Powered by Deep Web Technologies
Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratorys South Table Mountain Complex  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

# 1440 # 1440 FINAL Site-Wide Environmental Assessment of the National Renewable Energy Laboratory's South Table Mountain Complex July 2003 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE NATIONAL RENEWABLE ENERGY LABORATORY 1617 Cole Boulevard Golden, Colorado 80401 Site-Wide Environmental Assessment of FINAL National Renewable Energy Laboratory's South Table Mountain Complex TABLE OF CONTENTS LIST OF ACRONYMS.................................................................................................................vii S. SUMMARY .................................................................................................................... S-1 S.1 INTRODUCTION ...........................................................................................................

2

Table 4-3 Site Wide Environmental Management Matrix  

NLE Websites -- All DOE Office Websites (Extended Search)

Site-Wide Environmental Assessment of Table 4-3. Site-Wide Environmental Management Matrix National Renewable Energy Laboratory's South Table Mountain Complex FINAL POTENTIAL...

3

Finding of No Significant Impact and Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT AND FINDING OF NO SIGNIFICANT IMPACT AND FINAL ENVIRONMENTAL ASSESSMENT OF THREE SITE DEVELOPMENT PROJECTS AT THE NATIONAL RENEWABLE ENERGY LABORATORY SOUTH TABLE MOUNTAIN SITE July 2007 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1573 Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site i TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ....................................................................................................iv EXECUTIVE SUMMARY ..........................................................................................................................

4

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

5

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

6

DOE/EA-1440-S-1: Final Supplement to the Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratory's South Table Mountain Complex (May 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUPPLEMENT TO FINAL SITE-WIDE ENVIRONMENTAL SUPPLEMENT TO FINAL SITE-WIDE ENVIRONMENTAL ASSESSMENT OF THE NATIONAL RENEWABLE ENERGY LABORATORY'S SOUTH TABLE MOUNTAIN COMPLEX Proposed Construction and Operation of: - Research Support Facilities, - Infrastructure Improvements (Phase I), - Upgrades to the Thermochemical User Facility and Addition of the Thermochemical Biorefinery Pilot Plant May 2008 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1440-S-1 Department of Energy Golden Field Office 161 7 Cole Boulevard Golden, Colorado 80401 -3305 May 14,2008 FINDING OF NO SIGNIFICANT IMPACT for SUPPLEMENT TO FINAL SITE-WIDE ENVIRONMENTAL ASSESSMENT OF THE NATIONAL RENEWABLE ENERGY LABORATORY'S

7

DOE/EA-1440-S-1: Finding of No Significant Impact for Final Supplement to the Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratory's South Table Mountain Complex (5/15/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Cole Boulevard 7 Cole Boulevard Golden, Colorado 80401 -3305 May 14,2008 FINDING OF NO SIGNIFICANT IMPACT for SUPPLEMENT TO FINAL SITE-WIDE ENVIRONMENTAL ASSESSMENT OF THE NATIONAL RENEWABLE ENERGY LABORATORY'S SOUTH TABLE MOUNTAIN COMPLEX AGENCY: Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact SUMMARY: 111 accordance with the Department of Energy (DOE) National Environmental Policy Act (NEPA) implementing regulations, DOE evaluated the potential environniental impacts that would result from three actions at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site: Proposed Construction and Operation o f Research Suppol-t Facilities (RSF), Infrastructure Improvements (Phase I), Upgrades to tlie Thermochemical User Facility (TCUF) and addition of the

8

EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

440-S1: National Renewable Energy Laboratory's South Table 440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory SUMMARY ThIs EA evaluates the potential environmental impact of a DOE proposal that consists of three site development projects at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site at Golden, Colorado: Construction of the Research Support Facilities (RSF), a new office building or multi-building office complex; Installation of Phase 1 of planned Site Infrastructure Improvements (Phase 1 of Full Site Development); Upgrades to the Thermochemical User Facility (TCUF), TCUF

9

Information Request Yucca Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2008 , 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested last week regarding use of engineered barriers. Please let me know if you need additional information or have any questions. A,4- -/0 7 The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal Barriers for Demonstrating Safety This paper addresses two issues that are frequently raised concerning the suitability of the Yucca Mountain site for development as a repository. The first issue is that the Yucca Mountain site is technically unsound and that an engineered barrier system is required because the site is not capable of protecting public health and safety. The second issue is

10

Information Request Yucca Mountain Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Request Yucca Mountain Site Information Request Yucca Mountain Site The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal...

11

Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada  

SciTech Connect

Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system.

Hoxie, D.T.

1995-04-01T23:59:59.000Z

12

Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect

This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

1992-01-01T23:59:59.000Z

13

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

14

Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect

The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

NONE

1992-01-01T23:59:59.000Z

15

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network (OSTI)

The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater flow system of the Yucca Mountain Site and vicinity, was developed using a manual trial-and-error calibration technique to model the ground-water table. The ground-water system in the model was divided into a two layers, which consist of Cenozoic volcanic rocks and Paleozoic carbonate rocks. The carbonate rocks were defined to be a confined aquifer. The model simulates vertical flow from the volcanic rocks to the underlying carbonate rocks in an area where the Eleana Formation, a Paleozoic clastic aquitard, is absent. The model requires a vertical hydrologic connection in a particular region and a large difference in hydraulic heads between the volcanic rocks and the carbonates to create the steep gradient north of the repository site. The regions of different hydraulic gradient on the water-table surface could be simulated by spatial variations of the horizontal hydraulic conductivity in the volcanic rocks.

Lee, Si-Yong

1994-01-01T23:59:59.000Z

16

Repository site data report for unsaturated tuff, Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

1985-11-01T23:59:59.000Z

17

Yucca Mountain Site Characterization Project technical data catalog; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition.

NONE

1992-09-30T23:59:59.000Z

18

Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7  

Science Conference Proceedings (OSTI)

In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

NONE

1992-12-01T23:59:59.000Z

19

First-Year Operation of a New Water Vapor Raman Lidar at the JPL Table Mountain Facility, California  

Science Conference Proceedings (OSTI)

A new water vapor Raman lidar was recently built at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL) in California and more than a year of routine 2-h-long nighttime measurements 45 times per week have been completed. The ...

Thierry Leblanc; I. Stuart McDermid; Robin A. Aspey

2008-08-01T23:59:59.000Z

20

Secondary plant succession on disturbed sites at Yucca Mountain, Nevada  

SciTech Connect

This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE/EA-1583: Final Site-wide Environmental Assessment and Finding of No Significant Impact for Rocky Mountain Oilfield Testing Center/Naval Petroleum Reserve No. 3 (October 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ROCKY MOUNTAIN OILFIELD TESTING CENTER / ROCKY MOUNTAIN OILFIELD TESTING CENTER / NAVAL PETROLEUM RESERVE NO. 3 FINAL Site-wide Environmental Assessment and Finding of No Significant Impact October 2008 U.S. Department of Energy Rocky Mountain Oilfield Testing Center 907 N. Poplar Street, Suite 150 Casper WY 82601 DOE/EA-1583 Rocky Mountain Oilfield Testing Center / Naval Petroleum Reserve No.3 Final Site-Wide Environmental Assessment i TABLE OF CONTENTS Section Page ABBREVIATIONS AND ACRONYMS.................................................................................................vii SUMMARY ................................................................................................................................................ix 1.0 INTRODUCTION .........................................................................................................................1

22

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

NONE

1988-12-01T23:59:59.000Z

23

Evaluating Flake Assemblage and Stone Tool Distributions at a Large Western Stemmed Tradition Site Near Yucca Mountain, Nevada  

E-Print Network (OSTI)

Tradition Site Near Yucca Mountain, Nevada G R E G O R Y M .Institute near Yucca Mountain, Nevada, have revealed anlevel at the top of Yucca Mountain. Vegetation is typi- cal

Haynes, Gregory M

1996-01-01T23:59:59.000Z

24

EIA Energy Efficiency-Table 1a. Table 1a. Consumption of Site Energy For  

Gasoline and Diesel Fuel Update (EIA)

a a Page Last Modified: May 2010 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,123 1,186 312 Beverage and Tobacco Products 108 105 107 313 Textile Mills 256 207 178 314 Textile Product Mills 50 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 509 377 451 322 Paper 2,747 2,363 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 7,320 6,799 6,864 325 Chemicals 6,064 6,465 5,149 326 Plastics and Rubber Products 328 351 337 327 Nonmetallic Mineral Products 979 1,059 1,114 331 Primary Metals 2,560 2,120 1,736

25

Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement  

Science Conference Proceedings (OSTI)

The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

NONE

1994-03-31T23:59:59.000Z

26

Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement  

SciTech Connect

The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

NONE

1994-12-31T23:59:59.000Z

27

Finite - difference modeling of the Yucca Mountain, Nevada Area: a study of the regional water table gradients based on hydraulic conductivity contrasts  

E-Print Network (OSTI)

The Nevada Yucca Mountain site is being investigated to determine if it is a suitable site for the construction of a high-level nuclear waste repository. A feature of concern north of the selected site is an abrupt rise in the water table. This high gradient of 0.15 is flanked to the north by a moderate gradient of 0.015 and to the south by a very small gradient of 0.0001. Since the mechanisms creating this feature have the potential to cause changes in the position and configuration of the water table, they must be understood so risk analysis of the site may be performed. The three distinct gradient regions found at the site may be related to the Cenozoic volcanics, the Paleozoic clastic aquitard, and the Paleozoic carbonates. The large hydraulic gradient regionally corresponds with the northern limit of the Paleozoic carbonates, at the contact of the Eleana Formation, a Paleozoic aquitard. This study investigates, using finite difference modeling, the relationship between the steep hydraulic gradient and hydraulic conductivity contrasts. The site was modeled with flow boundaries to investigate the effects of variable gradient input to the flow balance calculation. A model was run with differential volcanic hydraulic conductivity zones with regulated flow into the carbonates. Constant head boundaries were implemented in models to investigate the effect of both a confined and open carbonate zone and with vertical barriers above the argillite/carbonate contact. The results of the study found that vertical and horizontal hydraulic conductivity contrasts do not fully account for the steep gradients, although the vertical contrasts marginally increase the gradient from horizontal contrasts. The confined carbonate zone model produced results that do not correlate with field data. The vertical barrier model did successfully reproduce steep gradients with gradient steepness related to flow restriction. Through the use of flow boundaries the steep gradient was reproduced successfully with a contrast of 0.8 orders of magnitude by allowing flow into the carbonate zone.

Davidson, Timothy Ross

1994-01-01T23:59:59.000Z

28

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 295: Muons in water as calc from steam to check code ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.55509 1.000 71.6 0.44251 3.0000 0.2000 2.0000 3.5017 0.00 T p...

29

Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada  

SciTech Connect

To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

NONE

1988-12-01T23:59:59.000Z

30

Site characterization plan overview: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Consultation Draft  

SciTech Connect

The consultation draft of the site characterization plan is a lengthy document that describes in considerable detail the program that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. The overview presented here consists of brief summaries of important topics covered in the consultation draft of the site-characterization plan; it is not a substitute for the site-characterization plan. The arrangement of the overview is similar to that of the plan itself, with brief descriptions of the disposal system -- the site, the repository, and the waste package -- preceding the discussion of the characterization program to be carried out at the Yucca Mountain site. It is intended primarily for the management staff of organizations involved in the DOE`s repository program -- staff who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization. 22 figs., 1 tab.

NONE

1988-01-01T23:59:59.000Z

31

Site environmental report for calendar year 1994, Yucca Mountain Site, Nye County, Nevada.  

Science Conference Proceedings (OSTI)

The Yucca Mountain Site Characterization office has established an environmental program to ensure that facilities are operated in order to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US DOE orders. The status of the environmental program has been summarized in this annual report to characterize performance, confirm compliance with environmental requirements, and highlight significant programs and efforts during CY 1994. Monitoring, archaeology, groundwater, ecosystems, tortoise conservation, waste minimization, etc., are covered.

NONE

1995-06-01T23:59:59.000Z

32

NRC staff site characterization analysis of the Department of Energy`s Site Characterization Plan, Yucca Mountain Site, Nevada  

Science Conference Proceedings (OSTI)

This Site Characterization Analysis (SCA) documents the NRC staff`s concerns resulting from its review of the US Department of Energy`s (DOE`s) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation`s first geologic repository for high-level radioactive waste. DOE`s SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC`s specific objections related to the SCP, and major comments and recommendations on the various parts of DOE`s program, are presented in SCA Section 2, Director`s Comments and Recommendations. Section 3 contains summaries of the NRC staff`s concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE`s program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC`s responsibilities with respect to DOE`s SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs.

NONE

1989-08-01T23:59:59.000Z

33

Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3  

SciTech Connect

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

NONE

1986-05-01T23:59:59.000Z

34

Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2  

SciTech Connect

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

1986-05-01T23:59:59.000Z

35

Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1  

SciTech Connect

In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

NONE

1986-05-01T23:59:59.000Z

36

Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA  

SciTech Connect

This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain.

Bjerstedt, T.W.

1996-12-31T23:59:59.000Z

37

Table 1c. Off-Site Produced Energy (Site Energy)For Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

c c Page Last Modified: May 2010 Table 1c. Off-Site Produced Energy (Site Energy) for Selected Industries, 1998, 2002 and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 992 1,079 1,124 312 Beverage and Tobacco Products 109 104 101 313 Textile Mills 255 206 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 285 198 296 322 Paper 1,648 1,413 1,350 323 Printing and Related Support 97 98 85 324 Petroleum and Coal Products 1,475 1,290 1,434 325 Chemicals 3,377 3,154 2,772 326 Plastics and Rubber Products 327 347 336 327 Nonmetallic Mineral Products 921 960 1,105 331 Primary Metals 2,010 1,614 1,353 332 Fabricated Metal Products 441 387 396

38

Site characterization progress report: Yucca Mountain, Nevada, October 1, 1992--March 31, 1993, No. 8  

SciTech Connect

In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1992, through March 31, 1993. This report is the eighth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

NONE

1993-08-01T23:59:59.000Z

39

Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9  

Science Conference Proceedings (OSTI)

In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

NONE

1994-02-01T23:59:59.000Z

40

Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project  

SciTech Connect

The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J. [Colorado School of Mines, Golden, CO (United States). Earth Mechanics Inst.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

42

Analysis of thermal data from drill holes UE25a-3 and UE25a-1, Calico Hills and Yucca Mountain, Nevada Test Site  

DOE Green Energy (OSTI)

Thermal data from two sites about 20 km apart in the Nevada Test Site indicate that heat flow both within and below the upper 800 meters is affected significantly by hydrothermal convection. For hole UE25a-1, Yucca Mountain, the apparent heat flow above the water table ({similar_to}470 m) is 54 mWm{sup -2} ({similar_to}1.3 HFU). Below the water table, the temperature profile indicates both upward and downward water movement within the hole and possibly within the formation. Hole UE25a-3, Calico Mountain, is characterized by conductive heat flux averaging 135 mWm{sup -2} ({similar_to}3.2 HFU) to a depth of about 700 meters below which water appears to be moving downward at the rate of nearly 1 ft y{sup -1} (255 mm y{sup -1}). Between 735 and 750 meters, the hole intersected a nearly vertical fault along which water seems to be moving vertically downward. The nearly threefold variation in conductive heat flow over a lateral distance of only 20 km suggests the presence of a more deeply seated hydrothremal convective system with a net upward flow beneath Calico Hills and a net downward flow beneath Yucca Mountain.

Sass, J.H.; Lachenbruch, A.H.; Mase, C.W.

1980-08-12T23:59:59.000Z

43

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

NONE

1988-01-01T23:59:59.000Z

44

Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

NONE

1988-12-01T23:59:59.000Z

45

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

NONE

1988-12-01T23:59:59.000Z

46

Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995  

SciTech Connect

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.

NONE

1996-08-01T23:59:59.000Z

47

Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update  

SciTech Connect

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

Stephan, P.M. [ed.

1996-01-01T23:59:59.000Z

48

Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update  

SciTech Connect

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

1995-03-01T23:59:59.000Z

49

Three dimensional visualization in support of Yucca Mountain Site characterization activities  

SciTech Connect

An understanding of the geologic and hydrologic environment for the proposed high-level nuclear waste repository at Yucca Mountain, NV is a critical component of site characterization activities. Conventional methods allow visualization of geologic data in only two or two and a half dimensions. Recent advances in computer workstation hardware and software now make it possible to create interactive three dimensional visualizations. Visualization software has been used to create preliminary two-, two-and-a-half-, and three-dimensional visualizations of Yucca Mountain structure and stratigraphy. The three dimensional models can also display lithologically dependent or independent parametric data. Yucca Mountain site characterization studies that will be supported by this capability include structural, lithologic, and hydrologic modeling, and repository design.

Brickey, D.W.

1992-02-01T23:59:59.000Z

50

Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1  

SciTech Connect

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

Stephan, P.M. [ed.

1995-01-01T23:59:59.000Z

51

Mountain  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" "(million gallons)" "Period","PADD",,,,,,,,,,"U.S." ,"East Coast (PADD 1)",,"Midwest (PADD 2)",,"Gulf Coast (PADD 3)",,"Rocky Mountain (PADD 4)",,"West Coast (PADD 5)" 2011 "January",3,,30,,1,,0,,1,,35.355469 "February",3,,32,,4,,0,,1,,40.342355 "March",3,,47,,6,,0,,2,,59.59017 "April",3,,54,,10,,0,,3,,71.0517 "May",4,,58,,11,,0,,4,,77.196652 "June",4,,56,,14,,0,,7,,81.39104 "July",5,,65,,17,,0,,5,,91.679738 "August",5,,66,,20,,0,,5,,95.484891 "September",6,,65,,20,,0,,6,,95.880151 "October",7,,73,,22,,0,,4,,105.342474

52

Site characterization progress report, Yucca Mountain, Nevada: Number 19, April 1, 1998--September 30, 1998  

Science Conference Proceedings (OSTI)

The nineteenth semiannual report of the Yucca Mountain Site Characterization Project (YMP) summarizes activities during the period from April 1, 1998, through September 30, 1998. Project activities are aimed at evaluating Yucca Mountain as a potential location for permanent geologic disposal of nuclear materials, as directed by the Nuclear Waste Policy Act of 1982, as amended (NWPA). The progress report documents activities this period that contribute to completing the Project`s near-term programmatic and statutory objectives. These objectives include completing the Viability Assessment, the Environmental Impact Statement (EIS), a possible US Department of Energy (DOE) Secretarial Site Recommendation to the President, and, if the site is suitable, submittal of a license application to the US Nuclear Regulatory Commission (NRC). Project work this period continued to be concentrated in three integrated activities: site characterization, engineering design and construction, and performance assessment. Accomplishments this period and their relation to near-term objectives are briefly summarized.

Not Available

1999-06-01T23:59:59.000Z

53

Preclosure seismic hazards and their impact on site suitability of Yucca Mountain, Nevada  

SciTech Connect

This paper presents an overview of the preclosure seismic hazards and the influence of these hazards on determining the suitability of Yucca Mountain as a national high-level nuclear-waste repository. Geologic data, engineering analyses, and regulatory guidelines must be examined collectively to assess this suitability. An environmental assessment for Yucca Mountain, written in 1986, compiled and evaluated the existing tectonic data and presented arguments to satisfy, in part, the regulatory requirements that must be met if the Yucca Mountain site is to become a national waste repository. Analyses have been performed in the past five years that better quantify the local seismic hazards and the possibility that these hazards could lead to release of radionuclides to the environment. The results from these analyses increase the confidence in the ability of Yucca Mountain and the facilities that may be built there to function satisfactorily in their role as a waste repository. Uncertainties remain, however, primarily in the input parameters and boundary conditions for the models that were used to complete the analyses. These models must be validated and uncertainties reduced before Yucca Mountain can qualify as a viable high-level nuclear waste repository.

Gibson, J.D.

1992-01-07T23:59:59.000Z

54

Audit of Management of the Site Characterization Program at Yucca Mountain, IG-0366  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 1995 5, 1995 IG-1 INFORMATION: "Audit of Management of the Site Characterization Program at Yucca Mountain" The Secretary BACKGROUND: The Department of Energy (Department) is responsible for establishing an underground repository to store high-level nuclear waste. In accordance with the amended Nuclear Waste Policy Act of 1982, the Department began characterization of the Yucca Mountain site to assess the feasibility of safely storing spent fuel and high-level waste for 10,000 years. Site characterization was originally scheduled to be completed in 1995. Subsequently, the Secretary of Energy changed the plan completion date to 2001. The purpose of our audit was to determine if the Department is making adequate progress in

55

Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada. Lawrencestudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

Wu, Yu-Shu; Pruess, Karsten

1998-01-01T23:59:59.000Z

56

Site characterization progress report: Yucca Mountain, Nevada, October 1, 1990--March 31, 1991; Number 4  

Science Conference Proceedings (OSTI)

In accordance with the requirements of Section 113 (b) (3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1990, through March 31, 1991. This report is the fourth in a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of initiatives to improve the effectiveness of the site characterization program, and covers continued efforts related to preparatory activities, Study Plans, and performance assessment.

NONE

1991-10-01T23:59:59.000Z

57

South Table Mountain Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Road Research Road South Loop Road Urban Street N o r t h L o o p R o a d Garage Caf D e n v e r W e s t B l v d . Exit 263 IBRF Integrated Biorefinery Research...

58

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

5 5 Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format Excel logo Spreadsheets are provided in excel 1 to117 - Complete set of Supplemental Tables PDF Energy Consumption by Sector (Census Division) Table 1. New England XLS PDF Table 2. Middle Atlantic XLS PDF Table 3. East North Central XLS PDF Table 4. West North Central XLS PDF Table 5. South Atlantic XLS PDF Table 6. East South Central XLS PDF Table 7. West South Central XLS PDF Table 8. Mountain XLS PDF Table 9. Pacific XLS PDF Table 10. Total United States XLS PDF Energy Prices by Sector (Census Division) Table 11. New England XLS PDF Table 12. Middle Atlantic XLS PDF Table 13. East North Central XLS PDF Table 14. West North Central XLS PDF Table 15. South Atlantic XLS PDF Table 16. East South Central

59

Remediation progress at the Iron Mountain Mine Superfund site, California. Information Circular/1991  

Science Conference Proceedings (OSTI)

The report was prepared by the U.S. Bureau of Mines to present a brief history of the listing of Iron Mountain Mine as a Superfund site on the National Priorities List (NPL) and subsequent remedial actions. The mine area is located on 4,400 acres near Redding, CA, and includes underground workings, an open pit area, waste rock dumps, and tailings piles. The property involves multiple sources of acid mine drainage (AMD) that are high in copper, zinc, and cadmium. The selected remedial actions, based on the Record of Decision of 1986, would partially cap the richmond mineralized zone to reduce infiltration of clean water, divert clean surface waters away from contaminated areas, fill surface subsidence areas, and enlarge the Spring Creek debris dam to provide increased surge capacity. Site remediation efforts at Iron Mountain are well into the remedial design-remedial action phase. Details of activities and designs of remedial elements are presented, and future activities, discussed.

