Powered by Deep Web Technologies
Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratorys South Table Mountain Complex  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

# 1440 # 1440 FINAL Site-Wide Environmental Assessment of the National Renewable Energy Laboratory's South Table Mountain Complex July 2003 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE NATIONAL RENEWABLE ENERGY LABORATORY 1617 Cole Boulevard Golden, Colorado 80401 Site-Wide Environmental Assessment of FINAL National Renewable Energy Laboratory's South Table Mountain Complex TABLE OF CONTENTS LIST OF ACRONYMS.................................................................................................................vii S. SUMMARY .................................................................................................................... S-1 S.1 INTRODUCTION ...........................................................................................................

2

DOE/EA-1440-S-1: Final Supplement to the Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratory's South Table Mountain Complex (May 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUPPLEMENT TO FINAL SITE-WIDE ENVIRONMENTAL SUPPLEMENT TO FINAL SITE-WIDE ENVIRONMENTAL ASSESSMENT OF THE NATIONAL RENEWABLE ENERGY LABORATORY'S SOUTH TABLE MOUNTAIN COMPLEX Proposed Construction and Operation of: - Research Support Facilities, - Infrastructure Improvements (Phase I), - Upgrades to the Thermochemical User Facility and Addition of the Thermochemical Biorefinery Pilot Plant May 2008 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1440-S-1 Department of Energy Golden Field Office 161 7 Cole Boulevard Golden, Colorado 80401 -3305 May 14,2008 FINDING OF NO SIGNIFICANT IMPACT for SUPPLEMENT TO FINAL SITE-WIDE ENVIRONMENTAL ASSESSMENT OF THE NATIONAL RENEWABLE ENERGY LABORATORY'S

3

DOE/EA-1440-S-1: Finding of No Significant Impact for Final Supplement to the Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratory's South Table Mountain Complex (5/15/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Cole Boulevard 7 Cole Boulevard Golden, Colorado 80401 -3305 May 14,2008 FINDING OF NO SIGNIFICANT IMPACT for SUPPLEMENT TO FINAL SITE-WIDE ENVIRONMENTAL ASSESSMENT OF THE NATIONAL RENEWABLE ENERGY LABORATORY'S SOUTH TABLE MOUNTAIN COMPLEX AGENCY: Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact SUMMARY: 111 accordance with the Department of Energy (DOE) National Environmental Policy Act (NEPA) implementing regulations, DOE evaluated the potential environniental impacts that would result from three actions at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site: Proposed Construction and Operation o f Research Suppol-t Facilities (RSF), Infrastructure Improvements (Phase I), Upgrades to tlie Thermochemical User Facility (TCUF) and addition of the

4

EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

440-S1: National Renewable Energy Laboratory's South Table 440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory EA-1440-S1: National Renewable Energy Laboratory's South Table Mountain Complex, Golden Field Office, National Renewable Energy Laboratory SUMMARY ThIs EA evaluates the potential environmental impact of a DOE proposal that consists of three site development projects at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site at Golden, Colorado: Construction of the Research Support Facilities (RSF), a new office building or multi-building office complex; Installation of Phase 1 of planned Site Infrastructure Improvements (Phase 1 of Full Site Development); Upgrades to the Thermochemical User Facility (TCUF), TCUF

5

Table 4-3 Site Wide Environmental Management Matrix  

NLE Websites -- All DOE Office Websites (Extended Search)

Site-Wide Environmental Assessment of Table 4-3. Site-Wide Environmental Management Matrix National Renewable Energy Laboratory's South Table Mountain Complex FINAL POTENTIAL...

6

First-Year Operation of a New Water Vapor Raman Lidar at the JPL Table Mountain Facility, California  

Science Conference Proceedings (OSTI)

A new water vapor Raman lidar was recently built at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL) in California and more than a year of routine 2-h-long nighttime measurements 45 times per week have been completed. The ...

Thierry Leblanc; I. Stuart McDermid; Robin A. Aspey

2008-08-01T23:59:59.000Z

7

Multi-level hardware prefetching using low complexity delta correlating prediction tables with partial matching  

Science Conference Proceedings (OSTI)

This paper presents a low complexity table-based approach to delta correlation prefetching. Our approach uses a table indexed by the load address which stores the latest deltas observed. By storing deltas rather than full miss addresses, considerable ...

Marius Grannaes; Magnus Jahre; Lasse Natvig

2010-01-01T23:59:59.000Z

8

Mountain  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" "(million gallons)" "Period","PADD",,,,,,,,,,"U.S." ,"East Coast (PADD 1)",,"Midwest (PADD 2)",,"Gulf Coast (PADD 3)",,"Rocky Mountain (PADD 4)",,"West Coast (PADD 5)" 2011 "January",3,,30,,1,,0,,1,,35.355469 "February",3,,32,,4,,0,,1,,40.342355 "March",3,,47,,6,,0,,2,,59.59017 "April",3,,54,,10,,0,,3,,71.0517 "May",4,,58,,11,,0,,4,,77.196652 "June",4,,56,,14,,0,,7,,81.39104 "July",5,,65,,17,,0,,5,,91.679738 "August",5,,66,,20,,0,,5,,95.484891 "September",6,,65,,20,,0,,6,,95.880151 "October",7,,73,,22,,0,,4,,105.342474

9

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 295: Muons in water as calc from steam to check code ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.55509 1.000 71.6 0.44251 3.0000 0.2000 2.0000 3.5017 0.00 T p...

10

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network (OSTI)

The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table north of the repository site. This study investigates the cause of the steep gradient, based on the possible influence by Paleozoic rocks under the Yucca Mountain area. A quasi-three dimensional, steady-state, finite-difference model of the groundwater flow system of the Yucca Mountain Site and vicinity, was developed using a manual trial-and-error calibration technique to model the ground-water table. The ground-water system in the model was divided into a two layers, which consist of Cenozoic volcanic rocks and Paleozoic carbonate rocks. The carbonate rocks were defined to be a confined aquifer. The model simulates vertical flow from the volcanic rocks to the underlying carbonate rocks in an area where the Eleana Formation, a Paleozoic clastic aquitard, is absent. The model requires a vertical hydrologic connection in a particular region and a large difference in hydraulic heads between the volcanic rocks and the carbonates to create the steep gradient north of the repository site. The regions of different hydraulic gradient on the water-table surface could be simulated by spatial variations of the horizontal hydraulic conductivity in the volcanic rocks.

Lee, Si-Yong

1994-01-01T23:59:59.000Z

11

Finding of No Significant Impact and Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT AND FINDING OF NO SIGNIFICANT IMPACT AND FINAL ENVIRONMENTAL ASSESSMENT OF THREE SITE DEVELOPMENT PROJECTS AT THE NATIONAL RENEWABLE ENERGY LABORATORY SOUTH TABLE MOUNTAIN SITE July 2007 U . S . D e p a r t m e n t o f E n e r g y G o l d e n F i e l d O f f i c e N a t i o n a l R e n e w a b l e E n e r g y L a b o r a t o r y 1 6 1 7 C o l e B o u l e v a r d G o l d e n , C o l o r a d o 8 0 4 0 1 DOE/EA-1573 Final Environmental Assessment of Three Site Development Projects at the National Renewable Energy Laboratory South Table Mountain Site i TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ....................................................................................................iv EXECUTIVE SUMMARY ..........................................................................................................................

12

South Table Mountain Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Road Research Road South Loop Road Urban Street N o r t h L o o p R o a d Garage Caf D e n v e r W e s t B l v d . Exit 263 IBRF Integrated Biorefinery Research...

13

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

5 5 Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format Excel logo Spreadsheets are provided in excel 1 to117 - Complete set of Supplemental Tables PDF Energy Consumption by Sector (Census Division) Table 1. New England XLS PDF Table 2. Middle Atlantic XLS PDF Table 3. East North Central XLS PDF Table 4. West North Central XLS PDF Table 5. South Atlantic XLS PDF Table 6. East South Central XLS PDF Table 7. West South Central XLS PDF Table 8. Mountain XLS PDF Table 9. Pacific XLS PDF Table 10. Total United States XLS PDF Energy Prices by Sector (Census Division) Table 11. New England XLS PDF Table 12. Middle Atlantic XLS PDF Table 13. East North Central XLS PDF Table 14. West North Central XLS PDF Table 15. South Atlantic XLS PDF Table 16. East South Central

14

Communicating A Controversial and Complex Project to the Public: Yucca Mountain Tours - Real and Virtual Communication  

SciTech Connect

Since 1983, under the Nuclear Waste Policy Act of 1982, as amended (42 U.S.C. 10101 et seq.), the U.S. Department of Energy (the Department) has been investigating a site at Yucca Mountain, Nevada, to determine whether it is suitable for development as the nation's first repository for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste. By far, the largest quantity of waste destined for geologic disposal is spent nuclear fuel from 118 commercial nuclear power reactors at 72 power plant sites and 1 commercial storage site across the United States. Currently, 104 of these reactors are still in operation and generate about 20 percent of the country's electricity. Under standard contracts that DOE executed with the utilities, DOE is to accept spent nuclear fuel from the utilities for disposal. Until that happens, the utilities must safely store their spent nuclear fuel in compliance with Nuclear Regulatory Commission regulations. As of December 1998, commercial spent nuclear fuel containing approximately 38,500 metric tons of heavy metal (MTHM) was stored in 33 states. The balance of the waste destined for geologic disposal in a repository is Department-owned spent nuclear fuel and high-level radioactive waste. The Department's spent nuclear fuel includes naval spent nuclear fuel and irradiated fuel from weapons production, domestic research reactors, and foreign research reactors. For disposal in a geologic repository, high-level radioactive waste would be processed into a solid glass form and placed into approximately 20,000 canisters. No liquid or hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 would be disposed of in a geologic repository. The difficulty in siting new facilities, particularly those designed as nuclear or nuclear-related facilities, is well documented. In this context, national boundaries are not significant distinguishing barriers. As one publication observed, ''Environmental activists, local residents and governmental officials are protesting proposed waste facilities from Taiwan to Texas''. Here in Nevada, Yucca Mountain is no exception. The Department's study of the Yucca Mountain site for possible development as a permanent repository for spent nuclear fuel and high-level radioactive waste has been criticized by many, for many reasons. The Yucca Mountain Project is both controversial and complex--a fact that makes communication with the public a challenge.

A.B. Benson; P.V. Nelson; M. d' Ouville

2000-03-01T23:59:59.000Z

15

A Computational Complexity-Theoretic Elaboration of Weak Truth-Table Reducibility  

E-Print Network (OSTI)

The notion of weak truth-table reducibility plays an important role in recursion theory. In this paper, we introduce an elaboration of this notion, where a computable bound on the use function is explicitly specified. This elaboration enables us to deal with the notion of asymptotic behavior in a manner like in computational complexity theory, while staying in computability theory. We apply the elaboration to sets which appear in the statistical mechanical interpretation of algorithmic information theory. We demonstrate the power of the elaboration by revealing a critical phenomenon, i.e., a phase transition, in the statistical mechanical interpretation, which cannot be captured by the original notion of weak truth-table reducibility.

Tadaki, Kohtaro

2011-01-01T23:59:59.000Z

16

Finite - difference modeling of the Yucca Mountain, Nevada Area: a study of the regional water table gradients based on hydraulic conductivity contrasts  

E-Print Network (OSTI)

The Nevada Yucca Mountain site is being investigated to determine if it is a suitable site for the construction of a high-level nuclear waste repository. A feature of concern north of the selected site is an abrupt rise in the water table. This high gradient of 0.15 is flanked to the north by a moderate gradient of 0.015 and to the south by a very small gradient of 0.0001. Since the mechanisms creating this feature have the potential to cause changes in the position and configuration of the water table, they must be understood so risk analysis of the site may be performed. The three distinct gradient regions found at the site may be related to the Cenozoic volcanics, the Paleozoic clastic aquitard, and the Paleozoic carbonates. The large hydraulic gradient regionally corresponds with the northern limit of the Paleozoic carbonates, at the contact of the Eleana Formation, a Paleozoic aquitard. This study investigates, using finite difference modeling, the relationship between the steep hydraulic gradient and hydraulic conductivity contrasts. The site was modeled with flow boundaries to investigate the effects of variable gradient input to the flow balance calculation. A model was run with differential volcanic hydraulic conductivity zones with regulated flow into the carbonates. Constant head boundaries were implemented in models to investigate the effect of both a confined and open carbonate zone and with vertical barriers above the argillite/carbonate contact. The results of the study found that vertical and horizontal hydraulic conductivity contrasts do not fully account for the steep gradients, although the vertical contrasts marginally increase the gradient from horizontal contrasts. The confined carbonate zone model produced results that do not correlate with field data. The vertical barrier model did successfully reproduce steep gradients with gradient steepness related to flow restriction. Through the use of flow boundaries the steep gradient was reproduced successfully with a contrast of 0.8 orders of magnitude by allowing flow into the carbonate zone.

Davidson, Timothy Ross

1994-01-01T23:59:59.000Z

17

Toward assessing the geothermal potential of the Jemez Mountains volcanic complex: a telluric-magnetotelluric survey  

DOE Green Energy (OSTI)

Telluric-magnetotelluric studies were performed in the Jemez Mountains of north-central New Mexico to characterize the total geothermal system of the Valles Caldera and to be integrated with an east-west regional survey supported by the United States Geological Survey. The data from the regional survey indicate that electrically the San Juan Basin to the west of the Jemez Mountains is rather homogeneous in contrast to the eastern side near Las Vegas where the presence of a broad heterogeneous structure is clearly sensed. The data from the Jemez Mountain area are strikingly similar to other Rio Grande rift data and suggest a conducting layer at a depth of approximately 15 km. The telluric data indicate that the hydrothermal system in the area is of a localized nature.

Hermance, J.F.

1979-02-01T23:59:59.000Z

18

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

19

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Errata - August 25, 2004 1 to117 - Complete set of of Supplemental Tables PDF Table 1. Energy Consumption by Source and Sector (New England) XLS PDF Table 2. Energy Consumption by Source and Sector (Middle Atlantic) XLS PDF Table 3. Energy Consumption by Source and Sector (East North Central) XLS PDF Table 4. Energy Consumption by Source and Sector (West North Central) XLS PDF Table 5. Energy Consumption by Source and Sector (South Atlantic) XLS PDF Table 6. Energy Consumption by Source and Sector (East South Central) XLS PDF Table 7. Energy Consumption by Source and Sector (West South Central) XLS PDF Table 8. Energy Consumption by Source and Sector (Mountain)

20

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

10 10 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

09 09 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

22

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

23

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

24

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

December 22, 2000 (Next Release: December, 2001) Related Links Annual Energy Outlook 2001 Assumptions to the AEO2001 NEMS Conference Contacts Forecast Homepage EIA Homepage AEO Supplement Reference Case Forecast (1999-2020) (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central) Table 8. Energy Consumption by Source and Sector (Mountain)

25

A Long-Lived Mesoscale Convective Complex. Part I: The MountainGenerated Component  

Science Conference Proceedings (OSTI)

Using data collected during Colorado State University's South Park Area Cumulus Experiment in 1977, a sequence of multi-scale convective events leading to the formation of a mesoscale convective complex is described. In the first phase, surface-...

