . ~ ~ ~ Fluid phase equations. Fixed-bed solid phase equations. , ~ Construction of the solution surface by stepwise integra- tion...

  6. Non-equilibrium fluctuations and mechanochemical couplings of a molecular motor

    E-Print Network [OSTI]

    A. W. C. Lau; D. Lacoste; K. Mallick

    2007-07-30T23:59:59.000Z

    We investigate theoretically the violations of Einstein and Onsager relations, and the efficiency for a single processive motor operating far from equilibrium using an extension of the two-state model introduced by Kafri {\\em et al.} [Biophys. J. {\\bf 86}, 3373 (2004)]. With the aid of the Fluctuation Theorem, we analyze the general features of these violations and this efficiency and link them to mechanochemical couplings of motors. In particular, an analysis of the experimental data of kinesin using our framework leads to interesting predictions that may serve as a guide for future experiments.

  7. Oblique and conical shock similarity laws for non-equilibrium flows

    E-Print Network [OSTI]

    Holster, Jesse Louis

    1968-01-01T23:59:59.000Z

    . IV. VI. INTRODUCTION REVIEN OF PREVIOUS WORK. OBl I'VE SHOCK VIBRATIONAL SIMILITUDE CHEilllCAL iNOZ -EQUILI BRIIVl EXTENSIOiN TO CONICAL FLON. RE1IARKS AND CONCLUSIONS. REFERENCES APPENDIX Page 12 22 31 37 39 LIST OF FIGUWHS Figure... Normal Shock Vibrational Similarity Param ter Normal Shock Dissociation Similarity Parameter Page 10 Oblique Shock Vibrational Similarity Law 19 Oblique Shock Dissociation Similarity Parameter Conical Shock Dissociation Similarity Parameter...

  8. Thermal non-equilibrium in dispersed flow film boiling in a vertical tube

    E-Print Network [OSTI]

    Forslund, Robert Paul

    1966-01-01T23:59:59.000Z

    The departure from thermal equilibrium between a dispersed liquid phase and its vapor at high quality during film boiling is investigated, The departure from equilibruim is manifested by the high resistance to heat transfer ...

  9. Boiling Crisis as a Non-Equilibrium Drying V. S. Nikolayev, D. A. Beysens, J. Hegseth

    E-Print Network [OSTI]

    Nikolayev, Vadim S.

    crisis is the formation of a vapor film between the heater and the liquid when the heat supply exceeds in the coordinates heat supply ­ heater temperature is sketched in Fig. 1 for the case of stationary boiling experiment, the so called "pool boiling". When the heat supply to the fluid pool is small, only a fluid

  10. CHF as a Non-Equilibrium Drying Transition V. S. Nikolayev

    E-Print Network [OSTI]

    Nikolayev, Vadim S.

    film between the heater and the liquid when the heat supply exceeds a critical value, the critical heat

  11. Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction

    E-Print Network [OSTI]

    Ju, Yiguang

    of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA b U.S. Air Force and resulted in an increase of extinction strain rates through the coupling between thermal and kinetic effects produces heat, rad- icals, excited species, ions/electrons, and other intermediate species simultaneously

  12. Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits

    E-Print Network [OSTI]

    Ju, Yiguang

    08544, USA b US Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson AFB, OH 45433 plasma assisted combustion resulted in fast chemical heat release and extended the extinction limits processes in plasma­flame interactions [1­17]. However, plasma assisted combustion involves strong coupling

  13. Newton Institute Workshop NonEquilibrium Dynamics of Interacting Particle Systems

    E-Print Network [OSTI]

    Evans, Denis

    be derived from Gauss' Principle of Least Constraint (Evans, Hoover, Failor, Moran & Ladd (1983)). The formBT / 2( )-1[ ]/ 2 then , in an ergodic system the equilibrium distribution is canonical f() ~ exp[-H0;Thermostatted Response theory Assume system is canonical at t=0. f(,0) = exp[-H0()] d exp[-H0()] f(,t) = exp

  14. Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows

    E-Print Network [OSTI]

    Meng, Jianping

    A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar–Gross–Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses ...

  15. Mixing from Fickian Diffusion and Natural Convection in Binary Non-Equilibrium Fluid

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    of applications such as improved oil recovery and carbon sequestration. Gas injection into oil reservoirs has long: 1336­1345, 2012 Keywords: two-phase systems, mixing, carbon dioxide, density-driven flow, diffusion of the most important challenges of our time. Underground injection of carbon dioxide (CO2) in geological

  16. Study of Methane Reforming in Warm Non-Equilibrium Plasma Discharges

    E-Print Network [OSTI]

    Parimi, Sreekar

    2012-02-14T23:59:59.000Z

    , temperature and other variables determine efficiency of conversion. An efficient process is identified by a high yield and low specific energy of production for the desired product. A study of previous work reveals that higher energy density systems are more...

  17. Fe Atomic Data for Non-equilibrium Ionization Plasmas | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFYRANDOMFailure ModesflowFe Atomic Data for

  18. Isotopic Tailoring to Improve the Breeding Capability of the Sn-Li Eutectic in Liquid First Wall Fusion Blanket Concepts

    SciTech Connect (OSTI)

    Youssef, Mahmoud Z. [University of California-Los Angeles (United States)

    2003-09-15T23:59:59.000Z

    Due to its low vapor pressure, the Sn-Li eutectic has been identified as a potential breeder for deployment in the liquid first wall (FW)/Blanket concepts under investigation in the APEX study for high power density fusion reactors. However, its breeding capability is limited. This drawback is rather improved due to the neutron multiplication via Sn(n,2n) reactions. However, the 'local' tritium breeding ratio (TBR) was found to be still on the marginal side (even with 90%Li-6 enrichment). Aside from using a beryllium multiplier, other means to improve the capability of Sn-Li for breeding are explored. In this paper, we show that by isotopic tailoring of Tin in the Sn-Li breeder, one can achieve substantial improvement in TBR in addition to attaining significant reduction in the activation level in this material.

  19. Single contact tailored gain chirped arrays of diode lasers for supermode control with single-lobed farfield patterns

    SciTech Connect (OSTI)

    Lindsey, C.P.; Kapon, E.; Katz, J.; Margalit, S.; Yariv, A.

    1988-01-12T23:59:59.000Z

    In a phase-locked array of diode laser channels fabricated in a body of semiconductor material cleaved at opposite ends to provide facet mirrors which form resonant cavities in the channels, and having a contact for current injection into each channel along at least a majority of its entire length, the improvement is described of supermode control for a single-lobed farfield pattern comprising means for spatially segregating the supermodes of the array to concentrate the fundamental supermode at one part of the array. Means for tailoring the spatial gain profile so as to favor the fundamental supermode, and means for increasing interchannel coupling sufficiently to bring about a single-lobed farfield pattern for spatially segregating the fundamental supermode from the other supermodes is comprised of the channels being nonuniform in width.

  20. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    SciTech Connect (OSTI)

    Hankin, G.L. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1997-04-01T23:59:59.000Z

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  1. Design and Tailoring of a Three-Dimensional TiO2-Graphene-Carbon Nanotube Nanocomposite for Fast Lithium Storage

    E-Print Network [OSTI]

    Cao, Guozhong

    -5 The anatase TiO2 has become a highly promising anode material for LIBs. The titanium dioxide offers a greatDesign and Tailoring of a Three-Dimensional TiO2-Graphene- Carbon Nanotube Nanocomposite for Fast a three- dimensional (3D) hierarchical structure for fast lithium storage. CNTs in the unique hybrid

  2. Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries

    SciTech Connect (OSTI)

    Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

    2014-01-01T23:59:59.000Z

    Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

  3. The conformational evolution of elongated polymer solutions tailors the polarization of light-emission from organic nanofibers

    E-Print Network [OSTI]

    Andrea Camposeo; Israel Greenfeld; Francesco Tantussi; Maria Moffa; Francesco Fuso; Maria Allegrini; Eyal Zussman; Dario Pisignano

    2014-07-30T23:59:59.000Z

    Polymer fibers are currently exploited in tremendously important technologies. Their innovative properties are mainly determined by the behavior of the polymer macromolecules under the elongation induced by external mechanical or electrostatic forces, characterizing the fiber drawing process. Although enhanced physical properties were observed in polymer fibers produced under strong stretching conditions, studies of the process-induced nanoscale organization of the polymer molecules are not available, and most of fiber properties are still obtained on an empirical basis. Here we reveal the orientational properties of semiflexible polymers in electrospun nanofibers, which allow the polarization properties of active fibers to be finely controlled. Modeling and simulations of the conformational evolution of the polymer chains during electrostatic elongation of semidilute solutions demonstrate that the molecules stretch almost fully within less than 1 mm from jet start, increasing polymer axial orientation at the jet center. The nanoscale mapping of the local dichroism of individual fibers by polarized near-field optical microscopy unveils for the first time the presence of an internal spatial variation of the molecular order, namely the presence of a core with axially aligned molecules and a sheath with almost radially oriented molecules. These results allow important and specific fiber properties to be manipulated and tailored, as here demonstrated for the polarization of emitted light.

  4. Synthesis of visible light driven cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    SciTech Connect (OSTI)

    Hussain, Syed Tajammul, E-mail: dr_tajammul@yahoo.ca [Nano Science and Catalysis Div. National Centre For Physics, Quaid-i-Azam University Complex, Islamabad 4400 (Pakistan); Rashid [Nano Science and Catalysis Div. National Centre For Physics, Quaid-i-Azam University Complex, Islamabad 4400 (Pakistan) [Nano Science and Catalysis Div. National Centre For Physics, Quaid-i-Azam University Complex, Islamabad 4400 (Pakistan); Department of Chemistry, Quaid-i-Azam University, Islamabad (Pakistan); Anjum, Dalaver [Imaging and Characterization Lab, Blg 3 L0/room 232, 4700, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)] [Imaging and Characterization Lab, Blg 3 L0/room 232, 4700, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Siddiqa, Asima [Nano Science and Catalysis Div. National Centre For Physics, Quaid-i-Azam University Complex, Islamabad 4400 (Pakistan)] [Nano Science and Catalysis Div. National Centre For Physics, Quaid-i-Azam University Complex, Islamabad 4400 (Pakistan); Badshah, Amin [Department of Chemistry, Quaid-i-Azam University, Islamabad (Pakistan)] [Department of Chemistry, Quaid-i-Azam University, Islamabad (Pakistan)

    2013-02-15T23:59:59.000Z

    Graphical abstract: Cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst is synthesized using reverse micelle technique and it showed extraordinary photocatalytic activity. Display Omitted Highlights: ? TiON/Ag{sub 2}O/Co nanophotocatalyst is synthesized using microemulsion technique. ? Low temperature anatase phase and outstanding photocatlytic activity is observed. ? Effect of temperature and inert atmosphere on materials phase is investigated. ? Homogeneous dopants distribution and oxygen vacancies are examined. ? Enhancement in surface area, quantum efficiency and optical properties is observed. -- Abstract: An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag{sub 2}O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag{sub 2}O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag{sub 2}O/TiON and Co/Ag{sub 2}O/TiON is also investigated.

  5. Role of bimodal distribution in tailoring the inter-particle interactions in Cu{sub 79}Co{sub 21} nanogranular films

    SciTech Connect (OSTI)

    Kumar, Dinesh, E-mail: dinesh1.goyal@gmail.com; Chaudhary, Sujeet, E-mail: dinesh1.goyal@gmail.com; Pandya, Dinesh K., E-mail: dinesh1.goyal@gmail.com [Thin Film Laboratory, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2014-04-24T23:59:59.000Z

    Nanogranular Cu{sub 79}Co{sub 21} films were deposited by magnetron co-sputtering and their magnetotransport properties were investigated as a function of thickness (t). The fitting of magnetoresistance (MR) data reveals the presence of bimodal distribution of Co-particles. With the increase of film thickness from 25 to 200 nm, whereas smaller particle (2.5 nm) distribution remains unaffected, the bigger one grows monotonically from 3.3 nm to 4.9 nm for 25 ? t < 100 nm and stays same (4.9 nm) for 100 ? t ? 200 nm. From MR data recorded in the range of 20–300 K, it is observed that dependence of MR on thickness keeps on reducing on lowering the temperature. This observance has been presented in terms of presence of bimodal distribution and its role in tailoring the inter-particle magnetic interactions.

  6. Single crystalline Pr{sub 2-x}Y{sub x}O{sub 3} (x=0-2) dielectrics on Si with tailored electronic and crystallographic structure

    SciTech Connect (OSTI)

    Seifarth, O.; Schubert, M. A.; Giussani, A.; Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Klenov, D. O. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Schmeisser, D. [BTU Cottbus, Konrad Wachsmann Allee 1, 03046 Cottbus (Germany)

    2010-11-15T23:59:59.000Z

    Crystalline oxides on Si with tailored electronic and crystallographic properties are of importance for the integration of functional oxides or alternative semiconductors to enable novel device concepts in Si microelectronics. We present an electronic band gap study of single crystalline Pr{sub 2-x}Y{sub x}O{sub 3} (0{<=}x{<=}2) heterostructures on Si(111). The perfect solubility of the isomorphic bixbyites Pr{sub 2}O{sub 3} and Y{sub 2}O{sub 3} during molecular beam epitaxy thin film growth on Si enables a linear band gap tuning. Special focus is devoted to the determination of the electronic band offsets across the dielectric/Si interface. In addition, the composition x allows to control the crystallographic lattice parameter where, for example, Pr{sub 0.8}Y{sub 1.2}O{sub 3} enables the growth of fully lattice matched oxide heterostructures on Si.

  7. Temporal and Dose Kinetics of Tunnel Relaxation of Non-Equilibrium Near-Interfacial Charged Defects in Insulators

    E-Print Network [OSTI]

    Zebrev, Gennady I

    2015-01-01T23:59:59.000Z

    This paper is devoted mainly to mathematical aspects of modeling and simulation of tunnel relaxation of nonequilibrium charged oxide traps located at/near the interface insulator - conductive channel, for instance in irradiated MOS devices. The generic form of the tunnel annealing response function was derived from the rate equation for the charged defect buildup and annealing as a linear superposition of the responses of different defects with different time constants. Using this linear response function, a number of important practical problems are analyzed and discussed. Combined tunnel and thermal or RICN annealing, power-like temporal relaxation after a single ion strike into the gate oxide, are described in context of general approach.

  8. Materials Science and Engineering A 449451 (2007) 1217 Non-equilibrium solidification of concentrated FeGe alloys

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    with the interface diffusive speed (VD) for diffusion-limited or speed of sound (Vs) for collision-limited growth phase change like peritectic reaction during liquid to solid transformation. The Fe-rich part of Fe-equilibrium conditions. The deviation of the chemical equilibrium at the solid­liquid interface and the kinetic

  9. Interpreting the drying kinetics of a soil using a macroscopic thermodynamic non-equilibrium of water between the liquid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by diffusion mechanisms within the material [1]. When modelling this second phase, the state variable chosen about liquid-gas phase change in porous media that suggest that the establishment of equilibrium, 9]. Vapour diffusion and liquid-vapour phase change are considered as the main phenomena

  10. Within-island differentiation and between-island homogeneity: non-equilibrium population structure in the seaweed

    E-Print Network [OSTI]

    in the seaweed Cladophoropsis membranacea (Chlorophyta) in the Canary Islands HAN J. VAN DER STRATE1, 2 , LOUIS stone model at larger spatial scales. In the present survey, 23 sites were sampled in the Canary Islands among the Canary Islands regardless of how geographic distances were computed. Only when the Canary

  11. Non-Equilibrium Vibrational Kinetics in Radiofrequency H2 Plasmas: a Comparison Between Theoretical and Experimental Results

    SciTech Connect (OSTI)

    Capitelli, M. [Department of Chemistry-University of Bari (Italy); IMIP CNR - Bari (Italy); De Pascale, O. [IMIP CNR - Bari (Italy); Shakatov, V. [Centro Laser s.r.l. - Valenzano (Italy); Hassouni, K.; Lombardi, G.; Gicquel, A. [LIMHP-CNRS Universite Paris Nord - Villetaneuse (France)

    2005-05-16T23:59:59.000Z

    Vibrational and rotational experimental temperatures of molecular hydrogen obtained by Coherent Anti-Stokes Spectroscopy (CARS) in Radiofrequency Inductive Plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination and attachment kinetics. The analysis clarifies the role of atomic hydrogen and its heterogeneous recombination in affecting the vibrational content of the molecules.

  12. Indirect heating of Pt by non-equilibrium electrons in Au in a nanoscale Pt/Au bilayer

    E-Print Network [OSTI]

    Cahill, David G.

    -line equivalent-circuit. For optical exciation of either the Pt or Au side of the bilayer, the majority of energy excitations which are then driven out of thermal equilibrium with the vibrations of the atomic lattice.1

  13. Application of Semi-Grand Canonical Monte Carlo (SGMC) methods to describe non-equilibrium polymer systems

    E-Print Network [OSTI]

    Bernardin, Frederick E

    2007-01-01T23:59:59.000Z

    Understanding the structure of materials, and how this structure affects their properties, is an important step towards the understanding that is necessary in order to apply computational methods to the end of designing ...

  14. A parallel multistate framework for atomistic non-equilibrium reaction dynamics of solutes in strongly interacting organic solvents

    E-Print Network [OSTI]

    Glowacki, David R; Harvey, Jeremy N

    2014-01-01T23:59:59.000Z

    We describe a parallel linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM. Forces are obtained using the Hellman-Feynmann relationship, giving continuous gradients, and excellent energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to CCSD(T)-F12 electronic structure theory, we built a 64-state MS-EVB model designed to study the F + CD3CN -> DF + CD2CN reaction in CD3CN solvent. This approach allows us to build a reactive potential energy surface (PES) whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We use our PES to run MD simulations, and examine a range of transient observables which follow in the wake of reaction, including transient spectra of the DF vibrational band, time dependent profiles of vibrationally excited DF in CD3CN solvent, and relaxation rates for energy flow from DF into the solvent, all of which agree well with experime...

  15. Non-equilibrium deposition of phase pure Cu{sub 2}O thin films at reduced growth temperature

    SciTech Connect (OSTI)

    Subramaniyan, Archana, E-mail: asubrama@mymail.mines.edu [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Perkins, John D.; Lany, Stephan; Stevanovic, Vladan; Ginley, David S.; Zakutayev, Andriy [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); O’Hayre, Ryan P. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States)

    2014-02-01T23:59:59.000Z

    Cuprous oxide (Cu{sub 2}O) is actively studied as a prototypical material for energy conversion and electronic applications. Here we reduce the growth temperature of phase pure Cu{sub 2}O thin films to 300?°C by intentionally controlling solely the kinetic parameter (total chamber pressure, P{sub tot}) at fixed thermodynamic condition (0.25 mTorr pO{sub 2}). A strong non-monotonic effect of P{sub tot} on Cu-O phase formation is found using high-throughput combinatorial-pulsed laser deposition. This discovery creates new opportunities for the growth of Cu{sub 2}O devices with low thermal budget and illustrates the importance of kinetic effects for the synthesis of metastable materials with useful properties.

  16. Water Resources Management Degree Program Examples The tables below show some of the ways in which a student can tailor the Water Resources Management curriculum to fit their interests and needs.