Biggs, F.R.

1991-01-01T23:59:59.000Z

60

TSPA 1991: An initial total-system performance assessment for Yucca Mountain; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

This report describes an assessment of the long-term performance of a repository system that contains deeply buried highly radioactive waste; the system is assumed to be located at the potential site at Yucca Mountain, Nevada. The study includes an identification of features, events, and processes that might affect the potential repository, a construction of scenarios based on this identification, a selection of models describing these scenarios (including abstraction of appropriate models from detailed models), a selection of probability distributions for the parameters in the models, a stochastic calculation of radionuclide releases for the scenarios, and a derivation of complementary cumulative distribution functions (CCDFs) for the releases. Releases and CCDFs are calculated for four categories of scenarios: aqueous flow (modeling primarily the existing conditions at the site, with allowances for climate change), gaseous flow, basaltic igneous activity, and human intrusion. The study shows that models of complex processes can be abstracted into more simplified representations that preserve the understanding of the processes and produce results consistent with those of more complex models.

Barnard, R.W.; Wilson, M.L.; Dockery, H.A.; Kaplan, P.G.; Eaton, R.R.; Bingham, F.W. [Sandia National Labs., Albuquerque, NM (United States); Gauthier, J.H.; Robey, T.H. [Spectra Research Inst., Albuquerque, NM (United States)

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT  

SciTech Connect

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

FV PERRY, GA CROWE, GA VALENTINE AND LM BOWKER

1997-09-23T23:59:59.000Z

62

SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT  

Science Conference Proceedings (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

FV PERRY, GA CROWE, GA VALENTINE AND LM BOWKER

1997-09-23T23:59:59.000Z

63

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

NONE

1988-01-01T23:59:59.000Z

64

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

65

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

66

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

67

Zuni Mountains, New Mexico as a potential dry hot rock geothermal energy Site  

DOE Green Energy (OSTI)

Many of the criteria for the successful exploitation of energy from dry hot rock are met in the Zuni Mountains, New Mexico. This area falls within a broad region of abnormally high heat flow on the Colorado Plateau. Within this region, a variety of evidence indicates that local ''hot spots'' may be present. These ''hot spots'' are prime targets for dry hot rock exploration. A site-evaluation program utilizing geological, geochemical-geochronological, and geophysical techniques is proposed to delineate the optimal sites for subsequent exploratory drilling.

Laughlin, A.W.; West, F.G.

1975-12-01T23:59:59.000Z

68

Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4  

Science Conference Proceedings (OSTI)

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

NONE

1992-06-01T23:59:59.000Z

69

Site characterization progress report: Yucca Mountain, Nevada, October 1, 1993--March 31, 1994  

SciTech Connect

This report is the tenth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Also included in this report are descriptions of activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies. The Executive Summary is intended to provide a summary of major decisions, activities, accomplishments, and issues of interest during the reporting period. Chapter 1, Introduction, provides background information to assist the reader in understanding the current status of the program. Chapter 2 provides specific detailed discussions of activities conducted during the current reporting period and has two major divisions. Section 2.1, Preparatory Activities, provides information on select preparatory activities necessary to conduct site characterization and design activities. Sections 2.2 through 2.8 provide specific details on studies and activities conducted during the reporting period and follow the original structure of the Department`s 1988 Site Characterization Plan. Chapter 3 contains the current summary schedule, while Chapter 4 provides a description of the program outreach, including activities during the reporting period, in both the international program and public outreach. Chapter 5 presents an epilogue of significant events that occurred after the end of the reporting period.

NONE

1994-10-01T23:59:59.000Z

70

Mountain-eering University of Trento Spin off  

E-Print Network (OSTI)

Mountain-eering University of Trento Spin off www.mountain-eering.com Contacts Mountain-eering srl-mail: info@mountain-eering.com web site: www.mountain-eering.com Administrative Office via Giusti, 10 - 38122 Trento (Italy) #12;Company data Full legal name:· Mountain eering srl. Legal form of incorporation:· Ltd

71

Site characterization progress report: Yucca Mountain, Nevada. October 1, 1996--March 31, 1997  

SciTech Connect

The report is the sixteenth in a series issued approximately every six months to report progress and results of site characterization activities being conducted to evaluate Yucca Mountain as a possible geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. This report highlights work started, in progress, and completed during the reporting period. In addition, this report documents and discusses changes to the Office of Civilian Radioactive Waste Management (OCRWM) Site Characterization Program (Program) resulting from the ongoing collection and evaluation of site information, systems analyses, development of repository and waste package designs, and results of performance assessment activities. Details on the activities summarized can be found in the numerous technical reports cited throughout the progress report. Yucca Mountain Site Characterization Project (Project) activities this period focused on implementing the near-term objectives of the revised Program Plan issued last period. Near-term objectives of the revised Program Plan include updating the US Department of Energy`s (DOE) repository siting guidelines to be consistent with a more focused performance-driven program; supporting an assessment in 1998 of the viability of continuing with actions leading to the licensing of a repository; and if the site is suitable, submittal of a Secretarial site recommendation to the President in 2001 and license application the US Nuclear Regulatory Commission (NRC) in 2002. During this reporting period, the Project developed and baselined its long-range plan in December 1996. That revision reflected the detailed fiscal year (FY) 1997 work scope and funding plan previously baselined at the end of FY 1996. Site characterization activities have been focused to answer the major open technical issues and to support the viability assessment.

NONE

1997-10-01T23:59:59.000Z

72

Site characterization progress report: Yucca Mountain, Nevada. Number 15, April 1--September 30, 1996  

SciTech Connect

During the second half of fiscal year 1996, activities at the Yucca Mountain Site Characterization Project (Project) supported the objectives of the revised Program Plan released this period by the Office of Civilian Radioactive Waste Management of the US Department of Energy (Department). Outlined in the revised plan is a focused, integrated program of site characterization, design, engineering, environmental, and performance assessment activities that will achieve key Program and statutory objectives. The plan will result in the development of a license application for repository construction at Yucca Mountain, if the site is found suitable. Activities this period focused on two of the three near-term objectives of the revised plan: updating in 1997 the regulatory framework for determining the suitability of the site for the proposed repository concept and providing information for a 1998 viability assessment of continuing toward the licensing of a repository. The Project has also developed a new design approach that uses the advanced conceptual design published during the last reporting period as a base for developing a design that will support the viability assessment. The initial construction phase of the Thermal Testing Facility was completed and the first phase of the in situ heater tests began on schedule. In addition, phase-one construction was completed for the first of two alcoves that will provide access to the Ghost Dance fault.

1997-04-01T23:59:59.000Z

73

A site scale model for modeling unsaturated zone processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada, for theZone Trocesses at yucca Mountain, N G. S. Bodvarsson, Y. S.unsaturated zone at Yucca Mountain, Nevada, as a permanent

1997-01-01T23:59:59.000Z

74

Table 1a. U.S. Commercial Buildings Site Energy Consumption b  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 1a

75

Modeling Three-Dimensional Groundwater Flow and Advective Contaminant Transport at a Heterogeneous Mountainous Site in Support of Remediation Strategy  

SciTech Connect

A calibrated groundwater flow model for a contaminated site can provide substantial information for assessing and improving hydraulic measures implemented for remediation. A three-dimensional transient groundwater flow model was developed for a contaminated mountainous site, at which interim corrective measures were initiated to limit further spreading of contaminants. This flow model accounts for complex geologic units that vary considerably in thickness, slope, and hydrogeologic properties, as well as large seasonal fluctuations of the groundwater table and flow rates. Other significant factors are local recharge from leaking underground storm drains and recharge from steep uphill areas. The zonation method was employed to account for the clustering of high and low hydraulic conductivities measured in a geologic unit. A composite model was used to represent the bulk effect of thin layers of relatively high hydraulic conductivity found within bedrock of otherwise low conductivity. The inverse simulator ITOUGH2 was used to calibrate the model for the distribution of rock properties. The model was initially calibrated using data collected between 1994 and 1996. To check the validity of the model, it was subsequently applied to predicting groundwater level fluctuation and groundwater flux between 1996 and 1998. Comparison of simulated and measured data demonstrated that the model is capable of predicting the complex flow reasonably well. Advective transport was approximated using pathways of particles originating from source areas of the plumes. The advective transport approximation was in good agreement with the trend of contaminant plumes observed over the years. The validated model was then refined to focus on a subsection of the large system. The refined model was subsequently used to assess the efficiency of hydraulic measures implemented for remediation.

Zhou, Quanlin; Birkholzer, Jens T.; Javandel, Iraj; Jordan, Preston D.

2004-01-14T23:59:59.000Z

76

EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy) for  

Gasoline and Diesel Fuel Update (EIA)

d d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1 8 3 312 Beverage and Tobacco Products * 1 * 313 Textile Mills 2 1 0 314 Textile Product Mills 1 * 0 315 Apparel * 0 0 316 Leather and Allied Products * * 0 321 Wood Products 6 4 0 322 Paper 2 1 1 323 Printing and Related Support * * * 324 Petroleum and Coal Products 3,748 3,689 3,572 325 Chemicals 2,772 3,750 2,812 326 Plastics and Rubber Products * Q Q 327 Nonmetallic Mineral Products 10 7 12 331 Primary Metals 758 646 529 332 Fabricated Metal Products 3 1 1 333 Machinery Q 2 * 334 Computer and Electronic Products * 1 1 335 Electrical Equip., Appliances, and Components 27 69 21 336 Transportation Equipment

77

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982  

Energy.gov (U.S. Department of Energy (DOE))

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

78

Technical data base quarterly report, April--June 1992; Yucca Mountain Site Characterization Project  

SciTech Connect

The acquisition and development of technical data are activities that provide the information base from which the Yucca mountain Site will be characterized and may P-ventually be licensed as a high-level waste repository. The Project Technical Data Base (TDB) is the repository for the regional and site-specific technical data required in intermediate and license application analyses and models. The TDB Quarterly Report provides the mechanism for identifying technical data currently available from the Project TDB. Due to the variety of scientific information generated by YMP activities, the Project TDB consists of three components, each designed to store specific types of data. The Site and Engineering Properties Data Base (SEPDB) maintains technical data best stored in a tabular format. The Geographic Nodal Information Study and Evaluation System (GENISES), which is the Geographic Information System (GIS) component of the Project TDB, maintains spatial or map-like data. The Geologic and Engineering Materials Bibliography of Chemical Species (GEMBOCHS) data base maintains thermodynamic/geochemical data needed to support geochemical reaction models involving the waste package and repository geochemical environment. Each of these data bases are addressed independently within the TDB Quarterly Report.

NONE

1992-09-01T23:59:59.000Z

79

Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site  

SciTech Connect

A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation`s first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities.

Simecka, W.B. [USDOE Nevada Field Office, Las Vegas, NV (United States); Grant, T.A.; Voegele, M.D. [Science Applications International Corp., Las Vegas, NV (United States); Cline, K.M. [Woodward-Clyde Federal Services, Washington, DC (United States)

1992-12-31T23:59:59.000Z

80

YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982  

Science Conference Proceedings (OSTI)

For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

NA

2002-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table 1a. U.S. Commercial Buildings Site Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

3 Laboratory buildings are included in the "Other" category. ... For questions about the "Commercial Buildings Energy Intensity Tables," please contact: Behjat Hojjati

82

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5  

SciTech Connect

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

NONE

1988-12-01T23:59:59.000Z

83

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

NONE

1988-12-01T23:59:59.000Z

84

Areal power density: A preliminary examination of underground heat transfer in a potential Yucca Mountain repository and recommendations for thermal design approaches; Yucca Mountain Site Characterization Project  

SciTech Connect

The design of the potential Yucca Mountain repository is subject to many thermal goals related to the compliance of the site with federal regulations. This report summarizes a series of sensitivity studies that determined the expected temperatures near the potential repository. These sensitivity studies were used to establish an efficient loading scheme for the spent fuel canisters and a maximum areal power density based strictly on thermal goals. Given the current knowledge of the site, a design-basis areal power density of 80 kW/acre can be justified based on thermal goals only. Further analyses to investigate the impacts of this design-basis APD on mechanical and operational aspects of the potential repository must be undertaken before a final decision is made.

Hertel, E.S. Jr.; Ryder, E.E.

1991-11-01T23:59:59.000Z

85

Conceptual, experimental and computational approaches to support performance assessment of hydrology and chemical transport at Yucca Mountain; Yucca Mountain Site Characterization Project  

SciTech Connect

The authors of this report have been participating in the Sandia National Laboratory`s hydrologic performance assessment of the Yucca Mountain, Nevada, since 1983. The scope of this work is restricted to the unsaturated zone at Yucca Mountain and to technical questions about hydrology and chemical transport. The issues defined here are not to be confused with the elaborate hierarchy of issues that forms the framework of the US Department of Energy plans for characterizing the site (DOE, 1989). The overall task of hydrologic performance assessment involves issues related to hydrology, geochemistry, and energy transport in a highly heterogeneous natural geologic system which will be perturbed in a major way by the disposal activity. Therefore, a rational evaluation of the performance assessment issues must be based on an integrated appreciation of the aforesaid interacting processes. Accordingly, a hierarchical approach is taken in this report, proceeding from the statement of the broad features of the site that make it the site for intensive studies and the rationale for disposal strategy, through the statement of the fundamental questions that need to be answered, to the identification of the issues that need resolution. Having identified the questions and issues, the report then outlines the tasks to be undertaken to resolve the issues. The report consists essentially of two parts. The first part deals with the definition of issues summarized above. The second part summarizes the findings of the authors between 1983 and 1989 under the activities of the former Nevada Nuclear Waste Storage Investigations (NNWSI) and the current YMP.

Narasimhan, T.N.; Wang, J.S.Y. [Lawrence Berkeley Lab., CA (United States)

1992-07-01T23:59:59.000Z

86

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Errata - August 25, 2004 1 to117 - Complete set of of Supplemental Tables PDF Table 1. Energy Consumption by Source and Sector (New England) XLS PDF Table 2. Energy Consumption by Source and Sector (Middle Atlantic) XLS PDF Table 3. Energy Consumption by Source and Sector (East North Central) XLS PDF Table 4. Energy Consumption by Source and Sector (West North Central) XLS PDF Table 5. Energy Consumption by Source and Sector (South Atlantic) XLS PDF Table 6. Energy Consumption by Source and Sector (East South Central) XLS PDF Table 7. Energy Consumption by Source and Sector (West South Central) XLS PDF Table 8. Energy Consumption by Source and Sector (Mountain)

87

Joint NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEA-IAEA International Peer Review of the NEA-IAEA International Peer Review of the Yucca Mountain Site Characterization Project's Total System Performance Assessment Supporting the Site Recommendation Process Final Report December 2001 This document is not an official copy and is for informational purposes only. CONTENTS Summary Objectives International perspective Recommendations for future assessments 1 Introduction 1.1 Background to the Yucca Mountain Project 1.2 Terms of reference, objectives and scope of the review 1.3 Conduct of the review 1.4 Organisation of this report 2 General Considerations 2.1 Regulatory perspective 2.2 Performance assessment rationale 2.3 General approach to performance assessment 2.4 Documentation 3 Sub-system methodology 3.1 Repository design

88

MISTY ECHO Tunnel Dynamics Experiment--Data report: Volume 1; Yucca Mountain Site Characterization Project  

SciTech Connect

Tunnel damage resulting from seismic loading is an important issue for the Yucca Mountain nuclear waste repository. The tunnel dynamics experiment was designed to obtain and document ground motions, permanent displacements, observable changes in fracture patterns, and visible damage at ground motion levels of interest to the Yucca Mountain Project. Even though the maximum free-field loading on this tunnel was 28 g, the damage observed was minor. Fielding details, data obtained, and supporting documentation are reported.

Phillips, J.S.; Luke, B.A.; Long, J.W.; Lee, J.G.

1992-04-01T23:59:59.000Z

89

MISTY ECHO tunnel dynamics experiment data report; Volume 2, Appendices: Yucca Mountain Site Characterization Project  

SciTech Connect

Tunnel damage resulting from seismic loading is an important issue for the Yucca Mountain nuclear waste repository. The tunnel dynamics experiment was designed to obtain and document ground motions, permanent displacements, observable changes in fracture patterns, and visible damage at ground motion levels of interest to the Yucca Mountain Project. Even though the maximum free-field loading on this tunnel was 28 g, the damage observed was minor. Fielding details, data obtained, and supporting documentation are reported.

Phillips, J.S.; Luke, B.A.; Long, J.W.; Lee, J.G.

1992-04-01T23:59:59.000Z

90

Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1992 quality program status report  

SciTech Connect

This status report summarizes the activities and accomplishments of the Los Alamos Yucca Mountain Site Characterization Project`s quality assurance program for calendar year 1992. The report includes major sections on Program Activities and Trend Analysis. Program Activities are discussed periodically at quality meetings. The most significant issue addressed in 1992 has been the timely revision of quality administrative procedures. The procedure revision process was streamlined from 55 steps to 7. The number of forms in procedures was reduced by 38%, and the text reduced by 29%. This allowed revision in 1992 of almost half of all implementing procedures. The time necessary to complete the revision process (for a procedure) was reduced from 11 months to 3 months. Other accomplishments include the relaxation of unnecessarily strict training requirements, requiring quality assurance reviews only from affected organizations, and in general simplifying work processes. All members of the YMP received training to the new Orientation class Eleven other training classed were held. Investigators submitted 971 records to the Project and only 37 were rejected. The software program has 115 programs approved for quality-affecting work. The Project Office conducted 3 audits and 1 survey of Los Alamos activities. We conducted 14 audits and 4 surveys. Eight corrective action reports were closed, leaving only one open. Internally, 22 deficiencies were recognized. This is a decrease from 65 in 1991. Since each deficiency requires about 2 man weeks to resolve, the savings are significant. Problems with writing acceptable deficiency reports have essentially disappeared. Trend reports for 1992 were examined and are summarized herein. Three adverse trends have been closed; one remaining adverse trend will be closed when the affected procedures are revised. The number of deficiencies issued to Los Alamos compared to other participants is minimal.

Bolivar, S.L.; Burningham, A.; Chavez, P. [and others

1994-03-01T23:59:59.000Z

91

Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area  

Science Conference Proceedings (OSTI)

Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nations first permanent geologic repository for spent nuclear fuel and highlevel radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effectiveporosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in the NTS operational areas 18, 19, 20, and 30) under the water table as a particle, those particles from the saturated zone detonations were tracked forward using MODPATH to identify hydraulically downgradient groundwater discharge zones and to determine the particles from which detonations will intercept the proposed YM withdrawal area. Out of the 71 detonations in the saturated zone, the flowpaths from 23 of the 71 detonations will intercept the proposed YM withdrawal area under the pre-pumping scenario. For the 1998 pumping scenario, the flowpaths from 55 of the 71 detonations will intercept the proposed YM withdrawal area. Three different effective-porosity data sets compiled in support of regional models of groundwater flow and contaminant transport developed for the NTS and the proposed YM repository are used. The results illustrate that mean minimum travel time from underground nuclear testing areas on the NTS to the proposed YM repository area can vary from just over 700 to nearly 700,000 years, depending on the locations of the underground detonations, the pumping scenarios considered, and the effective-porosity value distributions used. Groundwater pumping scenarios are found to significantly impact minimum particle travel time from the NTS to the YM area by altering flowpath geometry. Pumping also attracts many more additional groundwater flowpaths from the NTS to the YM area. The sensitivity analysis further illustrates that for both the pre-pumping and 1998 pumping scenarios, the uncertainties in effective-porosity values for five of the 27 HGUs considered account for well over 90 percent of the effective-porosity-related travel time uncertainties for the flowpaths having the shortest mean travel times to YM.

J. Zhu; K. Pohlmann; J. Chapman; C. Russell; R.W.H. Carroll; D. Shafer

2009-09-10T23:59:59.000Z

92

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

December 22, 2000 (Next Release: December, 2001) Related Links Annual Energy Outlook 2001 Assumptions to the AEO2001 NEMS Conference Contacts Forecast Homepage EIA Homepage AEO Supplement Reference Case Forecast (1999-2020) (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central) Table 8. Energy Consumption by Source and Sector (Mountain)

93

Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project  

SciTech Connect

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

Dunn, E.; Sobolik, S.R.

1993-12-01T23:59:59.000Z

94

CSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 TABLE OF CONTENTS  

E-Print Network (OSTI)

the Site. A minimal amount of this waste was above the toxicity characteristic leaching procedure (TCLP of the Site contains areas with elevated concentrations of metals (but below TCLP limits) and potential areas

95

Preliminary 3-D site-scale studies of radioactive colloid transort in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

into drifts at Yucca Mountain. J. Contam. Hydrol. , 38(1pneumatic response at Yucca Mountain, Nevada. J. Contam.unsaturated zone model of Yucca Mountain, Nevada. J. Contam.

Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

96

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

10 10 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

97

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

09 09 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

98

Preliminary numerical modeling for the G-Tunnel welded tuff mining experiment; Yucca Mountain site characterization project  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in Southern Nevada, is to be considered as a potential site for a nuclear waste repository. Located in Rainier Mesa on the Nevada Test Site, G-Tunnel has been the site of a series of experiments, part of whose purpose is to evaluate measurement techniques for rock mechanics before testing in the Exploratory Shaft. Rainier Mesa is composed of welded and nonwelded tuffs that have thermal and mechanical properties and stress states similar to those of tuffs expected to be encountered at Yucca Mountain. A series of finite element calculations were performed to aid in designing instrumentation for the experiments in G-Tunnel and later to correlate with measured data. In this report are presented the results of the preliminary finite element calculations performed in conjunction with experimental measurements of drift convergence, or closure, and rock mass relaxation zones made before, during, and after completing the welded tuff mining experiment in G-Tunnel. Tape extensometer measurements of drift convergences and measurements determined by multiple point borehole extensometers are compared with corresponding calculated values using linear elastic and jointed rock material models. 9 refs., 25 figs., 7 tabs.

Johnson, R.L.; Bauer, S.J.

1991-09-01T23:59:59.000Z

99

Table 1b. U.S. Commercial Buildings Weather-Adjusted Site Energy ...  

U.S. Energy Information Administration (EIA)

U.S. Commercial Buildings Weather-Adjusted Site Energy. Released Date: December 2004 ... 3 Laboratory buildings are included in the "Other" category.

100

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationzone site- scale model, Yucca Mountain Project Milestonelateral diversion at Yucca Mountain, Nevada, Water Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas  

DOE Green Energy (OSTI)

Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

Foley, D.; Dorscher, M.