William R. Cotton; Raymond L. George; Peter J. Wetzel; Ray L. McAnelly

1983-10-01T23:59:59.000Z

26

Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

27

Rocky Mountain E&P Technology Transfer Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Mountain E&P Technology Transfer Workshop August 4, 2003 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

28

Mountainous | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mountainous Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mountainous Dictionary.png Mountainous: A geothermal areal located in terrain characterized by rugged and steep topography with high relief Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous geothermal areas, one of the more famous areas is landmannalaugar, Iceland. Photo by

29

Table of Exhibits..................................................................................................... iii  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

Pjm Interconnection

2007-01-01T23:59:59.000Z

30

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

31

mountain region | OpenEI  

Open Energy Info (EERE)

mountain region mountain region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

32

Nocturnal Low-Level Jet in a Mountain Basin Complex. Part II: Transport and Diffusion of Tracer under Stable Conditions  

Science Conference Proceedings (OSTI)

Differences in nighttime transport and diffusion of sulfur hexafluoride (SF6) tracer in an urban complex-terrain setting (Salt Lake City, Utah) are investigated using surface and Doppler lidar wind data and large-scale surface pressure ...

Lisa S. Darby; K. Jerry Allwine; Robert M. Banta

2006-05-01T23:59:59.000Z

33

TABLE OF CONTENTS  

E-Print Network (OSTI)

Table of Contents......i List of Tables.....ii

Ingleside Tx; Base Realignment

2010-01-01T23:59:59.000Z

34

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

35

Table HC14.8 Water Heating Characteristics by West Census Region ...  

U.S. Energy Information Administration (EIA)

Table HC14.8 Water Heating Characteristics by West Census Region, 2005 Million U.S. Housing Units Water Heating Characteristics Mountain Pacific West Census Region

36

Emergency Operations Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

unknown authors

2012-01-01T23:59:59.000Z

37

Downscaling Climate over Complex Terrain: High Finescale (<1000 m) Spatial Variation of Near-Ground Temperatures in a Montane Forested Landscape (Great Smoky Mountains)  

Science Conference Proceedings (OSTI)

Landscape-driven microclimates in mountainous terrain pose significant obstacles to predicting the response of organisms to atmospheric warming, but few if any studies have documented the extent of such finescale variation over large regions. ...

Jason D. Fridley

2009-05-01T23:59:59.000Z

38

Global Carbon Biomass Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 1c. Mixed Forest Classes Table 1d. NaturalBurnt Forest Mosaic Classes Table 1e. CropForest Mosaic Classes Table 1f. Shrub Cover Classes Table 1g. Grassland Classes Table...

39

Table Search (or Ranking Tables)  

E-Print Network (OSTI)

Table Search (or Ranking Tables) Alon Halevy Google DBRank @ ICDE March 1, 2010 #12;Structured Data organizations Requires infrastructure, concerns about losing control Hard to find structured data via search Search #1 store locations used cars radio stations patents recipes · Deep = not accessible through

Halevy, Alon

40

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

125 69 112 131 137 158 7.36 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table 4  

Gasoline and Diesel Fuel Update (EIA)

378 913 993 1,130 1,316 1,625 8.24 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

42

this table  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table 1.2 World Petroleum Consumption, 1980-2006 (Thousand Barrels per Day) Page 1980.00 ...

43

Mountain-eering University of Trento Spin off  

E-Print Network (OSTI)

Mountain-eering University of Trento Spin off www.mountain-eering.com Contacts Mountain-eering srl-mail: info@mountain-eering.com web site: www.mountain-eering.com Administrative Office via Giusti, 10 - 38122 Trento (Italy) #12;Company data Full legal name:· Mountain eering srl. Legal form of incorporation:· Ltd

44

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

45

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

46

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

47

The hydrology of Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr(-1) under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (similar to 300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominantly through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

Flint, A.L.; Flint, L.E.; Bodvarsson, G.S.; Kwicklis, E.M.; Fabryka-Martin, J.M.

2000-12-04T23:59:59.000Z

48

Certification and Training Requirements Table of Contents  

E-Print Network (OSTI)

Table of Exhibits..................................................................................................... iii

unknown authors

2008-01-01T23:59:59.000Z

49

1992 CBECS Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

Detailed Tables Detailed Tables To download all 1992 detailed tables: Download Acrobat Reader for viewing PDF files. Yellow Arrow Buildings Characteristics Tables (PDF format) (70 tables, 230 pages, file size 1.39 MB) Yellow Arrow Energy Consumption and Expenditures Tables (PDF format) (47 tables, 208 pages, file size 1.28 MB) Yellow Arrow Energy End-Use Tables (PDF format) (6 tables, 6 pages, file size 31.7 KB) Detailed tables for other years: Yellow Arrow 1999 CBECS Yellow Arrow 1995 CBECS Background information on detailed tables: Yellow Arrow Description of Detailed Tables and Categories of Data Yellow Arrow Statistical Significance of Data 1992 Commercial Buildings Energy Consumption Survey (CBECS) Detailed Tables Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables:

50

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

51

POTENTAIL HABITAT MOUNTAIN PLOVERS  

E-Print Network (OSTI)

in the Yucca Mountain region has been studied using two approaches: a geological approach that examines Yucca Mountain [Andrews et al., 2007]. In this paper we report on an exercise to verify the computer. These benchmarks targeted the particular case of earthquake rupture on a normal fault at Yucca Mountain, Nevada

52

chapter 5. Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

5. Detailed Tables 5. Detailed Tables Chapter 5. Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1994 Residential Transportation Energy Consumption Survey. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle-miles traveled (VMT) or gallons consumed; (2) tables of per household statistics such as VMT per household; and (3) tables of per-vehicle statistics, such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model-year data or family-income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table.

53

Notices TABLE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Federal Register 7 Federal Register / Vol. 76, No. 160 / Thursday, August 18, 2011 / Notices TABLE 2-NET BURDEN CHANGE-Continued 2011-2012 2012-2013 Change % Change Burden disposition Total Applicants .................................... 23,611,500 24,705,864 +1,094,364 +4.63 Net decrease in burden. The increase in applicants is offset by the results of the Department's simplification changes. This has created an over- all decrease in burden of 8.94% or 2,881,475 hours. Total Applicant Burden ......................... 32,239,328 29,357,853 ¥2,881,475 ¥8.94 Total Annual Responses ....................... 32,239,328 46,447,024 +14,207,696 +44.07 Cost for All Applicants .......................... $159,370.20 $234,804.24 $75,434.04 +47.33 The Department is proud that efforts to simplify the FAFSA submission

54

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Mean Annual Electricity Expenditures for Lighting, by Number of 4. Mean Annual Electricity Expenditures for Lighting, by Number of Household Members by Number of Rooms, 1993 (Dollars) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 1.8 1.1 0.9 0.9 1.0 1.2 RSE Row Factors All Households................................... 83 49 63 76 87 104 124 2.34 One..................................................... 55 44 51 54 69 78 87 5.33 Two..................................................... 80 56 63 77 82 96 107 3.38 Three.................................................. 92 60 73 82 95 97 131 4.75 Four.................................................... 106 64 78 93 96 124 134 4.53 Five or More....................................... 112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the

55

DOE/EA-1644: Kildeer to Mountain Transmission Project Pre-Decisional Environmental Assessment (May 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KILLDEER TO MOUNTAIN KILLDEER TO MOUNTAIN TRANSMISSION PROJECT PRE-DECISIONAL ENVIRONMENTAL ASSESSMENT MAY 5, 2009 DOE/EA-1644 PRE-DECISIONAL ENVIRONMENTAL ASSESSMENT KILLDEER TO MOUNTAIN PAGE i MAY 2009 TRANSMISSION PROJECT DOE/EA -1644 TABLE OF CONTENTS 1.0 INTRODUCTION .............................................................................................. 1-1 1.1 Purpose of and Need for Action ........................................................................................... 1-1 1.1.1 Project Purpose ............................................................................................................ 1-1 1.1.2 Western's Purpose and Need ..................................................................................... 1-1

56

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2004 Appendix tables A2 and A3,...

57

Supplement Tables - Supplemental Data  

Annual Energy Outlook 2012 (EIA)

are in spreadsheet format. A total of one hundred and nine tables is presented. The data for tables 10 and 20 match those published in AEO2003 Appendix tables A2 and A3,...

58

Meson Summary Table See  

NLE Websites -- All DOE Office Websites (Extended Search)

Meson Summary Table See also the table of suggested qq quark-model assignments in the Quark Model section. * Indicates particles that appear in the preceding Meson Summary Table....

59

Supplement Tables - Supplemental Data  

Annual Energy Outlook 2012 (EIA)

Vehicle Fuel Economy Table 57. New Light-Duty Vehicle Prices Table 58. New Light-Duty Vehicle Range Table 59. Electric Power Projections for EMM Region 01- East Central Area...

60

1995 Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Households, Buildings & Industry > Commercial Buildings Energy Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Summary Table—All Principal Buildings Activities (HTML Format) Background information on detailed tables: Description of Detailed Tables and Categories of Data Statistical Significance of Data

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

62

Weak Lowness Notions for Kolmogorov Complexity  

E-Print Network (OSTI)

COMPLEXITY First we define truth-table reducibility, atwo reals A and B, A is truth-table reducible to B (A ? ttn) = 0 by looking at a truth-table of the relevant bits of

Herbert, Ian-Cadoc Robertson

2013-01-01T23:59:59.000Z

63

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY  

E-Print Network (OSTI)

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY Michael P. Meyers of the American Meteorological Society Mountain Weather and Forecasting Monograph Draft from Friday, May 21, 2010 of weather analysis and forecasting in complex terrain with special emphasis placed on the role of humans

Steenburgh, Jim

64

Just enough tabling  

Science Conference Proceedings (OSTI)

We introduce just enough tabling (JET), a mechanism to suspend and resume the tabled execution of logic programs at an arbitrary point. In particular, JET allows pruning of tabled logic programs to be performed without resorting to any recomputation. ... Keywords: logic programming, pruning, suspension/resumption in the WAM, tabling

Konstantinos Sagonas; Peter J. Stuckey

2004-08-01T23:59:59.000Z

65

{sup 13}C and {sup 17}O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351  

SciTech Connect

Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} and (UO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = {minus}log(a{sub H}{sup +}) versus p[H] = {minus}log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA.

Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

1995-01-01T23:59:59.000Z

66

Complexes  

DOE Green Energy (OSTI)

Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

2006-09-27T23:59:59.000Z

67

Cost Development Guidelines Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii Table of Exhibits...................................................................................................... v Approval.................................................................................................................. vi

unknown authors

2011-01-01T23:59:59.000Z

68

Mesoscale Modeling for Mountain Weather Forecasting Over the Himalayas  

Science Conference Proceedings (OSTI)

Severe weather has a more calamitous effect in the mountainous region-because the terrain is complex and the economy is poorly developed and fragile. Such weather systems occurring on a small spatiotemporal scale invite application of models with ...

Someshwar Das; S. V. Singh; E. N. Rajagopal; Robert Gall

2003-09-01T23:59:59.000Z

69

Topography and Radiation Exchange of a Mountainous Watershed  

Science Conference Proceedings (OSTI)

This report deals with the radiation exchange of a complex terrain. A relatively simple network for computing topographic parameters global radiation, and net radiation of a mountainous terrain was developed and applied to a forested Appalachian ...

Hailiang Fu; Stanislaw J. Tajchman; James N. Kochenderfer

1995-04-01T23:59:59.000Z

70

Estimating recharge at Yucca Mountain, Nevada: A case study  

Science Conference Proceedings (OSTI)

Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

Flint, A.; Flint, L.; Kwicklis, E.; Fabryka-Martin, J.; Bodvarsson, G.S.

2001-05-13T23:59:59.000Z

71

Estimating recharge at yucca mountain, nevada, usa: comparison of methods  

Science Conference Proceedings (OSTI)

Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for and environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 nun/year near Yucca Crest. Site-scale recharge estimates range from less than I to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. [References: 57

Flint, A. L.; Flint, L. E.; Kwicklis, E. M.; Fabryka-Martin, J. T.; Bodvarsson, G. S.

2001-11-01T23:59:59.000Z

72

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

73

DOE/EA-1633: Environmental Assessment for Green Mountain Reservoir Substitution and Power Interference Agreements (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Mountain Reservoir Green Mountain Reservoir Substitution and Power Interference Agreements Final EA i Table of Contents Acronyms ...................................................................................................................................... vi 1.0 Purpose and Need .......................................................................................................... 1-1 1.1 Introduction.......................................................................................................... 1-1 1.2 Project Purpose and Need .................................................................................... 1-1 1.3 Study Area ........................................................................................................... 1-2 1.4 Background

74

Table of Contents PJM Manual [18]: PJM Capacity Market  

E-Print Network (OSTI)

Table of Contents Table of Contents..................................................................................................... ii

unknown authors

2008-01-01T23:59:59.000Z

75

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 37. Refrigeration Equipment, Number of Buildings and Floorspace, 1995 Table 38. Water-Heating Equipment, Number of Buildings and Floorspace, 1995 Table 39. Lighting...

76

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 25. Cooling Energy Sources, Number of Buildings and Floorspace, 1995 Table 26. Water-Heating Energy Sources, Number of Buildings, 1995 Table 27. Water-Heating Energy...

77

Reformulated Gasoline Complex Model  

Gasoline and Diesel Fuel Update (EIA)

Refiners Switch to Reformulated Refiners Switch to Reformulated Gasoline Complex Model Contents * Summary * Introduction o Table 1. Comparison of Simple Model and Complex Model RFG Per Gallon Requirements * Statutory, Individual Refinery, and Compliance Baselines o Table 2. Statutory Baseline Fuel Compositions * Simple Model * Complex Model o Table 3. Complex Model Variables * Endnotes Related EIA Short-Term Forecast Analysis Products * RFG Simple and Complex Model Spreadsheets * Areas Particpating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Reformulated Gasoline Foreign Refinery Rules * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 , (Adobe

78

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary......

79

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

80

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

FY 2005 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 6 Uranium enrichment D&D fund.................................................................... 6 Non-Defense environmental services.......................................................... 6 Science.........................................................................................................