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Management Degree Program Examples The tables below show some of the ways in which a student can tailor the Water Resources Management curriculum to fit their interests and needs. Each Hydrogeology Category B - Water Resources Institutions and Public Decision Making Processes Journalism 315

  17. Growth mechanisms study of microcrystalline silicon deposited by SiH{sub 4}/H{sub 2} plasma using tailored voltage waveforms

    SciTech Connect (OSTI)

    Bruneau, B., E-mail: bastien.bruneau@polytechnique.edu; Johnson, E. V. [LPICM-CNRS, Ecole Polytechnique, route de Saclay, 91128 Palaiseau (France); Wang, J. [LPICM-CNRS, Ecole Polytechnique, route de Saclay, 91128 Palaiseau (France); ICARE China-Europe Institute for Clean and Renewable Energy at Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan (China); Dornstetter, J.-C. [LPICM-CNRS, Ecole Polytechnique, route de Saclay, 91128 Palaiseau (France); TOTAL New Energies, 24 cours Michelet, 92069 Paris La Défense Cedex (France)

    2014-02-28T23:59:59.000Z

    The use of Tailored Voltage Waveforms is a technique wherein one uses non-sinusoidal waveforms with a period equivalent to RF frequencies to excite a plasma. It has been shown to be an effective technique to decouple maximum Ion Bombardment Energy (IBE) from the ion flux at the surface of the electrodes. In this paper, we use it for the first time as a way to scan through the IBE in order to study the growth mechanism of hydrogenated microcrystalline silicon using a SiH{sub 4}/H{sub 2} chemistry. We find that at critical energies, a stepwise increase in the amorphous to microcrystalline transition thickness is observed, as detected by Real Time Spectroscopic Ellipsometry. The same energy thresholds (30?eV and 70?eV) are found to be very influential on the final surface morphology of the samples, as observed by Atomic Force Microscopy. These thresholds correspond to SiH{sub x}{sup +} bulk displacement (30?eV) and H{sub x}{sup +} (70?eV) surface displacement energies. A model is therefore proposed to account for the impact of these ions on the morphology of ?c-Si:H growth.

  18. Novel chemically stable Ba3Ca1.18Nb1.82-xYxO9- proton conductor: improved proton conductivity through tailored cation ordering

    SciTech Connect (OSTI)

    Wang, Siwei [University of South Carolina, Columbia] [University of South Carolina, Columbia; Chen, Yan [ORNL] [ORNL; Fang, Shumin [University of South Carolina, Columbia] [University of South Carolina, Columbia; Zhang, Lingling [University of South Carolina, Columbia] [University of South Carolina, Columbia; Tang, Ming [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); An, Ke [ORNL] [ORNL; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.] [Savannah River National Laboratory (SRNL), Aiken, S.C.; Chen, Fanglin [University of South Carolina, Columbia] [University of South Carolina, Columbia

    2014-01-01T23:59:59.000Z

    Simple perovskite-structured proton conductors encounter significant challenges to simultaneously achieving excellent chemical stability and proton conductivity that are desirable for many important applications in energy conversion and storage. This work demonstrates that Y-doped complex-perovskite-structured Ba3Ca1.18Nb1.82 xYxO9 materials possess both improved proton conductivity and exceptional chemical stability. Neutron powder diffraction refinement revealed a Fm3 m perovskite-structure and increased oxygen vacancy concentration due to the Y doping. High-resolution TEM analysis confirmed the perturbation of the B site cation ordering in the structure for the Ba3Ca1.18Nb1.82 xYxO9 materials. Such combined effects led to improved proton conductivity with a value of 5.3 10 3 S cm 1 at 600 C for Ba3Ca1.18Nb1.52Y0.3O9 (BCNY0.3), a value 2.4 times higher compared with that of the undoped Ba3Ca1.18Nb1.82O9 . The Ba3Ca1.18Nb1.82 xYxO9 materials showed remarkable chemical stability toward water and demonstrated no observable reactions to CO2 exposure. Ionic transport number studies showed that BCNY0.3 had predominantly proton conduction below 600 C. Solid oxide fuel cells using BCNY0.3 as an electrolyte demonstrated cell power output of 103 mW cm 2 at 750 C. These results suggest that a doping strategy that tailors the cation ordering in complex perovskites provides a new direction in the search for novel proton conducting ceramics.

  19. Tailored Ceramics for Laser Applications /

    E-Print Network [OSTI]

    Hollingsworth, Joel Philip

    2013-01-01T23:59:59.000Z

    precipitated powder from Shin Etsu, and b) cold- pressed FSPprecipitated powder from Shin Etsu, and b) cold-pressed FSPvia precipitation. Shin-Etsu offers a CP YAG powder, which

  20. Tailor Made: Adapting Psychotherapeutic Interventions 

    E-Print Network [OSTI]

    Henry-Smith, Latanya Sherone

    2013-08-15T23:59:59.000Z

    With increased diversity and globalization, there is increased emphasis on awareness of cultural influences on functioning and in fostering cultural competence. This is particularly important in the context of intervention ...

  1. Tailoring Strong Lensing Cosmographic Observations

    E-Print Network [OSTI]

    Linder, Eric V

    2015-01-01T23:59:59.000Z

    Strong lensing time delay cosmography has excellent complementarity with other dark energy probes, and will soon have abundant systems detected. We investigate two issues in the imaging and spectroscopic followup required to obtain the time delay distance. The first is optimization of spectroscopic resources. We develop a code to optimize the cosmological leverage under the constraint of constant spectroscopic time, and find that sculpting the lens system redshift distribution can deliver a 40% improvement in dark energy figure of merit. The second is the role of systematics, correlated between different quantities of a given system or model errors common to all systems. We show how the levels of different systematics affect the cosmological parameter estimation, and derive guidance for the fraction of double image vs quad image systems to follow as a function of differing systematics between them.

  2. Tailored Ceramics for Laser Applications /

    E-Print Network [OSTI]

    Hollingsworth, Joel Philip

    2013-01-01T23:59:59.000Z

    was released from the hydraulic press. While they seem farwas then placed in a hydraulic press, and a rotary vane pumpthe sample volume. The hydraulic press was used to apply a

  3. Tailor Made: Adapting Psychotherapeutic Interventions

    E-Print Network [OSTI]

    Henry-Smith, Latanya Sherone

    2013-08-15T23:59:59.000Z

    ..................................................................................................... 7 CHAPTER II LITERATURE REVIEW .......................................................................... 8 Multicultural Psychology ............................................................................................... 9 Cultural... set of congruent behaviors, attitudes and policies that come together in a system, agency or among professionals and enable that system, agency or those professions to work effectively in cross-cultural situations? (p. 7). Roberts et al., (1990...

  4. Aeroelastic tailoring of composite materials

    E-Print Network [OSTI]

    Rogers, Jesse Byron

    1979-01-01T23:59:59.000Z

    of the liquid, in this case water and dissolved air or gas [25]. Since propeller blades are designed to produce thrust by the development of positive and negative differential pressures on the airfoil surfaces (see Figure 26), 54 cavitation often occurs... 45 46 47 51 27 28 Pressure d-i stribution on NACA 2412 profile (A) Dependence of lift coefficient on cavitation number for (B) three types of cavitation 57 Efficiency curve for ship propeller 58 ix LIST OF FIGURES (continued) Figure 30...

  5. Tailoring nanocrystalline diamond film properties

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); McCauley, Thomas G. (Somerville, MA); Zhou, Dan (Orlando, FL); Krauss, Alan R. (Naperville, IL)

    2003-07-15T23:59:59.000Z

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  6. Frequency upconversion in Er{sup 3+} doped Y{sub 2}O{sub 3} nanophosphor:Yb{sup 3+} sensitization and tailoring effect of Li{sup +} ion

    SciTech Connect (OSTI)

    Mishra, K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Singh, S.K., E-mail: sunilcfsl@gmail.com [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, A.K. [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Rai, S.B., E-mail: sbrai49@yahoo.co.in [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2013-10-15T23:59:59.000Z

    Graphical abstract: - Highlights: • Dual mode luminescence behavior of Er{sup 3+} in oxide phosphor. • Sensitization through Yb{sup 3+} codoping, and tailoring effect of lithium ion. • Phosphors for lighting and display applications. - Abstract: Er{sup 3+} doped Y{sub 2}O{sub 3} nanophosphor has been synthesized using solution combustion technique and further characterized for structure and optical properties. Optical properties of Er{sup 3+} ion have been studied both through frequency upconversion (UC) as well as through fluorescence (excitation, emission, and CIE co-ordinate analysis) processes. Further to enhance the UC emission of Er{sup 3+} ions, a two step process has been used. In the first step, Yb{sup 3+} ion has been co-doped, which acts as the sensitizer for Er{sup 3+} through energy transfer process. In the second step, different concentrations of Li{sup +} ions have been co-doped in the Er{sup 3+}/Yb{sup 3+}:Y{sub 2}O{sub 3} system. Fourier transform infrared analysis, and X-ray diffraction (XRD) followed by Le-Bail refinement of the XRD data reveal that the co-doping of Li{sup +} ion decreases unit cell parameter, increases the particle size, and removes the quenching centers (like OH, NO{sub x}, etc.), which all together causes a significant enhancement in UC emission. Optimum UC luminescence is attained for 5 mol% Li{sup +} doping concentration beyond which a quenching in UC emission is observed. This combined approach, i.e. Yb{sup 3+} sensitization and Li{sup +} ion tailoring simultaneously enhances the UC emission intensity of Er{sup 3+} several times in yttria matrix effectively. The strategy can be generalized in other hosts also which could help in the development of efficient photonic materials for lighting and display devices.

  7. Simulation of effect of interfacial lithium flux on miscibility gap in non-equilibrium phase transformation of LiFePO4 particles

    E-Print Network [OSTI]

    Liu, Fuqiang

    history: Received 14 May 2013 Received in revised form 12 June 2013 Accepted 13 June 2013 Available online technological applications such as automobiles and portable electronics. To achieve a real breakthrough

  8. The behavior of matter under non-equilibrium conditions: Fundamental aspects and applications. Progress report, July 15, 1991--July 14, 1992

    SciTech Connect (OSTI)

    Prigogine, I.

    1992-04-01T23:59:59.000Z

    This report briefly discusses concepts of chaotic systems. The topics discusses are: Bernoulli maps; mathematical aspects of the complex spectral representations; and large poincare systems. (LSP)

  9. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    SciTech Connect (OSTI)

    Not Available

    1981-11-01T23:59:59.000Z

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  10. J. fhys. D:Appl. fhys. 28 (1995)1903-1918.Printed in he UK 1 Non-equilibrium coupled kinetics in

    E-Print Network [OSTI]

    Guerra, Vasco

    equation coupled to the rate balance equationsfor the vibrationally excited molecules N2(X 'E;, v) and 02(X are studied with the purpose of material treatments or in order to test coating materials for space vehicles

  11. Non-Equilibrium Beta Processes in Neutron Stars: A Relationship between the Net Reaction Rate and the Total Emissivity of Neutrinos

    E-Print Network [OSTI]

    Sergio Flores-Tulian; Andreas Reisenegger

    2006-07-25T23:59:59.000Z

    Several different processes could be changing the density in the core of a neutron star, leading to a departure from $\\beta$ equilibrium, quantified by the chemical potential difference $\\delta\\mu\\equiv\\mu_n-\\mu_p-\\mu_e$. The evolution of this quantity is coupled to that of the star's interior temperature $T$ by two functions that quantify the rate at which neutrino-emitting reactions proceed: the net reaction rate (difference between $\\beta$ decay and capture rates), $\\Gamma_{\\rm net}(T,\\delta\\mu)$, and the total emissivity (total energy emission rate in the form of neutrinos and antineutrinos), $\\epsilon_{\\rm tot}(T,\\delta\\mu)$. Here, we present a simple and general relationship between these variables, ${\\partial\\epsilon_{\\rm tot}/\\partial\\delta\\mu=3\\Gamma_{\\rm net}}$, and show that it holds even in the case of superfluid nucleons. This relation may simplify the numerical calculation of these quantities, including superfluid reduction factors.

  12. Low energy isomers of (H2O)25 from a hierarchical method based on Monte Carlo Temperature Basin Paving and Molecular Tailoring Approaches benchmarked by full MP2 calculations

    SciTech Connect (OSTI)

    Sahu, Nityananda; Gadre, Shridhar R.; Bandyopadhyay, Pradipta; Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-10-28T23:59:59.000Z

    We report new global minimum candidate structures for the (H2O)25 cluster that are lower in energy than the ones reported previously and correspond to hydrogen bonded networks with 42 hydrogen bonds and an interior, fully coordinated water molecule. These were obtained as a result of a hierarchical approach based on initial Monte Carlo Temperature Basin Paving (MCTBP) sampling of the cluster’s Potential Energy Surface (PES) with the Effective Fragment Potential (EFP), subsequent geometry optimization using the Molecular Tailoring fragmentation Approach (MTA) and final refinement at the second order Møller Plesset perturbation (MP2) level of theory. The MTA geometry optimizations used between 14 and 18 main fragments with maximum sizes between 11 and 14 water molecules and average size of 10 water molecules, whose energies and gradients were computed at the MP2 level. The MTA-MP2 optimized geometries were found to be quite close (within < 0.5 kcal/mol) to the ones obtained from the MP2 optimization of the whole cluster. The grafting of the MTA-MP2 energies yields electronic energies that are within < 5×10-4 a.u. from the MP2 results for the whole cluster while preserving their energy order. The MTA-MP2 method was also found to reproduce the MP2 harmonic vibrational frequencies in both the HOH bending and the OH stretching regions.

  13. Low energy isomers of (H{sub 2}O){sub 25} from a hierarchical method based on Monte Carlo temperature basin paving and molecular tailoring approaches benchmarked by MP2 calculations

    SciTech Connect (OSTI)

    Sahu, Nityananda; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in, E-mail: sotiris.xantheas@pnnl.gov [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Rakshit, Avijit; Bandyopadhyay, Pradipta [School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Miliordos, Evangelos; Xantheas, Sotiris S., E-mail: gadre@iitk.ac.in, E-mail: sotiris.xantheas@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352 (United States)

    2014-10-28T23:59:59.000Z

    We report new global minimum candidate structures for the (H{sub 2}O){sub 25} cluster that are lower in energy than the ones reported previously and correspond to hydrogen bonded networks with 42 hydrogen bonds and an interior, fully coordinated water molecule. These were obtained as a result of a hierarchical approach based on initial Monte Carlo Temperature Basin Paving sampling of the cluster's Potential Energy Surface with the Effective Fragment Potential, subsequent geometry optimization using the Molecular Tailoring Approach with the fragments treated at the second order Møller-Plesset (MP2) perturbation (MTA-MP2) and final refinement of the entire cluster at the MP2 level of theory. The MTA-MP2 optimized cluster geometries, constructed from the fragments, were found to be within <0.5 kcal/mol from the minimum geometries obtained from the MP2 optimization of the entire (H{sub 2}O){sub 25} cluster. In addition, the grafting of the MTA-MP2 energies yields electronic energies that are within <0.3 kcal/mol from the MP2 energies of the entire cluster while preserving their energy rank order. Finally, the MTA-MP2 approach was found to reproduce the MP2 harmonic vibrational frequencies, constructed from the fragments, quite accurately when compared to the MP2 ones of the entire cluster in both the HOH bending and the OH stretching regions of the spectra.

  14. Tailoring hydrocarbon streams for asphaltene removal

    SciTech Connect (OSTI)

    Del Bianco, A.; Stroppa, F.; Bertero, L.

    1995-11-01T23:59:59.000Z

    Oilfield production is often hindered by asphaltene precipitation which tends to fill the pores of the reservoir rocks and plug the wellbore tubing as well as the other auxiliary equipment used during crude oil recovery. Several remedies to remove these deposits have been proposed and patented but the injection of aromatic solvents such as toluene and light petroleum distillates is normally preferred. Previous studies with a number of pure aromatic hydrocarbons have shown that the solvent capacity of these molecules may be very different and that the degree of condensation plays an important role. In this regard, tetralins and naphthalenes are superior to alkylbenzenes. However, because the use of pure compounds is not economically feasible, the authors examined various industrial streams and the authors correlated their chemical composition to the solvent capacity. This work allowed the identification of the pseudo-components whose relative concentration is crucial for evaluating the solvent performances. Based on these data, the authors were able to find new products with ideal characteristics. The efficiency of one of these products was confirmed by the analysis of the data obtained when using this new solvent to remove asphaltene in damaged wells of an Italian field.

  15. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect (OSTI)

    KRISHNAN, Mahadevan

    2012-12-10T23:59:59.000Z

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  16. Tailored Acicular Mullite Substrates for Multifunctional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer09malanga.pdf More Documents & Publications Future Trends for DPFSCR On-Filter (SCRF) fundamental Modeling and Experimental Studies of Acicular Mullite Diesel Particulate...

  17. Tailored fischer-tropsch synthesis product distribution

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA); Cao, Chunshe (Kennewick, WA); Li, Xiaohong Shari (Richland, WA); Elliott, Douglas C. (Richland, WA)

    2012-06-19T23:59:59.000Z

    Novel methods of Fischer-Tropsch synthesis are described. It has been discovered that conducting the Fischer-Tropsch synthesis over a catalyst with a catalytically active surface layer of 35 microns or less results in a liquid hydrocarbon product with a high ratio of C.sub.5-C.sub.20:C.sub.20+. Descriptions of novel Fischer-Tropsch catalysts and reactors are also provided. Novel hydrocarbon compositions with a high ratio of C.sub.5-C.sub.20:C.sub.20+ are also described.

  18. The Evidence for Tailoring Behavioral Interventions: What

    E-Print Network [OSTI]

    Niebur, Ernst

    Disturbance Index (BDI) BDI ­ frequency of behaviors per hour of observation Understand: Sleep and Behavioral." Nighttime Sleep Problems in Dementia #12;#12;We hypothesized that nighttime behavioral disturbance may). Understand Sleep and Behavioral Disturbance in Dementia #12;60 elders with dementia residing at home Methods

  19. Linear nozzle with tailored gas plumes

    DOE Patents [OSTI]

    Leon, David D. (Murrysville, PA); Kozarek, Robert L. (Apollo, PA); Mansour, Adel (Mentor, OH); Chigier, Norman (Pittsburgh, PA)

    2001-01-01T23:59:59.000Z

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  20. Linear nozzle with tailored gas plumes

    DOE Patents [OSTI]

    Kozarek, Robert L. (Apollo, PA); Straub, William D. (Pittsburgh, PA); Fischer, Joern E. (Bremen, DE); Leon, David D. (Murrysville, PA)

    2003-01-01T23:59:59.000Z

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  1. Tailored Materials Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP Jump to:TIAXFlorida:

  2. Non-equilibrium vibrational and electron energy distributions functions in atmospheric nitrogen ns pulsed discharges and \\mus post-discharges: the role of electron molecule vibrational excitation scaling-laws

    E-Print Network [OSTI]

    Colonna, Gianpiero; Celiberto, Roberto; Capitelli, Mario; Tennyson, Jonathan

    2015-01-01T23:59:59.000Z

    The formation of the electron energy distribution function in nanosecond atmospheric nitrogen discharges is investigated by means of self-consistent solution of the chemical kinetics and the Boltzmann equation for free electrons. The post-discharge phase is followed to few microseconds. The model is formulated in order to investigate the role of the cross section set, focusing on the vibrational-excitation by electron-impact through resonant channel. Four different cross section sets are considered, one based on internally consistent vibrational-excitation calculations which extend to the whole vibrational ladder, and the others obtained by applying commonly used scaling-laws.