1982-11-01T23:59:59.000Z

102

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

103

Seismic design of circular-section concrete-lined underground openings: Preclosure performance considerations for the Yucca Mountain Site  

SciTech Connect

Yucca Mountain, the potential site of a repository for high-level radioactive waste, is situated in a region of natural and man-made seismicity. Underground openings excavated at this site must be designed for worker safety in the seismic environment anticipated for the preclosure period. This includes accesses developed for site characterization regardless of the ultimate outcome of the repository siting process. Experience with both civil and mining structures has shown that underground openings are much more resistant to seismic effects than surface structures, and that even severe dynamic strains can usually be accommodated with proper design. This paper discusses the design and performance of lined openings in the seismic environment of the potential site. The types and ranges of possible ground motions (seismic loads) are briefly discussed. Relevant historical records of underground opening performance during seismic loading are reviewed. Simple analytical methods of predicting liner performance under combined in situ, thermal, and seismic loading are presented, and results of calculations are discussed in the context of realistic performance requirements for concrete-lined openings for the preclosure period. Design features that will enhance liner stability and mitigate the impact of the potential seismic load are reviewed. The paper is limited to preclosure performance concerns involving worker safety because present decommissioning plans specify maintaining the option for liner removal at seal locations, thus decoupling liner design from repository postclosure performance issues.

Richardson, A.M. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States); Blejwas, T.E. [Sandia National Labs., Albuquerque, NM (United States)

1992-07-01T23:59:59.000Z

104

Site characterization progress report: Yucca Mountain, Nevada. Progress report number 17, April 1, 1997--September 30, 1997  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM), created with the enactment of the Nuclear Waste Policy Act of 1982 (NWPA), is tasked to accept and dispose of the nation`s high-level radioactive waste and spent nuclear fuel in a deep geologic repository (high-level radioactive waste program). The report summarizes significant site characterization activities during the period from April 1, 1997 through September 30, 1997, in the evaluation of Yucca Mountain as a potential site for the geologic disposal of spent nuclear fuel and high-level radioactive wastes. The progress report also cites technical reports and research products that provide the detailed information on these activities. Chapter 2 outlines technical and regulatory issues that must be addressed by the Project and planned work toward achieving future objectives concerning the viability assessment, the environmental impact statement, the site recommendation, and the license application. Chapter 3 describes technical progress in preclosure radiological safety analysis, postclosure performance assessment, and performance confirmation activities. Chapter 4 describes various aspects of repository and waste package design and construction. It also discusses the Exploration Studies Facility cross drift. Chapter 5 describes site characterization activities, and Chapter 6 contains a complete list of references.

NONE

1998-04-01T23:59:59.000Z

105

MRS system study for the repository: Yucca Mountain Site Characterization Project; Volume 2  

SciTech Connect

The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), has initiated a waste management system study to identify the impacts of the presence or absence of a monitored retrievable storage facility (hereinafter referred to as ``MRS``) on system costs and program schedules. To support this study, life-cycle cost estimates and construction schedules have been prepared for the surface and underground facilities and operations geologic nuclear waste repository at Yucca Mountain, Nye County, Nevada. Nine different operating scenarios (cases) have been identified by OCRWM for inclusion in this study. For each case, the following items are determined: the repository design and construction costs, operating costs, closure and decommissioning costs, required staffing, construction schedules, uncertainties associated with the costs and schedules, and shipping cask and disposal container throughputs. This document contains A-D.

Sinagra, T.A. [Bechtel National, Inc., San Francisco, CA (USA); Harig, R. [Parsons, Brinckerhoff, Quade and Douglas, Inc., San Francisco, CA (USA)

1990-12-01T23:59:59.000Z

106

FY 2005 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 6 Uranium enrichment D&D fund.................................................................... 6 Non-Defense environmental services.......................................................... 6 Science.........................................................................................................

107

Preliminary evaluation of techniques for transforming regional climate model output to the potential repository site in support of Yucca Mountain future climate synthesis  

SciTech Connect

The report describes a preliminary evaluation of models for transforming regional climate model output from a regional to a local scale for the Yucca Mountain area. Evaluation and analysis of both empirical and numerical modeling are discussed which is aimed at providing site-specific, climate-based information for use by interfacing activities. Two semiempirical approaches are recommended for further analysis.

Church, H.W.; Zak, B.D.; Behl, Y.K.

1995-06-01T23:59:59.000Z

108

Interannual Consistency in Fractal Snow Depth Patterns at Two Colorado Mountain Sites  

Science Conference Proceedings (OSTI)

Fractal dimensions derived from loglog variograms are useful for characterizing spatial structure and scaling behavior in snow depth distributions. This study examines the temporal consistency of snow depth scaling features at two sites using ...

Jeffrey S. Deems; Steven R. Fassnacht; Kelly J. Elder

2008-10-01T23:59:59.000Z

109

Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter; Yucca Mountain Site Characterization Project  

SciTech Connect

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document.

Sobolik, S.R.; Fewell, M.E.

1993-12-01T23:59:59.000Z

110

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act  

SciTech Connect

Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

NONE

1988-01-01T23:59:59.000Z

111

Horizontal coring using air as the circulating fluid: Some prototype studies conducted in G Tunnel at the Nevada Test Site for the Yucca Mountain Project  

SciTech Connect

Horizontal coring using air as the circulating fluid has been conducted in the G Tunnel Underground Facility (GTUF) at the Nevada Test Site. This work is part of the prototype investigations of hydrogeology for the Yucca Mountain Project. The work is being conducted to develop methods and procedures that will be used at the Department of Energy`s Yucca Mountain Site, a candidate site for the nation`s first high-level nuclear waste repository, during the site characterization phase of the investigations. The United States Geological Survey (USGS) is conducting this prototype testing under the guidance of the Los Alamos National Laboratory (LANL) and in conjunction with Reynolds Electrical & Engineering Company (REECo), the drilling contractor. 7 refs., 8 figs., 5 tabs.

Chornack, M.P. [Geological Survey, Las Vegas, NV (USA); French, C.A. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (USA)

1989-12-31T23:59:59.000Z

112

Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991  

Science Conference Proceedings (OSTI)

Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970`s. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs.

Glanzman, V.M.

1991-11-01T23:59:59.000Z

113

Progress report on the scientific investigation program for the Nevada Yucca Mountain site, September 15, 1988--September 30, 1989; Nuclear Waste Policy Act (Section 113), Number 1  

SciTech Connect

The Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain in southern Nevada. This report is the first of a series of reports that will hereafter be issued at intervals of approximately 6-months during site characterization. The DOE`s plans for site characterization are described in the Site Characterization Plan (SCP) for the Yucca Mountain site. The SCP has been reviewed and commented on by the NRC, the State of Nevada, the affected units of local government, other interested parties, and the public. More detailed information on plans for site characterization is being presented in study plans for the various site characterization activities. This progress report presents short summaries of the status of site characterization activities and cites technical reports and research products that provide more detailed information on the activities. The report provides highlights of work started during the reporting period, work in progress, and work completed and documented during the reporting period. In addition, the report is the vehicle for discussing major changes, if any, to the DOE`s site characterization program resulting from ongoing collection and evaluation of site information; the development of repository and waste-package designs; receipt of performance-assessment results; and changes, if any, that occur in response to external comments on the site characterization programs. 80 refs.

NONE

1990-02-01T23:59:59.000Z

114

NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS  

E-Print Network (OSTI)

Ridge of Butte (MT), behind the smelter stack at Anaconda (MT), near the (removed) smelter in Kellogg stack at Anaconda, MT (inactive copper smelter), at the (removed) lead smelter at Kellogg, ID, and along regenerating south of the Anaconda Superfund site. Aspen is able to colonize these areas due to mutualistic

Cripps, Cathy

115

Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

John McCord

2004-12-01T23:59:59.000Z

116

Progress report on the scientific investigation program for the Nevada Yucca Mountain Site, October 1, 1991--March 31, 1992, Number 6  

SciTech Connect

In accordance with the requirements of section 113(b)(3) of the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18(g), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1991, through March 31, 1992. This report is the sixth in a series of reports that are issued at intervals of approximately six months during site characterization. Also included in this report are activities such as public outreach and international programs that are not officially part of site characterization. Information on these activities is provided in order to fully integrate all aspects of the Yucca Mountain studies.

NONE

1992-09-01T23:59:59.000Z

117

The hydrology of Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr(-1) under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (similar to 300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominantly through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

Flint, A.L.; Flint, L.E.; Bodvarsson, G.S.; Kwicklis, E.M.; Fabryka-Martin, J.M.

2000-12-04T23:59:59.000Z

118

Table of Exhibits..................................................................................................... iii  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

Pjm Interconnection

2007-01-01T23:59:59.000Z

119

Site characterization progress report: Yucca Mountain, Nevada, April 1, 1990--September 30, 1990, Number 3; Nuclear Waste Policy Act (Section 113)  

SciTech Connect

In accordance with the requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982 (NWPA), as amended, the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1 through September 30, 1990. This report is the third of a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of new initiatives to improve the effectiveness of the site characterization program and covers continued efforts related to preparatory activities, study plans, and performance assessment. 85 refs., 2 figs., 3 tabs.

NONE

1991-03-01T23:59:59.000Z

120

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 5, Part B: Chapter 8, Sections 8.3.1.5 through 8.3.1.17  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the SOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

NONE

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 8, Part B: Chapter 8, Sections 8.4 through 8.7; Glossary and Acronyms  

SciTech Connect

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Section 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 88 figs., 42 tabs.

NONE

1988-12-01T23:59:59.000Z

122

Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 6, Part B: Chapter 8, Sections 8.3.2 through 8.3.4.4  

Science Conference Proceedings (OSTI)

This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 35 figs., 70 tabs.

NONE

1988-12-01T23:59:59.000Z

123

Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

124

Characterization of materials for a reactive transport model validation experiment: Interim report on the caisson experiment. Yucca Mountain Site Characterization Project  

SciTech Connect

Models used in performance assessment and site characterization activities related to nuclear waste disposal rely on simplified representations of solute/rock interactions, hydrologic flow field and the material properties of the rock layers surrounding the repository. A crucial element in the design of these models is the validity of these simplifying assumptions. An intermediate-scale experiment is being carried out at the Experimental Engineered Test Facility at Los Alamos Laboratory by the Los Alamos and Sandia National Laboratories to develop a strategy to validate key geochemical and hydrological assumptions in performance assessment models used by the Yucca Mountain Site Characterization Project.

Siegel, M.D.; Cheng, W.C. [Sandia National Labs., Albuquerque, NM (United States); Ward, D.B.; Bryan, C.R. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences

1995-08-01T23:59:59.000Z

125

Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

126

Moving Beyond the Yucca Mountain  

E-Print Network (OSTI)

of Energy in characterizing a site at Yucca Mountain, Nevada, as a possible location for a permanent to a decision by the Secretary of Energycurrently scheduled for 2001on whether to recommend the Yucca Mountain a clear description of how a Yucca Mountain repository would perform over thousands of years and how

127

Site characterization progress report: Yucca Mountain, Nevada, April 1, 1991--September 30, 1991, Number 5; Nuclear Waste Policy Act (Section 113)  

SciTech Connect

The Site Characterization Progress Report of Yucca Mountain (PR) presents brief summaries of the status of site characterization activities and cites the technical reports and research products that provide more detailed information on the activities. The report provides highlights of work started during the reporting period, work in progress, and work completed and documented during the reporting period. In addition, the report is the vehicle for the discussion of changes to the DOE`s site characterization program resulting from ongoing collection and evaluation of site information; the development of repository and waste-package designs; the results of performance assessments; and any changes that occur in response to external comments. Information covered includes geochemistry, hydrology, geology, climate, and radiation dose estimate calculations.

NONE

1992-06-01T23:59:59.000Z

128

Rocky Mountain E&P Technology Transfer Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Mountain E&P Technology Transfer Workshop August 4, 2003 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

129

Site characterization progress report: Yucca Mountain, Nevada, October 1, 1994--March 31, 1995, Number 12. Nuclear Waste Policy Act (Section 113)  

SciTech Connect

During the first half of fiscal year 1995, most activities at the Yucca Mountain Site Characterization Project were directed at implementing the Program Plan developed by the Office of Civilian Radioactive Waste Management. The Plan is designed to enable the Office to make measurable and significant progress toward key objectives over the next five years within the financial resources that can be realistically expected. Activities this period focused on the immediate goal of determining by 1998 whether Yucca Mountain, Nevada, is technically suitable as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Work on the Project advanced in several critical areas, including programmatic activities such as issuing the Program Plan, completing the first technical basis report to support the assessment of three 10 CFR 960 guidelines, developing the Notice of Intent for the Environmental Impact Statement, submitting the License Application Annotated Outline, and beginning a rebaselining effort to conform with the goals of the Program Plan. Scientific investigation and analysis of the site and design and construction activities to support the evaluation of the technical suitability of the site also advanced. Specific details relating to all Project activities and reports generated are presented in this report.

1995-08-01T23:59:59.000Z

130

An Analysis of Daily Humidity Patterns at a Mountainous and Urban Site in a Tropical High-Altitude Region  

Science Conference Proceedings (OSTI)

Mixing ratio data of water vapor at different hours of the day in a high-altitude tropical plateau in Mexico are shown. The objective is to measure water vapor quantity in a mountainous zone, where no previous studies of this kind exist, and in ...

H. G. Padilla; A. C. Leyva; P. A. Mosio

1993-10-01T23:59:59.000Z

131

Paleomagnetic results from the Sadlerochit and Shublik Mountains, Arctic National Wildlife Range (ANWR), and other North Slope sites, Alaska  

Science Conference Proceedings (OSTI)

Carboniferous through Triassic sedimentary units exposed in the Shublik and Sadlerochit Mountains were sampled in an attempt to obtain reliable primary magnetic components. Reliable pre-Cretaceous paleomagnetic poles from this area would greatly advance the understanding of the rotation and latitudinal displacement history of the North Slope. Carbonate rocks of the Carboniferous Lisburne Group were drilled in south-dipping units of Katakturuk Canyon, Sadlerochit Mountains, and in the north-dipping Fire Creek section, Shublik Mountains. Magnetic cleaning involved stepwise thermal demagnetization to 550/sup 0/C. Principal component analysis of the demagnetization results defines two major components of magnetization. The secondary component is steep and down (inc = 87/sup 0/), but the characteristic component (325/sup 0/C-500/sup 0/C) is reversed. The secondary magnetization postdates Cretaceous and younger folding, whereas the characteristic component was acquired before folding. The components may have recorded two phases of overprinting: a late Cretaceous into Cenozoic normal overprint and a predeformation remagnetization episode during a time of reverse polarity. However, the reverse component more likely is primary remanence. If so, it would suggest little latitudinal displacement but 40/sup 0/ of clockwise rotation with respect to North America. The Devonian Nanook Limestone, sampled in the Shublik Mountains, also reveals two major components of magnetization; however, the characteristic component is isolated at blocking temperatures greater than 500/sup 0/C and is shallower in inclination than expected from the Devonian reference pole for North America.

Plumley, P.W.; Tailleur, I.L.

1985-04-01T23:59:59.000Z

132

TABLE OF CONTENTS  

E-Print Network (OSTI)

Table of Contents......i List of Tables.....ii

Ingleside Tx; Base Realignment

2010-01-01T23:59:59.000Z

133

Preparing to Submit a License Application for Yucca Mountain  

Science Conference Proceedings (OSTI)

In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

W.J. Arthur; M.D. Voegele

2005-03-14T23:59:59.000Z

134

Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)  

Science Conference Proceedings (OSTI)

Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U-series analyses were used to date the surficial materials involved in the Quaternary faulting events. The rate of erosional downcutting of bedrock on the ridge crests and hillslopes of Yucca Mountain, being of particular concern with respect to the potential for breaching of the proposed underground storage facility, was studied by using rock varnish cation-ratio and {sup 10}Be and {sup 36}Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time.

W.R. Keefer; J.W. Whitney; D.C. Buesch

2006-09-25T23:59:59.000Z

135

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

136

Sensitivity Analysis Of Hydrological Parameters In Modeling Flow And Transport In The Unsaturated Zone Of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone of Yucca Mountain Keni Zhang, Yu-Shu Wu,volcanic deposits at Yucca Mountain have been intensivelyhydraulic properties, Yucca Mountain Introduction Site

Zhang, Keni; Wu, Yu-Shu; Houseworth, James E

2006-01-01T23:59:59.000Z

137

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network (OSTI)

Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

138

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

139

Emergency Operations Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

unknown authors

2012-01-01T23:59:59.000Z

140

Table Search (or Ranking Tables)  

E-Print Network (OSTI)

Table Search (or Ranking Tables) Alon Halevy Google DBRank @ ICDE March 1, 2010 #12;Structured Data organizations Requires infrastructure, concerns about losing control Hard to find structured data via search Search #1 store locations used cars radio stations patents recipes · Deep = not accessible through

Halevy, Alon

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Global Carbon Biomass Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 1c. Mixed Forest Classes Table 1d. NaturalBurnt Forest Mosaic Classes Table 1e. CropForest Mosaic Classes Table 1f. Shrub Cover Classes Table 1g. Grassland Classes Table...

142

EA-1440-S1: Final Supplement to the Site-Wide Environmental Assessment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Supplement to the Site-Wide Environmental Final Supplement to the Site-Wide Environmental Assessment EA-1440-S1: Final Supplement to the Site-Wide Environmental Assessment National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory The Department of Energy (DOE) is proposing an action consisting of three site development projects at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site at Golden, Colorado: Construction of the Research Support Facilities (RSF), a new office building or multi-building office complex; Installation of Phase 1 of planned Site Infrastructure Improvements (Phase 1 of Full Site Development); Upgrades to the Thermochemical User Facility (TCUF), TCUF High Bay area, and addition

143

this table  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table 1.2 World Petroleum Consumption, 1980-2006 (Thousand Barrels per Day) Page 1980.00 ...

144

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

125 69 112 131 137 158 7.36 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

145

Table 4  

Gasoline and Diesel Fuel Update (EIA)

378 913 993 1,130 1,316 1,625 8.24 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

146

Table HC14.8 Water Heating Characteristics by West Census Region ...  

U.S. Energy Information Administration (EIA)

Table HC14.8 Water Heating Characteristics by West Census Region, 2005 Million U.S. Housing Units Water Heating Characteristics Mountain Pacific West Census Region

147

Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationsite-scale model, Yucca Mountain Project Milestone 3GLM105M,unsaturated zone, Yucca Mountain, Nevada. Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

148

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

149

mountain region | OpenEI  

Open Energy Info (EERE)

mountain region mountain region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

150

Response to "Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky  

E-Print Network (OSTI)

Mineral Formation at Yucca Mountain, Nevada. Geochimica etand Heat Flow Near Yucca Mountain, Nevada: Some Tectonic andNuclear Waste Site, Yucca Mountain, Nevada, USA: Pedogenic,

Houseworth, J.E.

2010-01-01T23:59:59.000Z

151

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

152

Total System Performance Assessment Code (TOSPAC); Volume 2, User`s guide: Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

TOSPAC is a computer program that calculates partially saturated groundwater flow with the transport of water-soluble contaminants. TOSPAC Version 1 is restricted to calculations involving one-dimensional, vertical columns of one or more media. TOSPAC was developed to help answer questions surrounding the burial of toxic wastes in arid regions. Burial of wastes in arid regions is attractive because of generally low population densities and little groundwater flow, in the unsaturated zone, to disturb the waste. TOSPAC helps to quantify groundwater flow and the spread of contamination, offering an idea of what could happen in the distant future. Figure 1.1 illustrates the problem TOSPAC was designed to investigate. For groundwater flow, TOSPAC can provide saturations, velocities, and and travel tunes for water in the rock matrix or the fractures in the unsaturated zone. TOSPAC can determine how hydrologic conditions vary when the rate of infiltration changes. For contaminant transport, TOSPAC can compute how much of a contaminant is dissolved in the water and how it is distributed. TOSPAC can determine how fast the solute is moving and the shape of the concentration front. And TOSPAC can be used to investigate how much of the contaminant remains in the inventory of a repository, how much is adsorbed onto the soil or rock matrix, and how much reaches the water table. Effective use of TOSPAC requires knowledge in a number of diverse disciplines, including real groundwater flow and transport, the mathematical models of groundwater flow and transport, real-world data required for the models, and the numerical solution of differential equations. Equally important is a realization of the limitations intrinsic to a computer model of complex physical phenomena. This User`s Guide not only describes the mechanics of executing TOSPAC on a computer, but also examines these other topics.

Gauthier, J.H.; Dudley, A.L; Skinner, L.H. [Spectra Research Inst., Albuquerque, NM (United States); Wilson, M.L.; Peters, R.R. [Sandia National Labs., Albuquerque, NM (United States)

1992-07-01T23:59:59.000Z

153

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

154

Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report  

Science Conference Proceedings (OSTI)

Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

Stetzenbach, K.; Farnham, I.

1996-06-01T23:59:59.000Z

155

Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model  

SciTech Connect

Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.

Brian A. Ebel; John R. Nimmo

2009-09-11T23:59:59.000Z

156

Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada  

SciTech Connect

In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

1995-12-31T23:59:59.000Z

157

Revised Livermore seismic hazard estimates for sixty-nine nuclear power plant sites east of the Rocky Mountains. Final report, July 1993--March 1994  

SciTech Connect

The draft version of this report presented updated Lawrence Livermore National Laboratory (LLNL) probabilistic seismic hazard analysis estimates for 69 nuclear power plant sites in the region of the United States east of the Rocky Mountains. LLNL performed a re-elicitation of seismicity and ground motion experts to improve their estimates of uncertainty in seismicity parameters and ground motion models. Using these revised inputs, LLNL updated the seismic hazard estimates documented in NUREG/CR-5250 (1989). These updated hazard estimates will be used in future NRC actions. The draft was issued for public comment in October 1993. By the end of the public comment period, February 28, 1994, comments had been received from two nuclear industry companies. The comments from these companies neither contested nor suggested amendments to the technical data conveyed in the report. Rather, they both suggest changes in the Individual Plant External Event Examination (IPEEE) program scope. This report is not the forum for discussion of the IPEEE program. Possible modification to the scope of the IPEEE will be examined in its own setting. Therefore, there are no technical differences between the draft report and this final report. Any information as to modifications to the IPEEE program will be provided to the public via an NRC general communication.

Sobel, P.

1994-04-01T23:59:59.000Z

158

Scientific and Technical Priorities at Yucca Mountain  

Science Conference Proceedings (OSTI)

Following completion of the site characterization and site recommendation phases, the Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. This report provides background on how the project arrived at this juncture in its history and detailed information on EPRI's Yucca Mountain-related activities during calendar year 2003. The report assesses the relative risk-importance of various Yucca Mountain system co...