82

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

The AEO Supplementary tables were generated for the reference case of the The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2002 (AEO2002) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2002, but contain regional and other more detailed projections underlying the AEO2002 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seven tables is presented. The data for tables 10 and 20 match those published in AEO2002 Appendix tables A2 and A3, respectively. Forecasts for 2000-2002 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current

83

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Supplement Tables to the AEO2001 The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2001 (AEO2001) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2001, but contain regional and other more detailed projections underlying the AEO2001 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables is presented. The data for tables 10 and 20 match those published in AEO2001 Appendix tables A2 and A3, respectively. Forecasts for 1999 and 2000 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

84

Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Yucca Mountain Yucca Mountain Addthis Fuel assembly for production of nuclear power 1 of 13 Fuel assembly for production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north end of the Yucca Mountain crest in February 1993 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 4 of 13 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 Aerial view of the crest of Yucca Mountain 5 of 13 Aerial view of the crest of Yucca Mountain Location of Yucca Mountain, Nevada 6 of 13 Location of Yucca Mountain, Nevada A scientist uses ultra-violet light to study how fluids move through rock

85

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. The data for tables 10 and 20 match those published in AEO200 Appendix tables A2 and A3, respectively. Forecasts for 1998, and 2000 may differ slightly from values published in the Short Term Energy Outlook, Fourth Quarter 1999 or Short Term Energy Outlook, First Quarter 2000, which are the official EIA short-term forecasts and are based on more current information than the AEO.

86

Age constraints on fluid inclusions in calcite at Yucca Mountain  

Science Conference Proceedings (OSTI)

The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

2001-04-29T23:59:59.000Z

87

Green Mountain Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

PROPOSALS PROPOSALS GREEN MOUNTAIN ENERGY COMPANY TIM SMITH VP OF ORIGINATION AND BUSINESS DEVELOPMENT 550 WESTLAKE PARK BOULEVARD ROOM 172 HOUSTON, TEXAS 77079 281-366-5124 DATE ISSUED: JANUARY 21, 2005 DUE DATE & TIME FOR RESPONSES: FRIDAY, MARCH 3, 2005 @ 11:00 A.M. CENTRAL TIME RFP NOTICE GREEN MOUNTAIN ENERGY COMPANY IS REQUESTING PROPOSALS FROM GENERATORS AND MARKETERS OF RENEWABLE ENERGY CREDITS, RENEWABLE ENERGY ATTRIBUTES OR 'GREEN TAGS' ("RECs") ASSOCIATED WITH THE GENERATION OF ELECTRICITY FROM RENEWABLE RESOURCES. ANY QUESTIONS REGARDING THIS REQUEST FOR PROPOSAL SHOULD BE DIRECTED TO TIM SMITH, GREEN MOUNTAIN ENERGY COMPANY, 281-366-5124 or tim.smith@greenmountain.com. Upon signing this page the organization certifies that they have read and agree to

88

San Antonio Mountain Experiment (SAMEX)  

Science Conference Proceedings (OSTI)

The San Antonio Mountain Experiment (SAMEX) involves a 3325 m. conically shaped, isolated mountain in north-central New Mexico where hourly observations of temperature, relative humidity, wind speed, wind direction, and precipitation are being ...

Morris H. McCutchan; Douglas G. Fox; R. William Furman

1982-10-01T23:59:59.000Z

89

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

90

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the Annual Energy Outlook 2005 Supplemental Tables to the Annual Energy Outlook 2005 EIA Glossary Supplemental Tables to the Annual Energy Outlook 2005 Release date: February 2005 Next release date: February 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2005 (AEO2005) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2025. Most of the tables were not published in the AEO2005, but contain regional and other more detailed projections underlying the AEO2005 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2005 Appendix tables A2 and A3, respectively. Forecasts for 2003-2005 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

91

Table of Contents  

Science Conference Proceedings (OSTI)

Table of Contents. A, B. 1, USGCB Settings. 2, This spreadsheet captures the USGCB defined configuration settings. 3, Tab Name, Tab Description. ...

2013-11-19T23:59:59.000Z

92

FY 2007 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer state tables preliminary Department of Energy FY 2007 Congressional Budget...

93

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

94

Moving Beyond the Yucca Mountain  

E-Print Network (OSTI)

of Energy in characterizing a site at Yucca Mountain, Nevada, as a possible location for a permanent to a decision by the Secretary of Energycurrently scheduled for 2001on whether to recommend the Yucca Mountain a clear description of how a Yucca Mountain repository would perform over thousands of years and how

95

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

96

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesIN THE UNSATURATED ZONE AT YUCCA MOUNTAIN, NEVADA George J.

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

97

Geological map of Bare Mountain, Nye County, Nevada  

SciTech Connect

Bare Mountain comprises the isolated complex of mountain peaks southeast of the town of Beatty in southern Nye County, Nevada. This small mountain range lies between the alluvial basins of Crater Flat to the east and the northern Amargosa Desert to the southwest. The northern boundary of the range is less well defined, but for this report, the terrane of faulted Miocene volcanic rocks underlying Beatty Mountain and the unnamed hills to the east are considered to be the northernmost part of Bare Mountain. The southern tip of the mountain range is at Black Marble, the isolated hill at the southeast corner of the map. The main body of the range, between Fluorspar Canyon and Black Marble, is a folded and complexly faulted, but generally northward-dipping (or southward-dipping and northward-overturned), sequence of weakly to moderately metamorphosed upper Proterozoic and Paleozoic marine strata, mostly miogeoclinal (continental shelf) rocks. The geology of Bare Mountain is mapped at a scale of 1:24,000.

Monsen, S.A.; Carr, M.D.; Reheis, M.C.; Orkild, P.P.

1992-12-31T23:59:59.000Z

98

Evolution of the unsaturated zone testing at Yucca Mountain  

E-Print Network (OSTI)

INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

Wang, J.S.Y.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

99

Rocky Mountain Customers  

NLE Websites -- All DOE Office Websites (Extended Search)

RM Home About RM Contact RM Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates Rocky Mountain Region's Customer list Use the filters above the customer list to refine your search. Click the "Clear" to reset the list. Western's full list of customers is available on the Western's Customer Web page. Customer Name Customer Type State Region Project Arapahoe and Roosevelt National Forests Federal Agencies CO RM LAP Arkansas River Power Authority Municipalities CO RM/CRSP LAP/SLIP Burlington, City of Municipalities CO RM LAP Cheyenne Mountain Air Force Base Federal Agencies CO RM LAP Clay Center, City of Municipalities KS RM LAP Denver Water Board Municipalities CO RM LAP

100

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

102

BLM Battle Mountain District Office | Open Energy Information  

Open Energy Info (EERE)

Battle Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name BLM Battle Mountain District Office Short Name Battle Mountain Parent...

103

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

104

FY 2009 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

105

FY 2005 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

106

FY 2010 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

107

FY 2006 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

108

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

109

FY 2008 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

110

Table - Energy Information Administration  

U.S. Energy Information Administration (EIA)

September 2013 U.S. Energy Information 9/27/2013 9:52:45 AM Administration | Natural Gas Monthly 9 Created on: Table 4. U.S. natural gas imports ...

111

table E1  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table E.1 World Primary Energy Consumption (Btu), 1980-2006 (Quadrillion (10 15 ) Btu) Page

112

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 1999 Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Contacts bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage supplemental.gif (7420 bytes) (Errata as of 9/13/99) The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 1999 (AEO99) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1997 to 2020. Most of the tables were not published in the AEO99, but contain regional and other more detailed projections underlying the AEO99 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables are presented.

113

Evolution of the conceptual model of unsaturated zone hydrology at yucca mountain, nevada  

SciTech Connect

Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because o f capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to show. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water into the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada (Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site. (C) 2001 Elsevier Science B.V. All rights reserved. [References: 87

Flint, A. L.; Flint, L. E.; Bodvarsson, G. S.; Kwicklis, E. M.; Fabryka-Martin, J.

2001-02-01T23:59:59.000Z

114

Preparing to Submit a License Application for Yucca Mountain  

Science Conference Proceedings (OSTI)

In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

W.J. Arthur; M.D. Voegele

2005-03-14T23:59:59.000Z

115

2001 Housing Characteristics Detailed Tables  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey-Housing Characteristics, 2001 Detailed Tables, Energy Information Administration

116

AEO2011: Energy Consumption by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

117

AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

118

BRMF Georgia Mountain Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon BRMF Georgia Mountain Biofuels Jump to: navigation, search Name BRMFGeorgia Mountain Biofuels Place Clayton,...

119

FY 2011 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 State Index Page Number FY 2011 Congressional Budget 1/29/2010 Department Of Energy (Dollars In Thousands) 6:34:40AM Page 1 of 2 FY 2009 Appropriation

120

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

122

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

123

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

124

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

125

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

126

Georgia Mountain | Open Energy Information  

Open Energy Info (EERE)

Georgia Mountain Georgia Mountain Jump to: navigation, search Name Georgia Mountain Facility Georgia Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner All Earth Renewables Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351°, -73.067991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662351,"lon":-73.067991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

FY 2013 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................ 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability......................................... 138,170 139,103 143,015 +3,912 +2.8% Nuclear energy................................................................................ 717,817 765,391 770,445 +5,054 +0.7% Fossil energy programs Clean coal technology.................................................................. -16,500 -- --

128

FY 2009 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear energy................................................................. -- 961,665 853,644 -108,021 -11.2% Legacy management........................................................ -- 33,872 -- -33,872 -100.0% Energy supply and conservation Operation and maintenance..........................................

129

Plant Species Distributions under Present Conditions and Forecasted for Warmer Climates in an Arid Mountain Range  

Science Conference Proceedings (OSTI)

Complex environmental gradients in the White and Inyo Mountains in eastern California produce striking variations in vegetation assemblages over short distances. Vegetation composition is dominated by elevational gradients of temperature and ...

Christopher M. Van de Ven; S. B. Weiss; W. G. Ernst

2007-07-01T23:59:59.000Z

130

Back The Pico Mountain  

NLE Websites -- All DOE Office Websites (Extended Search)

Photos Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores (fialho.paulo@gmail.com) Detlev Helmig, University of Colorado Gracioso Pico *Photos *Pubs summary *Status *Inside view *Go Back View from sea level; Station height 2225 m Winter Station is usually above the MBL [Kleissl et al., 2007] *Photos *Pubs summary *Status *Inside view *Go Back Ideal location to sample impacts on the remote atmosphere -160 -140 -120 -100 -80 -60 -40 -20 0 20 0 10 20 30 40 50 60 70 80 90 Note haze layer from Quebec wildfires * Dominant transport patterns bring - Aged North American anthropogenic emissions. - Aged biomass burning emissions from boreal North America and Siberia. - Tropical North Atlantic air. - (African, European flow). * Note haze layer from Quebec wildfires *Photos

131

Iron Mountain Electromagnetic Results  

SciTech Connect

Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

Gail Heath

2012-07-01T23:59:59.000Z

132

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

/2011 /2011 Decades of Discovery Decades of Discovery Page 2 6/1/2011 TABLE OF CONTENTS 1 INTRODUCTION ...................................................................................................................... 6 2 BASIC ENERGY SCIENCES .................................................................................................. 7 2.1 Adenosine Triphosphate: The Energy Currency of Life .............................................. 7 2.2 Making Better Catalysts .............................................................................................. 8 2.3 Understanding Chemical Reactions............................................................................ 9 2.4 New Types of Superconductors ................................................................................ 10

133

EJ and EK Pay Table  

Energy.gov (U.S. Department of Energy (DOE))

The EJ and EK pay table excludes locality pay. Refer to the General Schedule Complete Set of Locality Pay Tables to determine the locality pay for your applicable geographic area.

134

February 2013 Table of Contents  

Science Conference Proceedings (OSTI)

Inform February 2013 table of contents. February 2013 Table of Contents inform Magazine algae algal AOCS biomass business chemistry cottonseed date detergents fats filing first history inform inform Magazine international inventor law magazine me

135

Visualization of truth tables - CECM  

E-Print Network (OSTI)

Nov 19, 1997 ... Visualization of truth tables. The Figures are computer-generated tables that show the value 1 as being represented by a black pixel and 0 by a...

136

January 2013 Table of Contents  

Science Conference Proceedings (OSTI)

inform January 2013 table of contents. January 2013 Table of Contents inform Magazine algae algal AOCS biomass business chemistry cottonseed date detergents fats filing first history inform inform Magazine international inventor law magazine membe

137

May 2011 Table of Contents  

Science Conference Proceedings (OSTI)

May 2011 Table of Contents Inform Magazine Inform Archives News 266 Insect oils: nutritional and industrial applications Many

138

October 2010 Table of Contents  

Science Conference Proceedings (OSTI)

October 2010 Table of Contents Inform Magazine Inform Archives News 598 Universal detectors for determination of lipids in biodiesel producti

139

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

the Tables | Estimation of Energy End-Use Consumption | CBECS Glossary | FAQs | Other Years: 1999 1995 1992 Complete Set of All Tables (Tables A1-A8, B1-B46, C1-C38, C1A-C38A,...

140

Spruce Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Spruce Mountain Facility Spruce Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Patriot Renewables Developer Patriot Renewables Energy Purchaser Energy New England Location Bryant Pond ME Coordinates 44.43443869°, -70.55286884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.43443869,"lon":-70.55286884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Laurel Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Laurel Mountain Facility Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington WV Coordinates 39.00702933°, -79.88500357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.00702933,"lon":-79.88500357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Flow Acceleration and Mountain Drag*  

Science Conference Proceedings (OSTI)

Dynamic explanations of mountain drag usually invoke viscous effects and/or wave momentum flux by either Rossby or internal gravity waves. This paper explores an alternative mechanism in terms of the unsteadiness of the incident flow. The ...

Peter R. Bannon

1985-12-01T23:59:59.000Z

143

FY 2006 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2004 FY 2005 FY 2006 Comparable Comparable Request to FY 2006 vs. FY 2005 Approp Approp Congress Discretionary Summary By Appropriation Energy And Water Development Appropriation Summary: Energy Programs Energy supply Operation and maintenance................................................. 787,941 909,903 862,499 -47,404 -5.2% Construction......................................................................... 6,956 22,416 40,175 17,759 +79.2% Total, Energy supply................................................................ 794,897 932,319 902,674 -29,645 -3.2% Non-Defense site acceleration completion............................. 167,272 157,316 172,400 15,084 +9.6%

144

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

145

FY 2010 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2008 FY 2009 FY 2009 FY 2010 Current Current Current Congressional Approp. Approp. Recovery Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 1,704,112 2,178,540 16,800,000 2,318,602 +140,062 +6.4% Electricity delivery and energy reliability........................................ 136,170 137,000 4,500,000 208,008 +71,008 +51.8% Nuclear energy.............................................................................. 960,903 792,000 -- 761,274 -30,726 -3.9% Legacy management..................................................................... 33,872 -- -- --

146

FY 2012 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled

147

FY 2012 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Statistical Table by Appropriation 2Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2010 FY 2011 FY 2011 FY 2012 Current Congressional Annualized Congressional Approp. Request CR Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 2,216,392 2,355,473 2,242,500 3,200,053 +983,661 +44.4% Electricity delivery and energy reliability........................................ 168,484 185,930 171,982 237,717 +69,233 +41.1% Nuclear energy............................................................................. 774,578 824,052 786,637 754,028 -20,550 -2.7% Fossil energy programs Fossil energy research and development................................... 659,770 586,583 672,383 452,975

148

FY 2007 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance............................................ 1,779,399 1,791,372 1,917,331 +125,959 +7.0% Construction................................................................... 22,416 21,255 6,030 -15,225 -71.6% Total, Energy supply and conservation.............................. 1,801,815 1,812,627 1,923,361 +110,734 +6.1% Fossil energy programs Clean coal technology..................................................... -160,000 -20,000 -- +20,000 +100.0% Fossil energy research and development.......................