  3. Tailored net-shape powder composites by spark plasma sintering

    E-Print Network [OSTI]

    Khaleghi, Evan Aryan

    2012-01-01T23:59:59.000Z

    Structure in Dye Sensitized Solar Cells," Jour. Am. Cer.Pore Structure in Dye Sensitized Solar Cells, International

  4. Tailoring the slow light behavior in terahertz metasurfaces

    E-Print Network [OSTI]

    Manjappa, Manukumara; Cong, Longqing; Bettiol, Andrew A; Zhang, Weili; Singh, Ranjan

    2015-01-01T23:59:59.000Z

    We experimentally study the effect of near field coupling on the transmission of light in terahertz metasurfaces, possessing slightly distinctive SRR resonances. Our results show that the interplay between the strengths of electric and magnetic dipoles, modulates the amplitude of resulting electromagnetically induced transmission, probed under different types of asymmetries in the coupled system. We employ a two-particle model to theoretically study the influence of the near field coupling between bright and quasi-dark modes on the transmission properties of the coupled system and we find an excellent agreement with our observed results. Adding to the enhanced transmission characteristics, our results provide a deeper insight into the metamaterial analogues of atomic electromagnetically induced transparency and offer an approach to engineer slow light devices, broadband filters and attenuators at terahertz frequencies.

  5. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100 femtoseconds, synchronization to another ultrafast source ranging from infrared to x-ray wavelengths, and the ability to shape the time envelope of the pulse. Among the...

  6. Tailoring room temperature photoluminescence of antireflective silicon nanofacets

    SciTech Connect (OSTI)

    Basu, Tanmoy; Kumar, M.; Ghatak, J.; Som, T., E-mail: tsom@iopb.res.in [Institute of Physics, Schivalaya Marg. Bhubaneswar 751 005 (India); Kanjilal, A. [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh 201 314 (India); Sahoo, P. K. [National Institute of Science Education and Research, Bhubaneswar 751 005 (India)

    2014-09-21T23:59:59.000Z

    In this paper, a fluence-dependent antireflection performance is presented from ion-beam fabricated nanofaceted-Si surfaces. It is also demonstrated that these nanofacets are capable of producing room temperature ultra-violet and blue photoluminescence which can be attributed to inter-band transitions of the localized excitonic states of different Si-O bonds at the Si/SiO{sub x} interface. Time-resolved photoluminescence measurements further confirm defect-induced radiative emission from the surface of silicon nanofacets. It is observed that the spectral characteristics remain unchanged, except an enhancement in the photoluminescence intensity with increasing ion-fluence. The increase in photoluminescence intensity by orders of magnitude stronger than that of a planar Si substrate is due to higher absorption of incident photons by nanofaceted structures.

  7. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Tailored photon-pair generation in optical fibers

    E-Print Network [OSTI]

    Offir Cohen; Jeff S. Lundeen; Brian J. Smith; Graciana Puentes; Peter J. Mosley; Ian A. Walmsley

    2009-04-14T23:59:59.000Z

    We experimentally control the spectral structure of photon pairs created via spontaneous four-wave mixing in microstructured fibers. By fabricating fibers with designed dispersion, one can manipulate the photons' wavelengths, joint spectrum, and, thus, entanglement. As an example, we produce photon-pairs with no spectral correlations, allowing direct heralding of single photons in pure-state wave packets without filtering. We achieve an experimental purity of $85.9\\pm1.6%$, while theoretical analysis and preliminary tests suggest 94.5% purity is possible with a much longer fiber.

  9. Aeroelastic Tailoring of Composite Box Beams Mayuresh J. Patil

    E-Print Network [OSTI]

    Patil, Mayuresh

    sectional stiffness matrix g = artificial damping parameter h = airfoil plunge motion [K] = stiffness matrix ¯L = aerodynamic lift ¯M = aerodynamic pitching moment [M] = mass matrix q,¯q,~q = generalized with static aeroelas- tic problems including spanwise lift redistribution, lift effectiveness and aileron

  10. Development of novel polymeric nanoparticles with tailored architectures and functionalities/

    E-Print Network [OSTI]

    Burts, Alan O. (Alan Omar)

    2013-01-01T23:59:59.000Z

    Developing a modular synthetic route to a combinatorial library of functional nanoparticles for applications like drug delivery is one of the main interests of our group. To this end, we have envisioned a novel nanoparticle ...

  11. Tailored net-shape powder composites by spark plasma sintering

    E-Print Network [OSTI]

    Khaleghi, Evan Aryan

    2012-01-01T23:59:59.000Z

    sintering,” Materials Science and Engineering R, 63, 127–Field,” Materials Science and Engineering A 287, 171-177 (sintering”, Materials Science And Engineering A- Structural

  12. Phased laser array with tailored spectral and coherence properties

    DOE Patents [OSTI]

    Messerly, Michael J; Dawson, Jay W; Beach, Raymond J

    2014-05-20T23:59:59.000Z

    Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.

  13. Tailoring femtosecond laser pulse filamentation using plasma photonic lattices

    SciTech Connect (OSTI)

    Suntsov, Sergiy; Abdollahpour, Daryoush; Panagiotopoulos, Paris [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, P.O. Box 1527, 71110 Heraklion (Greece); Papazoglou, Dimitrios G.; Tzortzakis, Stelios [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, P.O. Box 1527, 71110 Heraklion (Greece); Materials Science and Technology Department, University of Crete, P.O. Box 2208, 71003 Heraklion (Greece); Couairon, Arnaud [Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-07-08T23:59:59.000Z

    We demonstrate experimentally that by using transient plasma photonic lattices, the attributes of intense femtosecond laser filaments, such as peak intensity and length, can be dynamically controlled. The extended plasma lattice structure is generated using two co-propagating non-diffracting intense Bessel beams in water. The use of such transient lattice structures to control the competition between linear and nonlinear effects involved in filamentation opens the way for extensive control of the filamentation process.

  14. Tailoring the air plasma with a double laser pulse

    SciTech Connect (OSTI)

    Shneider, M. N.; Miles, R. B. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263 (United States); Zheltikov, A. M. [Physics Department, International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843-4242 (United States)

    2011-06-15T23:59:59.000Z

    We present a comprehensive model of plasma dynamics that enables a detailed understanding of the ways the air plasma induced in the atmosphere in the wake of a laser-induced filament can be controlled by an additional laser pulse. Our model self-consistently integrates plasma-kinetic, Navier-Stokes, electron heat conduction, and electron-vibration energy transfer equations, serving to reveal laser-plasma interaction regimes where the plasma lifetime can be substantially increased through an efficient control over plasma temperature, as well as suppression of attachment and recombination processes. The model is used to quantify the limitations on the length of uniform laser-filament heating due to the self-defocusing of laser radiation by the radial profile of electron density. The envisaged applications include sustaining plasma guides for long-distance transmission of microwaves, standoff detection of impurities and potentially hazardous agents, as well as lightning control and protection.

  15. Multiscale Representations of Water: Tailoring Generalization Sequences to Specific

    E-Print Network [OSTI]

    Klippel, Alexander

    in Geospatial Information Science (CEGIS), United States Geological Survey (USGS) , Rolla, Missouri USA Email.S. Geological Survey (USGS). The work draws upon previously published methods for estimating upstream drainage and geologic conditions require differing generalization algorithms, parameters and processing sequences

  16. ADVANCES IN FORCE FIELD TAILORING FOR CONSTRUCTION IN SPACE

    E-Print Network [OSTI]

    a reference mission architecture and engineering solutions to the other issues in building large-scale came up on how to apply this technology to large-scale construction in vacuum, it was natural for us.komerath@ae.gatech.edu Long-term human habitation in space requires the ability to use extraterrestrial materials to build

  17. Property Prediction Tools for Tailored Polymer Composite Structures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fiber arrays. BROADER IMPACT Quantitative structure-permeability correlations for fibrous media will allow for optimal design of fabrics used in liquid-molded composite materials....

  18. Property Prediction Tools for Tailored Polymer Composite Structures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structures Polymer Composite Structures Merit Review: February 27, 2008 Presenter: M.T. Smith (PNNL) Principal Investigators: B.N. Nguyen (PNNL), V. Kunc (ORNL) Pacific Northwest...

  19. Tailored Ink For Piston-Driven Electrostatic Liquid Drop Modulator

    DOE Patents [OSTI]

    Wong, Raymond W. (Mississauga, CA); Breton, Marcel P. (Mississauga, CA); Bedford, Christine E. (Toronto, CA); Carreira, Leonard M. (Penfield, NY); Gooray, Arthur M. (Penfield, NY); Roller, George J. (Penfield, NY); Zavadil, Kevin (Benalillo, NM); Galambos, Paul (Albuquerque, NM); Crowley, Joseph (Morgan Hill, CA)

    2005-04-19T23:59:59.000Z

    The present invention relates to an ink composition including water, a solvent, a solvent-soluble dye, and a surfactant, where the ink exhibits a stable liquid microemulsion phase at a first temperature and a second temperature higher than the first temperature and has a conductivity of at most about 200 .mu.S/cm and a dielectric constant of at least about 60, and methods of making such ink compositions. The present invention also relates to a method of making an ink composition for use in a microelectromechanical system-based fluid ejector. The method involves providing a solution or dispersion including a dye or a pigment and adding to the solution or dispersion an additive which includes a material that enhances dielectric permittivity and/or reduces conductivity under conditions effective to produce an ink composition having a conductivity of at most about 200 .mu.S/cm and a dielectric constant of at least about 60.

  20. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    E-Print Network [OSTI]

    Gonsalves, Anthony

    2012-01-01T23:59:59.000Z

    dot line), which increases to ? 3.5 compared with the vacuum focal value of ? 1.5, producing a bubble

  1. Tailoring the Thermoelectric Behavior of Electrically Conductive Polymer Composites

    E-Print Network [OSTI]

    Moriarty, Gregory P.

    2013-05-21T23:59:59.000Z

    the promise of fully organic composites as thermoelectric materials. This combination of CNT and stabilizer produced metallic electrical conductivity (200,000 S m-1) and power factors (S2?) within an order of magnitude of commonly used semiconductors (~400 ?W...

  2. Public Housing: A Tailored Approach to Energy Retrofits

    SciTech Connect (OSTI)

    Dentz, J.; Conlin, F.; Podorson, D.; Alaigh, K.

    2014-06-01T23:59:59.000Z

    Over one million HUD-supported public housing units provide rental housing for eligible low-income families across the country. A survey of over 100 PHAs across the country indicated that there is a high level of interest in developing low cost solutions that improve energy efficiency and can be seamlessly included in the refurbishment process. Further, PHAs, have incentives (both internal and external) to reduce utility bills. ARIES worked with two public housing authorities (PHAs) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement with their own staffs in the normal course of housing operations at the time when units are refurbished between occupancies. The energy efficiency turnover protocols emphasized air infiltration reduction, duct sealing and measures that improve equipment efficiency. ARIES documented implementation in ten housing units. Reductions in average air leakage were 16-20% and duct leakage reductions averaged 38%. Total source energy consumption savings was estimated at 6-10% based on BEopt modeling with a simple payback of 1.7 to 2.2 years. Implementation challenges were encountered mainly related to required operational changes and budgetary constraints. Nevertheless, simple measures can feasibly be accomplished by PHA staff at low or no cost. At typical housing unit turnover rates, these measures could impact hundreds of thousands of unit per year nationally.

  3. Tailoring the Thermoelectric Behavior of Electrically Conductive Polymer Composites 

    E-Print Network [OSTI]

    Moriarty, Gregory P.

    2013-05-21T23:59:59.000Z

    fabrication temperatures. These concerns have led research efforts into electrically conductive polymer composites prepared in ambient conditions from aqueous solutions. By combining polymer latex with carbon nanotubes (CNT), electrical conductivity can...

  4. Laser beam temporal and spatial tailoring for laser shock processing

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Dane, C. Brent (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  5. Tailoring Topology Optimization to Composite Pressure Vessel Design with Simultaneous

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    ;Introduction ­ CNG Pressure Vessels Compressed Natural Gas (CNG) Pressure Vessels CNG Cargo Containment System

  6. Tailored net-shape powder composites by spark plasma sintering

    E-Print Network [OSTI]

    Khaleghi, Evan Aryan

    2012-01-01T23:59:59.000Z

    produced by spark plasma sintering”, Powder Metall. , 51, 59nanoparticles in spark plasma sintering. Mater. Sci. Eng. ,Evolution During Spark Plasma Sintering,” Ceram. Int. , 35,

  7. Tailor Synthesis of Nanostructures for Direct Integration Into Solar Cells 

    E-Print Network [OSTI]

    Van Laer, Maxime 1989-

    2012-05-09T23:59:59.000Z

    water and reduce carbon dioxide into carbohydrates as a “usable” energy source2. A more applicable way the sun’s light energy can be used to create fuel is through the excitation of electrons known as the photovoltaic effect. It has been postulated... to the success of this project regards the material chosen. The principal property of any photo absorbing material is its band gap, as it defines what range of the solar spectrum the photovoltaic cell absorbs5. Energy of light is directly proportional to its...

  8. Recent Results for the Ferritics Isotopic Tailoring (FIST) Experiment

    SciTech Connect (OSTI)

    Gelles, David S.; Hamilton, M L.; Oliver, Brian M.; Greenwood, Lawrence R.; Ohnuki, Somei; Shiba, K; Kohno, Yutaka; Kohyama, Akira; Robertson, J P.

    2002-12-01T23:59:59.000Z

    An alloy of F82H prepared using the isotope 54 Fe in order to encourage H and He production in a fission reactor has been irradiated in the HFIR JP20 experiment at three temperatures to 7 dpa as TEM disks. Irradiated disks were shear punch tested, examined by TEM, analyzed for He and H content, and compared with previous results in order to quantify irradiation hardening due to transmutation-induced H and He. Hardening due to irradiation is found following irradiation at 300 and 400 C, that is intermediate between that at lower and higher dose, but hardening is negligible following irradiation at 500 C. Microstructural examinations show typical behavior of irradiation as a function of irradiation temperature, with moderate swelling after 400 C irradiation but few bubbles after irradiation at 300 C. Correlations of change in hardening with He and H content show little indication of transmutation-induced hardening, but measured H levels do not agree with predictions and therefore H production and analysis requires further study.

  9. Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters

    E-Print Network [OSTI]

    -siegen.de Fraunhofer Institute for Applied Information Technology (FhG-FIT) Schloss Birlinghoven, 53754 Sankt Augustin, Germany volker.wulf@fit.fraunhofer.de Abstract. In fragmented work settings like network organizations or virtual organizations, monolithic approaches to implement support for collaboration would require

  10. Tailoring the flow of soft glasses by soft additives

    E-Print Network [OSTI]

    E. Zaccarelli; C. Mayer; A. Asteriadi; C. N. Likos; F. Sciortino; J. Roovers; H. Iatrou; N. Hadjichristidis; P. Tartaglia; H. Löwen; D. Vlassopoulos

    2005-11-15T23:59:59.000Z

    We examine the vitrification and melting of asymmetric star polymers mixtures by combining rheological measurements with mode coupling theory. We identify two types of glassy states, a {\\it single} glass, in which the small component is fluid in the glassy matrix of the big one and a {\\it double} glass, in which both components are vitrified. Addition of small star polymers leads to melting of {\\it both} glasses and the melting curve has a non-monotonic dependence on the star-star size ratio. The phenomenon opens new ways for externally steering the rheological behavior of soft matter systems.

  11. Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

    SciTech Connect (OSTI)

    Buchheit, T.E.; Christenson, T.R.; Lavan, D.A.; Schmale, D.T.

    1999-01-25T23:59:59.000Z

    LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

  12. Passive aeroelastic tailoring of wind turbine blades : a numerical analysis

    E-Print Network [OSTI]

    Deilmann, Christian

    2009-01-01T23:59:59.000Z

    This research aims to have an impact towards a sustainable energy supply. In wind power generation losses occur at tip speed ratios which the rotor was not designed for. Since the ideal blade shape changes nonlinearly with ...

  13. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III (Illinois State Geological Survey, Champaign, IL (United States)); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. (Illinois State Geological Survey, Champaign, IL (United States) DESTEC Energy (United States) Williams Technology (United States) Illinois Coal Association (United States))

    1992-01-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  14. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III (Illinois State Geological Survey, Champaign, IL (United States)); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. (Illinois State Geological Survey, Champaign, IL (United States) DESTEC Energy (United States) Williams Technology, (United States) Illinois Coal Association (United States))

    1992-01-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  15. Gasifier feed: Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III.

    1991-01-01T23:59:59.000Z

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  16. Anomalous phenomena and spectral tailoring in photonic crystals

    E-Print Network [OSTI]

    Ghebrebrhan, Michael

    2010-01-01T23:59:59.000Z

    Photonic crystals are recently discovered meta-materials whose optical properties arise from periodic refractive index variations. In this thesis I examine various aspects of photonic crystals including a self-assembled ...

  17. Tailoring a 67 attosecond pulse through advantageous phase-mismatch

    E-Print Network [OSTI]

    Van Stryland, Eric

    be obtained [3]. The attochirp is roughly constant over the plateau but in- creases rapidly at the low (X not only by the response of individual atoms, but also by the coherent build-up of XUV photons, which leads with experimental conditions [7­9]. In this letter, we de- monstrated that by tuning the generation gas pressure

  18. Linear nozzle with tailored gas plumes and method

    DOE Patents [OSTI]

    Leon, David D. (Murrysville, PA); Kozarek, Robert L. (Apollo, PA); Mansour, Adel (Mentor, OH); Chigier, Norman (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.

  19. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  20. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01T23:59:59.000Z

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  1. New OLED Cathode Materials with Tailored Low Work Function - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CUNew

  2. Understanding and Tailoring Metal-Support Interactions in Heterogeneous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgramUndergraduate MonthlyDecoupling PamelaCatalysts |

  3. Tailored Marketing for Under-Represented Population Segments | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success Stories Systems AnalysisTESTIMONYTTWG LicensingUof

  4. Property Prediction Tools for Tailored Polymer Composite Structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergy National

  5. Property Prediction Tools for Tailored Polymer Composite Structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergy NationalDepartment of Energy 2.pdf More

  6. Engineering Property Prediction Tools for Tailored Polymer Composite

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20 *Structures |

  7. Engineering Property Prediction Tools for Tailored Polymer Composite

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20 *Structures

  8. Tailored Acicular Mullite Substrates for Multifunctional Diesel Particulate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of EnergyFOREnergy IV: Technical 1.Tackling

  9. Tailored Materials for Advanced CIDI Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of EnergyFOREnergy IV: Technical 1.Tackling1

  10. Tailored Materials for Advanced CIDI Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of EnergyFOREnergy IV: Technical 1.Tackling10

  11. Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of EnergyFOREnergy IV: Technical

  12. Thermal Trap for DNA Replication Christof B. Mast and Dieter Braun*

    E-Print Network [OSTI]

    Kersting, Roland

    and simultaneously accumulates the replicated molecules in an efficient thermophoretic trap. The non- equilibrium

  13. Geometrically-protected reversibility in hydrodynamic Loschmidt-echo experiments

    E-Print Network [OSTI]

    Jeanneret, Raphaël

    2014-01-01T23:59:59.000Z

    We demonstrate an archetypal Loschmidt-echo experiment involving thousands of droplets which interact in a reversible fashion via a viscous fluid. Firstly, we show that, unlike equilibrium systems, periodically driven microfluidic emulsions self-organize and geometrically protect their macroscopic reversibility. Self-organization is not merely dynamical; we show that it has a clear structural signature akin to that found in a mixture of molecular liquids. Secondly, we show that, above a maximal shaking amplitude, structural order and reversibility are lost simultaneously in the form of a first order non-equilibrium phase transition. We account for this discontinuous transition in terms of a memory-loss process. Finally, we suggest potential applications of microfluidic echo as a robust tool to tailor colloidal self-assembly at large scales.