2003-12-15T23:59:59.000Z

159

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

160

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

TABLE OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Office of Inspector General Office of Inspections Employment Verification at Savannah River Site INS-O-10-01 November 2009 Inspection Report Department of Energy Washington, DC 20585 November 5, 2009 MEMORANDUM FOR THE MANAGER, SAVANNAH RIVER SITE FROM: Herbert Richardson Principal Deputy Inspector General SUBJECT: INFORMATION: Inspection Report on "Employment Verification at Savannah River Site" BACKGROUND The Department of Energy's Savannah River Operations Office and the National Nuclear Security Administration (NNSA) are co-located on the Savannah River Site (Site) in Aiken, South Carolina. Their primary missions include environmental management and

162

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

163

Notices TABLE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Federal Register 7 Federal Register / Vol. 76, No. 160 / Thursday, August 18, 2011 / Notices TABLE 2-NET BURDEN CHANGE-Continued 2011-2012 2012-2013 Change % Change Burden disposition Total Applicants .................................... 23,611,500 24,705,864 +1,094,364 +4.63 Net decrease in burden. The increase in applicants is offset by the results of the Department's simplification changes. This has created an over- all decrease in burden of 8.94% or 2,881,475 hours. Total Applicant Burden ......................... 32,239,328 29,357,853 ¥2,881,475 ¥8.94 Total Annual Responses ....................... 32,239,328 46,447,024 +14,207,696 +44.07 Cost for All Applicants .......................... $159,370.20 $234,804.24 $75,434.04 +47.33 The Department is proud that efforts to simplify the FAFSA submission

164

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Mean Annual Electricity Expenditures for Lighting, by Number of 4. Mean Annual Electricity Expenditures for Lighting, by Number of Household Members by Number of Rooms, 1993 (Dollars) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 1.8 1.1 0.9 0.9 1.0 1.2 RSE Row Factors All Households................................... 83 49 63 76 87 104 124 2.34 One..................................................... 55 44 51 54 69 78 87 5.33 Two..................................................... 80 56 63 77 82 96 107 3.38 Three.................................................. 92 60 73 82 95 97 131 4.75 Four.................................................... 106 64 78 93 96 124 134 4.53 Five or More....................................... 112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the

165

Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer typesvolcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

2008-06-24T23:59:59.000Z

166

1992 CBECS Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

Detailed Tables Detailed Tables To download all 1992 detailed tables: Download Acrobat Reader for viewing PDF files. Yellow Arrow Buildings Characteristics Tables (PDF format) (70 tables, 230 pages, file size 1.39 MB) Yellow Arrow Energy Consumption and Expenditures Tables (PDF format) (47 tables, 208 pages, file size 1.28 MB) Yellow Arrow Energy End-Use Tables (PDF format) (6 tables, 6 pages, file size 31.7 KB) Detailed tables for other years: Yellow Arrow 1999 CBECS Yellow Arrow 1995 CBECS Background information on detailed tables: Yellow Arrow Description of Detailed Tables and Categories of Data Yellow Arrow Statistical Significance of Data 1992 Commercial Buildings Energy Consumption Survey (CBECS) Detailed Tables Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables:

167

FY 2006 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2004 FY 2005 FY 2006 Comparable Comparable Request to FY 2006 vs. FY 2005 Approp Approp Congress Discretionary Summary By Appropriation Energy And Water Development Appropriation Summary: Energy Programs Energy supply Operation and maintenance................................................. 787,941 909,903 862,499 -47,404 -5.2% Construction......................................................................... 6,956 22,416 40,175 17,759 +79.2% Total, Energy supply................................................................ 794,897 932,319 902,674 -29,645 -3.2% Non-Defense site acceleration completion............................. 167,272 157,316 172,400 15,084 +9.6%

168

Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming  

SciTech Connect

This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

1981-02-01T23:59:59.000Z

169

chapter 5. Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

5. Detailed Tables 5. Detailed Tables Chapter 5. Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1994 Residential Transportation Energy Consumption Survey. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle-miles traveled (VMT) or gallons consumed; (2) tables of per household statistics such as VMT per household; and (3) tables of per-vehicle statistics, such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model-year data or family-income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table.

170

Certification and Training Requirements Table of Contents  

E-Print Network (OSTI)

Table of Exhibits..................................................................................................... iii

unknown authors

2008-01-01T23:59:59.000Z

171

CPMS Tables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

QA Performance Metrics QA Performance Metrics Quality Program Criteria Summary Site: Period: FY09 Performance Score Excellent Good Investigate Define Actions N/A 1 Critical Decision 10 CFR 830.122 Score 1 2 3 4 Criterion Previous Period Current Period 1. Program 2. Personnel Training and Qualification 3. Quality Improvement Management 4. Documents and Records

172

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

173

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2004 Appendix tables A2 and A3,...

174

Supplement Tables - Supplemental Data  

Annual Energy Outlook 2012 (EIA)

are in spreadsheet format. A total of one hundred and nine tables is presented. The data for tables 10 and 20 match those published in AEO2003 Appendix tables A2 and A3,...

175

Meson Summary Table See  

NLE Websites -- All DOE Office Websites (Extended Search)

Meson Summary Table See also the table of suggested qq quark-model assignments in the Quark Model section. * Indicates particles that appear in the preceding Meson Summary Table....

176

Supplement Tables - Supplemental Data  

Annual Energy Outlook 2012 (EIA)

Vehicle Fuel Economy Table 57. New Light-Duty Vehicle Prices Table 58. New Light-Duty Vehicle Range Table 59. Electric Power Projections for EMM Region 01- East Central Area...

177

HEFF---A user`s manual and guide for the HEFF code for thermal-mechanical analysis using the boundary-element method; Version 4.1: Yucca Mountain Site Characterization Project  

SciTech Connect

The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs.

St. John, C.M.; Sanjeevan, K. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

1991-12-01T23:59:59.000Z

178

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

179

1995 Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Households, Buildings & Industry > Commercial Buildings Energy Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Summary Table—All Principal Buildings Activities (HTML Format) Background information on detailed tables: Description of Detailed Tables and Categories of Data Statistical Significance of Data

180

Sandia National Labs: PCNSC: IBA Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Ion Beam Analysis (IBA) Periodic Table (HTML) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) The purpose of this table is to quickly give the visitor to this site information on the sensitivity, depth of analysis and depth resolution of most of the modern ion beam analysis techniques in a single easy to use format: a periodic table. Note that you can click on each panel of this

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to  

E-Print Network (OSTI)

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to keep our eye on the ball. Coal River Mountain is the site of an absurdity. I learned about Coal River Mountain from students at Virginia Tech last fall. They were concerned

Hansen, James E.

182

Just enough tabling  

Science Conference Proceedings (OSTI)

We introduce just enough tabling (JET), a mechanism to suspend and resume the tabled execution of logic programs at an arbitrary point. In particular, JET allows pruning of tabled logic programs to be performed without resorting to any recomputation. ... Keywords: logic programming, pruning, suspension/resumption in the WAM, tabling

Konstantinos Sagonas; Peter J. Stuckey

2004-08-01T23:59:59.000Z

183

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

184

Yucca Mountain Exploratory Studies Facilities: Construction status; Extended summary  

SciTech Connect

This paper discusses the progress to date on the construction planning development of the Yucca Mountain Site Characterization Project Exploratory Studies Facilities (ESF).

Allan, J. [Morrison-Knudsen Corp. (United States); Leonard, T.M. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States)

1992-09-01T23:59:59.000Z

185

Microsoft Word - Interim Use of Scott Mountain Communications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clearance Memorandum Cynthia Rounds Project Manager - TPC-TPP-4 Proposed Action: Interim Use of Scott Mountain Communications Site Budget Information: Work Order 00004688, Task 04...

186

Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Sections 1 through 8, Tables 2-1 through 6-1, Figures 1 and 2  

SciTech Connect

The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE`s mixed waste.

Eaton, D.

1993-10-01T23:59:59.000Z

187

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

188

FY 2005 Control Table by Appropriation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appropriation Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 5 Uranium enrichment D&D fund.................................................................... 5 Non-Defense environmental services.......................................................... 5 Science.........................................................................................................

189

Estimating recharge at Yucca Mountain, Nevada: A case study  

Science Conference Proceedings (OSTI)

Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

Flint, A.; Flint, L.; Kwicklis, E.; Fabryka-Martin, J.; Bodvarsson, G.S.

2001-05-13T23:59:59.000Z

190

Estimating recharge at yucca mountain, nevada, usa: comparison of methods  

Science Conference Proceedings (OSTI)

Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for and environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 nun/year near Yucca Crest. Site-scale recharge estimates range from less than I to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. [References: 57

Flint, A. L.; Flint, L. E.; Kwicklis, E. M.; Fabryka-Martin, J. T.; Bodvarsson, G. S.

2001-11-01T23:59:59.000Z

191

DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -  

Office of Legacy Management (LM)

Rocky Mountain Research Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP CO.06-2 Also see Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject:

192

Test concept for waste package environment tests at Yucca Mountain  

SciTech Connect

The Nevada Nuclear Waste Storage Investigations Project is characterizing a tuffaceous rock unit at Yucca Mountain, Nevada to evaluate its suitability for a repository for high level radioactive waste. The candidate repository horizon is a welded, devitrified tuff bed located at a depth of about 300 m in the unsaturated zone, over 100 m above the water table. As part of the project, Lawrence Livermore National Laboratory is responsible for designing the waste packages and for assessing their expected performance in the repository environment. The primary region of interest to package design and performance assessment is the portion of the rock mass within a few meters of waste emplacement holes. Hydrologic mechanisms active in this unsaturated near-field environment, along with thermal and mechanical phenomena that influence the hydrology, need to be understood well enough to confirm the basis of the waste package designs and performance assessment. Large scale in situ tests (called waste package environment tests) are being planned in order to develop this understanding and to provide data sets for performance assessment model validation (Yow, 1985). Exploratory shafts and limited underground facilities for in-situ testing will be constructed at Yucca Mountain during site characterization. Multiple waste package environment tests are being planned for these facilities to represent horizontal and vertical waste emplacement configurations in the repository target horizon. These approximately half-scale tests are being designed to investigate rock mass hydrologic conditions during a cycle of thermal loading.

Yow, J.L. Jr.

1987-06-01T23:59:59.000Z

193

Cost Development Guidelines Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii Table of Exhibits...................................................................................................... v Approval.................................................................................................................. vi

unknown authors

2011-01-01T23:59:59.000Z

194

Modeling Approach/Strategy for Corrective Action Unit 99: Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1, with ROTC-1  

Science Conference Proceedings (OSTI)

This document describes an approach for preliminary (Phase I) flow and transport modeling for the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU). This modeling will take place before the planned Phase II round of data collection to better identify the remaining data gaps before the fieldwork begins. Because of the geologic complexity, limited number of borings, and large vertical gradients, there is considerable uncertainty in the conceptual model for flow; thus different conceptual models will be evaluated, in addition to different framework and recharge models. The transport simulations will not be used to formally calculate the Contaminant Boundary at this time. The modeling (Phase II) will occur only after the available data are considered sufficient in scope and quality.

Greg Ruskauff

2008-06-01T23:59:59.000Z

195

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary......

196

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 37. Refrigeration Equipment, Number of Buildings and Floorspace, 1995 Table 38. Water-Heating Equipment, Number of Buildings and Floorspace, 1995 Table 39. Lighting...

197

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 25. Cooling Energy Sources, Number of Buildings and Floorspace, 1995 Table 26. Water-Heating Energy Sources, Number of Buildings, 1995 Table 27. Water-Heating Energy...

198

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Supplement Tables to the AEO2001 The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2001 (AEO2001) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2001, but contain regional and other more detailed projections underlying the AEO2001 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables is presented. The data for tables 10 and 20 match those published in AEO2001 Appendix tables A2 and A3, respectively. Forecasts for 1999 and 2000 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

199

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

The AEO Supplementary tables were generated for the reference case of the The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2002 (AEO2002) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2002, but contain regional and other more detailed projections underlying the AEO2002 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seven tables is presented. The data for tables 10 and 20 match those published in AEO2002 Appendix tables A2 and A3, respectively. Forecasts for 2000-2002 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current

200

Completion Report for Well ER-12-4, Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain (includes Errata Sheet)  

Science Conference Proceedings (OSTI)

Well ER-12-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in May 2005, as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit in the north-central portion of the Nevada Test Site. The well is located on Rainier/Aqueduct Mesa, northwest of Yucca Flat, within Area 12 of the Nevada Test Site. The well provided information regarding the radiological and physical environment near underground nuclear tests conducted in U12t Tunnel, information on the pre-Tertiary rocks in the area, and depth to the regional water table.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience

Korneev, Valeri A.

202

POTENTAIL HABITAT MOUNTAIN PLOVERS  

E-Print Network (OSTI)

in the Yucca Mountain region has been studied using two approaches: a geological approach that examines Yucca Mountain [Andrews et al., 2007]. In this paper we report on an exercise to verify the computer. These benchmarks targeted the particular case of earthquake rupture on a normal fault at Yucca Mountain, Nevada

203

Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

1991-12-01T23:59:59.000Z

204

Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff; Data report: Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a tensile fracture of welded tuff from Yucca Mountain. The objective of these tests was to examine the effect of cyclic loading on joint shear behavior under different boundary conditions. The shear tests were performed under either different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN) or constant normal stiffness ranging between 14.8 and 187.5 kips/in (25.9 and 328.1 kn/cm) . Bach test in the two categories consisted of five cycles of forward and reverse shear. Normal compression tests were also performed both before and after each shear experiment to measure changes in joint normal deformability. In order to quantify fracture surface damage during shear, fracture-surface fractal dimensions were obtained from measurements before and after shear.

Wibowo, J.; Amadei, B.; Sture, S.; Robertson, A.B. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering; Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

1993-09-01T23:59:59.000Z

205

Progress report No. 2 on the Scientific Investigation Program for the Nevada Yucca Mountain Site, October 1, 1989--March 31, 1990  

SciTech Connect

In accordance with the requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982 (Pub. L. No. 97-425), as amended, the US Department of Energy (DOE) has prepared this report on the progress of scientific investigation activities at Yucca Mountain in southern Nevada for October 1, 1989, through March 31, 1990. This report is the second of a series of reports that are issued at intervals of approximately six months during the period of scientific investigation. The progress report presents short summaries of the status of scientific investigation activities and cites technical reports and research products that provide more detailed information on the activities. The report provides highlights of work started during the reporting period, work in progress, and work completed and documented during the reporting period. In addition, the report is the vehicle for discussing major changes, if any, to the DOE`s scientific investigation program. The progress report conveys information in a convenient summary form to be used for informational purposes only. It is not intended to be the mechanism for controlling and documenting technical or policy positions regarding changes in schedules or the technical program. Such changes are controlled through rigorous DOE change-control procedures. The progress report only describes such approval changes. 49 refs., 3 tabs.

NONE

1990-12-31T23:59:59.000Z

206

Weapons test seismic investigations at Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located on and adjacent to the Nevada Test Site, is being characterized as part of an ongoing effort to identify a potential high-level nuclear waste repository. This site will be subjected to seismic ground motions induced by underground nuclear explosions. A knowledge of expected ground motion levels from these tests will enable the designers to provide for the necessary structural support in the designs of the various components of the repository. The primary objective of the Weapons Test Seismic Investigation project is to develop a method to predict the ground motions expected at the repository site as a result of future weapons tests. This paper summarizes the data base presently assembled for the Yucca Mountain Project, characteristics of expected ground motions, and characterization of the two-dimensional seismic properties along paths between Yucca Mountain and the testing areas of the Nevada Test Site.

Phillips, J.S.; Shephard, L.E.; Walck, M.C.

1991-01-01T23:59:59.000Z

207

Table of Contents PJM Manual [18]: PJM Capacity Market  

E-Print Network (OSTI)

Table of Contents Table of Contents..................................................................................................... ii

unknown authors

2008-01-01T23:59:59.000Z

208

DOE/EA-1644: Kildeer to Mountain Transmission Project Pre-Decisional Environmental Assessment (May 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KILLDEER TO MOUNTAIN KILLDEER TO MOUNTAIN TRANSMISSION PROJECT PRE-DECISIONAL ENVIRONMENTAL ASSESSMENT MAY 5, 2009 DOE/EA-1644 PRE-DECISIONAL ENVIRONMENTAL ASSESSMENT KILLDEER TO MOUNTAIN PAGE i MAY 2009 TRANSMISSION PROJECT DOE/EA -1644 TABLE OF CONTENTS 1.0 INTRODUCTION .............................................................................................. 1-1 1.1 Purpose of and Need for Action ........................................................................................... 1-1 1.1.1 Project Purpose ............................................................................................................ 1-1 1.1.2 Western's Purpose and Need ..................................................................................... 1-1

209

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. The data for tables 10 and 20 match those published in AEO200 Appendix tables A2 and A3, respectively. Forecasts for 1998, and 2000 may differ slightly from values published in the Short Term Energy Outlook, Fourth Quarter 1999 or Short Term Energy Outlook, First Quarter 2000, which are the official EIA short-term forecasts and are based on more current information than the AEO.

210

Middlesex Sampling Plant environmental report for calendar year 1992, 239 Mountain Avenue, Middlesex, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Science Conference Proceedings (OSTI)

This report describes the environmental surveillance program at the Middlesex Sampling Plant (MSP) and provides the results for 1992. The site, in the Borough of Middlesex, New Jersey, is a fenced area and includes four buildings and two storage piles that contain 50,800 m{sup 3} of radioactive and mixed hazardous waste. More than 70 percent of the MSP site is paved with asphalt. The MSP facility was established in 1943 by the Manhattan Engineer District (MED) to sample, store, and/or ship uranium, thorium, and beryllium ores. In 1955 the Atomic Energy Commission (AEC), successor to MED, terminated the operation and later used the site for storage and limited sampling of thorium residues. In 1967 AEC activities ceased, onsite structures were decontaminated, and the site was certified for unrestricted use under criteria applicable at that time. In 1980 the US Department of Energy (DOE) initiated a multiphase remedial action project to clean up several vicinity properties onto which contamination from the plant had migrated. Material from these properties was consolidated into the storage piles onsite. Environmental surveillance of MSP began in 1980 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program. The environmental surveillance program at MSP includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-230, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analyses are performed to detect metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling th DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses.

Not Available

1993-05-01T23:59:59.000Z

211

February 14, 2002: Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2002: Yucca Mountain 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002 Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level radioactive waste. "I have considered whether sound science supports the determination that the Yucca Mountain site is scientifically and technically suitable for the development of a repository," the Secretary informs the President. "I am convinced that it does. The results of this extensive investigation and the external technical reviews of this body of scientific work give me confidence for the conclusion, based on sound scientific principles, that a repository at

212

Paleoseismic investigations of Stagecoach Road fault, southeastern Yucca Mountain, Nye County, Nevada  

Science Conference Proceedings (OSTI)

This report summarizes the results of paleoseismic investigations at two trenches (SCR-T1 and SCR-T3) excavated across the Stagecoach Road (SCR) fault at the southeastern margin of Yucca Mountain. The results of these studies are based on detailed mapping or logging of geologic and structural relationships exposed in trench walls, combined with descriptions of lithologic units, associated soils, and fault-related deformation. The ages of trench deposits are determined directly from geochronologic dating of selected units and soils, supplemented by stratigraphic and soil correlations with other surficial deposits in the Yucca Mountain area. The time boundaries used in this report for subdivision of the Quaternary period are listed in a table. These data and interpretations are used to identify the number, amounts, timing, and approximately lengths of late to middle Quaternary (less than 200 ka) surface-faulting events associated with paleoearthquakes at the trench sites. This displacement history forms the basis for calculating paleoearthquake recurrence intervals and fault-slip rates for the Stagecoach Road fault and allows comparison with fault behavior on other Quaternary faults at or near Yucca Mountain.

Menges, C.M.; Oswald, J.A.; Coe, J.A.; Lundstrom, S.C.; Paces, J.B.; Mahan, S.A.; Widmann, B.; Murray, M.

1998-04-01T23:59:59.000Z

213

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

214

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the Annual Energy Outlook 2005 Supplemental Tables to the Annual Energy Outlook 2005 EIA Glossary Supplemental Tables to the Annual Energy Outlook 2005 Release date: February 2005 Next release date: February 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2005 (AEO2005) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2025. Most of the tables were not published in the AEO2005, but contain regional and other more detailed projections underlying the AEO2005 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2005 Appendix tables A2 and A3, respectively. Forecasts for 2003-2005 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

215

Table of Contents  

Science Conference Proceedings (OSTI)

Table of Contents. A, B. 1, USGCB Settings. 2, This spreadsheet captures the USGCB defined configuration settings. 3, Tab Name, Tab Description. ...

2013-11-19T23:59:59.000Z

216

FY 2007 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer state tables preliminary Department of Energy FY 2007 Congressional Budget...

217

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

218

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

219

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

220

FY 2009 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FY 2005 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

222

FY 2010 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

223

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 1999 Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Contacts bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage supplemental.gif (7420 bytes) (Errata as of 9/13/99) The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 1999 (AEO99) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1997 to 2020. Most of the tables were not published in the AEO99, but contain regional and other more detailed projections underlying the AEO99 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables are presented.

224

FY 2006 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

225

table E1  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table E.1 World Primary Energy Consumption (Btu), 1980-2006 (Quadrillion (10 15 ) Btu) Page

226

Table - Energy Information Administration  

U.S. Energy Information Administration (EIA)

September 2013 U.S. Energy Information 9/27/2013 9:52:45 AM Administration | Natural Gas Monthly 9 Created on: Table 4. U.S. natural gas imports ...

227

FY 2008 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

228

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

229

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

230

Mountainous | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mountainous Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mountainous Dictionary.png Mountainous: A geothermal areal located in terrain characterized by rugged and steep topography with high relief Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous geothermal areas, one of the more famous areas is landmannalaugar, Iceland. Photo by

231

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

232

Yucca Mountain Science and Engineering Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

233

Yucca Mountain Science and Engineering Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

234

DOE/EA-1633: Environmental Assessment for Green Mountain Reservoir Substitution and Power Interference Agreements (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Mountain Reservoir Green Mountain Reservoir Substitution and Power Interference Agreements Final EA i Table of Contents Acronyms ...................................................................................................................................... vi 1.0 Purpose and Need .......................................................................................................... 1-1 1.1 Introduction.......................................................................................................... 1-1 1.2 Project Purpose and Need .................................................................................... 1-1 1.3 Study Area ........................................................................................................... 1-2 1.4 Background

235

Density of Freshly Fallen Snow in the Central Rocky Mountains  

Science Conference Proceedings (OSTI)

New snow density distributions are presented for six measurement sites in the mountains of Colorado and Wyoming. Densities were computed from daily measurements of new snow depth and water equivalent from snow board cores. All data were measured ...

Arthur Judson; Nolan Doesken

2000-07-01T23:59:59.000Z

236

Seasonal and Diurnal Variations in Aerosol Concentration on Whistler Mountain: Boundary Layer Influence and Synoptic-Scale Controls  

Science Conference Proceedings (OSTI)

A mountain air chemistry observatory has been operational on the summit of Whistler Mountain in British Columbia, Canada, since 2002. A 1-yr dataset of condensation nuclei (CN) concentration from this site has been analyzed along with ...