149

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

150

FY 2008 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance........................................... 1,781,242 1,917,331 2,187,943 +270,612 +14.1% Construction.................................................................... 31,155 6,030 -- -6,030 -100.0% Total, Energy supply and conservation............................. 1,812,397 1,923,361 2,187,943 +264,582 +13.8% Fossil energy programs Clean coal technology.................................................... -20,000 -- -58,000 -58,000 N/A Fossil energy research and development......................

151

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS REQUIREMENTS COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information ....................................................................... 7 b. Other Federal Government Smart Grid Initiatives .................................... 9 III. Communications Requirements of Smart Grid Applications .................. 11 a. Advanced Metering Infrastructure ............................................................12

152

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

Female Mountain Spirit in Korea by Maya Stiller UCLA Centera Female Mountain Spirit in Korea by Maya Stiller I n hisfemale mountain spirits in Korea, James Grayson argues that

Stiller, Maya

2011-01-01T23:59:59.000Z

153

Residential Energy Consumption Survey Data Tables  

U.S. Energy Information Administration (EIA)

Below are historical data tables from the Residential Energy Consumption Survey (RECS). These tables cover the total number of households ...

154

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

155

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

2003 Detailed Tables 2003 Detailed Tables 2003 CBECS Detailed Tables most recent available Released: September 2008 Building Characteristics | Consumption & Expenditures | End-Use Consumption In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed explanation.

156

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

157

2013 Annual Planning Summary for the Rocky Mountain Oilfield...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield...

158

Information Request Yucca Mountain Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Request Yucca Mountain Site Information Request Yucca Mountain Site The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal...

159

Microsoft Word - BlueMountainGeotherm_FONSI_FinalDrft v3 Clean_4-26-10 Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BLUE MOUNTAIN BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT HUMBOLDT COUNTY, NEVADA PERSHING COUNTY, NEVADA DECEMBER 2007 EA NUMBER: NV-020-08-01 Lead Agency: BUREAU OF LAND MANAGEMENT Winnemucca Field Office 5100 E. Winnemucca Blvd. Winnemucca, Nevada 89445 Project Applicant: NEVADA GEOTHERMAL POWER COMPANY 900-409 Granville Street Vancouver, BC V6C 1T2 It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM·NV·WN·ES·OB·01·1310 NV·020-08-EA-Ol ENVIRONMENTAL ASSESSMENT BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT TABLE OF CONTENTS Page LIST OF TABLES ........................................................................................................................ IV

160

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network (OSTI)

to Fault Zones at Yucca Mountain, Nevada, International2003c. Calibration of Yucca Mountain Unsaturated Zone FlowUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

162

Pine Mountain Builders | Open Energy Information  

Open Energy Info (EERE)

Pine Mountain Builders Pine Mountain Builders Place Pine Mountain, GA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Pine Mountain Builders is a company located in Pine Mountain, GA. References Retrieved from "http://en.openei.org/w/index.php?title=Pine_Mountain_Builders&oldid=379448" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863719699

163

Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

NT0005638 NT0005638 Cruise Report 1-19 July 2009 HYFLUX Sea Truth Cruise Northern Gulf of Mexico Submitted by: Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, TX 78412 Principal Authors: Ian R. MacDonald and Thomas Naehr Prepared for: United States Department of Energy National Energy Technology Laboratory October 30, 2009 Office of Fossil Energy HYFLUX Seatruth Cruise Report -1- Texas A&M University - Corpus Christi Table of Contents Summary ............................................................................................................................. 2 Participating Organizations ................................................................................................. 3 Major Equipment ................................................................................................................ 4

164

Engineering Tables: Polymeric Materials  

Science Conference Proceedings (OSTI)

Table 6   Chemical resistance ratings for selected plastics and metals...B A A C C C ? B C A A A Miscellaneous Detergents Laundry and dishwashing detergents, soaps A ? A ? B ? ? A A A ? B A ? A A B Inorganic salts Zinc chloride, cupric sulfate B B B ? A ? ? A ? A ? ? A A B B B Oxidizing agents, strong 30% hydrogen peroxide, bromine (wet) C C C ? C ? B B ? C ? ? A ? C C C...

165

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

166

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

167

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

168

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

169

Help:Tables | Open Energy Information  

Open Energy Info (EERE)

Tables Tables Jump to: navigation, search Tables may be authored in wiki pages using either XHTML table elements directly, or using wikicode formatting to define the table. XHTML table elements and their use are well described on various web pages and will not be discussed here. The benefit of wikicode is that the table is constructed of character symbols which tend to make it easier to perceive the table structure in the article editing view compared to XHTML table elements. As a general rule, it is best to avoid using a table unless you need one. Table markup often complicates page editing. Contents 1 Wiki table markup summary 2 Basics 2.1 Table headers 2.2 Caption 3 XHTML attributes 3.1 Attributes on tables 3.2 Attributes on cells 3.3 Attributes on rows 3.4 HTML colspan and rowspan

170

CARINA Data Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Cruise Summary Table and Data Cruise Summary Table and Data Users are requested to report any data or metadata errors in the CARINA cruise files to CDIAC. Parameter units in all CARINA data files are in CCHDO exchange format. No Cruise Namea (Alias) Areab Number of Stations Datec Ship Chief Scientist Carbon PI Oxygen Nutrients TCO2d TALK pCO2e pHf CFC Other Measurements Data Files 1 06AQ19920929g (06ANTX_6) (See map) 2 118 9/29-11/30/1992 Polarstern V. Smetacek M. Stoll, J. Rommets, H. De Baar, D. Bakker 62 114h 53 54i U C 0 Choloroa,b Fluorescence, NH4 Data Files (Metadata) 2 06AQ19930806 (06ARKIX_4) (See map) 4 64 8/6-10/5/1993 Polarstern D.K. Fütterer L. Anderson 64 63 63j, bb 0 0 0 59he 3H, 3He, 18O, 14C, 85Kr, Bak Data Files

171

Supplement Tables - Contact  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the AEO99 Supplement Tables to the AEO99 bullet1.gif (843 bytes) Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage furtherinfo.gif (5474 bytes) The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441), Director of the International, Economic, and Greenhouse Gas Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director of the Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director of the Oil and Gas Division; Scott Sitzer (ssitzer@eia.doe.gov, 202/586-2308), Director of the Coal and Electric Power Division; or Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Modeling Analyst. Detailed questions about the forecasts and related model components may be addressed to the following analysts:

172

Appendix B: Summary Tables  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman Appendix B: Summary Tables Table B1. The BCES and alternative cases compared to the Reference case, 2025 2009 2025 Ref Ref BCES All Clean Partial Credit Revised Baseline Small Utilities Credit Cap 2.1 Credit Cap 3.0 Stnds + Cds Generation (billion kilowatthours) Coal 1,772 2,049 1,431 1,305 1,387 1,180 1,767 1,714 1,571 1,358 Petroleum 41 45 43 44 44 44 45 45 45 43 Natural Gas 931 1,002 1,341 1,342 1,269 1,486 1,164 1,193 1,243 1,314 Nuclear 799 871 859 906 942 889 878 857 843 826 Conventional Hydropower 274 306 322 319 300 321 316 298 312 322 Geothermal 15 25 28 25 31 24 27 22 23 24 Municipal Waste 18 17 17 17 17 17 17 17 17 17 Wood and Other Biomass 38 162 303 289 295 301 241 266

173

Information Request Yucca Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2008 , 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested last week regarding use of engineered barriers. Please let me know if you need additional information or have any questions. A,4- -/0 7 The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal Barriers for Demonstrating Safety This paper addresses two issues that are frequently raised concerning the suitability of the Yucca Mountain site for development as a repository. The first issue is that the Yucca Mountain site is technically unsound and that an engineered barrier system is required because the site is not capable of protecting public health and safety. The second issue is

174

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

175

DOE/EA-1583: Final Site-wide Environmental Assessment and Finding of No Significant Impact for Rocky Mountain Oilfield Testing Center/Naval Petroleum Reserve No. 3 (October 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ROCKY MOUNTAIN OILFIELD TESTING CENTER / ROCKY MOUNTAIN OILFIELD TESTING CENTER / NAVAL PETROLEUM RESERVE NO. 3 FINAL Site-wide Environmental Assessment and Finding of No Significant Impact October 2008 U.S. Department of Energy Rocky Mountain Oilfield Testing Center 907 N. Poplar Street, Suite 150 Casper WY 82601 DOE/EA-1583 Rocky Mountain Oilfield Testing Center / Naval Petroleum Reserve No.3 Final Site-Wide Environmental Assessment i TABLE OF CONTENTS Section Page ABBREVIATIONS AND ACRONYMS.................................................................................................vii SUMMARY ................................................................................................................................................ix 1.0 INTRODUCTION .........................................................................................................................1

176

March 2012 Table of Contents  

Science Conference Proceedings (OSTI)

March 2012 Table of Contents Inform Magazine Inform Archives News March 2012 World supplies of rapeseed and canola likely to remain tight in the 201

177

1993 Housing Characteristics -Detailed Tables  

U.S. Energy Information Administration (EIA)

Within each section, except for Air-conditioning and Light Usage, ... the Light Usage section includes a table that describes indoor light usage by ...

178

Characteristics of truth tables - CECM  

E-Print Network (OSTI)

Nov 19, 1997... fairly straightforward because each row represents an assignment of truth values ... A truth table is a standard binary ordering of 2-partitions.

179

EIA Table E.1C  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA - - Table Posted: December 19, 2008

180

Microsoft Word - table_24.doc  

Annual Energy Outlook 2012 (EIA)

0 Table 24. Percent Distribution of Natural Gas Supply and Disposition by State, 2006 Alabama ... 1.44 1.81...

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Microsoft Word - table_25.doc  

Gasoline and Diesel Fuel Update (EIA)

4 Table 25. Percent Distribution of Natural Gas Supply and Disposition by State, 2008 Alabama ... 1.19 1.74...

182

Microsoft Word - table_25.doc  

Annual Energy Outlook 2012 (EIA)

4 Table 25. Percent Distribution of Natural Gas Supply and Disposition by State, 2007 Alabama ... 1.31 1.83...

183

Microsoft Word - table_24.doc  

Annual Energy Outlook 2012 (EIA)

0 Table 24. Percent Distribution of Natural Gas Supply and Disposition by State, 2005 Alabama ... 1.56 1.59...

184

Microsoft Word - table_25.doc  

Annual Energy Outlook 2012 (EIA)

4 Table 25. Percent Distribution of Natural Gas Supply and Disposition by State, 2009 Alabama ... 1.1 2.0...

185

2011 22 Table of for  

U.S. Energy Information Administration (EIA)

2011 60 U.S. Energy Information Administration | Natural Gas Annual Table 22. Number of natural gas industrial consumers by type of ...

186

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

4 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2006 (Dollars per Thousand Cubic Feet) Alabama ... 18.80 100.00...

187

Faculty Search Table of Contents  

E-Print Network (OSTI)

October 28 2009 Faculty Search Committee Procedures Handbook #12;#12;#12;Table of Contents........................................................................................................................7 Charge to Search Committee................................................................................................................................8 Role of the Search Committee Chair

New Mexico, University of

188

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network (OSTI)

of potentially hazardous processes in regions with mountain permafrost. Buildings and utilities may be dam- aged for the maintenance or construction of high- mountain infrastructure. Increasing rockfall activity and a number

Kääb, Andreas

189

Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada  

SciTech Connect

Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system.

Hoxie, D.T.

1995-04-01T23:59:59.000Z

190

Rime Mushrooms on Mountains: Description, Formation, and Impacts on Mountaineering  

Science Conference Proceedings (OSTI)

Rime mushrooms, commonly called ice mushrooms, are large bulbous or mushroom-shaped accretions of hard rime that build up on the upwind side of mountain summits and ridges and on windward rock faces. This paper reviews the characteristics of rime ...

C. David Whiteman; Rolando Garibotti

2013-09-01T23:59:59.000Z

191

A Multiscale and Multidisciplinary Investigation Of EcosystemAtmosphere CO2 Exchange Over the Rocky Mountains of Colorado  

Science Conference Proceedings (OSTI)

A significant fraction of Earth consists of mountainous terrain. However, the question of how to monitor the surfaceatmosphere carbon exchange over complex terrain has not been fully explored. This article reports on studies by a team of ...