  14. Tunable storage of optical pulses in a tailored Bragg-grating structure

    E-Print Network [OSTI]

    Fu, Shenhe; Liu, Yikun; Zhou, Jianying; Malomed, Boris A

    2015-01-01T23:59:59.000Z

    Scenarios for controllable creation, trapping and holding of single and multiple solitons in a specially designed nonlinear Bragg grating (BG) are proposed. The setting includes a chirped BG segment, which is linked via a local defect to a uniform BG with a built-in array of defects. A parabolic relation between the trapping position of the incident soliton and its power is obtained. Simultaneous trapping of two and three solitons at different locations is demonstrated too.

  15. Dynamic tailoring and tuning for space-based precision optical structures

    E-Print Network [OSTI]

    Masterson, Rebecca A. (Rebecca Ann)

    2005-01-01T23:59:59.000Z

    Next-generation space telescopes in NASA's Origins missions require use of advanced imaging techniques to achieve high optical performance with limited launch mass. Structurally-connected Michelson interferometers meet ...

  16. Refrigerator Efficiency in Ghana: Tailoring an appliance market transformation program design for Africa

    E-Print Network [OSTI]

    Ben Hagan, Essel; Van Buskirk, Robert; Ofosu-Ahenkorah, Alfred; McNeil, Michael A.

    2006-01-01T23:59:59.000Z

    McMahon J.E. (2005) Energy Efficiency Labels and Standards:the implementation of an efficient refrigerator marketequipment age, and efficiency of electricity generation 9.

  17. Requirements for Statistics Concentration The Statistics concentration or major may be tailored in accordance with

    E-Print Network [OSTI]

    Stine, Robert A.

    Requirements for Statistics Concentration 6/9/11 The Statistics concentration or major are required, with at least 3 credit units from Statistics. STAT 621 may contribute in Statistics The following courses offered by the Department of Statistics are eligible

  18. Quinone tailored selective oxidation of methane over palladium catalyst with molecular oxygen as an oxidantw

    E-Print Network [OSTI]

    Bao, Xinhe

    quinones such as 2-alkyl anthraquinone, together with Pd catalyst, are used for industrial production of H2

  19. Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT

    SciTech Connect (OSTI)

    Hobbs, D; Thomas Peters, T; Michael Poirier, M; Mark Barnes, M; Major Thompson, M; Samuel Fink, S

    2007-06-29T23:59:59.000Z

    This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method 3). Performance testing with simulated and actual waste solutions indicated that the material performs as well as or better than batches of modified MST prepared at the laboratory-scale. Particle size data of the vendor-prepared modified MST indicates a broader distribution centered at a larger particle size and microscopy shows more irregular particle morphology compared to the baseline MST and laboratory prepared modified MST. Stirred-cell (i.e., dead-end) filter testing revealed similar filtration rates relative to the baseline MST for both the laboratory and vendor-prepared modified MST materials. Crossflow filtration testing indicated that with MST-only slurries, the baseline MST produced between 30-100% higher flux than the vendor-prepared modified MST at lower solids loadings and comparable flux at higher solids loadings. With sludge-MST slurries, the modified MST produced 1.5-2.2 times higher flux than the baseline MST at all solids loadings. Based on these findings we conclude that the modified MST represents a much improved sorbent for the separation of strontium and actinides from alkaline waste solutions and recommend continued development of the material as a replacement for the baseline MST for waste treatment facilities at the Savannah River Site.

  1. Tailoring coercivity of unbiased exchange-coupled ferromagnet/antiferromagnet bilayers

    SciTech Connect (OSTI)

    Sossmeier, K. D.; Schafer, D.; Bastos, A. P. O.; Schmidt, J. E.; Geshev, J. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2012-07-01T23:59:59.000Z

    This paper reports experimental results obtained on unconventional exchange-coupled ferromagnet/antiferromagnet (FM/AF) system showing zero net bias. The Curie temperature of the FM (NiCu) is lower than the blocking temperature of the AF (IrMn). Samples were either annealed or irradiated with He, Ar, or Ge ions at 40 keV. Due to the exchange coupling at the FM/AF interface, the coercivity (H{sub C}) of the as-deposited FM/AF bilayer is rather higher than that of the corresponding FM single layer. We found that by choosing a proper ion fluence or annealing temperature, it is possible to controllably vary H{sub C}. Ion irradiation of the FM single layer has lead to only a decrease of H{sub C} and annealing or He ion irradiation has not caused important changes at the FM/AF interface; nevertheless, a twofold increase of H{sub C} was obtained after these treatments. Even more significant enhancement of H{sub C} was attained after Ge ion irradiation and attributed to ion-implantation-induced modification of only the FM layer; damages of the FM/AF interface, on the other hand, decrease the coercivity.

  2. Tailoring of electron flow current in magnetically insulated transmission lines J. P. Martin,2,3

    E-Print Network [OSTI]

    Security Administration's Kansas City Plant, Kansas City, Missouri 64141, USA (Received 16 September 2008) flowing electrons generally do not deliver energy to (or even reach) most loads, and thus constitute a balance of the two. While magnetically insulated systems are generally forgiving, there are times when

  3. Refrigerator Efficiency in Ghana: Tailoring an appliance market transformation program design for Africa

    E-Print Network [OSTI]

    Ben Hagan, Essel; Van Buskirk, Robert; Ofosu-Ahenkorah, Alfred; McNeil, Michael A.

    2006-01-01T23:59:59.000Z

    in the residential electricity sector in Ghana. Althoughprice of electricity for the residential sector is zero forprice of electricity for the commercial sector is $0.093/kWh

  4. Tailor-made data management for embedded systems: A case study on Berkeley DB

    E-Print Network [OSTI]

    Apel, Sven

    Institute, Magdeburg, Germany a r t i c l e i n f o Article history: Received 6 November 2008 Received by the example of automotive systems. The amount of data that is processed in automobiles increases by 7­10% per As in automobiles, data management is required in most computing systems. In contrast to contemporary desktop

  5. Tailored Materials for Improved Internal Combustion Engine Efficiency (Agreement ID:23725)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. OrganicInorganic Nanohybrids through the Direct Tailoring of Semiconductor Nanocrystals with Conjugated Polymers

    E-Print Network [OSTI]

    Lin, Zhiqun

    in photovoltaic cells.[17­19] This indicates that an interpenetrated network of CP/NC on the scale of the exciton with Conjugated Polymers Zhiqun Lin*[a] 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Eur. J. 2008, 14- gated polymers (CPs; i.e., forming the CP/NC hybrids). Hybrids of electroactive CPs with NCs inherit

  7. Stimuli-Tailored Dispersion State of Aqueous Carbon Nanotube Suspensions and Solid Polymer Nanocomposites

    E-Print Network [OSTI]

    Etika, Krishna

    2012-02-14T23:59:59.000Z

    -controlled dispersion of carbon nanotubes could have a variety of applications in nanoelectronics, sensing, and drug and gene delivery systems. Furthermore, this dissertation also contains a published study focused on controlling the dispersion state of carbon black (CB...

  8. Novel approaches to tailor and tune light-matter interactions at the nanoscale

    E-Print Network [OSTI]

    W. J. M. Kort-Kamp

    2015-05-10T23:59:59.000Z

    In this thesis we propose new, versatile schemes to control light-matter interactions at the nanoscale. In the first part of the thesis, we envisage a new class of plasmonic cloaks made of magneto-optical (MO) materials. We demonstrate that the application of a uniform magnetic field B in these cloaks may not only switch on and off the cloaking mechanism, but also mitigate the electromagnetic (EM) absorption. We also prove that the scattered field profile can be effectively controlled by changing B. The second part of the thesis is devoted to the study of light-matter interactions mediated by fluctuations of the vacuum EM field. Firstly, we demonstrate that the Purcell effect can be effectively suppressed for an excited atom near a cloaking device. Furthermore, the decay rate of a quantum emitter near a graphene-coated wall under the influence of an external magnetic field is studied. We show that the MO properties of graphene strongly affect the atomic lifetime and that B allows for an unprecedented control of the decay channels of the system. In addition, we discuss the dispersive interaction between an atom and suspended graphene in a magnetic field. For large atom-graphene separations and low temperatures we show that the interaction energy is a quantized function of B. Besides, we show that at room temperature, thermal effects must be taken into account even in the extreme near-field regime. Finally, the third part of the thesis deals with the study of near-field heat transfer. We analyze the energy transfered from a semi-infinite medium to a composite sphere made of metallic inclusions embedded in a dielectric host medium. We show that the heat transfer can be strongly enhanced at the percolation phase transition. We show that our results apply for different effective medium models and are robust against changes in the inclusions' shape and materials.

  9. Vehicle Technologies Office Merit Review 2015: High Strength, Dissimilar Alloy Aluminum Tailor-Welded Blanks

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  10. Investigation of an isotopically tailored boron-aluminum alloy's neutronic properties for application in neutron shielding

    E-Print Network [OSTI]

    Schleyer, William Charles

    1989-01-01T23:59:59.000Z

    -infinity as a function of moderation for Alboron (4. 5wt /o boI'on, 95at /o B-1 0). 63 13 K-infinity as a function of half-pitch separation for a 4. 5wt'%%d assembly poisoned with Alboron (4. 5wt'/o or 95% B-1 0) of increasing thickness. . . . . . . . 14 K... Elemental and Composition Densities . 14 93 A. ll Assembly and Structural Material Atomic Concentrations 94 A. lll Neutron Poison Material Atomic Concentrations . 95 B. l Pin Cell NITAWL and XSDRNPM-S Input for 4. 5wt'/o z~U. . . 97 B. ll Pin Cell...

  11. Tailoring the Lasing Modes in Semiconductor Nanowire Cavities Using Intrinsic Self-Absorption

    E-Print Network [OSTI]

    Xiong, Qihua

    groundbreaking work on utilizing semiconductor NW cavities to compensate the damping loss and amplify Division of Microelectronics, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 § Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 50

  12. Dispersion tailoring and compensation by modal interactions in OmniGuide fibers

    E-Print Network [OSTI]

    , A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196­1201 (1978). 3. Y. Fink. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljaci´c, S. A. Jacobs, J. D, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric

  13. The use of isotopically tailored boron for advanced neutron shielding and moderating applications

    E-Print Network [OSTI]

    Deere, Laura Marie

    1991-01-01T23:59:59.000Z

    with ANISN to determine neutron transmission fractions through B, C enriched in the "B isotope. 22 Figure 2. Plot of source fraction transmitted through a 5 cm slab beryllium versus S? order. 25 Figure 3. Plot of source fraction reflected by a 5 cm slab... Table 3. Leakage versus thickness of beryllium. Thickness Right Leakage Left Leakage Total Leakage 5 cm 10 cm 15 cm 20 cm 25 cm 30 cm 0. 328074 0. 665867 0. 947150 1. 160860 1. 314110 1. 419930 1. 053310 1. 090220 1. 082640 1. 025740 0. 931776 0...

  14. Tailoring interlayer coupling and coercivity in Co/Mn/Co trilayers by controlling the interface roughness

    SciTech Connect (OSTI)

    Zhang, Bin; Wu, Chii-Bin; Kuch, Wolfgang, E-mail: kuch@physik.fu-berlin.de [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany)

    2014-06-21T23:59:59.000Z

    Epitaxial Co/Mn/Co trilayers with a wedged Mn layer were grown on Cu(001) and studied by magneto-optical Kerr effect measurements. The bottom Co film as well as the Mn film exhibits a layer-by-layer growth mode, which allows to modify both interface roughnesses on the atomic scale by tuning the thicknesses of the films to achieve a certain filling of their topmost atomic layers. The onset of antiferromagnetic order in the Mn layer at room temperature was found at thicknesses of 4.1 (4.8) and 3.4 (4.0) atomic monolayers (ML) for a filled (half-filled) topmost atomic layer of the bottom Co film in Mn/Co bilayers and Co/Mn/Co trilayers, respectively. Magnetization loops with only one step were found for a trilayer with half-filled topmost atomic layer of the bottom Co film, while loops with two separate steps have been observed in trilayers with an integer number of atomic layers in the bottom Co film. The coercivity of the top Co film shows an oscillation with 1 ML period as a function of the Mn thickness above 10 ML, which is interpreted as the influence of the atomic-scale control of the interface roughness on the interface exchange coupling between the antiferromagnetic Mn and the top ferromagnetic (FM) Co layer. The strength of the magnetic interlayer coupling between the top and bottom Co layers through the Mn layer for an integer number of atomic layers in the bottom Co layer, deduced from minor-loop measurements, exhibits an oscillation with a period of 2 ML Mn thickness, indicative of direct exchange coupling through the antiferromagnetic Mn layer. In addition, a long-period interlayer coupling of the two FM layers with antiparallel coupling maxima at Mn thicknesses of 2.5, 8.2, and 13.7 ML is observed and attributed to indirect exchange coupling of the Rudermann-Kittel-Kasuya-Yosida type.

  15. PUBLISHED ONLINE: 15 MAY 2011 | DOI: 10.1038/NMAT3026 Tailoring organic heterojunction interfaces in

    E-Print Network [OSTI]

    Weeks, Eric R.

    the performance of organic photovoltaic devices. T he interfacial properties of organic semiconducting materials interfaces in bilayer polymer photovoltaic devices Akira Tada1 , Yanfang Geng1,2 , Qingshuo Wei3 , Kazuhito moment. Using this method, we fabricated bilayer organic photovoltaic devices with interfacial dipole

  16. Updated September 2013 Tailor the Leadership Fellows program to fit your existing curriculum.

    E-Print Network [OSTI]

    Dyer, Bill

    Education in Public Schools 1-2*2.0 AGED 290R Ag Ambassadors 3 AGED 301 Rural Electrification 3*2.0 AGED 312

  17. Control of ionization processes in high band gap materials via tailored

    E-Print Network [OSTI]

    Kassel, Universität

    on Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics," Phys. Rev. Lett. 83, 5182­5182

  18. Model for the Fabrication of Tailored Materials for Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A process technology that yields high-capacity batteries. Unique method creates nickel-rich particles on the inside for a high-capacity battery, and a manganese-rich...

  19. Tailoring for Today All About… Patern Selection - Fabric Selection - Contemporary Techniques - Fusible Interfacings - Finishing Tips.

    E-Print Network [OSTI]

    Field, Barbara

    1983-01-01T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Applying Interfacing and Padding . . . . . . . . . . . . . . . . . . . . . . 5 Taping the Roll Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Steam Pressing... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Fusible Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Applying Interfacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pad Stitching Substitute...

  20. Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  1. Bio-inspired tailored hydroxyapatite-based powder composites for dental applications

    E-Print Network [OSTI]

    Lin, Yen-Shan

    2012-01-01T23:59:59.000Z

    prepared by spark plasma sintering process. Micropor.E. A. Olevsky. “Spark plasma sintering of tantalum carbide”pressureless spark-plasma sintering”, Advance in Applied

  2. Femtosecond-laser irradiation as a platform for tailoring the optoelectronic properties of silicon

    E-Print Network [OSTI]

    Smith, Matthew John, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Silicon is the most abundant semiconductor on earth and benefits from decades of technological development driven by the integrated circuit industry. Furthermore, silicon allows for facile n-type and p-type doping, has a ...

  3. Tailoring the absorption in a photonic crystal membrane: A modal Romain Peretti*a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    crystal, absorption enhancement, photovoltaic solar cell, indoor solar cell, sensor 1. INTRODUCTION is of prime importance for solar [1] and indoor [2] photovoltaic cells or for sensors [3]. Parallel to this photovoltaic devices and sensors, we propose to implement photonic crystals on thin absorbing layers

  4. Relaxed active space: Fixing tailored-CC with high order coupled cluster. II

    SciTech Connect (OSTI)

    Melnichuk, Ann, E-mail: melnichu@qtp.ufl.edu; Bartlett, Rodney J. [Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2014-02-14T23:59:59.000Z

    Due to the steep increase in computational cost with the inclusion of higher-connected cluster operators in coupled-cluster applications, it is usually not practical to use such methods for larger systems or basis sets without an active space partitioning. This study generates an active space subject to unambiguous statistical criteria to define a space whose size permits treatment at the CCSDT level. The automated scheme makes it unnecessary for the user to judge whether a chosen active space is sufficient to correctly solve the problem. Two demanding applications are presented: twisted ethylene and the transition states for the bicyclo[1,1,0]butane isomerization. As bi-radicals both systems require at least a CCSDT level of theory for quantitative results, for the geometries and energies.

  5. Plasmachemical surface functionalised beads: versatile tailored supports for polymer assisted organic synthesis

    E-Print Network [OSTI]

    Davis, Ben G.

    materials. Solid supported synthesis has become a widely used technique in organic chemistry. Whilst a range of inorganic materials such as clays, silicas and controlled pore glass are used, the vast majority of supports organic synthesis Jas Pal Badyal,a Audrey M. Cameron,a Neil R. Cameron,a Diane M. Coe,c Richard Cox

  6. Risk and Vulnerability Assessment Using Cybernomic Computational Models: Tailored for Industrial Control Systems

    SciTech Connect (OSTI)

    Abercrombie, Robert K [ORNL; Sheldon, Federick T. [University of Memphis; Schlicher, Bob G [ORNL

    2015-01-01T23:59:59.000Z

    There are many influencing economic factors to weigh from the defender-practitioner stakeholder point-of-view that involve cost combined with development/deployment models. Some examples include the cost of countermeasures themselves, the cost of training and the cost of maintenance. Meanwhile, we must better anticipate the total cost from a compromise. The return on investment in countermeasures is essentially impact costs (i.e., the costs from violating availability, integrity and confidentiality / privacy requirements). The natural question arises about choosing the main risks that must be mitigated/controlled and monitored in deciding where to focus security investments. To answer this question, we have investigated the cost/benefits to the attacker/defender to better estimate risk exposure. In doing so, it s important to develop a sound basis for estimating the factors that derive risk exposure, such as likelihood that a threat will emerge and whether it will be thwarted. This impact assessment framework can provide key information for ranking cybersecurity threats and managing risk.

  7. The consequences of helium production and nickel additions on microstructure development in isotopically tailored ferritic alloys

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1999-10-01T23:59:59.000Z

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to 7.5 dpa at 300 and 400 C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400 C than at 300 C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and natural nickel. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400 C. At 300 C, it appeared that high densities of bubbles formed whereas at 400 C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  8. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01T23:59:59.000Z

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  9. Investigation of an isotopically tailored boron-aluminum alloy's neutronic properties for application in neutron shielding 

    E-Print Network [OSTI]

    Schleyer, William Charles

    1989-01-01T23:59:59.000Z

    innovative processes, has developed an aluminum base-metal, boron alloy possessing excellent neutronic properties in addition to the malleability, welding and cutting properties of aluminum. Of greater importance, boron enrichment techniques allow... properties of aluminum, is readily molded and extruded providing a considerable advantage over Boral and borated stainless steel for uses requiring specialized shapes. Ease in shaping, welding, forming, pressing, and milling are features making Alboron...