John P. Gallagher; Ian G. McKendry; Anne Marie Macdonald; W. Richard Leaitch

2011-11-01T23:59:59.000Z

237

2001 Housing Characteristics Detailed Tables  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey-Housing Characteristics, 2001 Detailed Tables, Energy Information Administration

238

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

239

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

240

FY 2011 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 State Index Page Number FY 2011 Congressional Budget 1/29/2010 Department Of Energy (Dollars In Thousands) 6:34:40AM Page 1 of 2 FY 2009 Appropriation

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

242

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

243

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

244

Evolution of the conceptual model of unsaturated zone hydrology at yucca mountain, nevada  

SciTech Connect

Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because o f capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to show. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water into the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada (Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site. (C) 2001 Elsevier Science B.V. All rights reserved. [References: 87

Flint, A. L.; Flint, L. E.; Bodvarsson, G. S.; Kwicklis, E. M.; Fabryka-Martin, J.

2001-02-01T23:59:59.000Z

245

FY 2013 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................ 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability......................................... 138,170 139,103 143,015 +3,912 +2.8% Nuclear energy................................................................................ 717,817 765,391 770,445 +5,054 +0.7% Fossil energy programs Clean coal technology.................................................................. -16,500 -- --

246

FY 2009 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear energy................................................................. -- 961,665 853,644 -108,021 -11.2% Legacy management........................................................ -- 33,872 -- -33,872 -100.0% Energy supply and conservation Operation and maintenance..........................................

247

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

/2011 /2011 Decades of Discovery Decades of Discovery Page 2 6/1/2011 TABLE OF CONTENTS 1 INTRODUCTION ...................................................................................................................... 6 2 BASIC ENERGY SCIENCES .................................................................................................. 7 2.1 Adenosine Triphosphate: The Energy Currency of Life .............................................. 7 2.2 Making Better Catalysts .............................................................................................. 8 2.3 Understanding Chemical Reactions............................................................................ 9 2.4 New Types of Superconductors ................................................................................ 10

248

Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Yucca Mountain Yucca Mountain Addthis Fuel assembly for production of nuclear power 1 of 13 Fuel assembly for production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north end of the Yucca Mountain crest in February 1993 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 4 of 13 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 Aerial view of the crest of Yucca Mountain 5 of 13 Aerial view of the crest of Yucca Mountain Location of Yucca Mountain, Nevada 6 of 13 Location of Yucca Mountain, Nevada A scientist uses ultra-violet light to study how fluids move through rock

249

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

250

The vegetation of Yucca Mountain: Description and ecology  

Science Conference Proceedings (OSTI)

Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

NONE

1996-03-29T23:59:59.000Z

251

Age constraints on fluid inclusions in calcite at Yucca Mountain  

Science Conference Proceedings (OSTI)

The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

2001-04-29T23:59:59.000Z

252

EJ and EK Pay Table  

Energy.gov (U.S. Department of Energy (DOE))

The EJ and EK pay table excludes locality pay. Refer to the General Schedule Complete Set of Locality Pay Tables to determine the locality pay for your applicable geographic area.

253

February 2013 Table of Contents  

Science Conference Proceedings (OSTI)

Inform February 2013 table of contents. February 2013 Table of Contents inform Magazine algae algal AOCS biomass business chemistry cottonseed date detergents fats filing first history inform inform Magazine international inventor law magazine me

254

Visualization of truth tables - CECM  

E-Print Network (OSTI)

Nov 19, 1997 ... Visualization of truth tables. The Figures are computer-generated tables that show the value 1 as being represented by a black pixel and 0 by a...

255

January 2013 Table of Contents  

Science Conference Proceedings (OSTI)

inform January 2013 table of contents. January 2013 Table of Contents inform Magazine algae algal AOCS biomass business chemistry cottonseed date detergents fats filing first history inform inform Magazine international inventor law magazine membe

256

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

257

FY 2008 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance........................................... 1,781,242 1,917,331 2,187,943 +270,612 +14.1% Construction.................................................................... 31,155 6,030 -- -6,030 -100.0% Total, Energy supply and conservation............................. 1,812,397 1,923,361 2,187,943 +264,582 +13.8% Fossil energy programs Clean coal technology.................................................... -20,000 -- -58,000 -58,000 N/A Fossil energy research and development......................

258

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

259

FY 2010 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2008 FY 2009 FY 2009 FY 2010 Current Current Current Congressional Approp. Approp. Recovery Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 1,704,112 2,178,540 16,800,000 2,318,602 +140,062 +6.4% Electricity delivery and energy reliability........................................ 136,170 137,000 4,500,000 208,008 +71,008 +51.8% Nuclear energy.............................................................................. 960,903 792,000 -- 761,274 -30,726 -3.9% Legacy management..................................................................... 33,872 -- -- --

260

FY 2012 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FY 2012 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Statistical Table by Appropriation 2Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2010 FY 2011 FY 2011 FY 2012 Current Congressional Annualized Congressional Approp. Request CR Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 2,216,392 2,355,473 2,242,500 3,200,053 +983,661 +44.4% Electricity delivery and energy reliability........................................ 168,484 185,930 171,982 237,717 +69,233 +41.1% Nuclear energy............................................................................. 774,578 824,052 786,637 754,028 -20,550 -2.7% Fossil energy programs Fossil energy research and development................................... 659,770 586,583 672,383 452,975

262

FY 2007 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance............................................ 1,779,399 1,791,372 1,917,331 +125,959 +7.0% Construction................................................................... 22,416 21,255 6,030 -15,225 -71.6% Total, Energy supply and conservation.............................. 1,801,815 1,812,627 1,923,361 +110,734 +6.1% Fossil energy programs Clean coal technology..................................................... -160,000 -20,000 -- +20,000 +100.0% Fossil energy research and development.......................

263

Estimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test  

E-Print Network (OSTI)

of Las Vegas. The NTS is bordered by the Nellis Air Force Range and the Tonopah 5 #12;Test RangeEstimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential

264

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS REQUIREMENTS COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information ....................................................................... 7 b. Other Federal Government Smart Grid Initiatives .................................... 9 III. Communications Requirements of Smart Grid Applications .................. 11 a. Advanced Metering Infrastructure ............................................................12

265

May 2011 Table of Contents  

Science Conference Proceedings (OSTI)

May 2011 Table of Contents Inform Magazine Inform Archives News 266 Insect oils: nutritional and industrial applications Many

266

October 2010 Table of Contents  

Science Conference Proceedings (OSTI)

October 2010 Table of Contents Inform Magazine Inform Archives News 598 Universal detectors for determination of lipids in biodiesel producti

267

Green Mountain Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

PROPOSALS PROPOSALS GREEN MOUNTAIN ENERGY COMPANY TIM SMITH VP OF ORIGINATION AND BUSINESS DEVELOPMENT 550 WESTLAKE PARK BOULEVARD ROOM 172 HOUSTON, TEXAS 77079 281-366-5124 DATE ISSUED: JANUARY 21, 2005 DUE DATE & TIME FOR RESPONSES: FRIDAY, MARCH 3, 2005 @ 11:00 A.M. CENTRAL TIME RFP NOTICE GREEN MOUNTAIN ENERGY COMPANY IS REQUESTING PROPOSALS FROM GENERATORS AND MARKETERS OF RENEWABLE ENERGY CREDITS, RENEWABLE ENERGY ATTRIBUTES OR 'GREEN TAGS' ("RECs") ASSOCIATED WITH THE GENERATION OF ELECTRICITY FROM RENEWABLE RESOURCES. ANY QUESTIONS REGARDING THIS REQUEST FOR PROPOSAL SHOULD BE DIRECTED TO TIM SMITH, GREEN MOUNTAIN ENERGY COMPANY, 281-366-5124 or tim.smith@greenmountain.com. Upon signing this page the organization certifies that they have read and agree to

268

Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect

This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

269

Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

270

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

the Tables | Estimation of Energy End-Use Consumption | CBECS Glossary | FAQs | Other Years: 1999 1995 1992 Complete Set of All Tables (Tables A1-A8, B1-B46, C1-C38, C1A-C38A,...

271

San Antonio Mountain Experiment (SAMEX)  

Science Conference Proceedings (OSTI)

The San Antonio Mountain Experiment (SAMEX) involves a 3325 m. conically shaped, isolated mountain in north-central New Mexico where hourly observations of temperature, relative humidity, wind speed, wind direction, and precipitation are being ...

Morris H. McCutchan; Douglas G. Fox; R. William Furman

1982-10-01T23:59:59.000Z

272

EIA Energy Efficiency:Table 5c. U.S. Commercial Buildings Energy ...  

U.S. Energy Information Administration (EIA)

Table 5c. U.S. Commercial Buildings Energy Intensity Using Site Energy 1 by Census Region and Principal Building Activity, 1992-1999 (Million Btu per Worker)

273

EIA Energy Efficiency:Table 5a. U.S. Commercial Buildings Energy ...  

U.S. Energy Information Administration (EIA)

Table 5a. U.S. Commercial Buildings Energy Intensity Using Site Energy 1 by Census Region and Principal Building Activity, 1992-2003 (Million Btu per Building)

274

Table 4.4 Crude Oil and Natural Gas Rotary Rigs in ...  

U.S. Energy Information Administration (EIA)

Table 4.4 Crude Oil and Natural Gas Rotary Rigs in Operation, 1949-2011 (Number of Rigs) Year: By Site : By Type: Total 1: Onshore

275

EIA Energy Efficiency:Table 6c. U.S. Commercial Buildings Energy ...  

U.S. Energy Information Administration (EIA)

Table 6c. U.S. Commercial Buildings Energy Intensity Using Weather-Adjusted Site Energy 1 by Census Region and Principal Building Activity, 1992, 1995, and 2003

276

Yucca Mountain Total System Performance Assessment, Phase 3  

Science Conference Proceedings (OSTI)

This report discusses recent developments of EPRI's Total System Performance Assessment (TSPA) model applied to the candidate spent fuel and high-level radioactive waste (HLW) disposal site at Yucca Mountain, Nevada. Building on earlier work where a probability-based methodology was developed, the report details the recent modifications to the EPRI TSPA code, IMARC, applied to Yucca Mountain. The report also includes performance analyses using IMARC, identifies key technical components important to Yucca...

1996-12-02T23:59:59.000Z

277

Biosphere Modeling and Dose Assessment for Yucca Mountain  

Science Conference Proceedings (OSTI)

This report develops a biosphere model appropriate for use in calculating doses to hypothetical individuals living in the far future in the vicinity of Yucca Mountain, Nevada. Doses are assumed to arise from potential releases from a spent fuel and high-level radioactive waste (HLW) disposal facility located beneath Yucca Mountain. The model provides guidance on approaches to dealing with the biosphere appropriate for site suitability and licensing assessments.

1996-12-31T23:59:59.000Z

278

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

279

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

2003 Detailed Tables 2003 Detailed Tables 2003 CBECS Detailed Tables most recent available Released: September 2008 Building Characteristics | Consumption & Expenditures | End-Use Consumption In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed explanation.

280

Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

NT0005638 NT0005638 Cruise Report 1-19 July 2009 HYFLUX Sea Truth Cruise Northern Gulf of Mexico Submitted by: Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, TX 78412 Principal Authors: Ian R. MacDonald and Thomas Naehr Prepared for: United States Department of Energy National Energy Technology Laboratory October 30, 2009 Office of Fossil Energy HYFLUX Seatruth Cruise Report -1- Texas A&M University - Corpus Christi Table of Contents Summary ............................................................................................................................. 2 Participating Organizations ................................................................................................. 3 Major Equipment ................................................................................................................ 4

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Engineering Tables: Polymeric Materials  

Science Conference Proceedings (OSTI)

Table 6   Chemical resistance ratings for selected plastics and metals...B A A C C C ? B C A A A Miscellaneous Detergents Laundry and dishwashing detergents, soaps A ? A ? B ? ? A A A ? B A ? A A B Inorganic salts Zinc chloride, cupric sulfate B B B ? A ? ? A ? A ? ? A A B B B Oxidizing agents, strong 30% hydrogen peroxide, bromine (wet) C C C ? C ? B B ? C ? ? A ? C C C...

282

Residential Energy Consumption Survey Data Tables  

U.S. Energy Information Administration (EIA)

Below are historical data tables from the Residential Energy Consumption Survey (RECS). These tables cover the total number of households ...

283

CARINA Data Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Cruise Summary Table and Data Cruise Summary Table and Data Users are requested to report any data or metadata errors in the CARINA cruise files to CDIAC. Parameter units in all CARINA data files are in CCHDO exchange format. No Cruise Namea (Alias) Areab Number of Stations Datec Ship Chief Scientist Carbon PI Oxygen Nutrients TCO2d TALK pCO2e pHf CFC Other Measurements Data Files 1 06AQ19920929g (06ANTX_6) (See map) 2 118 9/29-11/30/1992 Polarstern V. Smetacek M. Stoll, J. Rommets, H. De Baar, D. Bakker 62 114h 53 54i U C 0 Choloroa,b Fluorescence, NH4 Data Files (Metadata) 2 06AQ19930806 (06ARKIX_4) (See map) 4 64 8/6-10/5/1993 Polarstern D.K. Fütterer L. Anderson 64 63 63j, bb 0 0 0 59he 3H, 3He, 18O, 14C, 85Kr, Bak Data Files

284

Supplement Tables - Contact  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the AEO99 Supplement Tables to the AEO99 bullet1.gif (843 bytes) Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage furtherinfo.gif (5474 bytes) The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441), Director of the International, Economic, and Greenhouse Gas Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director of the Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director of the Oil and Gas Division; Scott Sitzer (ssitzer@eia.doe.gov, 202/586-2308), Director of the Coal and Electric Power Division; or Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Modeling Analyst. Detailed questions about the forecasts and related model components may be addressed to the following analysts:

285

Appendix B: Summary Tables  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman Appendix B: Summary Tables Table B1. The BCES and alternative cases compared to the Reference case, 2025 2009 2025 Ref Ref BCES All Clean Partial Credit Revised Baseline Small Utilities Credit Cap 2.1 Credit Cap 3.0 Stnds + Cds Generation (billion kilowatthours) Coal 1,772 2,049 1,431 1,305 1,387 1,180 1,767 1,714 1,571 1,358 Petroleum 41 45 43 44 44 44 45 45 45 43 Natural Gas 931 1,002 1,341 1,342 1,269 1,486 1,164 1,193 1,243 1,314 Nuclear 799 871 859 906 942 889 878 857 843 826 Conventional Hydropower 274 306 322 319 300 321 316 298 312 322 Geothermal 15 25 28 25 31 24 27 22 23 24 Municipal Waste 18 17 17 17 17 17 17 17 17 17 Wood and Other Biomass 38 162 303 289 295 301 241 266

286

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesIN THE UNSATURATED ZONE AT YUCCA MOUNTAIN, NEVADA George J.

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

287

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest Site Office U.S. DEPARTMENT OF ENERGY Office of Science Federal Technical Capability & Technical Qualification Program Self-Assessment Report Pacific Northwest Site Office May 2013 Submitted by: Joe Christ Assessment Leader Date' PNSO FTC & TQP Self-Assessment Report May 2013 2 EXECUTIVE SUMMARY During April, a combined self-assessment of the Technical Qualification Program and Federal Technical Capability Program was performed at the Pacific Northwest Site Office. The assessment was led by a staff member from the site office who is assigned for maintaining and

288

Evolution of the unsaturated zone testing at Yucca Mountain  

E-Print Network (OSTI)

INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

Wang, J.S.Y.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

289

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

290

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

291

BLM Battle Mountain District Office | Open Energy Information  

Open Energy Info (EERE)

Battle Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name BLM Battle Mountain District Office Short Name Battle Mountain Parent...

292

Rocky Mountain Customers  

NLE Websites -- All DOE Office Websites (Extended Search)

RM Home About RM Contact RM Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates Rocky Mountain Region's Customer list Use the filters above the customer list to refine your search. Click the "Clear" to reset the list. Western's full list of customers is available on the Western's Customer Web page. Customer Name Customer Type State Region Project Arapahoe and Roosevelt National Forests Federal Agencies CO RM LAP Arkansas River Power Authority Municipalities CO RM/CRSP LAP/SLIP Burlington, City of Municipalities CO RM LAP Cheyenne Mountain Air Force Base Federal Agencies CO RM LAP Clay Center, City of Municipalities KS RM LAP Denver Water Board Municipalities CO RM LAP

293

Table G3  

U.S. Energy Information Administration (EIA) Indexed Site

1905-0194 1905-0194 Expiration Date: 07/31/2013 May 28, 2010 Voluntary Reporting of Greenhouse Gases 14 Table G3. Decision Chart for a Start Year Report for a Large Emitter Intending To Register Reductions Report Characteristics Reporting Requirements Schedule I Schedule II (For Each Subentity) Schedule III Schedule IV Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 1 Sec. 2 & Add. A Sec. 3 Sec. 1 Sec. 2 Sec. 1 Sec. 2 Part A Part B Part C Part D Part E Part A Part B Part C Independent Verification? All A- or B-Rated Methods? Foreign Emissions? Entity-Wide Reductions Only? Entity Statement Aggregated Emissions by Gas (Domestic and Foreign) † Emissions Inventory by Source

294

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

through June 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 9 1.2 Vacuum System 16 1.3 Power Supplies 21 1.4 RF System 25 1.5 Instrumentation & Controls 26 1.6 Cable Plant 28 1.8 Facilities 28 2.0 Accelerator Physics 29 2.1 ES&H 31 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress Magnet System - The project has received three shipments of magnets from IHEP. A total of 55 dipole, quadrupole and sextupole magnets out of 218 have arrived. All main magnets will arrive by December. The additional mechanical and electrical checks of the magnets at SSRL have been successful. Only minor mechanical problems were found and corrected. The prototype

295

TABLE OF CONTENTS  

National Nuclear Security Administration (NNSA)

AC05-00OR22800 AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295, 290, 284, 280, 270, 257, 239, 238, 219, M201, M180, M162, M153, M150, M141, M132, M103, M092, M080, M055, M051, M049, M034, M022, M003, A002) ..........................................................B-2 SECTION C - DESCRIPTION/SPECIFICATION/WORK STATEMENT DESCRIPTION OF

296

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L Semiannual Report toCongress DOE/IG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ..................................................... 2 Impacts Key Accomplishments ............................................................................................... 3 Positive Outcomes ...................................................................................................... 3 Reports Investigative Outcomes .............................................................................................. 6 Audits ......................................................................................................................... 8

297

Microsoft Word - table_87  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 6. Natural gas processed, liquids extracted, and natural gas plant liquids production, by state, 2012 Alabama 87,269 5,309 7,110 Alabama Onshore Alabama 33,921 2,614 3,132 Alabama Offshore Alabama 53,348 2,695 3,978 Alaska 2,788,997 18,339 21,470 Alaska 2,788,997 18,339 21,470 Arkansas 6,872 336 424 Arkansas 6,872 336 424 California 169,203 9,923 12,755 California Onshore California 169,203 9,923 12,755 California Offshore California NA NA NA Federal Offshore California NA NA NA

298

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 5 B. Detailed Reports 1.1 Magnets & Supports 8 1.2 Vacuum System 12 1.3 Power Supplies 14 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.7 Beam Line Front Ends 19 1.8 Facilities 19 1.9 Installation 20 2.1 Accelerator Physics 21 2 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress The progress and highlights of each major technical system are summarized below. Additional details are provided in Section B. Magnets - As of the end of this quarter (March 31, 2002), the status of magnet fabrication is as follows: Magnet Type Number Received % of Total Received Dipoles 40 100% Quadrupoles 102 100% Sextupoles 76 100%

299

Reviews, Tables, and Plots  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Review of Particle Physics 4 Review of Particle Physics Please use this CITATION: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (bibtex) Standalone figures are now available for these reviews. Categories: * Constants, Units, Atomic and Nuclear Properties * Standard Model and Related Topics * Particle Properties * Hypothetical Particles * Astrophysics and Cosmology * Experimental Methods and Colliders * Mathematical Tools * Kinematics, Cross-Section Formulae, and Plots * Authors, Introductory Text, History plots PostScript help file PDF help file Constants, Units, Atomic and Nuclear Properties Physical constants (Rev.) PS PDF (1 page) Astrophysical constants (Rev.) PS PDF (2 pages) International System of units (SI) PS PDF (2 pages) Periodic table of the elements (Rev.) errata PS PDF (1 page)

300

Engineering Tables: Reinforcement Materials  

Science Conference Proceedings (OSTI)

Table 1   Properties of key reinforcement materials...3 GPa 10 6 psi GPa 10 6 psi GPa 10 6 psi Carbon fiber (pitch) E = 55 ? 10 6 psi 2.0 0.072 380 55 ? ? 190 28 E = 75 ? 10 6 psi 2.0 0.072 520 75 ? ? 260 38 E = 100 ? 10 6 psi 2.2 0.078 690 100 5 0.7 314 46 E = 120 ? 10 6 psi 2.2 0.078 830 120 5 0.7 377 55 E = 130 ? 10 6 psi 2.2 0.078 895 130 5 0.7 407...

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

October October through December 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 7 1.2 Vacuum System 9 1.3 Power Supplies 13 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.9 Installation 19 2.0 Accelerator Physics 20 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress In the magnet area, the production of all major components (dipoles, quadrupoles, and sextupoles) has been completed on schedule. This results from a highly successful collaboration with our colleagues at the Institute of High Energy Physics (IHEP) in Beijing. The production of corrector magnets is still in progress with completion scheduled for May 2002.

302

EIA Table E.1C  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA - - Table Posted: December 19, 2008

303

Characteristics of truth tables - CECM  

E-Print Network (OSTI)

Nov 19, 1997... fairly straightforward because each row represents an assignment of truth values ... A truth table is a standard binary ordering of 2-partitions.

304

1993 Housing Characteristics -Detailed Tables  

U.S. Energy Information Administration (EIA)

Within each section, except for Air-conditioning and Light Usage, ... the Light Usage section includes a table that describes indoor light usage by ...

305

2011 22 Table of for  

U.S. Energy Information Administration (EIA)

2011 60 U.S. Energy Information Administration | Natural Gas Annual Table 22. Number of natural gas industrial consumers by type of ...

306

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

4 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2006 (Dollars per Thousand Cubic Feet) Alabama ... 18.80 100.00...