Jielun Sun; Steven P. Oncley; Sean P. Burns; Britton B. Stephens; Donald H. Lenschow; Teresa Campos; Andrew S. Watt; Russell K. Monson; David J. P. Moore; Jia Hu; Mark Tschudi; David S. Schimel; Steven Aulenbach; William J. Sacks; Stephan F. J. De Wekker; Chun-Ta Lai; Brian Lamb; Eugene Allwine; Teresa Coons; Dennis Ojima; Patrick Z. Ellsworth; Leonel S. L. Sternberg; Sharon Zhong; Craig Clements; Dean E. Anderson

2010-02-01T23:59:59.000Z

192

Microsoft Word - table_87  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 6. Natural gas processed, liquids extracted, and natural gas plant liquids production, by state, 2012 Alabama 87,269 5,309 7,110 Alabama Onshore Alabama 33,921 2,614 3,132 Alabama Offshore Alabama 53,348 2,695 3,978 Alaska 2,788,997 18,339 21,470 Alaska 2,788,997 18,339 21,470 Arkansas 6,872 336 424 Arkansas 6,872 336 424 California 169,203 9,923 12,755 California Onshore California 169,203 9,923 12,755 California Offshore California NA NA NA Federal Offshore California NA NA NA

193

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 5 B. Detailed Reports 1.1 Magnets & Supports 8 1.2 Vacuum System 12 1.3 Power Supplies 14 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.7 Beam Line Front Ends 19 1.8 Facilities 19 1.9 Installation 20 2.1 Accelerator Physics 21 2 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress The progress and highlights of each major technical system are summarized below. Additional details are provided in Section B. Magnets - As of the end of this quarter (March 31, 2002), the status of magnet fabrication is as follows: Magnet Type Number Received % of Total Received Dipoles 40 100% Quadrupoles 102 100% Sextupoles 76 100%

194

Reviews, Tables, and Plots  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Review of Particle Physics 4 Review of Particle Physics Please use this CITATION: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (bibtex) Standalone figures are now available for these reviews. Categories: * Constants, Units, Atomic and Nuclear Properties * Standard Model and Related Topics * Particle Properties * Hypothetical Particles * Astrophysics and Cosmology * Experimental Methods and Colliders * Mathematical Tools * Kinematics, Cross-Section Formulae, and Plots * Authors, Introductory Text, History plots PostScript help file PDF help file Constants, Units, Atomic and Nuclear Properties Physical constants (Rev.) PS PDF (1 page) Astrophysical constants (Rev.) PS PDF (2 pages) International System of units (SI) PS PDF (2 pages) Periodic table of the elements (Rev.) errata PS PDF (1 page)

195

Table G3  

U.S. Energy Information Administration (EIA) Indexed Site

1905-0194 1905-0194 Expiration Date: 07/31/2013 May 28, 2010 Voluntary Reporting of Greenhouse Gases 14 Table G3. Decision Chart for a Start Year Report for a Large Emitter Intending To Register Reductions Report Characteristics Reporting Requirements Schedule I Schedule II (For Each Subentity) Schedule III Schedule IV Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 1 Sec. 2 & Add. A Sec. 3 Sec. 1 Sec. 2 Sec. 1 Sec. 2 Part A Part B Part C Part D Part E Part A Part B Part C Independent Verification? All A- or B-Rated Methods? Foreign Emissions? Entity-Wide Reductions Only? Entity Statement Aggregated Emissions by Gas (Domestic and Foreign) † Emissions Inventory by Source

196

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

through June 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 9 1.2 Vacuum System 16 1.3 Power Supplies 21 1.4 RF System 25 1.5 Instrumentation & Controls 26 1.6 Cable Plant 28 1.8 Facilities 28 2.0 Accelerator Physics 29 2.1 ES&H 31 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress Magnet System - The project has received three shipments of magnets from IHEP. A total of 55 dipole, quadrupole and sextupole magnets out of 218 have arrived. All main magnets will arrive by December. The additional mechanical and electrical checks of the magnets at SSRL have been successful. Only minor mechanical problems were found and corrected. The prototype

197

TABLE OF CONTENTS  

National Nuclear Security Administration (NNSA)

AC05-00OR22800 AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295, 290, 284, 280, 270, 257, 239, 238, 219, M201, M180, M162, M153, M150, M141, M132, M103, M092, M080, M055, M051, M049, M034, M022, M003, A002) ..........................................................B-2 SECTION C - DESCRIPTION/SPECIFICATION/WORK STATEMENT DESCRIPTION OF

198

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L Semiannual Report toCongress DOE/IG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ..................................................... 2 Impacts Key Accomplishments ............................................................................................... 3 Positive Outcomes ...................................................................................................... 3 Reports Investigative Outcomes .............................................................................................. 6 Audits ......................................................................................................................... 8

199

Engineering Tables: Reinforcement Materials  

Science Conference Proceedings (OSTI)

Table 1   Properties of key reinforcement materials...3 GPa 10 6 psi GPa 10 6 psi GPa 10 6 psi Carbon fiber (pitch) E = 55 ? 10 6 psi 2.0 0.072 380 55 ? ? 190 28 E = 75 ? 10 6 psi 2.0 0.072 520 75 ? ? 260 38 E = 100 ? 10 6 psi 2.2 0.078 690 100 5 0.7 314 46 E = 120 ? 10 6 psi 2.2 0.078 830 120 5 0.7 377 55 E = 130 ? 10 6 psi 2.2 0.078 895 130 5 0.7 407...

200

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

October October through December 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 7 1.2 Vacuum System 9 1.3 Power Supplies 13 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.9 Installation 19 2.0 Accelerator Physics 20 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress In the magnet area, the production of all major components (dipoles, quadrupoles, and sextupoles) has been completed on schedule. This results from a highly successful collaboration with our colleagues at the Institute of High Energy Physics (IHEP) in Beijing. The production of corrector magnets is still in progress with completion scheduled for May 2002.

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

202

table of contents  

Science Conference Proceedings (OSTI)

Energy and Volume Requirements for Oxygen Transfer to Sand Slurries in ... Evaluation of Thiourea Consumption for Gold Extraction from Complex and ... Recovery & Sepation of High Value - Plastics from Discarded Household Appliances

203

ARM - Instrument - s-table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentss-table govInstrumentss-table Documentation S-TABLE : Instrument Mentor Monthly Summary (IMMS) reports S-TABLE : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Stabilized Platform (S-TABLE) Instrument Categories Ocean Observations For ship-based deployments, some instruments require actively stabilized platforms to compensate for the ship's motion, especially rotations around the long axis of the ship (roll), short axis (pitch), and, for some instruments, vertical axis (yaw). ARM currently employs two types of stabilized platforms: one electrically controlled for lighter instruments that includes yaw control (dubbed RPY for Roll, Pitch, Yaw) and one

204

C:\\WEBSHARE\\WWWROOT\\forecastactuals\\tables2_18.wpd  

Annual Energy Outlook 2012 (EIA)

Tables 2 through 18 Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption,...

205

FY 2014 Budget Request Summary Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Table FY 2014 Budget Request Summary Table Summary Table by Appropriations Summary Table by Organization More Documents & Publications FY 2014 Budget Justification Details...

206

Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada  

SciTech Connect

In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

1995-12-31T23:59:59.000Z

207

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

208

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

209

table14.xls  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 AEO 1993 1.85 1.94 2.09 2.30 2.44 2.60 2.85 3.12 3.47 3.84 4.31 4.81 5.28

210

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

211

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines The Gas Turbine Handbook The Gas Turbine Handbook TABLE OF CONTENTS Acknowledgements Updated Author Contact Information Introduction - Rich Dennis, Turbines Technology Manager 1.1 Simple and Combined Cycles - Claire Soares 1.1-1 Introduction 1.1-2 Applications 1.1-3 Applications versatility 1.1-4 The History of the Gas Turbine 1.1-5 Gas Turbine, Major Components, Modules, and systems 1.1-6 Design development with Gas Turbines 1.1-7 Gas Turbine Performance 1.1-8 Combined Cycles 1.1-9 Notes 1.2 Integrated Coal Gasification Combined Cycle (IGCC) - Massod Ramezan and Gary Stiegel 1.2-1 Introduction 1.2-2 The Gasification Process 1.2-3 IGCC Systems 1.2-4 Gasifier Improvements 1.2-5 Gas Separation Improvements 1.2-6 Conclusions 1.2-7 Notes 1.2.1 Different Types of Gasifiers and Their Integration with Gas Turbines - Jeffrey Phillips

212

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

213

Supplement Tables to the Annual Energy Outlook 2000 - Errata  

Gasoline and Diesel Fuel Update (EIA)

AEO 2000 AEO 2000 as of 4/4/2000 1. The following values were updated in tables 81 and 82, dealing with natural gas production and reserve additions. Table 81. Lower 48 Natural Gas Production and Wellhead Prices 1998 Original 1998 Corrected 1998-2020 Original 1998-2020 Corrected Lower 48 Total 18.27 18.44 1.6% 1.5% Lower 48 Onshore Northeast 0.75 0.78 3.0% 2.8% Gulf Coast 4.69 4.81 1.4% 1.3% Midcontinent 2.72 2.67 1.2% 1.4% Southwest 1.54 1.56 2.5% 2.4% Rocky Mountain 2.90 2.84 2.7% 2.8% West Coast 0.14 0.25 1.7% -1.1% Lower 48 Offshore Gulf 5.48 5.48 0.7% 0.7% Pacific 0.04 0.05 -1.1% -1.6% Atlantic 0.00 0.00 N/A N/A Table 82. Oil and Gas, End-of-Year Reserves and Annual Reserve Additions 1998 Original

214

Mountain Air | Open Energy Information  

Open Energy Info (EERE)

Air Air Jump to: navigation, search Name Mountain Air Facility Mountain Air Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terna Energy Developer Terna Energy Energy Purchaser Idaho Power Location Hammett ID Coordinates 42.98719519°, -115.3985024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.98719519,"lon":-115.3985024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain  

E-Print Network (OSTI)

of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

2002-01-01T23:59:59.000Z

216

Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain,  

Open Energy Info (EERE)

Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Details Activities (1) Areas (1) Regions (0) Abstract: CO2 and heat fluxes were measured over a six-week period (09/08/2006 to 10/24/2006) by the eddy covariance (EC) technique at the Horseshoe Lake tree kill (HLTK), Mammoth Mountain, CA, a site with complex terrain and high, spatially heterogeneous CO2 emission rates. EC CO2 fluxes ranged from 218 to 3500 g m- 2 d- 1 (mean = 1346 g m- 2 d- 1). Using footprint modeling, EC CO2 fluxes were compared to CO2 fluxes measured by

217

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

ALLIED OIL & TOOL POWERJET SLOTTING TOOL ALLIED OIL & TOOL POWERJET SLOTTING TOOL JANUARY 10, 1996 FC9522 / 95DT3 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS ALLIED OIL & TOOL POWERJET SLOTTING TOOL Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer January 11, 1996 551103/9522:jb CONTENTS Page Summary .......................................................................................................................2 Introduction.....................................................................................................................2 Description of Operations...................................................................................................3 Figure 1 ..........................................................................................................5

218

EIA - Annual Energy Outlook 2009 - chapter Tables  

Gasoline and Diesel Fuel Update (EIA)

Chapter Tables Chapter Tables Annual Energy Outlook 2009 with Projections to 2030 Chapter Tables Table 1. Estimated fuel economy for light-duty vehicles, based on proposed CAFE standards, 2010-2015 Table 2. State appliance efficiency standards and potential future actions Table 3. State renewable portfolio standards Table 4. Key analyses from "issues in Focus" in recent AEOs Table 5. Liquid fuels production in three cases, 2007 and 2030 Table 6. Assumptions used in comparing conventional and plug-in hybrid electric vehicles Table 7. Conventional vehicle and plug-in hybrid system component costs for mid-size vehicles at volume production Table 8. Technically recoverable resources of crude oil and natural gas in the Outer Continental Shelf, as of January 1, 2007

219

May 2012 Table of Contents  

Science Conference Proceedings (OSTI)

May 2012 Table of Contents Inform Magazine Inform Archives News May 2012 Chocolate science Chocolate may be soft, but the science behind it is not. This issue features the latest research on this delectable topic....

220

April 2012 Table of Contents  

Science Conference Proceedings (OSTI)

April 2012 Table of Contents Inform Magazine Inform Archives News April 2012 Letter from the president Outgoing AOCS President Erich Dumelin reviews progress in 2011 and looks forward to the organizations inc

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2007 (Million Cubic Feet) Alabama ... 270,407 19,831 77,311 90,589 0 -69 0 418,545...

222

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2009 (Million Cubic Feet) Alabama ... 236,029 17,232 -25,416 258,787 0 -2,099 0 454,268...

223

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2006 (Million Cubic Feet) Alabama ... 286,220 21,065 37,079 97,347 0 8,484 0 391,098...

224

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

3 Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2005 (Million Cubic Feet) Alabama ... 296,528 13,759 131,734 -60,062 0 103 0 354,339...

225

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural Gas Production, Transmission, and Consumption, by State, 2008 (Million Cubic Feet) Alabama ... 257,884 17,222 1,335 166,539 0 4,379 0 404,157...

226

March 2011 Table of Contents  

Science Conference Proceedings (OSTI)

March 2011 Table of Contents Inform Magazine Inform Archives News 126 Innovative, sustainable consumption: A challenge for the entire value chain In our continuing coverage of the 7th World Conference on Detergents,

227

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE4-1e. Water-Heating Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD ...

228

June 2012 Table of Contents  

Science Conference Proceedings (OSTI)

June 2012 Table of Contents Inform Magazine Inform Archives News June 2012 Science and modern art Oil paintings produced after the industrialization of paint manufacture often are more vulnerable to degradation than

229

Table H.1co2  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table H.1co2 World Carbon Dioxide Emissions from the Consumption and Flaring of Fossil ...

230

April 2011 Table of Contents  

Science Conference Proceedings (OSTI)

April 2011 Table of Contents Inform Magazine Inform Archives News 186 Letter from the president Outgoing AOCS President J. Keith Grime reviews progress made in 2010 and looks forward to the organization's incre

231

September 2012 Table of Contents  

Science Conference Proceedings (OSTI)

September 2012 Table of Contents Inform Magazine Inform Archives News September 2012 Nanoscale oil confinement in fat crystal networks: Why puff pastries are a new frontier for theoretical physicists A theoretical p

232

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE5-1e. Appliances1 Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone2 RSE Row Factors Fewer than 2,000 CDD and --

233

Microsoft Word - table_26.doc  

Annual Energy Outlook 2012 (EIA)

5 Table 26. Percent Distribution of Natural Gas Delivered to Consumers by State, 2009 Alabama ... 0.8 0.8 2.1 0.3 3.3 Alaska... 0.4...

234

Microsoft Word - table_25.doc  

Annual Energy Outlook 2012 (EIA)

1 Table 25. Percent Distribution of Natural Gas Delivered to Consumers by State, 2005 Alabama ... 0.87 0.86 2.24 0.52 1.79 Alaska......

235

Microsoft Word - table_25.doc  

Annual Energy Outlook 2012 (EIA)

1 Table 25. Percent Distribution of Natural Gas Delivered to Consumers by State, 2006 Alabama ... 0.87 0.86 2.31 0.67 2.34 Alaska......

236

Microsoft Word - table_26.doc  

Annual Energy Outlook 2012 (EIA)

5 Table 26. Percent Distribution of Natural Gas Delivered to Consumers by State, 2008 Alabama ... 0.78 0.80 2.14 0.36 2.46 Alaska......

237

Microsoft Word - table_26.doc  

Annual Energy Outlook 2012 (EIA)

5 Table 26. Percent Distribution of Natural Gas Delivered to Consumers by State, 2007 Alabama ... 0.75 0.78 2.27 0.47 2.57 Alaska......