  10. Vehicle Technologies Office Merit Review 2015: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  11. An Empirical Study of the Influence of User Tailoring on Evaluative Argument Effectiveness

    E-Print Network [OSTI]

    Carenini, Giuseppe

    need to advise their patients on which treatment is best for them (the patients). A teacher may need may need to compare two similar products and argue why her current customer should like one more than, generating new research questions and stimulating the acceptance of a technique as viable technology, we have

  12. Tailored usage of the NEC SX-8 and SX-9 systems

    E-Print Network [OSTI]

    Stuttgart, Universität

    spherical harmonics): V(, , r) = GM R l=0 l m=0 R r l+1 ¯Plm(sin ) (¯clm cos m + ¯slm sin m) gravitational) = GM R3 l=0 l m=0 R r l+3 (l + 1)(l + 2)· · ¯Plm(sin )[¯clm cos m + ¯slm sin m] #12;Methodology (2) 7 in A: Vrr ¯clm = L m=0 cos m L l=m GM R3 R r l+3 (l + 1)(l + 2) ¯Plm(sin ) Vrr ¯slm = L m=0 sin m L l

  13. Bio-inspired tailored hydroxyapatite-based powder composites for dental applications

    E-Print Network [OSTI]

    Lin, Yen-Shan

    2012-01-01T23:59:59.000Z

    can reinforce the ceramic matrix composites; however, thean HAP matrix because it exhibits both ceramic and metallic

  14. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W. [Massachusetts Institute of Technology, Cambridge, MA] [Massachusetts Institute of Technology, Cambridge, MA

    2013-11-01T23:59:59.000Z

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  15. High-performance Computing for Topology Optimization Tailored iterative solvers for topology optimization

    E-Print Network [OSTI]

    Vuik, Kees

    with fine resolutions, for instance for 3D printing, requires solving very large finite element models

  16. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    E-Print Network [OSTI]

    Saikin, Semion K; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alan; Tang, Joseph Kuo-Hsiang

    2014-01-01T23:59:59.000Z

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal ve...

  17. automotive tailor-welded blank: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 285 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  18. Tailoring Metallodielectric Structures for Super Resolution and Superguiding Applications in the Visible and Near IR Ranges

    E-Print Network [OSTI]

    De Ceglia, D; Cappeddu, M G; Centini, M; Akozbek, N; DOrazio, A; Haus, J W; Bloemer, M J; Scalora, M

    2008-01-01T23:59:59.000Z

    We discuss propagation effects in realistic, transparent, metallo-dielectric photonic band gap structures in the context of negative refraction and super-resolution in the visible and near infrared ranges. In the resonance tunneling regime, we find that for transverse-magnetic incident polarization, field localization effects contribute to a waveguiding phenomenon that makes it possible for the light to remain confined within a small fraction of a wavelength, without any transverse boundaries, due to the suppression of diffraction. This effect is related to negative refraction of the Poynting vector inside each metal layer, balanced by normal refraction inside the adjacent dielectric layer: The degree of field localization and material dispersion together determine the total momentum that resides within any given layer, and thus the direction of energy flow. We find that the transport of evanescent wave vectors is mediated by the excitation of quasi-stationary, low group velocity surface waves responsible for...

  19. Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures

    SciTech Connect (OSTI)

    Taguchi, Atsushi [Nanophotonics Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Saito, Yuika; Watanabe, Koichi; Yijian, Song [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kawata, Satoshi [Nanophotonics Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan)

    2012-08-20T23:59:59.000Z

    Localized surface plasmon resonances were controlled at deep-ultraviolet (DUV) wavelengths by fabricating aluminum (Al) nanostructures in a size-controllable manner. Plasmon resonances were obtained at wavelengths from near-UV down to 270 nm (4.6 eV) depending on the fabricated structure size. Such precise size control was realized by the nanosphere lithography technique combined with additional microwave heating to shrink the spaces in a close-packed monolayer of colloidal nanosphere masks. By adjusting the microwave heating time, the sizes of the Al nanostructures could be controlled from 80 nm to 50 nm without the need to use nanosphere beads of different sizes. With the outstanding controllability and versatility of the presented fabrication technique, the fabricated Al nanostructure is promising for use as a DUV plasmonic substrate, a light-harvesting platform for mediating strong light-matter interactions between UV photons and molecules placed near the metal nanostructure.

  20. Nanostructured Ni-Co Alloys with Tailorable Grain Size and Twin Density

    E-Print Network [OSTI]

    Ferreira, Paulo J.

    grain sizes and twin densities in the Ni-Co binary system. Using electrodeposition with various applied nanocrystalline nickel. I. INTRODUCTION BULK nanocrystalline materials are characterized by a large volume

  1. Nano Sensor Networks for Tailored Operation of Highly Efficient Gas-To-Liquid Fuels Catalysts

    E-Print Network [OSTI]

    New South Wales, University of

    such as methane. Selectivity refers to the ratio of highly useful hydrocarbons to the total product output and intermediates for the pro- duction of other petrochemicals. Fischer-Tropsch (FT) synthesis is the main process

  2. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    E-Print Network [OSTI]

    Lemery, Francois

    2015-01-01T23:59:59.000Z

    Collinear high-gradient ${\\cal O} (GV/m)$ beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios $>2$, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative current profiles which are smooth which also lead to enhanced transformer ratios. We especially explore a laser-shaping method capable of generating one the suggested distributions directly out of a photoinjector and discuss a linac concept that could possible drive a dielectric ...

  3. Tailoring the spin polarization in Ge/SiGe multiple quantum wells

    SciTech Connect (OSTI)

    Giorgioni, Anna; Pezzoli, Fabio; Gatti, Eleonora; Grilli, Emanuele; Guzzi, Mario [LNESS-Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, I-20125 Milano (Italy); Bottegoni, Federico; Cecchi, Stefano; Ciccacci, Franco; Isella, Giovanni [LNESS-Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano (Italy); Trivedi, Dhara; Song, Yang [Department of Physics and Astronomy, University of Rochester, Rochester (United States); Li, Pengki [Department of Electrical and Computer Engineering, University of Rochester, Rochester (United States); Dery, Hanan [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 and Department of Electrical and Computer Engineering, University of Rochester, Rochester (United States)

    2013-12-04T23:59:59.000Z

    We performed spin-resolved photoluminescence measurements on Ge/SiGe multiple quantum wells with different well thickness and using different exciting power densities. The polarization of the direct emission strongly depends on the relative weight of electrons photoexcited from the light and the heavy hole subbands. The study of the polarization as a function of the exciting power highlights the role of the carrier-carrier interactions in determining spin depolarization.

  4. Gasifier feed - Tailor-made from Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technology, (United States)]|[Illinois Coal Association (United States)

    1992-08-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

  5. Gasifier feed: Tailor-made from Illinois coals. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III

    1991-12-31T23:59:59.000Z

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  6. Gasifier feed - Tailor-made from Illinois coals. [Quarterly] report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technology (United States)]|[Illinois Coal Association (United States)

    1992-10-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  7. Towards a Tailored Sensor Network for Fire Emergency Monitoring in Large Buildings 

    E-Print Network [OSTI]

    Tsertou, Athanasia; Upadhyay, Rochan; McLaughlin, Stephen; Laurenson, David I

    2007-01-01T23:59:59.000Z

    Modern fire emergency systems are slowly moving from the traditional data-logging systems to a heterogeneous and dense network of wired/wireless sensors that can give a more complete view of the phenomenon. When the density ...

  8. Tailoring the surface density of silicon nanocrystals embedded in SiO{sub x} single layers

    SciTech Connect (OSTI)

    Hernández, S.; Peiró, F.; Garrido, B.; Pellegrino, P. [Electronics Department, MIND–IN2UB, Universitat de Barcelona, Martí i Franquès 1, E–08028 Barcelona, Catalonia (Spain); Miska, P.; Grün, M.; Vergnat, M. [Institut Jean Lamour, Université de Lorraine, CNRS UMR 7198—Faculté des Sciences et Technologies, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy (France); Estradé, S. [Electronics Department, MIND–IN2UB, Universitat de Barcelona, Martí i Franquès 1, E–08028 Barcelona, Catalonia (Spain); TEM–MAT, CCiT–UB, Scientific and Technological Center—Universitat de Barcelona, Solé i Sabarís 1, E–08028 Barcelona, Catalonia (Spain)

    2013-12-21T23:59:59.000Z

    In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiO{sub x} single layers, while keeping constant their size. For this purpose, a set of SiO{sub x} monolayers with controlled thickness between two thick SiO{sub 2} layers has been fabricated, for four different compositions (x?=?1, 1.25, 1.5, or 1.75). The structural properties of the SiO{sub x} single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO{sub x} stoichiometry approaches that of SiO{sub 2}. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x?=?1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO{sub 2} matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.

  9. Controlling a superconducting nanowire single-photon detector using tailored bright illumination

    E-Print Network [OSTI]

    Lars Lydersen; Mohsen K. Akhlaghi; A. Hamed Majedi; Johannes Skaar; Vadim Makarov

    2011-11-16T23:59:59.000Z

    We experimentally demonstrate that a superconducting nanowire single-photon detector is deterministically controllable by bright illumination. We found that bright light can temporarily make a large fraction of the nanowire length normally-conductive, can extend deadtime after a normal photon detection, and can cause a hotspot formation during the deadtime with a highly nonlinear sensitivity. In result, although based on different physics, the superconducting detector turns out to be controllable by virtually the same techniques as avalanche photodiode detectors. As demonstrated earlier, when such detectors are used in a quantum key distribution system, this allows an eavesdropper to launch a detector control attack to capture the full secret key without being revealed by to many errors in the key.

  10. Computational Nanophotonics: modeling optical interactions and transport in tailored nanosystem architectures

    SciTech Connect (OSTI)

    Schatz, George; Ratner, Mark

    2014-02-27T23:59:59.000Z

    This report describes research by George Schatz and Mark Ratner that was done over the period 10/03-5/09 at Northwestern University. This research project was part of a larger research project with the same title led by Stephen Gray at Argonne. A significant amount of our work involved collaborations with Gray, and there were many joint publications as summarized later. In addition, a lot of this work involved collaborations with experimental groups at Northwestern, Argonne, and elsewhere. The research was primarily concerned with developing theory and computational methods that can be used to describe the interaction of light with noble metal nanoparticles (especially silver) that are capable of plasmon excitation. Classical electrodynamics provides a powerful approach for performing these studies, so much of this research project involved the development of methods for solving Maxwell’s equations, including both linear and nonlinear effects, and examining a wide range of nanostructures, including particles, particle arrays, metal films, films with holes, and combinations of metal nanostructures with polymers and other dielectrics. In addition, our work broke new ground in the development of quantum mechanical methods to describe plasmonic effects based on the use of time dependent density functional theory, and we developed new theory concerned with the coupling of plasmons to electrical transport in molecular wire structures. Applications of our technology were aimed at the development of plasmonic devices as components of optoelectronic circuits, plasmons for spectroscopy applications, and plasmons for energy-related applications.

  11. Tailoring the energy level alignment at the Co/Alq3 interface by controlled cobalt oxidation

    E-Print Network [OSTI]

    Aeschlimann, Martin

    has established an extremely promising basis for low-cost logical devices.1 The prototypical organic in the work function and to a continuous energetic shift of the molecular orbitals towards higher binding. These high quality spinterfaces are not always reproducible in device fabrication and investigation of real

  12. Refrigerator Efficiency in Ghana: Tailoring an appliance market transformation program design for Africa

    E-Print Network [OSTI]

    Ben Hagan, Essel; Van Buskirk, Robert; Ofosu-Ahenkorah, Alfred; McNeil, Michael A.

    2006-01-01T23:59:59.000Z

    households fall into which rate category, and on this based calculated a weighted average marginal price of electricityhousehold in 2001 (EIA, 2005a). Recent data from Ghana indicates that the average marginal price of electricity (

  13. Supporting Application-Tailored Grid File System Sessions with WSRF-Based Services

    E-Print Network [OSTI]

    Figueiredo, Renato J.

    }@acis.ufl.edu Abstract This paper presents novel service-based Grid data management middleware that leverages standards defined by WSRF specifications to create and manage dynamic Grid file system sessions. A unique aspect features (file system copy-on-write checkpointing to aid recovery of client-side failures; replication

  14. Tailoring hydrodynamics of non-wetting droplets with nano-engineered surfaces

    E-Print Network [OSTI]

    Kwon, Hyuk-Min

    2013-01-01T23:59:59.000Z

    Considering that contacts between liquid and solid are ubiquitous in almost all energy processes, including steam turbines, oil pumping, condensers and boilers, the efficiency of energy transportation can be maximized such ...

  15. EXC-12-0007 - In the Matter of Tailored Lighting, Inc. | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report |of Energy

  16. Synthetic Biology for Tailored Enzyme Cocktails Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source HeatSweptCathode MaterialsandMarch

  17. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATEPHASE II INTERIM REPORT FOR EXTERNAL RELEASE

    SciTech Connect (OSTI)

    Hobbs, D; Michael Poirier, M; Mark Barnes, M; Mary Thompson, M

    2006-08-31T23:59:59.000Z

    This document provides an interim summary report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST materials. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger laboratory scale, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and characterization of the modified MST. Key findings and conclusions include the following: (1) Samples of the modified MST prepared by Method 2 and Method 3 exhibited the best combination of strontium and actinide removal. (2) We selected Method 3 to scale up and test performance with actual waste solution. (3) We successfully prepared three batches of the modified MST using the Method 3 procedure at a 25-gram scale. (4) Performance tests indicated successful scale-up to the 25-gram scale with excellent performance and reproducibility among each of the three batches. For example, the plutonium decontamination factors (6-hour contact time) for the modified MST samples averaged 13 times higher than that of the baseline MST sample at half the sorbent concentration (0.2 g L{sup -1} for modified MST versus 0.4 g L{sup -1} for baseline MST). (5) Performance tests with actual waste supernate demonstrated that the modified MST exhibited better strontium and plutonium removal performance than that of the baseline MST. For example, the decontamination factors for the modified MST measured 2.6 times higher for strontium and between 5.2 to 11 times higher for plutonium compared to the baseline MST sample. The modified MST did not exhibit improved neptunium removal performance over that of the baseline MST. (6) Two strikes of the modified MST provided increased removal of strontium and actinides from actual waste compared to a single strike. The improved performance exhibited by the modified MST indicates that fewer strikes of the modified MST would be needed to successfully treat waste that contain very high activities of {sup 90}Sr and alpha-emitting radionuclides compared to the baseline MST. (7) Reuse tests with actual waste confirmed that partially loaded MST exhibits reduced removal of strontium and actinides when contacted with fresh waste. (8) Samples of modified MST prepared by Method 3 and the baseline MST exhibited very similar particle size distributions. (9) Dead-end filtration tests showed that the modified MST samples exhibited similar filtration characteristics as the baseline MST sample. (10) Performance testing indicated no change in strontium and neptunium removal after storing the modified MST for 6-months at ambient temperature. The results suggested that plutonium removal performance may be decreased slightly after 6-months of storage. However, the change in plutonium removal is not statistically significant at the 95% confidence limit. Based on these findings we recommend continued development of the modified MST as a replacement for the baseline MST for waste treatment facilities at the Savannah River Site.

  18. Evolutionary algorithms, chaotic excitations, and structural health monitor : on global search methods for improved damage detection via tailored inputs

    E-Print Network [OSTI]

    Olson, Colin C.

    2008-01-01T23:59:59.000Z

    Methods for Structural Health Monitoring, Proc. SPIE SmartMethods for Structural Health Monitoring, Proc. SPIE SmartFeatures in Structural Health Monitoring, Proc. 23 rd

  19. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    SciTech Connect (OSTI)

    Veser, Goetz

    2009-08-31T23:59:59.000Z

    Nanomaterials have gained much attention as catalysts since the discovery of exceptional CO oxidation activity of nanoscale gold by Haruta. However, many studies avoid testing nanomaterials at the high-temperatures relevant to reactions of interest for the production of clean energy (T > 700°C). The generally poor thermal stability of catalytically active noble metals has thus far prevented significant progress in this area. We have recently overcome the poor thermal stability of nanoparticles by synthesizing a platinum barium-hexaaluminate (Pt-BHA) nanocomposite which combines the high activity of noble metal nanoparticles with the thermal stability of hexaaluminates. This Pt-BHA nanocomposite demonstrates excellent activity, selectivity, and long-term stability in CPOM. Pt-BHA is anchored onto a variety of support structures in order to improve the accessibility, safety, and reactivity of the nanocatalyst. Silica felts prove to be particularly amenable to this supporting procedure, with the resulting supported nanocatalyst proving to be as active and stable for CPOM as its unsupported counterpart. Various pre-treatment conditions are evaluated to determine their effectiveness in removing residual surfactant from the active nanoscale platinum particles. The size of these particles is measured across a wide temperature range, and the resulting “plateau” of stability from 600-900°C can be linked to a particle caging effect due to the structure of the supporting ceramic framework. The nanocomposites are used to catalyze the combustion of a dilute methane stream, and the results indicate enhanced activity for both Pt-BHA as well as ceria-doped BHA, as well as an absence of internal mass transfer limitations at the conditions tested. In water-gas shift reaction, nanocomposite Pt-BHA shows stability during prolonged WGS reaction and no signs of deactivation during start-up/shut-down of the reactor. The chemical and thermal stability, low molecular weight, and wealth of literature on the formation of mesoporous silica materials motivated investigations of nanocomposite silica catalysts. High surface area silicas are synthesized via sol-gel methods, and the addition of metal-salts lead to the formation of stable nanocomposite Ni- and Fe- silicates. The results of these investigations have increased the fundamental understanding and improved the applicability of nanocatalysts for clean energy applications.

  20. CMMi for Small Business: Initial Tailoring of a Mexican organization. Francisco Alvarez R, Jaime Muoz A, 1

    E-Print Network [OSTI]

    Weitzenfeld, Alfredo

    Instituto Tecnológico Autónomo de México, Departamento de Ciencias Computacionales, México. alfredo@itam

  1. Tailoring transient-amorphous states: Towards fast and power-efficient phase-change memories and neuromorphic computing

    E-Print Network [OSTI]

    Lee, Tae Hoon; Loke, Desmond; Huang, Ke-Jie; Wang, Wei-Jie; Elliott, Stephen R.

    2014-01-01T23:59:59.000Z

    /nonvolatile/nanoscale built-in information storage, particularly for their ability to scale down to nanometer length scales.[8-13] However, the overall operation speeds of PCM devices, along with their 2 corresponding power consumption, are intrinsically limited... -retention properties of PC materials. Current efforts to overcome such limitations are focused on employing material- optimization, or scaling, approaches, such as the development of nanowire-based,[11] or nanostructured,[12,13] PCM devices. However, the improvement...