307

Faculty Search Table of Contents  

E-Print Network (OSTI)

October 28 2009 Faculty Search Committee Procedures Handbook #12;#12;#12;Table of Contents........................................................................................................................7 Charge to Search Committee................................................................................................................................8 Role of the Search Committee Chair

New Mexico, University of

308

March 2012 Table of Contents  

Science Conference Proceedings (OSTI)

March 2012 Table of Contents Inform Magazine Inform Archives News March 2012 World supplies of rapeseed and canola likely to remain tight in the 201

309

Microsoft Word - table_24.doc  

Annual Energy Outlook 2012 (EIA)

0 Table 24. Percent Distribution of Natural Gas Supply and Disposition by State, 2006 Alabama ... 1.44 1.81...

310

Microsoft Word - table_25.doc  

Gasoline and Diesel Fuel Update (EIA)

4 Table 25. Percent Distribution of Natural Gas Supply and Disposition by State, 2008 Alabama ... 1.19 1.74...

311

Microsoft Word - table_25.doc  

Annual Energy Outlook 2012 (EIA)

4 Table 25. Percent Distribution of Natural Gas Supply and Disposition by State, 2007 Alabama ... 1.31 1.83...

312

Microsoft Word - table_24.doc  

Annual Energy Outlook 2012 (EIA)

0 Table 24. Percent Distribution of Natural Gas Supply and Disposition by State, 2005 Alabama ... 1.56 1.59...

313

Microsoft Word - table_25.doc  

Annual Energy Outlook 2012 (EIA)

4 Table 25. Percent Distribution of Natural Gas Supply and Disposition by State, 2009 Alabama ... 1.1 2.0...

314

Technical Report Confirms Reliability of Yucca Mountain Technical Work |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Report Confirms Reliability of Yucca Mountain Technical Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis developed by the USGS has a strong conceptual foundation and is corroborated by independently-derived scientific conclusions, and provides a solid underpinning for the 2002 site recommendation," said OCRWM's Acting Director Paul Golan. "We are committed to opening Yucca Mountain based only on sound science. The work

315

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA Energy Efficiency and Conservation Block Grant Program Location: Tribe ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND American Recovery and Reinvestment Act: Proposed Action or Project Description The Turtle Mountain Band of Chippewa Indians of North Dakota propose to 1) explore the potential for wind energy development on the Reservation by soliciting expertise from an engineering company to determine the best option for tapping wind energy on the reservation for its public buildings and seek legal expertise to study legal barriers that may exist; 2) conduct energy audits and a feasibility study to determine if several sizeable public buildings have the potential to be sites for either district heating or a

316

U.S. Commercial Buildings Weather-Adjusted Site Energy  

U.S. Energy Information Administration (EIA)

Energy Efficiency > Commercial Buildings Energy Intensities > Table 1b . U.S. Commercial Buildings Weather-Adjusted Site Energy

317

Rail Access to Yucca Mountain: Critical Issues  

SciTech Connect

The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area.

Halstead, R. J.; Dilger, F.; Moore, R. C.

2003-02-25T23:59:59.000Z

318

Help:Tables | Open Energy Information  

Open Energy Info (EERE)

Tables Tables Jump to: navigation, search Tables may be authored in wiki pages using either XHTML table elements directly, or using wikicode formatting to define the table. XHTML table elements and their use are well described on various web pages and will not be discussed here. The benefit of wikicode is that the table is constructed of character symbols which tend to make it easier to perceive the table structure in the article editing view compared to XHTML table elements. As a general rule, it is best to avoid using a table unless you need one. Table markup often complicates page editing. Contents 1 Wiki table markup summary 2 Basics 2.1 Table headers 2.2 Caption 3 XHTML attributes 3.1 Attributes on tables 3.2 Attributes on cells 3.3 Attributes on rows 3.4 HTML colspan and rowspan

319

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

320

EA-1440: Final Site-Wide Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Site-Wide Environmental Assessment Final Site-Wide Environmental Assessment EA-1440: Final Site-Wide Environmental Assessment National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory The Proposed Action is to support DOE's mission in the research and development of energy efficiency and renewable energy technologies. DOE's EERE leads the national research effort to develop clean, competitive, and reliable energy technologies for the 21st century. The goal of the EERE program is to improve the Nation's overall economic strength and competitiveness, energy security, and environmental health through the development of clean, competitive, and reliable power technologies. The purpose and need for the Proposed Action is to provide and maintain

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983)  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White Mountains Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_White_Mountains_Area_(Goff_%26_Decker,_1983)&oldid=510828

322

Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983)  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White Mountains Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_White_Mountains_Area_(Goff_%26_Decker,_1983)&oldid=387355"

323

table14.xls  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 AEO 1993 1.85 1.94 2.09 2.30 2.44 2.60 2.85 3.12 3.47 3.84 4.31 4.81 5.28

324

ARM - Instrument - s-table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentss-table govInstrumentss-table Documentation S-TABLE : Instrument Mentor Monthly Summary (IMMS) reports S-TABLE : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Stabilized Platform (S-TABLE) Instrument Categories Ocean Observations For ship-based deployments, some instruments require actively stabilized platforms to compensate for the ship's motion, especially rotations around the long axis of the ship (roll), short axis (pitch), and, for some instruments, vertical axis (yaw). ARM currently employs two types of stabilized platforms: one electrically controlled for lighter instruments that includes yaw control (dubbed RPY for Roll, Pitch, Yaw) and one

325

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines The Gas Turbine Handbook The Gas Turbine Handbook TABLE OF CONTENTS Acknowledgements Updated Author Contact Information Introduction - Rich Dennis, Turbines Technology Manager 1.1 Simple and Combined Cycles - Claire Soares 1.1-1 Introduction 1.1-2 Applications 1.1-3 Applications versatility 1.1-4 The History of the Gas Turbine 1.1-5 Gas Turbine, Major Components, Modules, and systems 1.1-6 Design development with Gas Turbines 1.1-7 Gas Turbine Performance 1.1-8 Combined Cycles 1.1-9 Notes 1.2 Integrated Coal Gasification Combined Cycle (IGCC) - Massod Ramezan and Gary Stiegel 1.2-1 Introduction 1.2-2 The Gasification Process 1.2-3 IGCC Systems 1.2-4 Gasifier Improvements 1.2-5 Gas Separation Improvements 1.2-6 Conclusions 1.2-7 Notes 1.2.1 Different Types of Gasifiers and Their Integration with Gas Turbines - Jeffrey Phillips

326

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

327

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

328

AEO2011: Energy Consumption by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

329

AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

330

EM Recovery Act Funding Payment Summary by Site | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Payment Summary by Site Summary table of EM Recovery Act Spending Plan which shows dollar amounts obligated to contracts, payments to date and unpaid balances by site. EM...

331

Stepout-Deepening Wells At Blue Mountain Area (Niggemann Et Al, 2005) |  

Open Energy Info (EERE)

Blue Mountain Area (Niggemann Et Al, 2005) Blue Mountain Area (Niggemann Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Step-out Well At Blue Mountain Area (Niggemann Et Al, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Step-out Well Activity Date Usefulness not indicated DOE-funding Unknown Notes Deep Blue No. 2 was sited as a step out t5 meters.5o Deep Blue No. 1 which measured 145oC at a depth of 645 m. Max temp recorded in Deep Blue No. 2 while drilling was 167.5oC at References Kim Niggemann, Brian Fairbank, Susan Petty (2005) Deep Blue No 2- A Resource In The Making At Blue Mountain Retrieved from "http://en.openei.org/w/index.php?title=Stepout-Deepening_Wells_At_Blue_Mountain_Area_(Niggemann_Et_Al,_2005)&oldid=687863"

332

BRMF Georgia Mountain Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon BRMF Georgia Mountain Biofuels Jump to: navigation, search Name BRMFGeorgia Mountain Biofuels Place Clayton,...

333

EIS-0023-FEIS-Tables-1979.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TABLE TABLE 1-1 Quantifiable Environmental Impacts and Cost .4 Ztemti.e 1 Cont*nued Tmk Pam @eRltti Occupational Radiation Exposures Based on SRP Experience, .an-re@ 360 OffSite Pop.latio" Dose risk, mm-red 1,400 Offsite Population DOS. Risk, man-remc 24,000 Offsite Population Dose Risk, .an-re& 2,300 Non-nuclear Accidental Fatalities frm Construction and operations 17.1 BudgetaryCost, mil lions of 1980 dO1lar,e 510 3,800 2>700 2,400 650 220 340 650 340 340 6.5 6.6 6.2 3,600 3,750 3,610 a. Campaign totals for .11 workers b. Cmseq.mces times probabilities, sumed over all events and integrated f.. 300 years. . . Assming tanks are abandoned after 100 years, according to proposed EPA criterion. d. Integrated for 10,000 year,. .. Includes capital and operating cost* TABLE 1.2 Sumary of DiFficu lt-to-Q.antifyFactors Relative DeEree of Action ... q.ir.d by F.c.re Generations

334

Georgia Mountain | Open Energy Information  

Open Energy Info (EERE)

Georgia Mountain Georgia Mountain Jump to: navigation, search Name Georgia Mountain Facility Georgia Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner All Earth Renewables Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351°, -73.067991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662351,"lon":-73.067991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

336

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

337

MECS 1991 Publications and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication and Tables Publication and Tables Publication and Tables Figure showing the Largest Energy Consumers in the Manufacturing Sector You have the option of downloading the entire report or selected sections of the report. Full Report - Manufacturing Consumption of Energy 1991 (file size 17.2 MB) pages:566 Selected Sections Main Text (file size 380,153 bytes) pages: 33, includes the following: Contacts Contents Executive Summary Introduction Energy Consumption in the Manufacturing Sector: An Overview Energy Consumption in the Manufacturing Sector, 1991 Manufacturing Capability To Switch Fuels Appendices Appendix A. Detailed Tables Appendix B. Survey Design, Implementation, and Estimates (file size 141,211 bytes) pages: 22. Appendix C. Quality of the Data (file size 135,511 bytes) pages: 8.

338

June 2012 Table of Contents  

Science Conference Proceedings (OSTI)

June 2012 Table of Contents Inform Magazine Inform Archives News June 2012 Science and modern art Oil paintings produced after the industrialization of paint manufacture often are more vulnerable to degradation than

339

Table H.1co2  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table H.1co2 World Carbon Dioxide Emissions from the Consumption and Flaring of Fossil ...

340

April 2011 Table of Contents  

Science Conference Proceedings (OSTI)

April 2011 Table of Contents Inform Magazine Inform Archives News 186 Letter from the president Outgoing AOCS President J. Keith Grime reviews progress made in 2010 and looks forward to the organization's incre

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

September 2012 Table of Contents  

Science Conference Proceedings (OSTI)

September 2012 Table of Contents Inform Magazine Inform Archives News September 2012 Nanoscale oil confinement in fat crystal networks: Why puff pastries are a new frontier for theoretical physicists A theoretical p

342

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE5-1e. Appliances1 Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone2 RSE Row Factors Fewer than 2,000 CDD and --

343

March 2011 Table of Contents  

Science Conference Proceedings (OSTI)

March 2011 Table of Contents Inform Magazine Inform Archives News 126 Innovative, sustainable consumption: A challenge for the entire value chain In our continuing coverage of the 7th World Conference on Detergents,

344

April 2012 Table of Contents  

Science Conference Proceedings (OSTI)

April 2012 Table of Contents Inform Magazine Inform Archives News April 2012 Letter from the president Outgoing AOCS President Erich Dumelin reviews progress in 2011 and looks forward to the organizations inc

345

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2007 (Million Cubic Feet) Alabama ... 270,407 19,831 77,311 90,589 0 -69 0 418,545...

346

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2009 (Million Cubic Feet) Alabama ... 236,029 17,232 -25,416 258,787 0 -2,099 0 454,268...

347

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2006 (Million Cubic Feet) Alabama ... 286,220 21,065 37,079 97,347 0 8,484 0 391,098...

348

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

3 Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2005 (Million Cubic Feet) Alabama ... 296,528 13,759 131,734 -60,062 0 103 0 354,339...

349

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2008 (Million Cubic Feet) Alabama ... 257,884 17,222 1,335 166,539 0 4,379 0 404,157...

350

All Price Tables.vp  

Annual Energy Outlook 2012 (EIA)

Administration State Energy Data 2010: Prices and Expenditures 3 2 0 1 0 S U M M A R I E S Table E2. Total End-Use Energy Price Estimates, 2010 (Dollars per Million Btu)...

351

January 2012 Table of Contents  

Science Conference Proceedings (OSTI)

inform magazine January 2012 Table of Contents Inform Magazine Inform Archives News January 2012 Oilseeds in Australia Australia is now one of the worlds top three exporters of canola oil. inform take

352

Microsoft Word - table_22.doc  

Gasoline and Diesel Fuel Update (EIA)

3 Table 22. Average City Gate Price of Natural Gas in the United States, 2001-2005 (Dollars per Thousand Cubic Feet) Alabama ... 6.63 4.74 6.06 6.65...

353

Microsoft Word - table_22.doc  

Annual Energy Outlook 2012 (EIA)

5 Table 22. Average Citygate Price of Natural Gas in the United States, 2005-2009 (Dollars per Thousand Cubic Feet) Alabama ... 8.47 10.26 8.78 9.84...

354

June 2010 Table of Contents  

Science Conference Proceedings (OSTI)

June 2010 Table of Contents 330 AOCS 2.0 debuts A drum roll, please: The new AOCS web experience, otherwise known as AOCS 2.0, debuted in early May. Ca

355

August 2010 Table of Contents  

Science Conference Proceedings (OSTI)

August 2010 Table of Contents Inform Magazine Inform Archives News 471 Letter from the President AOCS President J. Keith Grime discusses the areas that AOCS will focus on in t

356

May 2012 Table of Contents  

Science Conference Proceedings (OSTI)

May 2012 Table of Contents Inform Magazine Inform Archives News May 2012 Chocolate science Chocolate may be soft, but the science behind it is not. This issue features the latest research on this delectable topic....

357

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE4-1e. Water-Heating Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD ...

358

Microsoft Word - table_26.doc  

Annual Energy Outlook 2012 (EIA)

5 Table 26. Percent Distribution of Natural Gas Delivered to Consumers by State, 2009 Alabama ... 0.8 0.8 2.1 0.3 3.3 Alaska... 0.4...

359

Microsoft Word - table_25.doc  

Annual Energy Outlook 2012 (EIA)

1 Table 25. Percent Distribution of Natural Gas Delivered to Consumers by State, 2005 Alabama ... 0.87 0.86 2.24 0.52 1.79 Alaska......

360

Microsoft Word - table_25.doc  

Annual Energy Outlook 2012 (EIA)

1 Table 25. Percent Distribution of Natural Gas Delivered to Consumers by State, 2006 Alabama ... 0.87 0.86 2.31 0.67 2.34 Alaska......

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft Word - table_26.doc  

Annual Energy Outlook 2012 (EIA)

5 Table 26. Percent Distribution of Natural Gas Delivered to Consumers by State, 2008 Alabama ... 0.78 0.80 2.14 0.36 2.46 Alaska......

362

Microsoft Word - table_26.doc  

Annual Energy Outlook 2012 (EIA)

5 Table 26. Percent Distribution of Natural Gas Delivered to Consumers by State, 2007 Alabama ... 0.75 0.78 2.27 0.47 2.57 Alaska......

363

February 2012 Table of Contents  

Science Conference Proceedings (OSTI)

inform magazine February 2012 Table of Contents Inform Magazine Inform Archives News February 2012 66 Patrick Donnelly named CEO of AOCS Our new CEO, Patrick Donnelly, brings a passion for sci

364

October 2011 Table of Contents  

Science Conference Proceedings (OSTI)

October 2011 Table of Contents Inform Magazine Inform Archives News 542 Soy and breast cancer Are soy foods safe for postmenopausal women who have had breast cancer? Associate Editor Catherine Watk

365

October 2012 Table of Contents  

Science Conference Proceedings (OSTI)

October 2012 Table of Contents Inform Magazine Inform Archives News October 2012 The science behind optimal frying Understanding the frying process can lead to better food and fat quality, a higher degree of control

366

September 2011 Table of Contents  

Science Conference Proceedings (OSTI)

September 2011 Table of Contents Inform Magazine Inform Archives News 478 IOM panel recommends tripling vitamin D intake: Panels conservative approach receives criticism The 102nd AOCS Annua

367

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

368

C:\\WEBSHARE\\WWWROOT\\forecastactuals\\tables2_18.wpd  

Annual Energy Outlook 2012 (EIA)

Tables 2 through 18 Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption,...

369

FY 2014 Budget Request Summary Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Table FY 2014 Budget Request Summary Table Summary Table by Appropriations Summary Table by Organization More Documents & Publications FY 2014 Budget Justification Details...

370

Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part I: Structural Analysis  

Science Conference Proceedings (OSTI)

Values of average annual precipitation (AAP) are desired for hydrologic studies within a watershed containing Yucca Mountain, Nevada, a potential site for a high-level nuclear-waste repository. Reliable values of AAP are not yet available for ...

Joseph A. Hevesi; Jonathan D. Istok; Alan L. Flint

1992-07-01T23:59:59.000Z

371

Yucca Mountain Biological Resources Monitoring Program; Progress report, October 1992--December 1993  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1994-05-01T23:59:59.000Z

372

Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part II: Isohyetal Maps  

Science Conference Proceedings (OSTI)

Values of average annual precipitation (AAP) may be important for hydrologic characterization of a potential high-level nuclear-waste repository site at Yucca Mountain, Nevada. Reliable measurements of AAP are sparse in the vicinity of Yucca ...

Joseph A. Hevesi; Alan L. Flint; Jonathan D. Istok

1992-07-01T23:59:59.000Z

373

Relations of Kinematics, Microphysics and Electrification in an Isolated Mountain Thunderstorm  

Science Conference Proceedings (OSTI)

This paper addresses aspects of the airflow, microphysics, and electrification in a mountain thunderstorm which occurred on 7 August 1979 over the Langmuir Laboratory new Socorro, New Mexico, site of the Thunderstorm Research International ...

Conrad L. Ziegler; Peter S. Ray; Donald R. MacGorman

1986-10-01T23:59:59.000Z

374

Back The Pico Mountain  

NLE Websites -- All DOE Office Websites (Extended Search)

Photos Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores (fialho.paulo@gmail.com) Detlev Helmig, University of Colorado Gracioso Pico *Photos *Pubs summary *Status *Inside view *Go Back View from sea level; Station height 2225 m Winter Station is usually above the MBL [Kleissl et al., 2007] *Photos *Pubs summary *Status *Inside view *Go Back Ideal location to sample impacts on the remote atmosphere -160 -140 -120 -100 -80 -60 -40 -20 0 20 0 10 20 30 40 50 60 70 80 90 Note haze layer from Quebec wildfires * Dominant transport patterns bring - Aged North American anthropogenic emissions. - Aged biomass burning emissions from boreal North America and Siberia. - Tropical North Atlantic air. - (African, European flow). * Note haze layer from Quebec wildfires *Photos

375

Iron Mountain Electromagnetic Results  

SciTech Connect

Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

Gail Heath

2012-07-01T23:59:59.000Z

376

EIA - Annual Energy Outlook 2009 - chapter Tables  

Gasoline and Diesel Fuel Update (EIA)

Chapter Tables Chapter Tables Annual Energy Outlook 2009 with Projections to 2030 Chapter Tables Table 1. Estimated fuel economy for light-duty vehicles, based on proposed CAFE standards, 2010-2015 Table 2. State appliance efficiency standards and potential future actions Table 3. State renewable portfolio standards Table 4. Key analyses from "issues in Focus" in recent AEOs Table 5. Liquid fuels production in three cases, 2007 and 2030 Table 6. Assumptions used in comparing conventional and plug-in hybrid electric vehicles Table 7. Conventional vehicle and plug-in hybrid system component costs for mid-size vehicles at volume production Table 8. Technically recoverable resources of crude oil and natural gas in the Outer Continental Shelf, as of January 1, 2007

377

Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada: 2004 Progress Report  

Science Conference Proceedings (OSTI)

Following completion of the site characterization and site recommendation phases, the Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. This report provides background on how the project arrived at this juncture in its history and detailed information on EPRI's Yucca Mountain-related activities during calendar year 2004. The report summarizes EPRI work completed and in progress on evaluation of igneous c...

2004-09-28T23:59:59.000Z

378

Table for Reports - ESG  

NLE Websites -- All DOE Office Websites (Extended Search)

ESG Reports and Documents ESG Reports and Documents Click on any PDF link below to view a file. For best results be sure to use the Adobe Reader, which available for no cost from Adobe. Site Environmental Reports 2012 Volume 1 (PDF) Volume 2 (PDF) Survey Form (PDF) Approval Letter in Volume 1 2011 Volume 1 (PDF) Volume 2 (PDF) Survey Form (PDF) Approval Letter (PDF) 2010 Volume 1 (PDF) Volume 2 (PDF) Survey Form (PDF) Approval Letter (PDF) 2009 Volume 1 (PDF) Volume 2 (PDF) Survey Form (PDF) Approval Letter (PDF) 2008 Volume 1 (PDF) Volume 2 (PDF) Survey Form (PDF) Approval Letter (PDF) 2007 Volume 1 (PDF) Volume 2 (PDF) Survey Form (PDF) Approval Letter (PDF) 2006 Volume 1 (PDF) Volume 2 (PDF) Survey Form (PDF) Approval Letter (PDF) 2005 Volume 1 (PDF) Volume 2 (PDF) Survey Form (PDF) Approval Letter

379

Supplement Tables to the Annual Energy Outlook 2000 - Errata  

Gasoline and Diesel Fuel Update (EIA)

AEO 2000 AEO 2000 as of 4/4/2000 1. The following values were updated in tables 81 and 82, dealing with natural gas production and reserve additions. Table 81. Lower 48 Natural Gas Production and Wellhead Prices 1998 Original 1998 Corrected 1998-2020 Original 1998-2020 Corrected Lower 48 Total 18.27 18.44 1.6% 1.5% Lower 48 Onshore Northeast 0.75 0.78 3.0% 2.8% Gulf Coast 4.69 4.81 1.4% 1.3% Midcontinent 2.72 2.67 1.2% 1.4% Southwest 1.54 1.56 2.5% 2.4% Rocky Mountain 2.90 2.84 2.7% 2.8% West Coast 0.14 0.25 1.7% -1.1% Lower 48 Offshore Gulf 5.48 5.48 0.7% 0.7% Pacific 0.04 0.05 -1.1% -1.6% Atlantic 0.00 0.00 N/A N/A Table 82. Oil and Gas, End-of-Year Reserves and Annual Reserve Additions 1998 Original

380

Yucca Mountain Climate Technical Support Representative  

SciTech Connect

The primary objective of Project Activity ORD-FY04-012, Yucca Mountain Climate Technical Support Representative, was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Laurel Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Laurel Mountain Facility Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington WV Coordinates 39.00702933°, -79.88500357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.00702933,"lon":-79.88500357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Spruce Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Spruce Mountain Facility Spruce Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Patriot Renewables Developer Patriot Renewables Energy Purchaser Energy New England Location Bryant Pond ME Coordinates 44.43443869°, -70.55286884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.43443869,"lon":-70.55286884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Flow Acceleration and Mountain Drag*  

Science Conference Proceedings (OSTI)

Dynamic explanations of mountain drag usually invoke viscous effects and/or wave momentum flux by either Rossby or internal gravity waves. This paper explores an alternative mechanism in terms of the unsteadiness of the incident flow. The ...