238

February 2012 Table of Contents  

Science Conference Proceedings (OSTI)

inform magazine February 2012 Table of Contents Inform Magazine Inform Archives News February 2012 66 Patrick Donnelly named CEO of AOCS Our new CEO, Patrick Donnelly, brings a passion for sci

239

October 2011 Table of Contents  

Science Conference Proceedings (OSTI)

October 2011 Table of Contents Inform Magazine Inform Archives News 542 Soy and breast cancer Are soy foods safe for postmenopausal women who have had breast cancer? Associate Editor Catherine Watk

240

October 2012 Table of Contents  

Science Conference Proceedings (OSTI)

October 2012 Table of Contents Inform Magazine Inform Archives News October 2012 The science behind optimal frying Understanding the frying process can lead to better food and fat quality, a higher degree of control

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

September 2011 Table of Contents  

Science Conference Proceedings (OSTI)

September 2011 Table of Contents Inform Magazine Inform Archives News 478 IOM panel recommends tripling vitamin D intake: Panels conservative approach receives criticism The 102nd AOCS Annua

242

All Price Tables.vp  

Annual Energy Outlook 2012 (EIA)

Administration State Energy Data 2010: Prices and Expenditures 3 2 0 1 0 S U M M A R I E S Table E2. Total End-Use Energy Price Estimates, 2010 (Dollars per Million Btu)...

243

January 2012 Table of Contents  

Science Conference Proceedings (OSTI)

inform magazine January 2012 Table of Contents Inform Magazine Inform Archives News January 2012 Oilseeds in Australia Australia is now one of the worlds top three exporters of canola oil. inform take

244

Microsoft Word - table_22.doc  

Gasoline and Diesel Fuel Update (EIA)

3 Table 22. Average City Gate Price of Natural Gas in the United States, 2001-2005 (Dollars per Thousand Cubic Feet) Alabama ... 6.63 4.74 6.06 6.65...

245

Microsoft Word - table_22.doc  

Annual Energy Outlook 2012 (EIA)

5 Table 22. Average Citygate Price of Natural Gas in the United States, 2005-2009 (Dollars per Thousand Cubic Feet) Alabama ... 8.47 10.26 8.78 9.84...

246

June 2010 Table of Contents  

Science Conference Proceedings (OSTI)

June 2010 Table of Contents 330 AOCS 2.0 debuts A drum roll, please: The new AOCS web experience, otherwise known as AOCS 2.0, debuted in early May. Ca

247

August 2010 Table of Contents  

Science Conference Proceedings (OSTI)

August 2010 Table of Contents Inform Magazine Inform Archives News 471 Letter from the President AOCS President J. Keith Grime discusses the areas that AOCS will focus on in t

248

MECS 1991 Publications and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication and Tables Publication and Tables Publication and Tables Figure showing the Largest Energy Consumers in the Manufacturing Sector You have the option of downloading the entire report or selected sections of the report. Full Report - Manufacturing Consumption of Energy 1991 (file size 17.2 MB) pages:566 Selected Sections Main Text (file size 380,153 bytes) pages: 33, includes the following: Contacts Contents Executive Summary Introduction Energy Consumption in the Manufacturing Sector: An Overview Energy Consumption in the Manufacturing Sector, 1991 Manufacturing Capability To Switch Fuels Appendices Appendix A. Detailed Tables Appendix B. Survey Design, Implementation, and Estimates (file size 141,211 bytes) pages: 22. Appendix C. Quality of the Data (file size 135,511 bytes) pages: 8.

249

Test concept for waste package environment tests at Yucca Mountain  

SciTech Connect

The Nevada Nuclear Waste Storage Investigations Project is characterizing a tuffaceous rock unit at Yucca Mountain, Nevada to evaluate its suitability for a repository for high level radioactive waste. The candidate repository horizon is a welded, devitrified tuff bed located at a depth of about 300 m in the unsaturated zone, over 100 m above the water table. As part of the project, Lawrence Livermore National Laboratory is responsible for designing the waste packages and for assessing their expected performance in the repository environment. The primary region of interest to package design and performance assessment is the portion of the rock mass within a few meters of waste emplacement holes. Hydrologic mechanisms active in this unsaturated near-field environment, along with thermal and mechanical phenomena that influence the hydrology, need to be understood well enough to confirm the basis of the waste package designs and performance assessment. Large scale in situ tests (called waste package environment tests) are being planned in order to develop this understanding and to provide data sets for performance assessment model validation (Yow, 1985). Exploratory shafts and limited underground facilities for in-situ testing will be constructed at Yucca Mountain during site characterization. Multiple waste package environment tests are being planned for these facilities to represent horizontal and vertical waste emplacement configurations in the repository target horizon. These approximately half-scale tests are being designed to investigate rock mass hydrologic conditions during a cycle of thermal loading.

Yow, J.L. Jr.

1987-06-01T23:59:59.000Z

250

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

251

NEPA Yucca Mountain Downloads | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads October 24, 2008 EIS-0250: Notice of Intent to Prepare a Supplement to the Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-level Radioactive Waste at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Floodplain Statement of Finding Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Record of Decision and Floodplain Statement of Findings Nevada Rail Alignment for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada June 2, 2008 EIS-0250-S2: Final Supplemental Environmental Impact Statement

252

Scientific and Technical Priorities at Yucca Mountain  

Science Conference Proceedings (OSTI)

Following completion of the site characterization and site recommendation phases, the Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. This report provides background on how the project arrived at this juncture in its history and detailed information on EPRI's Yucca Mountain-related activities during calendar year 2003. The report assesses the relative risk-importance of various Yucca Mountain system co...

2003-12-15T23:59:59.000Z

253

Mountain Association for Community Economic Development - Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program Eligibility Commercial Residential Savings For Heating &...

254

Green Mountain Energy Company | Open Energy Information  

Open Energy Info (EERE)

Mountain Energy Company Place Texas Utility Id 7554 Utility Location Yes Ownership R NERC Location TRE NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861...

255

EIA - Appendix A - Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Tables (2005-2035) Tables (2005-2035) International Energy Outlook 2010 Reference Case Projections Tables (2005-2035) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix A. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

256

Effects of actinide burning on waste disposal at Yucca Mountain  

SciTech Connect

Release rates of 15 radionuclides from waste packages expected to result from partitioning and transmutation of Light-Water Reactor (LWR) and Actinide-Burning Liquid-Metal Reactor (ALMR) spent fuel are calculated and compared to release rates from standard LWR spent fuel packages. The release rates are input to a model for radionuclide transport from the proposed geologic repository at Yucca Mountain to the water table. Discharge rates at the water table are calculated and used in a model for transport to the accessible environment, defined to be five kilometers from the repository edge. Concentrations and dose rates at the accessible environment from spent fuel and wastes from reprocessing, with partitioning and transmutation, are calculated. Partitioning and transmutation of LWR and ALMR spent fuel reduces the inventories of uranium, neptunium, plutonium, americium and curium in the high-level waste by factors of 40 to 500. However, because release rates of all of the actinides except curium are limited by solubility and are independent of package inventory, they are not reduced correspondingly. Only for curium is the repository release rate much lower for reprocessing wastes.

Hirschfelder, J. [California Univ., Berkeley, CA (United States)

1992-07-01T23:59:59.000Z

257

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network (OSTI)

Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

258

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network (OSTI)

2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

259

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

260

Yucca Mountain and The Environment  

Science Conference Proceedings (OSTI)

The Yucca Mountain Project places a high priority on protecting the environment. To ensure compliance with all state and federal environmental laws and regulations, the Project established an Environmental Management System. Important elements of the Environmental Management System include the following: (1) monitoring air, water, and other natural resources; (2) protecting plant and animal species by minimizing land disturbance; (3) restoring vegetation and wildlife habitat in disturbed areas; (4) protecting cultural resources; (5) minimizing waste, preventing pollution, and promoting environmental awareness; and (6) managing of hazardous and non-hazardous waste. Reducing the impacts of Project activities on the environment will continue for the duration of the Project.

NA

2005-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nature Bulletin Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents: Table of Contents: Here is our table of contents for the Forset Preserve District of Cook Country Nature Bulletins. To search, go to the Natuere Bulletin's Search Engine and type in your topic. You can also use your browser's "FIND" command to search the 750+ article titles here for a specific subject! Fish Smother Under Ice Coyotes in Cook County Tough Times for the Muskrats Wild Geese and Ducks Fly North Squirrels Spring Frogs Snapping Turtles A Phenomenal Spring Good People Do Not Pick Wildflowers Fire is the Enemy of Field and Forest Crows Earthworms Bees Crayfish Floods Handaxes and Knives in the Forest Preserves Ant Sanctuary Conservation Mosquitoes More About Mosquitoes Fishing in the Forest Preserve Our River Grasshoppers Chiggers Ticks Poison Ivy Fireflies

262

COST AND QUALITY TABLES 95  

Gasoline and Diesel Fuel Update (EIA)

5 Tables 5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) will no longer be pub- lished by the EIA. The tables presented in this docu- ment are intended to replace that annual publication. Questions regarding the availability of these data should be directed to: Coal and Electric Data and Renewables Division

263

MTS Table Top Load frame  

NLE Websites -- All DOE Office Websites (Extended Search)

MTS Table Top Load frame MTS Table Top Load frame The Non-destructive Evaluation group operates an MTS Table Top Load frame for ultimate strength and life cycle testing of various ceramic, ceramic-matrix (FGI), carbon, carbon fiber, cermet (CMC) and metal alloy engineering samples. The load frame is a servo-hydraulic type designed to function in a closed loop configuration under computer control. The system can perform non-cyclic, tension, compression and flexure testing and cyclic fatigue tests. The system is comprised of two parts: * The Load Frame and * The Control System. Load Frame The Load Frame (figure 1) is a cross-head assembly which includes a single moving grip, a stationary grip and LVDT position sensor. It can generate up to 25 kN (5.5 kip) of force in the sample under test and can

264

A Physically Based Daily Hydrometeorological Model for Complex Mountain Terrain  

Science Conference Proceedings (OSTI)

This paper describes the continued development of the physically based hydrometeorological model Generate Earth Systems Science input (GENESYS) and its application in simulating snowpack in the St. Mary (STM) River watershed, Montana. GENESYS is ...

Ryan J. MacDonald; James M. Byrne; Stefan W. Kienzle

2009-12-01T23:59:59.000Z

265

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste  

SciTech Connect

Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

J.S. Stuckless; D. O'Leary

2006-09-25T23:59:59.000Z

266

Numerical Simulation of Slope and Mountain Flows  

Science Conference Proceedings (OSTI)

Early descriptive models of mountain-valley circulations indicated that the mountain flow (i.e., the along-valley axis component out of the valley) is a true three-dimensional phenomenon. According to these descriptions, at night shallow-down ...

Richard T. McNider; Roger A. Pielke

1984-10-01T23:59:59.000Z

267

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

268

Department of Energy Files Motion to Withdraw Yucca Mountain...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis...

269

Motion to Withdraw from Yucca Mountain application | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motion to Withdraw from Yucca Mountain application Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic...

270

Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE...

271

Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

272

Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Mcgee Mountain Area (DOE GTP)...

273

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain...

274

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 to 116 Complete set of Supplemental Tables Complete set of Supplemental Tables. Need help, please contact the National Energy Information Center at 202-586-8800. Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central

275

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

276

KT Monograph Section B Table  

E-Print Network (OSTI)

traced#7;#7; Table B1:1 - Summary of a selection of previous surface surveys and collections in the Near East #12; Slopes of Tepe#7;Top of Tepe#7;Clustered#7;#7;Percentage Diagnostics#7;Small Stones - esp. NW & E#7;Late Roman/Byz. Sherds#7;#7;Trefoil Rims... #7;Terra Sigillata - esp. S & SW#7;Stone Artefacts#7;#7;Red Hittite Wares#7;Hellenistic Sherds#7;Architectural Fragments#7;#7;Total Sherds#7;#7;Large Stones#7;#7;Early Bronze Age#7;#7;#7;#7;Decorated Sherds#7;#7;#7;#7;Feature Sherds#7;#7;#7;#7; Table...

Thomas, D C

2004-12-09T23:59:59.000Z

277

Kibby Mountain II | Open Energy Information  

Open Energy Info (EERE)

Kibby Mountain II Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Mountain ME Coordinates 45.354154°, -70.65412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.354154,"lon":-70.65412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Turtle Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turtle Mountain Wind Farm Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Turtle Mountain Chippewa Energy Purchaser Turtle Mountain Chippewa Location Belcourt ND Coordinates 48.839486°, -99.745145° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.839486,"lon":-99.745145,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

280

Cemex Black Mountain Quarry | Open Energy Information  

Open Energy Info (EERE)

Mountain Quarry Mountain Quarry Jump to: navigation, search Name Cemex Black Mountain Quarry Facility Cemex Black Mountain Quarry Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Cemex Black Mountain Quarry Location Apple Valley CA Coordinates 34.622028°, -117.111833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.622028,"lon":-117.111833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents From the Former Office of Civilian Radioactive Waste Management President Obama and the Department of Energy are working to restart America's nuclear industry to help meet our energy and climate challenges and create thousands of new jobs. The Administration is fully committed to ensuring that long-term storage obligations for nuclear waste are met. The President has made clear that Yucca Mountain is not an option for waste storage. The Blue Ribbon Commission on America's Nuclear Future, led by Congressman Lee Hamilton and General Brent Scowcroft, has conducted a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and has offered recommendations for developing a safe,

283

Yucca Mountain Press Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Press Conference Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the NRC's rigorous review process will validate that the Yucca Mountain repository will provide for the safe disposal of spent nuclear fuel and high-level radioactive waste in a way that protects human health and our environment. This application represents the culmination of over 20 years of work by

284

An Observational and Prognostic Numerical Investigation of Complex Terrain Dispersion  

Science Conference Proceedings (OSTI)

The Atmospheric Studies in Complex Terrain Program conducted a field experiment at the interface of the Rocky Mountains and the Great Plains in the winter of 1991. Extensive meteorological observations were taken in northeastern Colorado near ...

Gregory S. Poulos; James E. Bossert

1995-03-01T23:59:59.000Z

285

Modeling Three-Dimensional Groundwater Flow and Advective Contaminant Transport at a Heterogeneous Mountainous Site in Support of Remediation Strategy  

SciTech Connect

A calibrated groundwater flow model for a contaminated site can provide substantial information for assessing and improving hydraulic measures implemented for remediation. A three-dimensional transient groundwater flow model was developed for a contaminated mountainous site, at which interim corrective measures were initiated to limit further spreading of contaminants. This flow model accounts for complex geologic units that vary considerably in thickness, slope, and hydrogeologic properties, as well as large seasonal fluctuations of the groundwater table and flow rates. Other significant factors are local recharge from leaking underground storm drains and recharge from steep uphill areas. The zonation method was employed to account for the clustering of high and low hydraulic conductivities measured in a geologic unit. A composite model was used to represent the bulk effect of thin layers of relatively high hydraulic conductivity found within bedrock of otherwise low conductivity. The inverse simulator ITOUGH2 was used to calibrate the model for the distribution of rock properties. The model was initially calibrated using data collected between 1994 and 1996. To check the validity of the model, it was subsequently applied to predicting groundwater level fluctuation and groundwater flux between 1996 and 1998. Comparison of simulated and measured data demonstrated that the model is capable of predicting the complex flow reasonably well. Advective transport was approximated using pathways of particles originating from source areas of the plumes. The advective transport approximation was in good agreement with the trend of contaminant plumes observed over the years. The validated model was then refined to focus on a subsection of the large system. The refined model was subsequently used to assess the efficiency of hydraulic measures implemented for remediation.