  2. Abstract. Tailored porous media is a proposed method of achieving higher heat transfer coefficients while seeking to

    E-Print Network [OSTI]

    Raffray, A. René

    general porous flow model (MERLOT [1]). The Model of Energy- transfer Rate for fLow in Open design strategy is to minimize the coolant flow path length in contact with the porous medium, the microstructure characteristic dimension, and the local h. Initial optimization studies using MERLOT show

  3. Abstract--This work develops a three-phase unbalanced load flow tool tailored for radial distribution networks based

    E-Print Network [OSTI]

    Teodorescu, Remus

    support by PV inverters can be also merged together with the load flow solution tool and thus, the impact, thermal limits of grid components and power losses in radial MV-LV networks with photovoltaic (PV and validated with IEEE 13-bus test feeder. Index Terms--Load flow, LV network, PV integration, voltage

  4. The production of ultra-high purity single isotopes or tailored isotope mixtures by ICP-MS

    SciTech Connect (OSTI)

    Liezers, Martin; Farmer, Orville T.; Dion, Michael P.; Thomas, Linda MP; Eiden, Gregory C.

    2015-01-01T23:59:59.000Z

    We report the development and testing of a simple collector arrangement for a commercial quadrupole ICP-MS that for the first time has been used to produce small quantities of highly enriched (>99.99%) single isotopes, with deposition rates >10 ng/hour. The collector assembly replaces the standard instrument detector allowing for implantation with simultaneous monitoring of the incident ion current. Even under zero bias implant conditions, low energy (<10 eV), ion collection efficiency was observed to be very high ~99%. 151Eu ion currents of 0.1-0.5 nA were collected on a simple, planar foil without resorting to any type of cup configuration. Recovery of the enriched isotope from such foils is much simpler than from a more complex cup configuration. High rejection of adjacent mass isotopes was demonstrated by selectively implanting 167Er without any discernible co-implantation of 166Er and 168Er. The important analytical possibilities of the new approach to isotope ratio measurement, tracer purification and radiation measurements are discussed.

  5. Tailor Blank Casting - Control of sheet width using an electromagnetic edge dam in aluminium twin roll casting

    E-Print Network [OSTI]

    McBrien, Martin; Allwood, Julian M.; Barekar, Nilam S.

    2015-04-01T23:59:59.000Z

    stock products such as coils of the manufacturing industries which take these stock d reshape them to make consumer products, for exam- rs. This makes the supply chain subtractive—a large the metal cast is removed and does not reach the final roduct... , as bor casting tria For the c zero, a hori P m h + 2#3; si Using th plays an im metal conta separation as the solid sion in the dge dam (EMED); (b) longitudinal view, centreline of strip, EMED on; w, EMED on, far edge. the biggest challenge...

  6. Layer-by-layer assembly of poly(3,4-ethylenedioxythiophene) thin films: tailoring growth and UV-protection

    E-Print Network [OSTI]

    Dawidczyk, Thomas James

    2009-05-15T23:59:59.000Z

    in a variety of applications including electrochromic, 13,44 light emitting diodes, 45,46 and transistors. 47 PEDOT films have been made via spin coating, 48 sputter coating, 49 and LbL assembly. 37 In spin coating, the polymer solution (or...

  7. Received 28 Mar 2013 | Accepted 15 Sep 2013 | Published 15 Oct 2013 Tailoring the hydrophobicity of graphene

    E-Print Network [OSTI]

    Dekker, Cees

    the hydrophobicity of graphene for its use as nanopores for DNA translocation Gre´gory F. Schneider1, Qiang Xu1 Graphene nanopores are potential successors to biological and silicon-based nanopores. For sensing between DNA and graphene. Here we demonstrate a novel scheme to prevent DNA­graphene interactions, based

  8. Tailoring the Temperature Coefficient of Capacitance (TCC), Dielectric Loss and Capacitance Density with Ceramic-Polymer Nanocomposites for RF Applications

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    . The processes include (i) combining polymer-matrix and nano-ceramic-fillers, whose TCCs have different signs (ceramic-ceramic- polymer nanocomposite, CCPN) with negative and positive TCC in polymer-matrix thus making with Ceramic-Polymer Nanocomposites for RF Applications Isaac Robin Abothu, Baik-Woo Lee, P. Markondeya Raj

  9. AB 811 enables you to tailor a program that makes sense for your community and constituents. You determine the

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Fellow Local Government Officials: Imagine a program that: Helps your residents and businesses cut and Highways Code to include "energy improve- ments" on private property as public benefits. Through AB 811

  10. Design and Use of Tailored Hard-Pulse Trains for Uniformed Saturation of Myocardium at 3 Tesla

    E-Print Network [OSTI]

    Southern California, University of

    the BIR-4 pulse. Conversely, the BIR-4 pulse has a higher specific absorp- tion rate (SAR). These costs on estimated B0 and B1 profiles that were measured a priori over the heart, can overcome both SAR and B1. Parallel imaging was not used. In all studies, the transmit gain was calibrated using a stan- dard pre

  11. Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semi-Orthogonal Solvent Blends

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    of polymer:fullerene photovoltaics to near 10%. [ 1,2 ]way in which organic photovoltaics are processed, the activeProcessing for Organic Photovoltaics: Design Rules for

  12. Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semi-Orthogonal Solvent Blends

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Ade , T. P. Russell , Adv. Energy Mater. 2013 , 4 , [59] J.J. R. Durrant , Adv. Energy Mater. 2013 , 3 , 1201 . [17] J.Abbott , C. J. Brabec , Sol. Energy Mater. Sol. Cells 2012 ,

  13. SAMPLE COVER LETTER FOR AN UNADVERTISED INTERNSHIP (If you don't have a position description to tailor your letter)

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    SAMPLE COVER LETTER FOR AN UNADVERTISED INTERNSHIP (If you don't have a position description in _____________. I am seeking a ____________________ or ____________________ internship for summer, fall, spring year are impressed with the organization Statements communicating your enthusiasm for the internship opportunity

  14. Gasifier feed: Tailor-made from Illinois coals. Interim final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-12-31T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals. Destec Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technologies, Inc., will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handleability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals.

  15. Gasifier feed: Tailor-made from Illinois coals. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.M.; Frost, R.R.; Lizzio, A.A.; Kohlenberger, L.B.; Brewer, K.K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technologies, Inc. (United States)]|[Illinois Coal Association (United States)

    1992-12-31T23:59:59.000Z

    The main purpose of this project was to produce a feedstock from preparation plant fines from an Illinois (IL) coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high-sulfur content and high-Btu value of IL coals are Particularly advantageous in such a gasifier; preliminary-calculations indicate that the increased cost of removing sulfur from the gas from a high-sulfur coal is more than offset b the increased revenue from the sale of the elemental sulfur; additionally the high-Btu IL coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is--higher not only because of the hither Btu value of the coal but also because IL coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for IL coal as compared to approximately 45% for most western coals. During the contract extension, additional coal testing was completed confirming the fact that coal concentrates can be made from plant waste under a variety of flotation conditions 33 tests were conducted, yielding an average of 13326 Btu with 9.6% ash while recovering 86.0%-Of the energy value.

  16. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    SciTech Connect (OSTI)

    Troeger, K., E-mail: altstaedt@uni-bayreuth.de; Darka, R. Khanpour, E-mail: altstaedt@uni-bayreuth.de; Neumeyer, T., E-mail: altstaedt@uni-bayreuth.de; Altstaedt, V., E-mail: altstaedt@uni-bayreuth.de [Polymer Engineering, University of Bayreuth, Germany and Polymer Engineering, Universitaetsstrasse 30, 95447 Bayreuth (Germany)

    2014-05-15T23:59:59.000Z

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.

  17. Center for Electrical Energy Storage Tailored Interfaces Argonne National Laboratory, University of Illinois at Urbana-Champaign, Northwestern University

    E-Print Network [OSTI]

    Kemner, Ken

    on a graphite basal plane. Li ion migration pathway in (010) channel of lithium carbonate. The migrations batteries (such as solid electrolyte interphase, or SEI, formation). The goal of this subtask is to model lithium batteries. Follow us at http://www.anl.gov/energy-storage-science Autogenic reactions at high

  18. Improvement of Laser Damage Resistance and Diffraction Efficiency of Multilayer Dielectric Diffraction Gratings by HF-Etchback Linewidth Tailoring

    SciTech Connect (OSTI)

    Nguyen, H T; Larson, C C; Britten, J A

    2010-10-28T23:59:59.000Z

    Multilayer dielectric (MLD) diffraction gratings for Petawatt-class laser systems possess unique laser damage characteristics. Details of the shape of the grating lines and the concentration of absorbing impurities on the surface of the grating structures both have strong effects on laser damage threshold. It is known that electric field enhancement in the solid material comprising the grating lines varies directly with the linewidth and inversely with the line height for equivalent diffraction efficiency. Here, they present an overview of laser damage characteristics of MLD gratings, and describe a process for post-processing ion-beam etched grating lines using very dilute buffered hydrofluoric acid solutions. This process acts simultaneously to reduce grating linewidth and remove surface contaminants, thereby improving laser damage thresholds through two pathways.

  19. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect (OSTI)

    James Simpson; David Chichester

    2011-06-01T23:59:59.000Z

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations were run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  20. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

    SciTech Connect (OSTI)

    Lee, J. J.; Xing, G. Z., E-mail: guozhong.xing@unsw.edu.au; Yi, J. B.; Li, S. [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia)] [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Chen, T. [Department of Physics, The Chinese University of Hong Kong, Shatin (Hong Kong)] [Department of Physics, The Chinese University of Hong Kong, Shatin (Hong Kong); Ionescu, M. [Australian Nuclear Science and Technology Organization, Sydney, New South Wales 2234 (Australia)] [Australian Nuclear Science and Technology Organization, Sydney, New South Wales 2234 (Australia)

    2014-01-06T23:59:59.000Z

    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200?Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

  1. Quantum Statistical Mechanics. III. Equilibrium Probability

    E-Print Network [OSTI]

    Phil Attard

    2014-04-10T23:59:59.000Z

    Given are a first principles derivation and formulation of the probabilistic concepts that underly equilibrium quantum statistical mechanics. The transition to non-equilibrium probability is traversed briefly.

  2. Marius Stan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Marius Stan is a physicist and a chemist interested in non-equilibrium thermodynamics, heterogeneity, and multi-scale computational science for energy applications. He...

  3. adaptive simulated annealing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problems was applied to the synthesis of a non-equilibrium reactive distillation column. A simulation model based on an extension of conventional distillation is proposed for...

  4. Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues

    E-Print Network [OSTI]

    Zhang, Yuwen

    transfer Non-equilibrium Dual-phase lag a b s t r a c t Based on a nonequilibrium heat transfer model

  5. Scale-dependent desorption of uranium from contaminated subsurface...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that affected the breakthrough curves of bromide, pentafluorobenzoic acid (PFBA), and tritium. The tritium breakthrough curve showed stronger non-equilibrium behavior than did...

  6. The driven overdamped mean field model Non-eq. free energies for the mean field model

    E-Print Network [OSTI]

    Dauxois, Thierry

    The driven overdamped mean field model Non-eq. free energies for the mean field model Large deviations for turbulent flows Non-Equilibrium Free Energies for Particle Systems and Turbulent Flows F Treilles. F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies #12;The driven overdamped mean field model Non

  7. Bandgap tailoring of in-situ nitrogen-doped TiO? sputtered films intended for electrophotocatalytic applications under solar light

    SciTech Connect (OSTI)

    Delegan, N.; El Khakani, M. A., E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Boulevard Lionel-Boulet, Varennes, Québec J3X-1S2 (Canada); Daghrir, R.; Drogui, P. [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 Rue de la Couronne, Québec G1K-9A9 (Canada)

    2014-10-21T23:59:59.000Z

    We report on a reactive RF-sputtering process permitting the in-situ nitrogen doping of TiO? films in order to shift their photoactivity from UV to visible range. By carefully controlling the relative nitrogen-to-argon mass flow rate ratio (within the 0%–25% range) in the sputter deposition chamber, TiO?:N films were grown with nitrogen contents ranging from 0 to 6.2 at. %, as determined by high-resolution X-ray spectroscopy measurements. A systematic investigation of the crystalline structure of the TiO?:N films, as a function of their N content, revealed that low N contents (0.2–0.3 at. %) induce crystallization in the rutile phase while higher N contents (?1.4 at. %) were accompanied with the recovery of the anatase structure with an average crystallite size of ~35 nm. By using both UV-Vis absorption and spectroscopic ellipsometry measurements, we were able to quantitatively determine the bandgap (E{sub g}) variation of the TiO?:N films as a function of their N content. Thus, we have demonstrated that the E{sub g} of the TiO?:N films effectively narrows from 3.2 eV down to a value as low as ~2.3 eV for the optimal N doping concentration of 3.4 at. % (higher N incorporation does not translate into further red shifting of the TiO?:N films' E{sub g}). The photoactivity of the TiO?:N films under visible light was confirmed through electro-photocatalytic decomposition of chlortetracycline (CTC, an emerging water pollutant) under standard 1.5AM solar radiation. Thus, CTC degradation efficiencies of up to 98% were achieved with 2 hours process cycles under simulated solar light. Moreover, the electro-photocatalytic performance of the TiO?:N films is shown to be directly correlated to their optoelectronic properties (namely their bandgap narrowing).

  8. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    SciTech Connect (OSTI)

    Scofield, Megan E. [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Koenigsmann, Christopher [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Wang, Lei [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Lui, Haiqing [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Wong, Stanislaus S. [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01T23:59:59.000Z

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt?Ru? NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication of crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. These NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.

  9. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; Lui, Haiqing; Wong, Stanislaus S.

    2015-01-01T23:59:59.000Z

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt?Ru? NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore »crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. These NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  10. Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using DAST/SiO2 multilayer structures pumped at Ti:sapphire wavelength

    E-Print Network [OSTI]

    Stepanov, Andrei G; Bonacina, Luigi; Wolf, Jean-Pierre; Hauri, Christoph P

    2014-01-01T23:59:59.000Z

    We present a numerical parametric study of single-cycle electromagnetic pulse generation in a DAST/SiO2 multilayer structure via collinear optical rectification of 800 nm femtosecond laser pulses. It is shown that modifications of the thicknesses of the DAST and SiO2 layers allow tuning of the average frequency of the generated THz pulses in the frequency range from 3 to 6 THz. The laser-to-THz energy conversion efficiency in the proposed structures is compared with that in a bulk DAST crystal and a quasi-phase-matching periodically poled DAST crystal and shows significant enhancement.

  11. Tailoring terahertz radiation by controlling tunnel photoionization events in gases This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Skupin, Stefan

    that the spectral shape of the THz pulses generated by this mechanism is determined by the superposition technology (see e.g. [1­4]). Among the various THz sources, employing two-color ionizing femtosecond pulses has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 New J. Phys

  12. Simultaneous enhancement of electron overflow reduction and hole injection promotion by tailoring the last quantum barrier in InGaN/GaN light-emitting diodes

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    the last quantum barrier in InGaN/GaN light-emitting diodes Zabu Kyaw, Zi-Hui Zhang, Wei Liu, Swee Tiam Tan injection and efficiency droop in InGaN/GaN light-emitting diodes with step-stage multiple- quantum distribution in InGaN/GaN light-emitting diodes with graded thickness quantum barriers Appl. Phys. Lett. 102

  13. Diffusion model of evolution of superthermal high-energy particles under scaling in the early Universe

    E-Print Network [OSTI]

    Ignatyev, Yu G

    2011-01-01T23:59:59.000Z

    The evolution of a superthermal relic component of matter is studied on the basis of non-equilibrium model of Universe and the Fokker-Planck type kinetic equation offered by one of the authors.

  14. Tunable spatial heterogeneity in structure and composition within aqueous microfluidic droplets

    E-Print Network [OSTI]

    Hui, Sophia Lee Su

    In this paper, we demonstrate biphasic microfluidic droplets with broadly tunable internal structures, from simple near-equilibrium drop-in-drop morphologies to complex yet uniform non-equilibrium steady-state structures. ...

  15. Nonequilibrium Thermodynamics of Porous Electrodes

    E-Print Network [OSTI]

    Ferguson, Todd Richard

    We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic ...

  16. Thermodynamics with 3 Spins

    E-Print Network [OSTI]

    Eward May; Jack L. Uretsky

    2011-06-14T23:59:59.000Z

    Glauber dynamics, applied to the one-dimensional Ising model, provides a tractable model for the study of non-equilibrium, many-body processes driven by a heat bath

  17. Journal of Fluid Mechanics http://journals.cambridge.org/FLM

    E-Print Network [OSTI]

    Martín, Pino

    . Introduction Strong bow and leading-edge shock waves, and large kinetic energy dissipation on hypersonic molecules, hence variable heat capacities and thermal and chemical non-equilibrium. As a result, significant

  18. FROM DYNAMIC TO STATIC LARGE DEVIATIONS IN BOUNDARY DRIVEN EXCLUSION PARTICLE SYSTEMS

    E-Print Network [OSTI]

    developments on the non­equilibrium stationary measures by Derrida, Lebowitz and Speer [4] and the more closely, Derrida, Lebowitz and Speer [4] obtained the explicit form of the rate function for the large deviation

  19. A general proof of Landauer-Büttiker formula

    E-Print Network [OSTI]

    G. Nenciu

    2006-04-09T23:59:59.000Z

    We point out a general argument leading from the formula for currents through an open mesoscopic system given by the theory of non-equilibrium steady states (NESS) to the Landauer-B\\"uttiker formula.

  20. J. Phys. D: Appl. Phys., Vol. 7, 1974. Printed in Great Britain. 01974 Electron multiplicationin a gas discharge

    E-Print Network [OSTI]

    Friedland, Lazar

    with large space gradients. More recently, experimental data (Haydon and Stock 1966, Folkard and Haydon 1971 the pressure of the gas and xoa distance introduced to take into account the non-equilibrium effects at small

  1. Using species distribution models to inform IUCN Red List assessments

    E-Print Network [OSTI]

    Syfert, Mindy M.; Joppa, Lucas; Smith, Matthew J.; Coomes, David A.; Bachman, Steven P.; Brummitt, Neil A.

    2014-07-26T23:59:59.000Z

    .g. hurricanes) or anthropogenic effects (e.g. deforestation) not included in the model fitting process (Elith and Leathwick 2009). Additionally, the SDM approach we have taken here does not explicitly take into account non-equilibrium species dynamics. While...

  2. Cross Sections: Key for Modeling Vasili Kharchenko

    E-Print Network [OSTI]

    Johnson, Robert E.

    and ... Students and Postdocs: Stefano Bovino, Nick Lewkow, and Marko Gacesa #12;Collisions of Atmospheric Atoms/and Monte Carlo simulations · Calculations of non-equilibrium rates of atmospheric reactions. #12;Simple

  3. On Statistical Field Theory T-Life Research Center, Fudan University, Shanghai 200433, China

    E-Print Network [OSTI]

    Hao, Bailin

    . The phenomenological theory of superconductivity, obtained from the equilibrium condition F i = 0 was so good as to include the theory of the type II superconductors. Now we want to extend it to non-equilibrium situation

  4. Politecnico of Turin Master Thesis

    E-Print Network [OSTI]

    Kjelstrup, Signe

    , especially in oil related processes. Distillation, carbon dioxide capture, and enhanced oil recovery are just, the model is extended to non equilibrium: the validity of the Gibbs relation and of the assumption of local

  5. Science Highlights 2007 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by researchers using the Argonne Advanced Photon Source. Tailoring the Properties of Magnetic Nanostructures Tailoring the Properties of Magnetic Nanostructures May 23, 2007...