Peter R. Bannon

1985-12-01T23:59:59.000Z

384

Thermohydrologic behavior and repository design at Yucca Mountain  

DOE Green Energy (OSTI)

Radioactive decay of nuclear waste emplaced at Yucca Mountain will produce an initial heat flux many times larger than the heat flux in some natural geothermal systems. This heat flux will change the thermal and hydrologic environment at Yucca Mountain significantly, affecting both the host rock and conditions within the emplacement tunnels (drifts). Understanding the thermohydrologic behavior in this coupled natural and engineered system is critical to the assessment of the viability of Yucca Mountain as a nuclear-waste repository site and for repository design decision-making. We report results from a study that uses our multi-scale modeling approach to explore the relationship between repository design, thermohydrologic behavior, and key repository performance measures.

Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y

2000-10-01T23:59:59.000Z

385

EIA - Appendix A - Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Tables (2005-2035) Tables (2005-2035) International Energy Outlook 2010 Reference Case Projections Tables (2005-2035) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix A. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

386

POST-REMEDIAL RADIOLOGICAL DOSE AND RISK ASSESSMENT FOR THE BLISS & LAUGHLIN SITE BUFFALO, NEW YORK  

Office of Legacy Management (LM)

i i TABLE OF CONTENTS Table of Contents ........................................................................................................... i List of Tables................................................................................................................ iii List of Figures .............................................................................................................. iii 1 Introduction ............................................................................................................... 1 1.1 Site Description and History ............................................................................ 1 1.2 Purpose............................................................................................................. 4

387

MTS Table Top Load frame  

NLE Websites -- All DOE Office Websites (Extended Search)

MTS Table Top Load frame MTS Table Top Load frame The Non-destructive Evaluation group operates an MTS Table Top Load frame for ultimate strength and life cycle testing of various ceramic, ceramic-matrix (FGI), carbon, carbon fiber, cermet (CMC) and metal alloy engineering samples. The load frame is a servo-hydraulic type designed to function in a closed loop configuration under computer control. The system can perform non-cyclic, tension, compression and flexure testing and cyclic fatigue tests. The system is comprised of two parts: * The Load Frame and * The Control System. Load Frame The Load Frame (figure 1) is a cross-head assembly which includes a single moving grip, a stationary grip and LVDT position sensor. It can generate up to 25 kN (5.5 kip) of force in the sample under test and can

388

Nature Bulletin Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents: Table of Contents: Here is our table of contents for the Forset Preserve District of Cook Country Nature Bulletins. To search, go to the Natuere Bulletin's Search Engine and type in your topic. You can also use your browser's "FIND" command to search the 750+ article titles here for a specific subject! Fish Smother Under Ice Coyotes in Cook County Tough Times for the Muskrats Wild Geese and Ducks Fly North Squirrels Spring Frogs Snapping Turtles A Phenomenal Spring Good People Do Not Pick Wildflowers Fire is the Enemy of Field and Forest Crows Earthworms Bees Crayfish Floods Handaxes and Knives in the Forest Preserves Ant Sanctuary Conservation Mosquitoes More About Mosquitoes Fishing in the Forest Preserve Our River Grasshoppers Chiggers Ticks Poison Ivy Fireflies

389

COST AND QUALITY TABLES 95  

Gasoline and Diesel Fuel Update (EIA)

5 Tables 5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) will no longer be pub- lished by the EIA. The tables presented in this docu- ment are intended to replace that annual publication. Questions regarding the availability of these data should be directed to: Coal and Electric Data and Renewables Division

390

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

Female Mountain Spirit in Korea by Maya Stiller UCLA Centera Female Mountain Spirit in Korea by Maya Stiller I n hisfemale mountain spirits in Korea, James Grayson argues that

Stiller, Maya

2011-01-01T23:59:59.000Z

391

KT Monograph Section B Table  

E-Print Network (OSTI)

traced#7;#7; Table B1:1 - Summary of a selection of previous surface surveys and collections in the Near East #12; Slopes of Tepe#7;Top of Tepe#7;Clustered#7;#7;Percentage Diagnostics#7;Small Stones - esp. NW & E#7;Late Roman/Byz. Sherds#7;#7;Trefoil Rims... #7;Terra Sigillata - esp. S & SW#7;Stone Artefacts#7;#7;Red Hittite Wares#7;Hellenistic Sherds#7;Architectural Fragments#7;#7;Total Sherds#7;#7;Large Stones#7;#7;Early Bronze Age#7;#7;#7;#7;Decorated Sherds#7;#7;#7;#7;Feature Sherds#7;#7;#7;#7; Table...

Thomas, D C

2004-12-09T23:59:59.000Z

392

Volcanism Studies: Final Report for the Yucca Mountain Project  

SciTech Connect

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

393

Volcanism Studies: Final Report for the Yucca Mountain Project  

Science Conference Proceedings (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

394

Microsoft Word - BlueMountainGeotherm_FONSI_FinalDrft v3 Clean_4-26-10 Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BLUE MOUNTAIN BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT HUMBOLDT COUNTY, NEVADA PERSHING COUNTY, NEVADA DECEMBER 2007 EA NUMBER: NV-020-08-01 Lead Agency: BUREAU OF LAND MANAGEMENT Winnemucca Field Office 5100 E. Winnemucca Blvd. Winnemucca, Nevada 89445 Project Applicant: NEVADA GEOTHERMAL POWER COMPANY 900-409 Granville Street Vancouver, BC V6C 1T2 It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM·NV·WN·ES·OB·01·1310 NV·020-08-EA-Ol ENVIRONMENTAL ASSESSMENT BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT TABLE OF CONTENTS Page LIST OF TABLES ........................................................................................................................ IV

395

NETL: Ambient Monitoring - Great Smoky Mountains National Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Smoky Mountains Project (GSMP) Great Smoky Mountains Project (GSMP) Background Fine particle annual mass concentrations in the Tennessee Valley range from 14 to20 micrograms per cubic meter. All seven urban/suburban sites exceeded the annual PM2.5 standard; only the rural Lawrence County TN site remained below the 15 µg/m3 annual standard. None of the stations exceeded the 65 µg/m3 level of the 24-hour PM2.5 standard. Summer high-winter low seasonality is evident. The current FRM PM2.5 mass measurements under-estimate the contribution of volatile/semi-volatile nitrates and organic carbon species. The semi-volatile organic fraction is both highly variable and significant, and assessments of semi-volatile and non-volatile organic carbon fractions are needed when particle composition measurements are made, especially at urban sites.

396

2013 Annual Planning Summary for the Rocky Mountain Oilfield...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield...

397

Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Chocolate Mountains Area Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A. Tiedeman, W. C. Huang (2010) Navy's Geothermal Program Office: Overview

398

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network (OSTI)

to Fault Zones at Yucca Mountain, Nevada, International2003c. Calibration of Yucca Mountain Unsaturated Zone FlowUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

399

Tables of Chemicals and Etchants  

Science Conference Proceedings (OSTI)

Table 3   Designation of Etchants...p 255. (b) L.E. Samuels, J. Inst. Met., Vol 83, 1954??1955, p 359. (c) S.A. Manion and T.O. Mulhearn, Metallography, Vol 4, 1971, p 551...

400

Table Of Contents Section: Page  

E-Print Network (OSTI)

....................................................................15-6 15.E Rigging Hardware....................................................15-15 Tables: 15 the immediate work area and properly stored and maintained in a safe condition. 15.A.02 Hoist rope shall.04 When hoisting loads, a positive latching device shall be used to secure the load and rigging (e

US Army Corps of Engineers

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft Word - table_23.doc  

U.S. Energy Information Administration (EIA) Indexed Site

6 Table 23. Average citygate price of natural gas in the United States, 2007- 2011 (dollars per thousand cubic feet) Alabama 8.78 9.84 7.61 6.46 5.80 Alaska 6.75 6.74 8.22 6.67...

402

Trip Table ?????? #ejdyrki-#ejebnjj  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /5e8f0a852f9c1d454b6df13f1365e4ef/e684451614f1683226855e2b90e1249c.html ... Top page #ejdyrki:?XNHx/Baass #ejdzgey:?maO8DRy4pM #ejdzuzo ...

403

Trip Table ?????? #UFOYMAA-#UFPBHZB  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /7faa9d44500591fbfecedcda9a9d9cf9/72b75372a04495579b32da4524a88ead.html ... Top page #UFOYMAA:?760XFpqqAg #UFOZAUQ:?GiyoPAoyp. #UFOZPPG ...

404

Trip Table ?????? #gopmusbo-#gopmxoap  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /de823d5fcb90885762f4a837a7fa1e4c/8ef5e7522a1014862421869a133710f6.html ... Top page #gopmusbo:?MyJIL5jza2 #gopmvgwe:?AGL/5xDjfA #gopmvvqu ...

405

Trip Table ?????? #PNQTORG-#PNQWKQH  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /57be3958616c440476cf50b429b2476e/a2758b2d3ccf7339fa919b48ba7c1570.html ... Top page #PNQTORG:?oGcbIPIQ/2 #PNQUDLW:?QPKgjR/j7k #PNQUSGM ...

406

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

407

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 to 116 Complete set of Supplemental Tables Complete set of Supplemental Tables. Need help, please contact the National Energy Information Center at 202-586-8800. Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central

408

EIA Energy Efficiency:Table 5b. U.S. Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Table 5b. U.S. Commercial Buildings Energy Intensity Using Site Energy 1 by Census Region and Principal Building Activity, 1992-2003 (Thousand Btu per Square Foot)

409

Uranium and Neptunium Desorption from Yucca Mountain Alluvium  

SciTech Connect

Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

2006-03-16T23:59:59.000Z

410

Pine Mountain Builders | Open Energy Information  

Open Energy Info (EERE)

Pine Mountain Builders Pine Mountain Builders Place Pine Mountain, GA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Pine Mountain Builders is a company located in Pine Mountain, GA. References Retrieved from "http://en.openei.org/w/index.php?title=Pine_Mountain_Builders&oldid=379448" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863719699

411

DOE NEPA Guidance and Requirements - Search Index - Table of Contents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE NEPA Guidance and Requirements - Search Index - Table of DOE NEPA Guidance and Requirements - Search Index - Table of Contents DOE NEPA Guidance and Requirements - Search Index - Table of Contents Return to Download Page The DOE NEPA Guidance and Requirements - Search Index includes: NEPA Guidance and Requirements Documents Issued by Published A Brief Guide - DOE-wide Contracts For NEPA Documentation DOE 2003 A Citizen's Guide to the NEPA - Having Your Voice Heard CEQ 2007 A Resource Handbook on DOE Transportation Risk Assessment DOE 2002 Actions During the NEPA Process - Interim Actions DOE 2003 Administrative Record Guidance DOJ 1991 Aligning the NEPA Process with EMS CEQ 2007 Alternative Actions For Analysis in Site-wide NEPA Reviews DOE 1992 Amended Environmental Impact Statement Filing System Guidance EPA 2012 Analysis of Impacts on Prime and Unique Agricultural Lands and NEPA

412

DOE NEPA Guidance and Requirements - Search Index - Table of Contents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Table of Contents DOE NEPA Guidance and Requirements - Search Index - Table of Contents Return to Download Page The DOE NEPA Guidance and Requirements - Search Index includes: NEPA Guidance and Requirements Documents Issued by Published A Brief Guide - DOE-wide Contracts For NEPA Documentation DOE 2003 A Citizen's Guide to the NEPA - Having Your Voice Heard CEQ 2007 A Resource Handbook on DOE Transportation Risk Assessment DOE 2002 Actions During the NEPA Process - Interim Actions DOE 2003 Administrative Record Guidance DOJ 1991 Aligning the NEPA Process with EMS CEQ 2007 Alternative Actions For Analysis in Site-wide NEPA Reviews DOE 1992 Amended Environmental Impact Statement Filing System Guidance EPA 2012 Analysis of Impacts on Prime and Unique Agricultural Lands and NEPA

413

Environmental data for sites in the National Solar Data Network  

DOE Green Energy (OSTI)

Environmental information collected at the sites of the National Solar Data Network is presented in the form of tables for each solar site. The sites are grouped into 12 zones, each of which consists of several adjacent states. The insolation table presents the total, diffuse, direct, maximum, and extraterrestrial radiation for the solar site. It also shows the ratio of total to extraterrestrial radiation as a percent. The temperature table gives the average, daytime, nighttime, maximum, minimum and inlet-water temperatures for the solar site. All of the passive and some of the active solar sites are equipped with wind sensors which provide information for two wind tables furnishing wind speed and direction. For some sites, a humidity table provides relative humidity values for day and night. It also gives values for the maximum and minimum humidity for each day. A technical discussion of the instruments and measurements used to obtain these data tables is included. (LEW)

Not Available

1981-06-01T23:59:59.000Z

414

Environmental data for sites in the National Solar Data Network  

Science Conference Proceedings (OSTI)

Environmental information collected at the sites of the National Solar Data Network is presented in the form of tables for each solar site. The sites are grouped into 12 zones, each of which consists of several adjacent states. The insolation table presents the total, diffuse, direct, maximum, and extraterrestrial radiation for the solar site. It also shows the ratio of total to extraterrestrial radiation, as a percent. The temperature table gives the average, daytime, nighttime, maximum, minimum and inlet-water temperatures for the solar site. All of the passive and some of the active solar sites are equipped with wind sensors which provide information for two wind tables furnishing wind speed and direction. For some sites, a humidity table provides relative humidity values for day and night. It also gives values for the maximum and minimum humidity for each day. A technical discussion of the instruments and measurements used to obtain these data tables is included. (LEW)

Not Available

1981-09-01T23:59:59.000Z

415

Environmental data for sites in the National Solar Data Network  

Science Conference Proceedings (OSTI)

Environmental information collected at the sites of the National Solar Data Network is presented in the form of tables for each solar site. The sites are grouped into 12 zones, each of which consists of several adjacent states. The insolation table presents the total, diffuse, direct, maximum, and extraterrestrial radiation for the solar site. It also shows the ratio of total to extraterrestrial radiation, as a percent. The temperature table gives the average, daytime, nighttime, maximum, minimum and inlet-water temperatures for the solar site. All of the passive and some of the active solar sites are equipped with wind sensors which provide information for two wind tables furnishing wind speed and direction. For some sites, a humidity table provides relative humidity values for day and night. It also gives values for the maximum and minimum humidity for each day. A technical discussion of the instruments and measurements used to obtain these data tables is included. (LEW)

Not Available

1981-05-01T23:59:59.000Z

416

Automatic Table Ground Truth Generation and a Background-Analysis-Based Table Structure Extraction  

E-Print Network (OSTI)

In this paper, we first describe an automatic table ground truth generation system which can efficiently generate a large amount of accurate table ground truth suitable for the development of table detection algorithms. Then a novel background-analysis-based, coarse-to-fine table identification algorithm and an X-Y cut table decomposition algorithm are described. We discuss an experimental protocol to evaluate the table detection algorithms. For a total of having vin table entities and a total cell entities, our table detection algorithm takes line, word segmentation results as input and obtains around cell correct detection rates.

Yalin Wang; Ihsin T. Phillips; Robert Haralick

2001-01-01T23:59:59.000Z

417

Random Table and Its Ground Truth Automatic Generation: A Tool for Table  

E-Print Network (OSTI)

We developed a software tool to assist table understanding research. It can analyze any given table ground truth and generate documents that include similar table elements while have more variety on both table and non-table parts. Based on our novel content matching ground truthing idea, the table ground truth data for the generated table elements become available with little manual work. The validity of the proposed strategy was confirmed by our table detection algorithm development. We made this software package publicly available.

Understanding Research Yalin; Yalin Wang

2001-01-01T23:59:59.000Z

418

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

419

Site Screening, Site Selection,  

NLE Websites -- All DOE Office Websites (Extended Search)

refer back to Figure 3.1 and Table 3.1 to chart the process flow and find the suggested guidelines for assessing these elements. The guidelines should be considered the minimum...

420

Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.  

SciTech Connect

Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

2007-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network (OSTI)

of potentially hazardous processes in regions with mountain permafrost. Buildings and utilities may be dam- aged for the maintenance or construction of high- mountain infrastructure. Increasing rockfall activity and a number

Kääb, Andreas

422

Infiltration/ground water linkage in the southwest: Response of shallow ground water to interannual variations of precipitation, Jemez Mountains, New Mexico  

DOE Green Energy (OSTI)

Hydraulic gradients, residence times and the hydrochemistry of shallow ground water are linked to the episodic precipitation and recharge events characteristic of the arid southwest. In this region, the amount of precipitation, and corresponding biomass, is dependant upon altitude with greater frequency and duration in the montane highlands and less in the desert lowlands. Results from a four-year study at the Rio Calaveras research site in the Jemez Mountains of northern New Mexico show a strong correlation between the physical and hydrochemical properties of shallow ground water and variations of seasonal precipitation and infiltration. For example, the water table shows a dramatic response to snowmelt infiltration during years of abundant snow pack (El Nifio) and diminished response during years of reduced snow pack (La Niiia). The chemical structure of shallow ground water is also affected by the precipitation regime, primarily by variations in the flux of reductants (organic carbon) and oxidants (dissolved oxygen) from the vadose zone to the water table. Generally, oxic conditions persist during spring snowmelt infiltration shifting to anoxic conditions as biotic and abiotic processes transform dissolved oxygen. Other redox-sensitive constituents (ferrous iron, manganese, sulfate, nitrate, and nitrite) show increasing and decreasing concentrations as redox fluctuates seasonally and year-to-year. The cycling of these redox sensitive solutes in the subsurface depends upon the character of the aquifer materials, the biomass at the surface, moisture and temperature regime of the vadose zone, and frequency of infiltration events.

Groffman, A. R. (Armand R.)

2002-01-01T23:59:59.000Z

423

Solar Cell Efficiency Tables (Version 39)  

Science Conference Proceedings (OSTI)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2011 are reviewed.

Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.

2012-01-01T23:59:59.000Z

424

November/December 2012 Table of Contents  

Science Conference Proceedings (OSTI)

inform November/December table of contents. November/December 2012 Table of Contents inform Magazine algae algal AOCS biomass business chemistry cottonseed date detergents fats filing first history inform inform Magazine international inventor la

425

Table Name query? | OpenEI Community  

Open Energy Info (EERE)

Table Name query? Home > Groups > Databus Is there an API feature which returns the names of tables? Submitted by Hopcroft on 28 October, 2013 - 15:37 1 answer Points: 0 if you are...

426

A System for Tabled Constraint Logic Programming  

Science Conference Proceedings (OSTI)

As extensions to traditional logic programming, both tabling and Constraint Logic Programming (CLP) have proven powerful tools in many areas. They make logic programming more efficient and more declarative. However, combining the techniques of tabling ...

Baoqiu Cui; David Scott Warren

2000-07-01T23:59:59.000Z

427

Analytical Division Seed Oil Translation Table  

Science Conference Proceedings (OSTI)

seed oil translation table nomencalture Analytical Division Seed Oil Translation Table Analytical Chemistry Analytical Chemistry aocs articles atomic)FluorometryDifferential scanning calorimetry chemistry Chromatography (liquid detergents esters fats fo

428

Microsoft Word - table_11.doc  

U.S. Energy Information Administration (EIA) Indexed Site

25 25 Table 11 Created on: 12/12/2013 2:10:53 PM Table 11. Underground natural gas storage - storage fields other than salt caverns, 2008-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2008 Total b -- -- -- -- -- 2,900 2,976 76 2009 Total b -- -- -- -- -- 2,856 2,563 -293 2010 Total b -- -- -- -- -- 2,781 2,822 41 2011 January 4,166 2,131 6,298 -63 -2.9 27 780 753 February 4,166 1,597 5,763 -10 -0.6 51 586 535 March 4,165 1,426 5,591 -114 -7.4 117 288 172

429

Microsoft Word - table_08.doc  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 8 Created on: 12/12/2013 2:07:39 PM Table 8. Underground natural gas storage - all operators, 2008-2013 (million cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total a Volume Percent Injections Withdrawals Net Withdrawals b 2008 Total c -- -- -- -- -- 3,340 3,374 34 2009 Total c -- -- -- -- -- 3,315 2,966 -349 2010 Total c -- -- -- -- -- 3,291 3,274 -17 2011 January 4,303 2,306 6,609 2 0.1 50 849 799 February 4,302 1,722 6,024 39 2.3 82 666 584 March 4,302 1,577 5,879 -75 -4.6 168 314 146 April 4,304 1,788 6,092 -223 -11.1 312 100

430

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Methanol (CH 3 OH) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56176 0.791 67.6 0.08970 3.5477 0.2529 2.7639 3.5160 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.169 8.169 6.759 × 10 -1 14.0 MeV 5.616 × 10 1 6.369 6.369 1.236 × 10 0 20.0 MeV 6.802 × 10 1 4.972 4.972 2.315 × 10 0 30.0 MeV 8.509 × 10 1 3.855 3.855 4.631 × 10 0 40.0 MeV 1.003 × 10 2 3.291 3.291 7.457 × 10 0 80.0 MeV 1.527 × 10 2 2.469 2.469 2.194 × 10 1 100. MeV 1.764 × 10 2 2.321 2.322 3.032 × 10 1 140. MeV 2.218 × 10 2 2.166 2.166 4.823 × 10 1 200. MeV 2.868 × 10 2 2.074 2.074 7.664 × 10 1 300. MeV 3.917 × 10 2 2.039 0.000 2.039 1.254 × 10 2 318. MeV 4.105 × 10 2 2.038 0.000 2.039 Minimum ionization 400. MeV 4.945 × 10 2 2.045 0.000 2.045 1.744 × 10 2 800. MeV 8.995 × 10 2 2.121 0.000 0.000 2.122 3.665 × 10 2 1.00 GeV 1.101 × 10 3 2.156 0.000 0.000 2.157 4.600 × 10 2 1.40 GeV 1.502 ×

431

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Carbon (amorphous) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) 12.0107 (8) 2.000 78.0 0.20240 3.0036 -0.0351 2.4860 2.9925 0.10 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.771 × 10 -1 14.0 MeV 5.616 × 10 1 5.550 5.551 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.332 4.332 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.357 3.357 5.317 × 10 0 40.0 MeV 1.003 × 10 2 2.862 2.862 8.564 × 10 0 80.0 MeV 1.527 × 10 2 2.129 2.129 2.529 × 10 1 100. MeV 1.764 × 10 2 1.994 1.994 3.502 × 10 1 140. MeV 2.218 × 10 2 1.857 1.857 5.591 × 10 1 200. MeV 2.868 × 10 2 1.778 1.779 8.905 × 10 1 300. MeV 3.917 × 10 2 1.749 0.000 1.749 1.459 × 10 2 313. MeV 4.055 × 10 2 1.749 0.000 1.749 Minimum ionization 400. MeV 4.945 × 10 2 1.755 0.000 1.756 2.030 × 10 2 800. MeV 8.995 × 10 2 1.824 0.000 0.000 1.825 4.266 × 10 2 1.00 GeV 1.101 × 10 3 1.855 0.000 0.000 1.856 5.353 × 10