Zhou, Quanlin; Birkholzer, Jens T.; Javandel, Iraj; Jordan, Preston D.

2004-01-14T23:59:59.000Z

286

Automatic Table Ground Truth Generation and a Background-Analysis-Based Table Structure Extraction  

E-Print Network (OSTI)

In this paper, we first describe an automatic table ground truth generation system which can efficiently generate a large amount of accurate table ground truth suitable for the development of table detection algorithms. Then a novel background-analysis-based, coarse-to-fine table identification algorithm and an X-Y cut table decomposition algorithm are described. We discuss an experimental protocol to evaluate the table detection algorithms. For a total of having vin table entities and a total cell entities, our table detection algorithm takes line, word segmentation results as input and obtains around cell correct detection rates.

Yalin Wang; Ihsin T. Phillips; Robert Haralick

2001-01-01T23:59:59.000Z

287

Random Table and Its Ground Truth Automatic Generation: A Tool for Table  

E-Print Network (OSTI)

We developed a software tool to assist table understanding research. It can analyze any given table ground truth and generate documents that include similar table elements while have more variety on both table and non-table parts. Based on our novel content matching ground truthing idea, the table ground truth data for the generated table elements become available with little manual work. The validity of the proposed strategy was confirmed by our table detection algorithm development. We made this software package publicly available.

Understanding Research Yalin; Yalin Wang

2001-01-01T23:59:59.000Z

288

Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three ...

Clifford W. Hansen; Jon C. Helton; Cdric J. Sallaberry

2010-09-01T23:59:59.000Z

289

Plume Dispersion Anomalies in a Nocturnal Urban Boundary Layer in Complex Terrain  

Science Conference Proceedings (OSTI)

The URBAN 2000 experiments were conducted in the complex urban and topographical terrain in Salt Lake City, Utah, in stable nighttime conditions. Unexpected plume dispersion often arose because of the interaction of complex terrain and mountain...

Dennis Finn; Kirk L. Clawson; Roger G. Carter; Jason D. Rich; K. Jerry Allwine

2008-11-01T23:59:59.000Z

290

Tables of Chemicals and Etchants  

Science Conference Proceedings (OSTI)

Table 3   Designation of Etchants...p 255. (b) L.E. Samuels, J. Inst. Met., Vol 83, 1954??1955, p 359. (c) S.A. Manion and T.O. Mulhearn, Metallography, Vol 4, 1971, p 551...

291

Table Of Contents Section: Page  

E-Print Network (OSTI)

....................................................................15-6 15.E Rigging Hardware....................................................15-15 Tables: 15 the immediate work area and properly stored and maintained in a safe condition. 15.A.02 Hoist rope shall.04 When hoisting loads, a positive latching device shall be used to secure the load and rigging (e

US Army Corps of Engineers

292

Trip Table ?????? #ejdyrki-#ejebnjj  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /5e8f0a852f9c1d454b6df13f1365e4ef/e684451614f1683226855e2b90e1249c.html ... Top page #ejdyrki:?XNHx/Baass #ejdzgey:?maO8DRy4pM #ejdzuzo ...

293

Trip Table ?????? #UFOYMAA-#UFPBHZB  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /7faa9d44500591fbfecedcda9a9d9cf9/72b75372a04495579b32da4524a88ead.html ... Top page #UFOYMAA:?760XFpqqAg #UFOZAUQ:?GiyoPAoyp. #UFOZPPG ...

294

Trip Table ?????? #gopmusbo-#gopmxoap  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /de823d5fcb90885762f4a837a7fa1e4c/8ef5e7522a1014862421869a133710f6.html ... Top page #gopmusbo:?MyJIL5jza2 #gopmvgwe:?AGL/5xDjfA #gopmvvqu ...

295

Trip Table ?????? #PNQTORG-#PNQWKQH  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /57be3958616c440476cf50b429b2476e/a2758b2d3ccf7339fa919b48ba7c1570.html ... Top page #PNQTORG:?oGcbIPIQ/2 #PNQUDLW:?QPKgjR/j7k #PNQUSGM ...

296

Microsoft Word - table_23.doc  

U.S. Energy Information Administration (EIA) Indexed Site

6 Table 23. Average citygate price of natural gas in the United States, 2007- 2011 (dollars per thousand cubic feet) Alabama 8.78 9.84 7.61 6.46 5.80 Alaska 6.75 6.74 8.22 6.67...

297

Information-Sharing Protocol for the Transportation of Radioactive Waste to Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Draft for Review Only Preliminary Draft for Review Only Information-Sharing for Transportation of Radioactive Waste to Yucca Mountain Office of Logistics Management Office of Civilian Radioactive Waste Management U. S. Department of Energy Preliminary Draft July 2007 1 Preliminary Draft for Review Only TABLE OF CONTENTS 1.0 INTRODUCTION...........................................................................3 1.1 Background ....................................................................................................... 3 1.2 Document Origin and Structure...................................................................... 4 1.3 Information Sharing with Department of Homeland Security..................... 4 2.0 DISCUSSION OF TERMS ..................................................................................

298

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVERFLO (SMART CABLE) NOVERFLO (SMART CABLE) LIQUID LEAK DETECTION SYSTEM FEBRUARY 12, 1996 FC9535/96ET3 RMOTC TEST REPORT NOVERFLO LIQUID LEAK DETECTION SYSTEM (SMART CABLE) Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer February 12, 1996 650200/9535:jb CONTENTS Page Summary 1 Introducation 1 NPR-3 Map 2 Description of Operations 3 1 st Test 3 2 nd Test 3 3 rd Test 4 4 th Test 5 Concluding Remarks 5 Acknowledgements 6 Rocky Mountain Oilfield Testing Center Technical Report Noverflo Liquid Leak Detection System (Smart Cable) Summary As part of RMOTC's continuing mission to support and strengthen the domestic oil and gas industry by allowing testing by individual inventors and commercial companies to evaluate their products and technology, RMOTC

299

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATED THREE-PHASE CENTRIFUGE PROJECT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT MARCH 30, 1998 FC9535/96ET5 RMOTC TEST REPORT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT Centech, Inc. Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 30, 1998 850200/650200/650201:9583 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automated ThreePhase Centrifuge at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3). Centech, Inc. has manufactured a three-phase centrifuge which has been retrofitted with a PCbased, fuzzy-logic, automated control system, by Los Alamos National Laboratory. The equipment is designed to automatically process tank-bottom wastes within operator-prescribed limits of Basic

300

Projected Partner Funding Table: Wind Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projected Partner Funding Table: Wind Power Projected Partner Funding Table: Wind Power This is a table detailing projected partner funding for several wind power projects....

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

November/December 2012 Table of Contents  

Science Conference Proceedings (OSTI)

inform November/December table of contents. November/December 2012 Table of Contents inform Magazine algae algal AOCS biomass business chemistry cottonseed date detergents fats filing first history inform inform Magazine international inventor la

302

Table Name query? | OpenEI Community  

Open Energy Info (EERE)

Table Name query? Home > Groups > Databus Is there an API feature which returns the names of tables? Submitted by Hopcroft on 28 October, 2013 - 15:37 1 answer Points: 0 if you are...

303

Solar Cell Efficiency Tables (Version 39)  

Science Conference Proceedings (OSTI)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2011 are reviewed.

Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.

2012-01-01T23:59:59.000Z

304

A System for Tabled Constraint Logic Programming  

Science Conference Proceedings (OSTI)

As extensions to traditional logic programming, both tabling and Constraint Logic Programming (CLP) have proven powerful tools in many areas. They make logic programming more efficient and more declarative. However, combining the techniques of tabling ...

Baoqiu Cui; David Scott Warren

2000-07-01T23:59:59.000Z

305

Analytical Division Seed Oil Translation Table  

Science Conference Proceedings (OSTI)

seed oil translation table nomencalture Analytical Division Seed Oil Translation Table Analytical Chemistry Analytical Chemistry aocs articles atomic)FluorometryDifferential scanning calorimetry chemistry Chromatography (liquid detergents esters fats fo

306

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

307

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

308

Appendix B Metric and Thermal Conversion Tables  

U.S. Energy Information Administration (EIA)

2011 U.S. Energy Information Administration | Natural Gas Annual 193 Appendix B Metric and Thermal Conversion Tables

309

November/December 2011 Table of Contents  

Science Conference Proceedings (OSTI)

November/December 2011 Table of Contents Inform Magazine Inform Archives News 602 Letter from the president 603 Letter from

310

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

311

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

312

Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7  

Science Conference Proceedings (OSTI)

In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

NONE

1992-12-01T23:59:59.000Z

313

Microsoft Word - table_11.doc  

U.S. Energy Information Administration (EIA) Indexed Site

25 25 Table 11 Created on: 12/12/2013 2:10:53 PM Table 11. Underground natural gas storage - storage fields other than salt caverns, 2008-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2008 Total b -- -- -- -- -- 2,900 2,976 76 2009 Total b -- -- -- -- -- 2,856 2,563 -293 2010 Total b -- -- -- -- -- 2,781 2,822 41 2011 January 4,166 2,131 6,298 -63 -2.9 27 780 753 February 4,166 1,597 5,763 -10 -0.6 51 586 535 March 4,165 1,426 5,591 -114 -7.4 117 288 172

314

Microsoft Word - table_08.doc  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 8 Created on: 12/12/2013 2:07:39 PM Table 8. Underground natural gas storage - all operators, 2008-2013 (million cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total a Volume Percent Injections Withdrawals Net Withdrawals b 2008 Total c -- -- -- -- -- 3,340 3,374 34 2009 Total c -- -- -- -- -- 3,315 2,966 -349 2010 Total c -- -- -- -- -- 3,291 3,274 -17 2011 January 4,303 2,306 6,609 2 0.1 50 849 799 February 4,302 1,722 6,024 39 2.3 82 666 584 March 4,302 1,577 5,879 -75 -4.6 168 314 146 April 4,304 1,788 6,092 -223 -11.1 312 100

315

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Wu, and G.S. Bodvarsson, Radionuclide Transport Models Underdaughters of certain radionuclides. Increasing infiltrationOF MOUNTAIN-SCALE RADIONUCLIDE TRANSPORT IN THE UNSATURATED

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

316

Trip Table ?????? #ykccmpk-#ykcfiol  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /ce18e28f19b8a620d092b2a6c9fc0e08/311af50ce0338abff3271747a78d2a6c.html ... Top page #ykccmpk:?Bc4XbewxcY #ykcdbka:?gHgq5mD6d2 #ykcdqeq ...

317

Mountain Home Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mountain Home Wind Farm Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Elmore County ID Coordinates 43.268356°, -116.167939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.268356,"lon":-116.167939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Green Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Wind Farm Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power Energy Purchaser Green Mountain Energy Company Location Somerset County PA Coordinates 39.850753°, -79.066629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.850753,"lon":-79.066629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Pillar Mountain II | Open Energy Information  

Open Energy Info (EERE)

Pillar Mountain II Pillar Mountain II Jump to: navigation, search Name Pillar Mountain II Facility Pillar Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kodiak Electric Assoc. Developer Kodiak Electric Assoc. Energy Purchaser Kodiak Electric Assoc. Location Kodiak AK Coordinates 57.78667872°, -152.4434781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.78667872,"lon":-152.4434781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

322

Mountain Torque Events at the Tibetan Plateau  

Science Conference Proceedings (OSTI)

The interaction of large-scale wave systems with the Tibetan Plateau (TP) is investigated by regressing pressure, potential temperature, winds, precipitation, and selected fluxes in winter onto the three components Toi of this massifs mountain ...

Joseph Egger; Klaus-Peter Hoinka

2008-02-01T23:59:59.000Z

323

On the Diurnal Variation of Mountain Waves  

Science Conference Proceedings (OSTI)

The diurnal variation of mountain waves and wave drag associated with flow past mesoscale ridges has been examined using the Coupled OceanAtmosphere Mesoscale Prediction System (COAMPS) and an analytical boundary layer (BL) model. The wave drag ...

Qingfang Jiang; James D. Doyle

2008-04-01T23:59:59.000Z

324

Ice Crystal Production by Mountain Surfaces  

Science Conference Proceedings (OSTI)

Evidence is presented for a process of ice crystal generation in supercooled orographic clouds in contact with snow-covered mountain surfaces. Comparisons of the crystal concentrations at the surface with aircraft sampling indicate that the ...

David C. Rogers; Gabor Vali

1987-09-01T23:59:59.000Z

325

Anelastic Semigeostrophic Flow over a Mountain Ridge  

Science Conference Proceedings (OSTI)

Scale analysis indicates that five nondimensional parameters (R02 ?, ? ? and k?) characterize the disturbance generated by the steady flow of a uniform wind (U0, V0) incident on a mountain ridge of width a in an isothermal, uniformly rotating, ...

Peter R. Bannon; Pe-Cheng Chu

1988-03-01T23:59:59.000Z

326

Microsoft Word - IceMountainFinal.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Tumbled-down boulders, called talus, on Ice Mountain's north- western slope collect ice during the winter. In the summer, cold air flows out of vents in the base of the talus,...

327

Turbulent Kinetic Energy Budgets over Mountainous Terrain  

Science Conference Proceedings (OSTI)

The objective of this study is to describe the characteristics of the airflow and turbulence structure over mountainous terrain. Turbulent characteristics of the airflow were measured using well-instrumented aircraft. The shear, buoyancy, ...

Theodore S. Karacostas; John D. Marwitz

1980-02-01T23:59:59.000Z

328

Daytime heat transfer processes over mountainous terrain  

Science Conference Proceedings (OSTI)

The daytime heat transfer mechanisms over mountainous terrain are investigated by means of large-eddy simulations over idealized valleys. Two- and three-dimensional topographies, corresponding to infinite and finite valleys, are used in order to ...

Juerg Schmidli

329

Mountain Torque and Rossby Wave Radiation  

Science Conference Proceedings (OSTI)

Planetary-scale orography exerts a substantial pressure drag on the atmosphere. This drag appears to be partially balanced by the convergence of momentum transports by Rossby waves induced by these mountains. Simple models of this process are ...

Joseph Egger

1998-09-01T23:59:59.000Z

330

Mountain Forces and the Atmospheric Energy Budget  

Science Conference Proceedings (OSTI)

Although mountains are generally thought to exert forces on the atmosphere, the related transfers of energy between earth and atmosphere are not represented in standard energy equations of the atmosphere. It is shown that the axial rotation of the ...