  6. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect (OSTI)

    Sharma, Rohit [Satyam Institute of Engineering and Technology, Amritsar 143107 (India)] [Satyam Institute of Engineering and Technology, Amritsar 143107 (India); Singh, Kuldip [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)] [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2014-03-15T23:59:59.000Z

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Z?, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter ?(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1?atm, 10?atm, and 100?atm in the temperature range from 6000?K to 60?000?K. For a given value of non-equilibrium parameter, the relationship of Z? with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  7. The field of medicine is taking its first steps towards patient-specific care: personalized medicine. Our research is aimed at tailoring treatments to address each person's individualized needs and unique disease presentation. Specifically, we are

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    their payload in disease sites. The evolution of these nanoparticles into programmed nano robots, unique to specific organs. Avi Schroeder is an Assistant Professor of Chemical Engineering at the Technion ­ Israel to Programmed Nano-robots Professor Avi Schroeder ETH Hönggerberg, HCI G 3, 02/04/14, 17.00 h Faculty

  8. Cs7In4Bi6: A Zintl Phase Tailored from the PbO-Type Layers of the Parent InBi Svilen Bobev and Slavi C. Sevov*

    E-Print Network [OSTI]

    a variety of band gaps and properties that can be modified by extrinsic doping, temperature, pressure, etc by arc-welding, the latter was jacketed in a fused silica ampule which was then sealed after evacuation. The assembly was heated at 900 °C for 1 day and cooled to room temperature at a rate of 50 °C

  9. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam J. M. Byrd, Z. Hao, M. C. Martin, D. S. Robin, F. Sannibale, R. W. Schoenlein, A. A. Zholents, and M. S. Zolotorev

    E-Print Network [OSTI]

    new development of coherent synchrotron radiation [1] in storage rings. In this Letter, we present a novel method for producing intense temporally and spa- tially coherent synchrotron radiation pulses observations of terahertz signals from sliced beams ob- served at BESSY II, an electron storage ring in Berlin

  10. This research is partially supported by NSF under grant 9972883-EIA, 9974255-IIS, and 9983249-EIA, and by grants from IBM, NCR, Telcordia, and TAILOR: A Record Linkage Toolbox*

    E-Print Network [OSTI]

    Elmagarmid, Ahmed K.

    * This research is partially supported by NSF under grant 9972883-EIA, 9974255-IIS, and 9983249-EIA that ensures the quality of data stored in real-world databases. Data cleaning prob- lems are frequently encountered in many research areas, such as knowledge discovery in databases, data ware- housing, system

  11. Int. J. Business Process Integration and Management, Vol. 2, No. 1, 2007 9 Service adaptation through trace inspection

    E-Print Network [OSTI]

    Brogi, Antonio

    a service contract tailored to the client needs. Service contracts include a description of the service

  12. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    "" of conservation wasof conservation was intended to permit utilities to better tailor theirintended to permit

  13. Physics of Optoelectronic and Plasmonic Devices: Cavities, Waveguides, Modulators and Lasers

    E-Print Network [OSTI]

    Sorger, Volker J.

    2011-01-01T23:59:59.000Z

    laser devices have been refined and tailored towards serving as scientific, engineering and even industrial manufacturing

  14. Actively tunable bistable optical Yagi-Uda nanoantenna

    E-Print Network [OSTI]

    . Hentschel, H. Giessen, and A. P. Alivisatos, "Nanoantenna-enhanced gas sensing in a single tailored

  15. Thermophilic Switchgrass-Adapted Consortia Glycoside Hydrolase Activities of Thermophilic Bacterial Consortia1

    E-Print Network [OSTI]

    Hazen, Terry

    variety of potential biomass feedstocks and pretreatments5 available require tailored glycoside hydrolase

  16. Genetics in the courts

    SciTech Connect (OSTI)

    Coyle, Heather; Drell, Dan

    2000-12-01T23:59:59.000Z

    Various: (1)TriState 2000 Genetics in the Courts (2) Growing impact of the new genetics on the courts (3)Human testing (4) Legal analysis - in re G.C. (5) Legal analysis - GM ''peanots'', and (6) Legal analysis for State vs Miller

  17. The mechano-chemistry of cytoskeletal force generation

    E-Print Network [OSTI]

    Mirko Maraldi; Krishna Garikipati

    2014-04-23T23:59:59.000Z

    In this communication, we propose a model to study the non-equilibrium process by which actin stress fibers develop force in contractile cells. The emphasis here is on the non-equilibrium thermodynamics, which is necessary to address the mechanics as well as the chemistry of dynamic cell contractility. In this setting we are able to develop a framework that relates (a) the dynamics of force generation within the cell and (b) the cell response to external stimuli to the chemical processes occurring within the cell, as well as to the mechanics of linkage between the stress fibers, focal adhesions and extra-cellular matrix.

  18. Non-Markovian effects in electronic and spin transport

    E-Print Network [OSTI]

    Pedro Ribeiro; Vitor R. Vieira

    2014-12-29T23:59:59.000Z

    We derive a non-Markovian master equation for the evolution of a class of open quantum systems consisting of quadratic fermionic models coupled to wide-band reservoirs. This is done by providing an explicit correspondence between master equations and non-equilibrium Green's functions approaches. Our findings permit to study non-Markovian regimes characterized by negative decoherence rates. We study the real-time dynamics and the steady-state solution of two illustrative models: a tight-binding and an XY-spin chains. The rich set of phases encountered for the non-equilibrium XY model extends previous studies to the non-Markovian regime.

  19. Bulk viscosity in a plasma of confining gluons

    E-Print Network [OSTI]

    Wojciech Florkowski; Radoslaw Ryblewski; Nan Su; Konrad Tywoniuk

    2015-04-13T23:59:59.000Z

    We investigate dynamic properties of a plasma whose constituents are confining gluons resulting from the Gribov quantization. In a static formulation, this system reproduces qualitatively the pure-glue equation of state and thereby encodes crucial features of the phase transition. The dynamic description proposed in this work allows us to study non-equilibrium transport phenomena with the inclusion of confinement effects. In particular, we determine the non-equilibrium behaviour of the interaction measure (trace anomaly) and find the form of the bulk viscosity coefficient. The latter may be used in phenomenological applications to heavy-ion collisions.

  20. Bulk viscosity in a plasma of confining gluons

    E-Print Network [OSTI]

    Florkowski, Wojciech; Su, Nan; Tywoniuk, Konrad

    2015-01-01T23:59:59.000Z

    We investigate dynamic properties of a plasma whose constituents are confining gluons resulting from the Gribov quantization. In a static formulation, this system reproduces qualitatively the pure-glue equation of state and thereby encodes crucial features of the phase transition. The dynamic description proposed in this work allows us to study non-equilibrium transport phenomena with the inclusion of confinement effects. In particular, we determine the non-equilibrium behaviour of the interaction measure (trace anomaly) and find the form of the bulk viscosity coefficient. The latter may be used in phenomenological applications to heavy-ion collisions.

  1. AER1301: KINETIC THEORY OF GASES Assignment #4

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    AER1301: KINETIC THEORY OF GASES Assignment #4 1. Consider a monatomic gas with one translational by the relaxation time approx- imation. Neglecting external forces, the conserved form of the kinetic equation function, in both the equilibrium and non- equilibrium cases, up to second order. (b) Derive an expression

  2. Strong field physics in condensed matter

    E-Print Network [OSTI]

    Oka, Takashi

    2011-01-01T23:59:59.000Z

    There are deep similarities between non-linear QFT studied in high-energy and non-equilibrium physics in condensed matter. Ideas such as the Schwinger mechanism and the Volkov state are deeply related to non-linear transport and photovoltaic Hall effect in condensed matter. Here, we give a review on these relations.

  3. Strong field physics in condensed matter

    E-Print Network [OSTI]

    Takashi Oka

    2011-02-12T23:59:59.000Z

    There are deep similarities between non-linear QFT studied in high-energy and non-equilibrium physics in condensed matter. Ideas such as the Schwinger mechanism and the Volkov state are deeply related to non-linear transport and photovoltaic Hall effect in condensed matter. Here, we give a review on these relations.

  4. Fast Track Communication Efficiency and large deviations in time-asymmetric

    E-Print Network [OSTI]

    Geissler, Phillip

    -state engine. We find in general that the form of efficiency probability distributions is similar to those systems, molecular motors, large deviations in non-equilibrium systems 1. Introduction As engineeringFast Track Communication Efficiency and large deviations in time-asymmetric stochastic heat engines

  5. The Eighth Liquid Matter Conference This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Dellago, Christoph

    interdisciplinary topics, ranging from simple liquids to soft matter and biophysical systems. The vast spectrum · Confined fluids, interfacial phenomena · Supercooled liquids, glasses, gels · Non-equilibrium systems science, as discussed at the conference, and demonstrate the scientific as well as methodological progress

  6. SYMPOSIUM ON: THE SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    -mail: kostic@niu.edu Abstract. Sadi Carnot's ingenious reasoning of reversible cycles (1824) laid foundations they are comprehended and understood. Key Words: Sadi Carnot, Heat engine, Non-equilibrium, Reversibility, Work: From Sadi Carnot's Ingenious Reasoning to Holistic Generalization Milivoje M. Kostic DEPARTMENT

  7. Transport of sorbing solutes in randomly heterogeneous formations: Spatial moments, macrodispersion, and parameter uncertainty

    SciTech Connect (OSTI)

    Andricevic, R.

    1993-06-01T23:59:59.000Z

    Expressions for the spatial moments and macrodispersion tensor for sorbing solutes in heterogeneous formations were presented using a probabilistic model of a fluid residence time coupled with the particle position analysis. The fluid residence time was defined as a fraction of the actual time during which the particle stayed in the mobile fluid phase of the aquifer. The fluid residence time is a random variable whose variability comes as a result of the non-equilibrium sorption properties. The sorbing solute was assumed to be governed with first-order linear kinetics. The closed-form expressions were based on the stationarity in the kinetic process and on the first-order approximation in the hydraulic conductivity field and in the fluid residence time. The non-equilibrium effects were presented as a function of the spatial variability in hydraulic conductivity and temporal variability in the fluid residence time. The importance of the non-equilibrium processes in the field scale was found to be dependent on reaction rates, retardation factor, mean velocity, and on variance and correlation scale of the hydraulic conductivity. The time needed to reach the asymptotic macrodispersivity is dependent on the degree of non-equilibrium processes and distribution coefficient. The impact from the uncertainty in parameters upon the spatial moments was examined and compared with the organic tracer used in the Borden field experiment.

  8. Conservation-dissipation formalism of irreversible thermodynamics

    E-Print Network [OSTI]

    Yi Zhu; Liu Hong; Zaibao Yang; Wen-An Yong

    2014-07-21T23:59:59.000Z

    We propose a conservation-dissipation formalism (CDF) for coarse-grained descriptions of irreversible processes. This formalism is based on a stability criterion for non-equilibrium thermodynamics. The criterion ensures that non-equilibrium states tend to equilibrium in long time. As a systematic methodology, CDF provides a feasible procedure in choosing non-equilibrium state variables and determining their evolution equations. The equations derived in CDF have a unified elegant form. They are globally hyperbolic, allow a convenient definition of weak solutions, and are amenable to existing numerics. More importantly, CDF is a genuinely nonlinear formalism and works for systems far away from equilibrium. With this formalism, we formulate novel thermodynamics theories for heat conduction in rigid bodies and non-isothermal compressible Maxwell fluid flows as two typical examples. In these examples, the non-equilibrium variables are exactly the conjugate variables of the heat fluxes or stress tensors. The new theory generalizes Cattaneo's law or Maxwell's law in a regularized and nonlinear fashion.

  9. OPTIMAL CONTROL OF SYSTEMS OF CONSERVATION LAWS AND APPLICATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    OPTIMAL CONTROL OF SYSTEMS OF CONSERVATION LAWS AND APPLICATION TO NON-EQUILIBRIUM TRAFFIC STEERING iteratively optimal control problems involving systems of conservation laws. The irregularity of discontinuous waves in computing an optimal (or suboptimal) control for systems of conservation laws

  10. The beta-Hermite and beta-Laguerre processes

    E-Print Network [OSTI]

    Luen-Chau Li

    2010-07-22T23:59:59.000Z

    In this work, we introduce matrix-valued diffusion processes which describe the non-equilibrium situation of the matrix models for the beta-Hermite and the beta-Laguerre ensembles. We also study the corresponding spectral measure process and empirical/singular value process with regard to their limit laws.

  11. Pulsating Heat Pipes: Thermo-fluidic Characteristics and Comparative Study with Single Phase Thermosyphon

    E-Print Network [OSTI]

    Khandekar, Sameer

    Pulsating Heat Pipes: Thermo-fluidic Characteristics and Comparative Study with Single Phase of the PHP operation. The fundamental thermo-fluidic processes occurring in the device operation gradients is to cause non-equilibrium pressure conditions, which is the primary driving force for thermo

  12. electronic reprint Synchrotron

    E-Print Network [OSTI]

    Coppens, Philip

    . Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal Non-Equilibrium Dynamics Project, ERATO, Japan Science and Technology Agency, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan, d Department of Materials Science, Tokyo Institute of Technology, 2-12-1-H61

  13. JOURNAL DE PHYSIQUE Colloque C7, supplbment au n012, Tome 48, decembre 1987

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    from the substrate e) Ceramic coating laser melting, sealing of ceramic coatings f) Amorphous layers of the whole component which could cause Fig. 1: Selective laser hardening of a press tool. This laser refinement and tendency to form non equilibrium phases. In laser surface melting the surface is simply melted

  14. Please cite this article in press as: Hallegatte, S. et al., Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics, Journal of Economic Behavior and Organization (2007), doi:10.1016/j.jebo.2007.05.001

    E-Print Network [OSTI]

    Ghil, Michael

    B.V. All rights reserved. Keywords: Macroeconomic dynamics; Non-equilibrium modeling; BusinessPlease cite this article in press as: Hallegatte, S. et al., Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics, Journal of Economic Behavior and Organization

  15. Thermodynamics for single-molecule stretching experiments

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Thermodynamics for single-molecule stretching experiments J.M. Rubi,a D. Bedeauxb and S. Kjelstrupb, Trondheim, 7491-Norway May 3, 2006 Abstract We show how to construct non-equilibrium thermodynamics for systems too small to be considered thermodynamically in a traditional sense. Through the use of a non

  16. Water transport inside a single-walled carbon nanotube driven by temperature gradient

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Water transport inside a single-walled carbon nanotube driven by temperature gradient J. Shiomi mass transport of a water cluster inside a single-walled carbon nanotube (SWNT) with the diameter of about 1.4 nm. The influence of the non-equilibrium thermal environment on the confined water cluster has

  17. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect (OSTI)

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28T23:59:59.000Z

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  18. Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup

    E-Print Network [OSTI]

    Ming, Pingjia

    2014-06-05T23:59:59.000Z

    hydrocarbons mixture such as EPE (74.8% methane, 8% ethane, 8% ethylene, 2.1% propane and 1.1% Propene). Non-thermal plasmas, due to their unique non-equilibrium characteristics, offer advantages as method of reforming at lower temperature (100-150 º...

  19. Modelling dynamics of samples exposed to free-electron-laser radiation with Boltzmann equations

    E-Print Network [OSTI]

    Beata Ziaja; Antonio R. B. de Castro; Edgar Weckert; Thomas Moeller

    2005-12-20T23:59:59.000Z

    We apply Boltzmann equations for modelling the radiation damage in samples irradiated by photons from free electron laser (FEL). We test this method in a study case of a spherically symmetric xenon cluster irradiated with VUV FEL photons. The results obtained demonstrate the potential of the Boltzmann method for describing the complex and non-equilibrium dynamics of samples exposed to FEL radiation.

  20. Issues in the statistical mechanics of steady sedimentation Sriram Ramaswamy*

    E-Print Network [OSTI]

    Ramaswamy, Sriram

    is that of a practitioner of non-equilibrium statistical physics rather than classical ¯ uid mechanics. Contents page 1 and simulations in brief 303 2.1.3. Theoretical approaches: a summary 304 2.2. Sedimenting crystalline suspensions common history, beginning with the classic theoretical [1± 4] and experimental [5] studies of Brownian

  1. 2006 Nature Publishing Group Controlled multiple reversals of a ratchet effect

    E-Print Network [OSTI]

    Moshchalkov, Victor V.

    © 2006 Nature Publishing Group Controlled multiple reversals of a ratchet effect Cle´cio C. de confined in an asymmetric potential demon- strates an anticipated ratchet effect by drifting along the `easy' ratchet direction when subjected to non-equilibrium fluctu- ations1­3 . This well-known effect

  2. Free energy inference from partial work measurements Fluctuation Relations (FRs) are among the few general exact results

    E-Print Network [OSTI]

    Potsdam, Universität

    Free energy inference from partial work measurements Fluctuation Relations (FRs) are among the few application is free energy recovery from non-equilibrium pulling experiments in the single molecule field. We is a "partial" work measurement): it leads to a violation of FRs and to wrong free energy estimates

  3. A light scattering study of colloid-polymer mixtures 

    E-Print Network [OSTI]

    Pirie, Angus D

    A detailed light scattering study of non-equilibrium states found in a model colloid-polymer mixture is presented. Conventional light scattering is used to examine the average structure of the phase, over a wide range of wavevectors. For all non...

  4. Plasmachemical Synthesis of Carbon Suboxide

    E-Print Network [OSTI]

    Geiger, Robert

    2012-12-11T23:59:59.000Z

    generated by thermonuclear fusion reactions resulting in a giant plasma ball. The sun is an example of a thermal plasma and is considered to be in equilibrium however it is also possible to have cold or non-equilibrium plasmas. A thermal plasma can have...

  5. Heat transfer in soft nanoscale interfaces: the influence of interface curvature

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires

  6. JOURNAL DE PHYSIQUE CoZZaque C7, suppZ6ment au n07, Tome 40, JuiZZet 1979, page C7-473 SOME PARTlCULARlWS OT THE MOLECULAR EXCHANGEIN A t-FLOW PRESSUREDISCHARGE

    E-Print Network [OSTI]

    Boyer, Edmond

    compounds and donor-acceptor complexes in the non-equilibrium plasma of a HF discharge to form a GaN film, and GaN molecu- les are transported to the single-crys- talline surface and are deposited partial pressure and on the total pressure of the gaseous mixture means that the process of GaN film

  7. Model-based Diagnostics for Propellant Loading Systems Matthew Daigle

    E-Print Network [OSTI]

    Daigle, Matthew

    -depth analysis and understanding of the underlying physi- cal processes, offer the advanced capability to quickly such as highly non- equilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydro- gen and vapor flows inside the system in the presence of he- lium gas. Since

  8. IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 40 (2007) 1320913215 doi:10.1088/1751-8113/40/44/002

    E-Print Network [OSTI]

    Ott, Albrecht

    2007-01-01T23:59:59.000Z

    of the dynamical equation for the one-particle density of this model is shown to be equivalent to the exact Euler of situations [10, 11], including non-equilibrium sedimentation of hard spheres under gravity, where excellent microscopy of colloidal dispersions was found [12]. Nevertheless the DDFT is approximative [13, 14

  9. A Steam Quality Comparison between Nanoshell-Mediated Solar Heating and Conventional Electrical Heating

    E-Print Network [OSTI]

    GP-B-13 A Steam Quality Comparison between Nanoshell-Mediated Solar Heating in the Halas Group has led to the development of a novel, solar- based steam generation method using broadband. This a dramatic and highly non-equilibrium process. As such, investigating the properties of this steam

  10. This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 421427 421 On the electron-induced isotope fractionation in low temperature

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    . Sivaraman,a A. M. Mebel,b N. J. Mason,*a D. Babikovc and R. I. Kaiser*de Received 4th May 2010, Accepted 26 and isotopologues involving non-thermal, non-equilibrium chemistry by irradiation of oxygen ices with high energy measured oxygen isotopes in the solar wind and from comet Wild 2 by collecting (and returning) `dust

  11. Bioenergy and Bioproducts BIOENERGY PROGRAM

    E-Print Network [OSTI]

    as an ethanol and bioproduct feedstock· Wide hybridization of energy crops to custom tailor composition

  12. BNL | CFN Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dynamically tunable and reconfigurable self-assembled systems that mimic protein folding, and nanoparticle clusters with tailored particles. Advanced characterization...