432

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Mix D wax Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56479 0.990 60.9 0.07490 3.6823 0.1371 2.7145 3.0780 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.322 8.322 6.628 × 10 -1 14.0 MeV 5.616 × 10 1 6.485 6.486 1.213 × 10 0 20.0 MeV 6.802 × 10 1 5.060 5.060 2.273 × 10 0 30.0 MeV 8.509 × 10 1 3.922 3.922 4.549 × 10 0 40.0 MeV 1.003 × 10 2 3.347 3.347 7.327 × 10 0 80.0 MeV 1.527 × 10 2 2.505 2.506 2.158 × 10 1 100. MeV 1.764 × 10 2 2.346 2.346 2.985 × 10 1 140. MeV 2.218 × 10 2 2.182 2.182 4.761 × 10 1 200. MeV 2.868 × 10 2 2.087 2.087 7.584 × 10 1 300. MeV 3.917 × 10 2 2.049 0.000 2.049 1.243 × 10 2 328. MeV 4.201 × 10 2 2.048 0.000 2.048 Minimum ionization 400. MeV 4.945 × 10 2 2.053 0.000 2.053 1.731 × 10 2 800. MeV 8.995 × 10 2 2.125 0.000 0.000 2.125 3.647 × 10 2 1.00 GeV 1.101 × 10 3 2.158 0.000 0.000 2.159 4.581 × 10 2 1.40 GeV 1.502 × 10 3 2.213

433

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium nitrate NaNO 3 Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49415 2.261 114.6 0.09391 3.5097 0.1534 2.8221 3.6502 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.702 6.702 8.281 × 10 -1 14.0 MeV 5.616 × 10 1 5.239 5.239 1.510 × 10 0 20.0 MeV 6.802 × 10 1 4.100 4.100 2.820 × 10 0 30.0 MeV 8.509 × 10 1 3.187 3.187 5.624 × 10 0 40.0 MeV 1.003 × 10 2 2.726 2.726 9.039 × 10 0 80.0 MeV 1.527 × 10 2 2.053 2.053 2.648 × 10 1 100. MeV 1.764 × 10 2 1.927 1.927 3.656 × 10 1 140. MeV 2.218 × 10 2 1.800 1.800 5.814 × 10 1 200. MeV 2.868 × 10 2 1.729 1.729 9.228 × 10 1 298. MeV 3.894 × 10 2 1.705 0.000 1.705 Minimum ionization 300. MeV 3.917 × 10 2 1.705 0.000 1.705 1.507 × 10 2 400. MeV 4.945 × 10 2 1.714 0.000 1.714 2.092 × 10 2 800. MeV 8.995 × 10 2 1.787 0.000 0.000 1.787 4.377 × 10 2 1.00 GeV 1.101 × 10 3 1.819 0.000 0.000 1.819 5.486 × 10 2 1.40 GeV 1.502

434

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-12B2 (CF 2 Br 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.44901 1.800 284.9 0.05144 3.5565 0.3406 3.7956 5.7976 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.330 5.330 1.053 × 10 0 14.0 MeV 5.616 × 10 1 4.190 4.190 1.908 × 10 0 20.0 MeV 6.802 × 10 1 3.297 3.297 3.540 × 10 0 30.0 MeV 8.509 × 10 1 2.577 2.577 7.017 × 10 0 40.0 MeV 1.003 × 10 2 2.212 2.212 1.123 × 10 1 80.0 MeV 1.527 × 10 2 1.680 1.680 3.263 × 10 1 100. MeV 1.764 × 10 2 1.586 1.586 4.491 × 10 1 140. MeV 2.218 × 10 2 1.496 1.496 7.099 × 10 1 200. MeV 2.868 × 10 2 1.452 1.452 1.118 × 10 2 252. MeV 3.421 × 10 2 1.445 0.000 1.445 Minimum ionization 300. MeV 3.917 × 10 2 1.448 0.000 1.449 1.809 × 10 2 400. MeV 4.945 × 10 2 1.467 0.000 0.000 1.468 2.496 × 10 2 800. MeV 8.995 × 10 2 1.556 0.000 0.000 1.557 5.139 × 10 2 1.00 GeV 1.101 × 10 3 1.592 0.001 0.000 1.593 6.409 × 10 2 1.40 GeV

435

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Eye lens (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54977 1.100 73.3 0.09690 3.4550 0.2070 2.7446 3.3720 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.912 7.912 6.984 × 10 -1 14.0 MeV 5.616 × 10 1 6.171 6.171 1.277 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.390 × 10 0 30.0 MeV 8.509 × 10 1 3.738 3.738 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.192 3.192 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.396 2.396 2.262 × 10 1 100. MeV 1.764 × 10 2 2.251 2.251 3.125 × 10 1 140. MeV 2.218 × 10 2 2.095 2.096 4.976 × 10 1 200. MeV 2.868 × 10 2 2.006 2.006 7.914 × 10 1 300. MeV 3.917 × 10 2 1.971 0.000 1.971 1.296 × 10 2 318. MeV 4.105 × 10 2 1.971 0.000 1.971 Minimum ionization 400. MeV 4.945 × 10 2 1.977 0.000 1.977 1.803 × 10 2 800. MeV 8.995 × 10 2 2.051 0.000 0.000 2.051 3.790 × 10 2 1.00 GeV 1.101 × 10 3 2.085 0.000 0.000 2.085 4.756 × 10 2 1.40 GeV 1.502 × 10

436

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Compact bone (ICRU) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53010 1.850 91.9 0.05822 3.6419 0.0944 3.0201 3.3390 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.406 7.406 7.477 × 10 -1 14.0 MeV 5.616 × 10 1 5.783 5.783 1.365 × 10 0 20.0 MeV 6.802 × 10 1 4.521 4.521 2.552 × 10 0 30.0 MeV 8.509 × 10 1 3.511 3.511 5.097 × 10 0 40.0 MeV 1.003 × 10 2 3.000 3.000 8.199 × 10 0 80.0 MeV 1.527 × 10 2 2.247 2.247 2.408 × 10 1 100. MeV 1.764 × 10 2 2.106 2.106 3.330 × 10 1 140. MeV 2.218 × 10 2 1.962 1.962 5.307 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.444 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.850 1.382 × 10 2 314. MeV 4.065 × 10 2 1.849 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.856 0.000 1.857 1.922 × 10 2 800. MeV 8.995 × 10 2 1.930 0.000 0.000 1.930 4.036 × 10 2 1.00 GeV 1.101 × 10 3 1.963 0.000 0.000 1.964 5.063 × 10 2 1.40 GeV 1.502

437

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyimide film (C 22 H 10 N 2 O 5 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51264 1.420 79.6 0.15972 3.1921 0.1509 2.5631 3.3497 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.299 7.299 7.576 × 10 -1 14.0 MeV 5.616 × 10 1 5.695 5.695 1.385 × 10 0 20.0 MeV 6.802 × 10 1 4.449 4.449 2.590 × 10 0 30.0 MeV 8.509 × 10 1 3.453 3.453 5.177 × 10 0 40.0 MeV 1.003 × 10 2 2.949 2.949 8.332 × 10 0 80.0 MeV 1.527 × 10 2 2.214 2.214 2.448 × 10 1 100. MeV 1.764 × 10 2 2.074 2.074 3.384 × 10 1 140. MeV 2.218 × 10 2 1.932 1.932 5.392 × 10 1 200. MeV 2.868 × 10 2 1.851 1.851 8.577 × 10 1 300. MeV 3.917 × 10 2 1.820 0.000 1.820 1.404 × 10 2 314. MeV 4.065 × 10 2 1.820 0.000 1.820 Minimum ionization 400. MeV 4.945 × 10 2 1.826 0.000 1.827 1.953 × 10 2 800. MeV 8.995 × 10 2 1.897 0.000 0.000 1.898 4.102 × 10 2 1.00 GeV 1.101 × 10 3 1.929 0.000 0.000 1.930 5.147 × 10 2 1.40

438

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0 40.0 MeV 1.003 10 2 1.623 1.623 1.564 10 1 80.0 MeV 1.527 10 2 1.249 1.249 4.456 10 1 100. MeV 1.764 10 2 1.183 1.183 6.106 10 1 140. MeV 2.218 10 2 1.123...

439

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

GeV 3.104 10 3 1.413 0.007 0.003 0.001 1.425 2.316 10 3 4.00 GeV 4.104 10 3 1.456 0.011 0.006 0.002 1.475 3.006 10 3 8.00 GeV 8.105 10 3 1.556 0.026 0.022 0.003...

440

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0 30.0 MeV 8.509 10 1 2.008 2.009 9.168 10 0 40.0 MeV 1.003 10 2 1.733 1.733 1.456 10 1 80.0 MeV 1.527 10 2 1.328 1.328 4.171 10 1 100. MeV 1.764 10 2 1.256...

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0 30.0 MeV 8.509 10 1 3.053 3.053 5.894 10 0 40.0 MeV 1.003 10 2 2.615 2.615 9.456 10 0 80.0 MeV 1.527 10 2 1.968 1.968 2.764 10 1 100. MeV 1.764 10 2 1.850...

442

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

GeV 4.104 10 3 2.346 0.001 0.001 0.002 2.350 1.799 10 3 8.00 GeV 8.105 10 3 2.456 0.003 0.003 0.004 2.467 3.455 10 3 10.0 GeV 1.011 10 4 2.490 0.004 0.004 0.005...

443

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

2 400. MeV 4.945 10 2 1.371 0.000 0.000 1.372 2.674 10 2 800. MeV 8.995 10 2 1.456 0.001 0.000 1.457 5.500 10 2 1.00 GeV 1.101 10 3 1.490 0.001 0.000 1.491 6.857 ...

444

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

4.011 10 4 1.698 0.202 0.233 0.014 2.147 2.294 10 4 80.0 GeV 8.011 10 4 1.761 0.456 0.567 0.027 2.812 3.918 10 4 100. GeV 1.001 10 5 1.780 0.591 0.747 0.034 3.153...

445

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

8.226 10 0 40.0 MeV 1.003 10 2 1.906 1.906 1.312 10 1 80.0 MeV 1.527 10 2 1.456 1.456 3.785 10 1 100. MeV 1.764 10 2 1.376 1.376 5.202 10 1 140. MeV 2.218 ...

446

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

10.0 MeV 4.704 10 1 6.951 6.951 7.977 10 -1 14.0 MeV 5.616 10 1 5.429 5.430 1.456 10 0 20.0 MeV 6.802 10 1 4.246 4.246 2.720 10 0 30.0 MeV 8.509 10 1 3.298...

447

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.031 0.008 2.173 1.006 10 4 30.0 GeV 3.011 10 4 2.155 0.044 0.054 0.012 2.265 1.456 10 4 40.0 GeV 4.011 10 4 2.188 0.061 0.079 0.016 2.345 1.890 10 4 80.0 GeV...

448

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

GeV 1.411 10 4 2.409 0.006 0.007 0.007 2.428 6.155 10 3 20.0 GeV 2.011 10 4 2.456 0.010 0.011 0.009 2.486 8.595 10 3 30.0 GeV 3.011 10 4 2.506 0.016 0.019 0.014...

449

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.003 0.003 0.004 2.420 3.522 10 3 10.0 GeV 1.011 10 4 2.443 0.004 0.004 0.005 2.456 4.342 10 3 14.0 GeV 1.411 10 4 2.490 0.006 0.007 0.007 2.510 5.952 10 3 20.0...

450

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

1.334 0.047 4.360 5.250 10 4 200. GeV 2.001 10 5 1.923 1.625 2.040 0.066 5.656 6.456 10 4 300. GeV 3.001 10 5 1.956 2.546 3.219 0.099 7.822 7.954 10 4 400. GeV...

451

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

GeV 1.502 10 3 1.397 0.002 0.000 0.001 1.399 1.061 10 3 2.00 GeV 2.103 10 3 1.456 0.003 0.001 0.001 1.461 1.480 10 3 3.00 GeV 3.104 10 3 1.522 0.006 0.003 0.001...

452

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.039 3.670 Muon critical energy 140. GeV 1.401 10 5 1.849 0.986 1.242 0.047 4.126 5.456 10 4 200. GeV 2.001 10 5 1.877 1.477 1.898 0.067 5.321 6.734 10 4 300. GeV...

453

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

4.0044 5000. 1.5381 2.1876 0.4429 4.1687 10000. 1.5732 2.2238 0.4632 4.2604 20000. 1.5980 2.2468 0.4870 4.3318 50000. 1.6181 2.2651 0.5242 4.4075 100000. 1.6279 2.2726 0.5560 4.456...

454

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.019 0.023 0.013 2.401 1.341 10 4 40.0 GeV 4.011 10 4 2.379 0.026 0.033 0.017 2.456 1.753 10 4 80.0 GeV 8.011 10 4 2.455 0.060 0.081 0.034 2.629 3.324 10 4 100....

455

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.377 0.029 2.674 3.738 10 4 100. GeV 1.001 10 5 2.007 0.363 0.495 0.036 2.902 4.456 10 4 140. GeV 1.401 10 5 2.037 0.533 0.739 0.050 3.360 5.736 10 4 200. GeV...

456

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

10 2 1.685 0.000 1.685 2.136 10 2 800. MeV 8.995 10 2 1.763 0.000 0.000 1.763 4.456 10 2 1.00 GeV 1.101 10 3 1.796 0.000 0.000 1.797 5.579 10 2 1.40 GeV 1.502 ...

457

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

6.914 10 1 200. MeV 2.868 10 2 1.469 1.469 1.094 10 2 273. MeV 3.633 10 2 1.456 0.000 1.456 Minimum ionization 300. MeV 3.917 10 2 1.457 0.000 1.457 1.779 10 2...

458

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in B-100 Bone-equivalent plastic Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52740 1.450 85.9 0.05268 3.7365 0.1252 3.0420 3.4528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.435 7.435 7.443 × 10 -1 14.0 MeV 5.616 × 10 1 5.803 5.803 1.360 × 10 0 20.0 MeV 6.802 × 10 1 4.535 4.535 2.543 × 10 0 30.0 MeV 8.509 × 10 1 3.521 3.521 5.080 × 10 0 40.0 MeV 1.003 × 10 2 3.008 3.008 8.173 × 10 0 80.0 MeV 1.527 × 10 2 2.256 2.256 2.401 × 10 1 100. MeV 1.764 × 10 2 2.115 2.115 3.319 × 10 1 140. MeV 2.218 × 10 2 1.971 1.971 5.287 × 10 1 200. MeV 2.868 × 10 2 1.889 1.889 8.408 × 10 1 300. MeV 3.917 × 10 2 1.859 0.000 1.859 1.376 × 10 2 314. MeV 4.065 × 10 2 1.859 0.000 1.859 Minimum ionization 400. MeV 4.945 × 10 2 1.866 0.000 1.866 1.913 × 10 2 800. MeV 8.995 × 10 2 1.940 0.000 0.000 1.940 4.016 × 10 2 1.00 GeV 1.101 × 10 3 1.973 0.000 0.000 1.974 5.037 × 10 2 1.40

459

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium monoxide Na 2 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.48404 2.270 148.8 0.07501 3.6943 0.1652 2.9793 4.1892 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.330 6.330 8.793 × 10 -1 14.0 MeV 5.616 × 10 1 4.955 4.956 1.601 × 10 0 20.0 MeV 6.802 × 10 1 3.883 3.884 2.984 × 10 0 30.0 MeV 8.509 × 10 1 3.024 3.024 5.943 × 10 0 40.0 MeV 1.003 × 10 2 2.588 2.588 9.541 × 10 0 80.0 MeV 1.527 × 10 2 1.954 1.954 2.789 × 10 1 100. MeV 1.764 × 10 2 1.840 1.840 3.846 × 10 1 140. MeV 2.218 × 10 2 1.725 1.725 6.102 × 10 1 200. MeV 2.868 × 10 2 1.663 1.664 9.656 × 10 1 283. MeV 3.738 × 10 2 1.646 0.000 1.647 Minimum ionization 300. MeV 3.917 × 10 2 1.647 0.000 1.647 1.571 × 10 2 400. MeV 4.945 × 10 2 1.659 0.000 1.660 2.177 × 10 2 800. MeV 8.995 × 10 2 1.738 0.000 0.000 1.738 4.531 × 10 2 1.00 GeV 1.101 × 10 3 1.771 0.000 0.000 1.772 5.670 × 10 2 1.40 GeV 1.502

460

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Tissue-equivalent gas (Propane based) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55027 1.826 × 10 -3 59.5 0.09802 3.5159 1.5139 3.9916 9.3529 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.132 8.132 6.782 × 10 -1 14.0 MeV 5.616 × 10 1 6.337 6.337 1.241 × 10 0 20.0 MeV 6.802 × 10 1 4.943 4.944 2.326 × 10 0 30.0 MeV 8.509 × 10 1 3.831 3.831 4.656 × 10 0 40.0 MeV 1.003 × 10 2 3.269 3.269 7.500 × 10 0 80.0 MeV 1.527 × 10 2 2.450 2.450 2.209 × 10 1 100. MeV 1.764 × 10 2 2.303 2.303 3.053 × 10 1 140. MeV 2.218 × 10 2 2.158 2.158 4.855 × 10 1 200. MeV 2.868 × 10 2 2.084 2.084 7.695 × 10 1 263. MeV 3.527 × 10 2 2.068 0.000 2.069 Minimum ionization 300. MeV 3.917 × 10 2 2.071 0.000 2.072 1.252 × 10 2 400. MeV 4.945 × 10 2 2.097 0.000 2.097 1.732 × 10 2 800. MeV 8.995 × 10 2 2.232 0.000 0.000 2.232 3.580 × 10 2 1.00 GeV 1.101 × 10 3 2.289 0.000 0.000 2.290

Note: This page contains sample records for the topic "table mountain site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead oxide (PbO) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.40323 9.530 766.7 0.19645 2.7299 0.0356 3.5456 6.2162 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.046 4.046 1.411 × 10 0 14.0 MeV 5.616 × 10 1 3.207 3.207 2.532 × 10 0 20.0 MeV 6.802 × 10 1 2.542 2.542 4.656 × 10 0 30.0 MeV 8.509 × 10 1 2.003 2.003 9.146 × 10 0 40.0 MeV 1.003 × 10 2 1.727 1.727 1.455 × 10 1 80.0 MeV 1.527 × 10 2 1.327 1.327 4.176 × 10 1 100. MeV 1.764 × 10 2 1.256 1.256 5.729 × 10 1 140. MeV 2.218 × 10 2 1.188 1.189 9.017 × 10 1 200. MeV 2.868 × 10 2 1.158 1.158 1.415 × 10 2 236. MeV 3.250 × 10 2 1.155 0.000 1.155 Minimum ionization 300. MeV 3.917 × 10 2 1.161 0.000 0.000 1.161 2.279 × 10 2 400. MeV 4.945 × 10 2 1.181 0.000 0.000 1.181 3.133 × 10 2 800. MeV 8.995 × 10 2 1.266 0.001 0.000 1.267 6.398 × 10 2 1.00 GeV 1.101 × 10 3 1.299 0.001 0.000 1.301 7.955 × 10 2 1.40

462

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Liquid argon (Ar) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 18 (Ar) 39.948 (1) 1.396 188.0 0.19559 3.0000 0.2000 3.0000 5.2146 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.687 5.687 9.833 × 10 -1 14.0 MeV 5.616 × 10 1 4.461 4.461 1.786 × 10 0 20.0 MeV 6.802 × 10 1 3.502 3.502 3.321 × 10 0 30.0 MeV 8.509 × 10 1 2.731 2.731 6.598 × 10 0 40.0 MeV 1.003 × 10 2 2.340 2.340 1.058 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.084 × 10 1 100. MeV 1.764 × 10 2 1.669 1.670 4.250 × 10 1 140. MeV 2.218 × 10 2 1.570 1.570 6.732 × 10 1 200. MeV 2.868 × 10 2 1.518 1.519 1.063 × 10 2 266. MeV 3.567 × 10 2 1.508 0.000 1.508 Minimum ionization 300. MeV 3.917 × 10 2 1.509 0.000 1.510 1.725 × 10 2 400. MeV 4.945 × 10 2 1.526 0.000 0.000 1.526 2.385 × 10 2 800. MeV 8.995 × 10 2 1.610 0.000 0.000 1.610 4.934 × 10 2 1.00 GeV 1.101 × 10 3 1.644 0.000 0.000 1.645 6.163

463

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-13 (CF 3 Cl) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.47966 0.950 126.6 0.07238 3.5551 0.3659 3.2337 4.7483 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.416 6.416 8.659 × 10 -1 14.0 MeV 5.616 × 10 1 5.019 5.019 1.578 × 10 0 20.0 MeV 6.802 × 10 1 3.930 3.930 2.945 × 10 0 30.0 MeV 8.509 × 10 1 3.057 3.057 5.870 × 10 0 40.0 MeV 1.003 × 10 2 2.615 2.615 9.430 × 10 0 80.0 MeV 1.527 × 10 2 1.971 1.971 2.760 × 10 1 100. MeV 1.764 × 10 2 1.857 1.857 3.809 × 10 1 140. MeV 2.218 × 10 2 1.745 1.745 6.041 × 10 1 200. MeV 2.868 × 10 2 1.685 1.685 9.551 × 10 1 283. MeV 3.738 × 10 2 1.668 0.000 1.668 Minimum ionization 300. MeV 3.917 × 10 2 1.668 0.000 1.668 1.553 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.151 × 10 2 800. MeV 8.995 × 10 2 1.762 0.000 0.000 1.763 4.473 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.596 × 10 2 1.40 GeV 1.502

464

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lutetium silicon oxide [Lu 2 SiO 5 ] Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42793 7.400 472.0 0.20623 3.0000 0.2732 3.0000 5.4394 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.679 4.679 1.209 × 10 0 14.0 MeV 5.616 × 10 1 3.692 3.693 2.181 × 10 0 20.0 MeV 6.802 × 10 1 2.916 2.916 4.029 × 10 0 30.0 MeV 8.509 × 10 1 2.287 2.287 7.953 × 10 0 40.0 MeV 1.003 × 10 2 1.968 1.968 1.270 × 10 1 80.0 MeV 1.527 × 10 2 1.503 1.503 3.666 × 10 1 100. MeV 1.764 × 10 2 1.421 1.422 5.038 × 10 1 140. MeV 2.218 × 10 2 1.344 1.344 7.944 × 10 1 200. MeV 2.868 × 10 2 1.308 1.308 1.248 × 10 2 242. MeV 3.316 × 10 2 1.304 1.304 Minimum ionization 300. MeV 3.917 × 10 2 1.309 0.000 0.000 1.309 2.014 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.329 2.773 × 10 2 800. MeV 8.995 × 10 2 1.415 0.001 0.000 1.416 5.684 × 10 2 1.00 GeV 1.101 × 10 3 1.449 0.001 0.000 1.450 7.080