  13. The Effect of Disorder in Superfluid Double Layer Graphene

    E-Print Network [OSTI]

    Brian Dellabetta; Matthew J. Gilbert

    2011-04-12T23:59:59.000Z

    We investigate the superfluid properties of disordered double layer graphene systems using the non-equilibrium Green's function (NEGF) formalism. The complexity of such a structure makes it imperative to study the effects of lattice vacancies which will inevitably arise during fabrication. We present and compare room temperature performance characteristics for both ideal and disordered bilayer graphene systems in an effort to illustrate the behavior of a Bose-Einstein Condensate in the presence of lattice defects under non-equilibrium conditions. We find that lattice vacancies spread throughout the top layer past the coherence length have a reduced effect compared to the ideal case. However, vacancies concentrated near the metal contacts within the coherence length significantly alter the interlayer superfluid transport properties.

  14. Exciton-phonon information flow in the energy transfer process of photosynthetic complexes

    E-Print Network [OSTI]

    Rebentrost, Patrick

    2010-01-01T23:59:59.000Z

    Non-Markovian and non-equilibrium phonon effects are believed to be key ingredients in the energy transfer in photosynthetic complexes, especially in complexes which exhibit a regime of intermediate exciton-phonon coupling. In this work, we harness a recently developed measure for non-Markovianity to elucidate the information flow between electronic and vibrational degrees of freedom. We study the measure in the hierarchical equation of motion approach which captures strong system-bath coupling effects and non-equilibrium molecular reorganization. We find that, for a model dimer system and the Fenna-Matthews-Olson complex, non-Markovianity is significant under realistic physiological conditions. A first step towards experimental quantification is provided by the study of four-wave mixing initial states.

  15. Formation of Compact Stellar Clusters by High-Redshift Galaxy Outflows I: Nonequillibrium Coolant Formation

    E-Print Network [OSTI]

    Gray, William J

    2010-01-01T23:59:59.000Z

    We use high-resolution three-dimensional adaptive mesh refinement simulations to investigate the interaction of high-redshift galaxy outflows with low-mass virialized clouds of primordial composition. While atomic cooling allows star formation in objects with virial temperatures above $10^4$ K, "minihaloes" below this threshold are generally unable to form stars by themselves. However, these objects are highly susceptible to triggered star formation, induced by outflows from neighboring high-redshift starburst galaxies. Here we conduct a study of these interactions, focusing on cooling through non-equilibrium molecular hydrogen (H$_2$) and hydrogen deuteride (HD) formation. Tracking the non-equilibrium chemistry and cooling of 14 species and including the presence of a dissociating background, we show that shock interactions can transform minihaloes into extremely compact clusters of coeval stars. Furthermore, these clusters are all less than $\\approx 10^6 M_\\odot,$ and they are ejected from their parent dark...

  16. Fluctuations of internal energy flow in a vibrated granular gas

    E-Print Network [OSTI]

    A. Puglisi; P. Visco; A. Barrat; E. Trizac; F. van Wijland

    2005-09-05T23:59:59.000Z

    The non-equilibrium fluctuations of power flux in a fluidized granular media have been recently measured in an experiment [Phys. Rev. Lett. 92, 164301, 2004], which was announced to be a verification of the Fluctuation Relation (FR) by Gallavotti and Cohen. An effective temperature was also identified and proposed to be a useful probe for such non equilibrium systems. We explain these results in terms of a two temperature Poisson process. Within this model, supported by independent Molecular Dynamics simulations, power flux fluctuations do not satisfy the FR and the nature of the effective temperature is clarified. In the pursue of a hypothetical global quantity fulfilling the FR, this points to the need of considering other candidates than the power flux.

  17. Charge separation in organic photovoltaic cells

    E-Print Network [OSTI]

    Giazitzidis, Paraskevas; Bisquert, Juan; Vikhrenko, Vyacheslav S

    2014-01-01T23:59:59.000Z

    We consider a simple model for the geminate electron-hole separation process in organic photovoltaicssss cells, in order to illustrate the influence of dimensionality of conducting channels on the efficiency of the process. The Miller-Abrahams expression for the transition rates between nearest neighbor sites was used for simulating random walks of the electron in the Coulomb field of the hole. The non-equilibrium kinetic Monte Carlo simulation results qualitatively confirm the equilibrium estimations, although quantitatively the efficiency of the higher dimensional systems is less pronounced. The lifetime of the electron prior to recombination is approximately equal to the lifetime prior to dissociation. Their values indicate that electrons perform long stochastic walks before they are captured by the collector or recombined. The non-equilibrium free energy considerably differs from the equilibrium one. The efficiency of the separation process decreases with increasing the distance to the collector, and this...

  18. On holographic thermalization and gravitational collapse of tachyonic scalar fields

    E-Print Network [OSTI]

    Bin Wu

    2013-03-24T23:59:59.000Z

    In this paper we study the thermalization of a spatially homogeneous system in a strongly coupled CFT. The non-equilibrium initial state is created by switching on a relevant perturbation in the CFT vacuum during Delta t >= t >= -Delta t. Via AdS/CFT, the thermalization process corresponds to the gravitational collapse of a tachyonic scalar field (m^2 = -3) in the Poincare patch of AdS_5. In the limit Delta t = 1/T, we also obtain double-collapse solutions but with a non-equilibrium intermediate state at t = 0. In all the cases our results show that the system thermalizes in a typical time t_T ~ O(1)/T. Besides, a conserved energy-moment current in the bulk is found, which helps understand the qualitative difference of the collapse process in the Poincare patch from that in global AdS[9, 10].

  19. A unified cosmic evolution: Inflation to late time acceleration

    E-Print Network [OSTI]

    Subenoy Chakraborty; Supriya Pan; Subhajit Saha

    2015-04-30T23:59:59.000Z

    The present work deals with a cosmological model having particle creation mechanism in the framework of irreversible thermodynamics. In the second order non-equilibrium thermodynamical prescription, the particle creation rate is treated as the dissipative effect. The non-equilibrium thermodynamical process is assumed to be isentropic, and, as a consequence, the entropy per particle is constant, and, hence, the dissipative pressure can be expressed linearly in terms of the particle creation rate in the background of the homogeneous and isotropic flat FLRW model. By proper choice of the particle creation rate as a function of the Hubble parameter, the model shows the evolution of the universe starting from the inflationary scenario to the present accelerating phase, considering the cosmic matter as normal perfect fluid with barotropic equation of state.

  20. Fluctuations in Single-Shot $?$-Deterministic Work Extraction

    E-Print Network [OSTI]

    Sina Salek; Karoline Wiesner

    2015-04-20T23:59:59.000Z

    In the single-shot regime it is argued that the criterion for allowed state transitions ought to be more restricted than the second law of thermodynamics, and is given by a condition called thermo-majorisation. Hence to arrive at a fluctuation theorem for the single-shot scenario, such a restriction has to be taken into account. Here we formulate and prove a tighter fluctuation relation for the single-shot $\\epsilon$-deterministic work extraction. The result links two areas of thermodynamics which have been of great interest recently, fluctuation relations for non-equilibrium processes and the $\\epsilon$-deterministic work extractable from single microscopic non-equilibrium systems. Furthermore, in doing so, we unify the notions of fluctuation in $\\epsilon$-deterministic work extraction and in fluctuation theorems.

  1. Roles of Dry Friction in Fluctuating Motion of Adiabatic Piston

    E-Print Network [OSTI]

    Tomohiko G. Sano; Hisao Hayakawa

    2014-03-08T23:59:59.000Z

    The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cusp-like singularity for velocity distribution functions of the piston. We also show that the heat fluctuation relation is modified under dry friction.

  2. Liu UCD Phy9B 07 1 Ch 20. The Second Law of

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Statements #12;Liu UCD Phy9B 07 9 20-6. Carnot Cycle Carnot engine QH ~ TH QC ~ TC eCarnot =1- |QC/QH|=1- TC of Thermodynamic Processes Reversible vs. Irreversible processes Equilibrium vs. non-equilibrium processes Maximum volume rV Compression ratio r (typically 8-10) #12;Liu UCD Phy9B 07 5 Otto Cycle QH=nCV(Tc-Tb) >0

  3. Peculiarities of wave fields in nonlocal media

    E-Print Network [OSTI]

    V. A. Danylenko; S. I. Skurativskyi

    2015-03-02T23:59:59.000Z

    The article summarizes the studies of wave fields in structured non-equilibrium media describing by means of nonlocal hydrodynamic models. Due to the symmetry properties of models, we derived the invariant wave solutions satisfying autonomous dynamical systems. Using the methods of numerical and qualitative analysis, we have shown that these systems possess periodic, multiperiodic, quasiperiodic, chaotic, and soliton-like solutions. Bifurcation phenomena caused by the varying of nonlinearity and nonlocality degree are investigated as well.

  4. Ion pump activity generates fluctuating electrostatic forces in biomembranes

    E-Print Network [OSTI]

    B. Loubet; M. A. Lomholt

    2011-09-19T23:59:59.000Z

    We study the non-equilibrium dynamics of lipid membranes with proteins that actively pump ions across the membrane. We find that the activity leads to a fluctuating force distribution due to electrostatic interactions arising from variation in dielectric constant across the membrane. By applying a multipole expansion we find effects on both the tension and bending rigidity dominated parts of the membranes fluctuation spectrum. We discuss how our model compares with previous studies of force-multipole models.

  5. A mathematical and experimental study of caustic flooding

    E-Print Network [OSTI]

    Shen, Tsu-Cheng

    1985-01-01T23:59:59.000Z

    : Dr. Ching Buang Wu A simple non-equilibrium chemical displacement model for continuous, linear, caustic flooding of crude oil is presented. The laboratory experiments were conducted to support the numerical simulation and to verify the results...-water fractional flow curves depending on its local concentration and water saturation. The numerical study was supported by caustic displacement testing of Sacroc crude oil. Quantitative agreements were found between the results from mathematical and experimen...

  6. Engineering nuclear spin dynamics with optically pumped nitrogen-vacancy center

    E-Print Network [OSTI]

    Ping Wang; Jiangfeng Du; Wen Yang

    2015-03-01T23:59:59.000Z

    We present a general theory for using an optically pumped diamond nitrogen-vacancy center as a tunable, non-equilibrium bath to control a variety of nuclear spin dynamics (such as dephasing, relaxation, squeezing, polarization, etc.) and the nuclear spin noise. It opens a new avenue towards engineering the dissipative and collective nuclear spin evolution and solves an open problem brought up by the $^{13}$C nuclear spin noise suppression experiment [E. Togan \\textit{et al}., Nature 478, 497 (2011)].

  7. Computation via dynamic self-assembly of idealized protein networks.

    SciTech Connect (OSTI)

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    2003-08-01T23:59:59.000Z

    We describe stochastic agent-based simulations of protein-emulating agents to perform computation via dynamic self-assembly. The binding and actuation properties of the types of agents required to construct a RAM machine (equivalent to a Turing machine) are described. We present an example computation and describe the molecular biology and non-equilibrium statistical mechanics, and information science properties of this system.

  8. Independent electrons model for open quantum systems: Landauer-Buettiker formula and strict positivity of the entropy production

    E-Print Network [OSTI]

    G. Nenciu

    2006-10-26T23:59:59.000Z

    A general argument leading from the formula for currents through an open noninteracting mesoscopic system given by the theory of non-equilibrium steady states (NESS) to the Landauer-Buettiker formula is pointed out. Time reversal symmetry is not assumed. As a consequence it follows that, as far as the system has a nontrivial scattering theory and the reservoirs have different temperatures and/or chemical potentials, the entropy production is strictly positive.

  9. Freak observers and the measure of the multiverse

    E-Print Network [OSTI]

    Alexander Vilenkin

    2006-12-13T23:59:59.000Z

    I suggest that the factor $p_j$ in the pocket-based measure of the multiverse, $P_j=p_j f_j$, should be interpreted as accounting for equilibrium de Sitter vacuum fluctuations, while the selection factor $f_j$ accounts for the number of observers that were formed due to non-equilibrium processes resulting from such fluctuations. I show that this formulation does not suffer from the problem of freak observers (also known as Boltzmann brains).

  10. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    SciTech Connect (OSTI)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01T23:59:59.000Z

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  11. False Vacuum Decay after Inflation

    E-Print Network [OSTI]

    T. Asaka; W. Buchmuller; L. Covi

    2001-04-03T23:59:59.000Z

    Inflation is terminated by a non-equilibrium process which finally leads to a thermal state. We study the onset of this transition in a class of hybrid inflation models. The exponential growth of tachyonic modes leads to decoherence and spinodal decomposition. We compute the decoherence time, the spinodal time, the size of the formed domains and the homogeneous classical fields within a single domain.

  12. Connected Operators for the Totally Asymmetric Exclusion Process

    E-Print Network [OSTI]

    Golinelli, O; 10.1088/1751-8113/40/44/004

    2009-01-01T23:59:59.000Z

    We fully elucidate the structure of the hierarchy of the connected operators that commute with the Markov matrix of the Totally Asymmetric Exclusion Process (TASEP). We prove for the connected operators a combinatorial formula that was conjectured in a previous work. Our derivation is purely algebraic and relies on the algebra generated by the local jump operators involved in the TASEP. Keywords: Non-Equilibrium Statistical Mechanics, ASEP, Exact Results, Algebraic Bethe Ansatz.

  13. Connected Operators for the Totally Asymmetric Exclusion Process

    E-Print Network [OSTI]

    O. Golinelli; K. Mallick

    2007-04-06T23:59:59.000Z

    We fully elucidate the structure of the hierarchy of the connected operators that commute with the Markov matrix of the Totally Asymmetric Exclusion Process (TASEP). We prove for the connected operators a combinatorial formula that was conjectured in a previous work. Our derivation is purely algebraic and relies on the algebra generated by the local jump operators involved in the TASEP. Keywords: Non-Equilibrium Statistical Mechanics, ASEP, Exact Results, Algebraic Bethe Ansatz.

  14. Normal Heat Conductivity in a strongly pinned chain of anharmonic oscillators

    E-Print Network [OSTI]

    R. Lefevere; A. Schenkel

    2005-11-03T23:59:59.000Z

    We consider a chain of coupled and strongly pinned anharmonic oscillators subject to a non-equilibrium random forcing. Assuming that the stationary state is approximately Gaussian, we first derive a stationary Boltzmann equation. By localizing the involved resonances, we next invert the linearized collision operator and compute the heat conductivity. In particular, we show that the Gaussian approximation yields a finite conductivity $\\kappa\\sim\\frac{1}{\\lambda^2T^2}$, for $\\lambda$ the anharmonic coupling strength.

  15. Occam's Razor Cuts Away the Maximum Entropy Principle

    E-Print Network [OSTI]

    Rudnicki, ?ukasz

    2014-01-01T23:59:59.000Z

    I show that the maximum entropy principle can be replaced by a more natural assumption, that there exists a phenomenological function of entropy consistent with the microscopic model. The requirement of existence provides then a unique construction of the related probability density. I conclude the letter with an axiomatic formulation of the notion of entropy, which is suitable for exploration of the non-equilibrium phenomena.

  16. The maximum entropy tecniques and the statistical description of systems

    E-Print Network [OSTI]

    B. Z. Belashev; M. K. Suleymanov

    2001-10-19T23:59:59.000Z

    The maximum entropy technique (MENT) is used to determine the distribution functions of physical values. MENT naturally combines required maximum entropy, the properties of a system and connection conditions in the form of restrictions imposed on the system. It can, therefore, be employed to statistically describe closed and open systems. Examples in which MENT is used to describe equilibrium and non-equilibrium states, as well as steady states that are far from being in thermodynamic equilibrium, are discussed.

  17. Solidification characterization of a new rapidly solidified Ni-Cr-Co based superalloy

    SciTech Connect (OSTI)

    Wu, Kai, E-mail: wk-ustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)] [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Guoquan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China) [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hu, Benfu [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)] [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li, Feng [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Zhang, Yiwen [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China) [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); High Temperature Materials Research Institution, CISRI, Beijing 100081 (China); Tao, Yu; Liu, Jiantao [High Temperature Materials Research Institution, CISRI, Beijing 100081 (China)] [High Temperature Materials Research Institution, CISRI, Beijing 100081 (China)

    2012-11-15T23:59:59.000Z

    The solidification characterization of a new rapidly solidified Ni-Cr-Co based superalloy prepared by plasma rotating electrode process was investigated by means of optical microscope, scanning electron microscope, and transmission electron microscope. The results show that the solidification microstructure changes from dendrites to cellular and microcrystal structures with decreasing powder size. The elements of Co, Cr, W and Ni are enriched in the dendrites, while Mo, Nb and Ti are higher in the interdendritic regions. The relationships between powder size with the average solid-liquid interface moving rate, the average interface temperature gradient and the average cooling rate are established. Microsegregation is increased with larger powder size. The geometric integrity of MC Prime type carbides in the powders changes from regular to diverse with decreasing powder size. The morphology and quantity of carbides depend on the thermal parameters and non-equilibrium solute partition coefficients during rapid solidification. - Highlights: Black-Right-Pointing-Pointer The relations of solidification thermal parameters with powder size are established. Black-Right-Pointing-Pointer The relation of non-equilibrium solute partition with powder size is investigated. Black-Right-Pointing-Pointer The solidification microstructure is related to thermal parameters. Black-Right-Pointing-Pointer The segregation behavior is linked to non-equilibrium partition coefficients. Black-Right-Pointing-Pointer The morphology and quantity of carbides depend on the above combined factors.

  18. Transforming Ordinary Buildings into Smart Buildings via Low...

    Broader source: Energy.gov (indexed) [DOE]

    Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting...

  19. Database Aids Building Owners and Operators in Energy-Efficiency...

    Energy Savers [EERE]

    to identify the best efficiency investment opportunities and limits the ability of public-sector actors to design and implement programs that are tailored to local market...

  20. Data Tools: BPD, SEED & Data Accelerator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency investment opportunities, and project the likely savings from investments. * Public sector actors can tailor the design and implementation of energy efficiency...