Joseph Egger

2011-11-01T23:59:59.000Z

331

April 25, 1997: Yucca Mountain exploratory drilling  

Energy.gov (U.S. Department of Energy (DOE))

April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

332

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

333

Action Codes Table | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Action Codes Table | National Nuclear Security Administration Action Codes Table | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Action Codes Table Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > NMMSS Information, Reports & Forms > Code Tables > Action Codes Table

334

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Prime Supplier Sales Volume Prime Supplier Sales Volume Definitions Key Terms Definition Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Finished Aviation Gasoline A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gasoline Grades The classification of gasoline by octane ratings. Each type of gasoline (conventional and reformulated) is classified by three grades - regular, midgrade, and premium. Note: gasoline sales are reported by grade in accordance with their classification at the time of sale. In general, automotive octane requirements are lower at high altitudes. Therefore, in some areas of the United States, such as the Rocky Mountain States, the octane ratings for the gasoline grades may be 2 or more octane points lower.

335

EIA - Annual Energy Outlook (AEO) 2013 Data Tables  

U.S. Energy Information Administration (EIA)

Iron and Steel Industries Energy Consumption XLS: Table 32. Aluminum Industry Energy Consumption XLS: Table 33. Metal Based Durables Energy ...

336

Table US8. Average Consumption by Fuels Used, 2005 Physical ...  

U.S. Energy Information Administration (EIA)

Wood (cords) Energy Information Administration 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table US8.

337

Description of Energy Intensity Tables (12)  

U.S. Energy Information Administration (EIA) Indexed Site

3. Description of Energy Intensity Data Tables 3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1985, 1988, 1991, and 1994; along with the percentage changes between 1985 and the three subsequent years (1988, 1991, and 1994) tables 3 and 4 present 1988, 1991, and 1994 energy-intensity ratios that have been adjusted to the mix of products shipped from manufacturing establishments in 1985 tables 5 and 6 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1988, 1991, and 1994; along with the percentage changes between 1988 and the two subsequent

338

Sandia National Labs: PCNSC: IBA Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Ion Beam Analysis (IBA) Periodic Table (HTML) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) The purpose of this table is to quickly give the visitor to this site information on the sensitivity, depth of analysis and depth resolution of most of the modern ion beam analysis techniques in a single easy to use format: a periodic table. Note that you can click on each panel of this

339

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

6 6 Supplemental Tables to the Annual Energy Outlook 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2006 (AEO2006) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2030. Most of the tables were not published in the AEO2006, but contain regional and other more detailed projections underlying the AEO2006 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2006 Appendix tables A2 and A3, respectively. Forecasts for 2004-2006 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

340

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

7 7 Supplemental Tables to the Annual Energy Outlook 2007 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2007 (AEO2007) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005 to 2030. Most of the tables were not published in the AEO2007, but contain regional and other more detailed projections underlying the AEO2007 projections. The files containing these tables are in spreadsheet format. A total of one hundred and eighteen tables is presented. The data for tables 10 and 20 match those published in AEO2007 Appendix tables A2 and A3, respectively. Projections for 2006 and 2007 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term projections and are based on more current information than the AEO.

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) SLIMHOLE DRILL STEM TESTER APRIL, 1995 FC9524/95DT4 MSTS Test in Casper Wyoming April 19,1995 Background MSTS EXP-2 was shipped back to SPT for modifications and re-testing. A 4-1/2" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were: Casper Well Deviation 0 Casing 4-1/2" 10.5#/ft Test depth 5380 ft BHT NOT Tubing 2-3/8" 4.7#/ft Formation Fluid Water & Oil Kill Fluid 10#/gal brine The MSTS was tested with a single 3.06" Dowell packer which was set at 5380 ft, approximately 80 off bottom. The test string was configured: MSTS EXP-2 with Inflate recorder - HPR-D Formation Gage - HPR-D Single packer, Dowell 3.06 TFV - 12 inch stroke no cam 900 ft of 2-3/8" 4.7 #/ft tubing (3000 #)

342

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in B-100 Bone-equivalent plastic Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52740 1.450 85.9 0.05268 3.7365 0.1252 3.0420 3.4528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.435 7.435 7.443 × 10 -1 14.0 MeV 5.616 × 10 1 5.803 5.803 1.360 × 10 0 20.0 MeV 6.802 × 10 1 4.535 4.535 2.543 × 10 0 30.0 MeV 8.509 × 10 1 3.521 3.521 5.080 × 10 0 40.0 MeV 1.003 × 10 2 3.008 3.008 8.173 × 10 0 80.0 MeV 1.527 × 10 2 2.256 2.256 2.401 × 10 1 100. MeV 1.764 × 10 2 2.115 2.115 3.319 × 10 1 140. MeV 2.218 × 10 2 1.971 1.971 5.287 × 10 1 200. MeV 2.868 × 10 2 1.889 1.889 8.408 × 10 1 300. MeV 3.917 × 10 2 1.859 0.000 1.859 1.376 × 10 2 314. MeV 4.065 × 10 2 1.859 0.000 1.859 Minimum ionization 400. MeV 4.945 × 10 2 1.866 0.000 1.866 1.913 × 10 2 800. MeV 8.995 × 10 2 1.940 0.000 0.000 1.940 4.016 × 10 2 1.00 GeV 1.101 × 10 3 1.973 0.000 0.000 1.974 5.037 × 10 2 1.40

343

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium monoxide Na 2 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.48404 2.270 148.8 0.07501 3.6943 0.1652 2.9793 4.1892 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.330 6.330 8.793 × 10 -1 14.0 MeV 5.616 × 10 1 4.955 4.956 1.601 × 10 0 20.0 MeV 6.802 × 10 1 3.883 3.884 2.984 × 10 0 30.0 MeV 8.509 × 10 1 3.024 3.024 5.943 × 10 0 40.0 MeV 1.003 × 10 2 2.588 2.588 9.541 × 10 0 80.0 MeV 1.527 × 10 2 1.954 1.954 2.789 × 10 1 100. MeV 1.764 × 10 2 1.840 1.840 3.846 × 10 1 140. MeV 2.218 × 10 2 1.725 1.725 6.102 × 10 1 200. MeV 2.868 × 10 2 1.663 1.664 9.656 × 10 1 283. MeV 3.738 × 10 2 1.646 0.000 1.647 Minimum ionization 300. MeV 3.917 × 10 2 1.647 0.000 1.647 1.571 × 10 2 400. MeV 4.945 × 10 2 1.659 0.000 1.660 2.177 × 10 2 800. MeV 8.995 × 10 2 1.738 0.000 0.000 1.738 4.531 × 10 2 1.00 GeV 1.101 × 10 3 1.771 0.000 0.000 1.772 5.670 × 10 2 1.40 GeV 1.502

344

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Tissue-equivalent gas (Propane based) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55027 1.826 × 10 -3 59.5 0.09802 3.5159 1.5139 3.9916 9.3529 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.132 8.132 6.782 × 10 -1 14.0 MeV 5.616 × 10 1 6.337 6.337 1.241 × 10 0 20.0 MeV 6.802 × 10 1 4.943 4.944 2.326 × 10 0 30.0 MeV 8.509 × 10 1 3.831 3.831 4.656 × 10 0 40.0 MeV 1.003 × 10 2 3.269 3.269 7.500 × 10 0 80.0 MeV 1.527 × 10 2 2.450 2.450 2.209 × 10 1 100. MeV 1.764 × 10 2 2.303 2.303 3.053 × 10 1 140. MeV 2.218 × 10 2 2.158 2.158 4.855 × 10 1 200. MeV 2.868 × 10 2 2.084 2.084 7.695 × 10 1 263. MeV 3.527 × 10 2 2.068 0.000 2.069 Minimum ionization 300. MeV 3.917 × 10 2 2.071 0.000 2.072 1.252 × 10 2 400. MeV 4.945 × 10 2 2.097 0.000 2.097 1.732 × 10 2 800. MeV 8.995 × 10 2 2.232 0.000 0.000 2.232 3.580 × 10 2 1.00 GeV 1.101 × 10 3 2.289 0.000 0.000 2.290

345

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead oxide (PbO) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.40323 9.530 766.7 0.19645 2.7299 0.0356 3.5456 6.2162 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.046 4.046 1.411 × 10 0 14.0 MeV 5.616 × 10 1 3.207 3.207 2.532 × 10 0 20.0 MeV 6.802 × 10 1 2.542 2.542 4.656 × 10 0 30.0 MeV 8.509 × 10 1 2.003 2.003 9.146 × 10 0 40.0 MeV 1.003 × 10 2 1.727 1.727 1.455 × 10 1 80.0 MeV 1.527 × 10 2 1.327 1.327 4.176 × 10 1 100. MeV 1.764 × 10 2 1.256 1.256 5.729 × 10 1 140. MeV 2.218 × 10 2 1.188 1.189 9.017 × 10 1 200. MeV 2.868 × 10 2 1.158 1.158 1.415 × 10 2 236. MeV 3.250 × 10 2 1.155 0.000 1.155 Minimum ionization 300. MeV 3.917 × 10 2 1.161 0.000 0.000 1.161 2.279 × 10 2 400. MeV 4.945 × 10 2 1.181 0.000 0.000 1.181 3.133 × 10 2 800. MeV 8.995 × 10 2 1.266 0.001 0.000 1.267 6.398 × 10 2 1.00 GeV 1.101 × 10 3 1.299 0.001 0.000 1.301 7.955 × 10 2 1.40

346

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Liquid argon (Ar) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 18 (Ar) 39.948 (1) 1.396 188.0 0.19559 3.0000 0.2000 3.0000 5.2146 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.687 5.687 9.833 × 10 -1 14.0 MeV 5.616 × 10 1 4.461 4.461 1.786 × 10 0 20.0 MeV 6.802 × 10 1 3.502 3.502 3.321 × 10 0 30.0 MeV 8.509 × 10 1 2.731 2.731 6.598 × 10 0 40.0 MeV 1.003 × 10 2 2.340 2.340 1.058 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.084 × 10 1 100. MeV 1.764 × 10 2 1.669 1.670 4.250 × 10 1 140. MeV 2.218 × 10 2 1.570 1.570 6.732 × 10 1 200. MeV 2.868 × 10 2 1.518 1.519 1.063 × 10 2 266. MeV 3.567 × 10 2 1.508 0.000 1.508 Minimum ionization 300. MeV 3.917 × 10 2 1.509 0.000 1.510 1.725 × 10 2 400. MeV 4.945 × 10 2 1.526 0.000 0.000 1.526 2.385 × 10 2 800. MeV 8.995 × 10 2 1.610 0.000 0.000 1.610 4.934 × 10 2 1.00 GeV 1.101 × 10 3 1.644 0.000 0.000 1.645 6.163

347

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-13 (CF 3 Cl) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.47966 0.950 126.6 0.07238 3.5551 0.3659 3.2337 4.7483 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.416 6.416 8.659 × 10 -1 14.0 MeV 5.616 × 10 1 5.019 5.019 1.578 × 10 0 20.0 MeV 6.802 × 10 1 3.930 3.930 2.945 × 10 0 30.0 MeV 8.509 × 10 1 3.057 3.057 5.870 × 10 0 40.0 MeV 1.003 × 10 2 2.615 2.615 9.430 × 10 0 80.0 MeV 1.527 × 10 2 1.971 1.971 2.760 × 10 1 100. MeV 1.764 × 10 2 1.857 1.857 3.809 × 10 1 140. MeV 2.218 × 10 2 1.745 1.745 6.041 × 10 1 200. MeV 2.868 × 10 2 1.685 1.685 9.551 × 10 1 283. MeV 3.738 × 10 2 1.668 0.000 1.668 Minimum ionization 300. MeV 3.917 × 10 2 1.668 0.000 1.668 1.553 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.151 × 10 2 800. MeV 8.995 × 10 2 1.762 0.000 0.000 1.763 4.473 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.596 × 10 2 1.40 GeV 1.502

348

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lutetium silicon oxide [Lu 2 SiO 5 ] Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42793 7.400 472.0 0.20623 3.0000 0.2732 3.0000 5.4394 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.679 4.679 1.209 × 10 0 14.0 MeV 5.616 × 10 1 3.692 3.693 2.181 × 10 0 20.0 MeV 6.802 × 10 1 2.916 2.916 4.029 × 10 0 30.0 MeV 8.509 × 10 1 2.287 2.287 7.953 × 10 0 40.0 MeV 1.003 × 10 2 1.968 1.968 1.270 × 10 1 80.0 MeV 1.527 × 10 2 1.503 1.503 3.666 × 10 1 100. MeV 1.764 × 10 2 1.421 1.422 5.038 × 10 1 140. MeV 2.218 × 10 2 1.344 1.344 7.944 × 10 1 200. MeV 2.868 × 10 2 1.308 1.308 1.248 × 10 2 242. MeV 3.316 × 10 2 1.304 1.304 Minimum ionization 300. MeV 3.917 × 10 2 1.309 0.000 0.000 1.309 2.014 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.329 2.773 × 10 2 800. MeV 8.995 × 10 2 1.415 0.001 0.000 1.416 5.684 × 10 2 1.00 GeV 1.101 × 10 3 1.449 0.001 0.000 1.450 7.080

349

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Boron oxide (B 2 O 3 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49839 1.812 99.6 0.11548 3.3832 0.1843 2.7379 3.6027 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.889 6.889 8.045 × 10 -1 14.0 MeV 5.616 × 10 1 5.381 5.381 1.468 × 10 0 20.0 MeV 6.802 × 10 1 4.208 4.208 2.744 × 10 0 30.0 MeV 8.509 × 10 1 3.269 3.269 5.477 × 10 0 40.0 MeV 1.003 × 10 2 2.794 2.794 8.807 × 10 0 80.0 MeV 1.527 × 10 2 2.102 2.103 2.583 × 10 1 100. MeV 1.764 × 10 2 1.975 1.975 3.567 × 10 1 140. MeV 2.218 × 10 2 1.843 1.843 5.674 × 10 1 200. MeV 2.868 × 10 2 1.768 1.768 9.010 × 10 1 300. MeV 3.917 × 10 2 1.742 0.000 1.742 1.472 × 10 2 307. MeV 3.990 × 10 2 1.742 0.000 1.742 Minimum ionization 400. MeV 4.945 × 10 2 1.750 0.000 1.750 2.045 × 10 2 800. MeV 8.995 × 10 2 1.822 0.000 0.000 1.823 4.285 × 10 2 1.00 GeV 1.101 × 10 3 1.854 0.000 0.000 1.855 5.373 × 10 2 1.40 GeV 1.502

350

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Liquid H-note density shift (H 2 ) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 1 (H) 1.00794 (7) 7.080 × 10 -2 21.8 0.32969 3.0000 0.1641 1.9641 2.6783 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 16.508 16.508 3.316 × 10 -1 14.0 MeV 5.616 × 10 1 12.812 12.812 6.097 × 10 -1 20.0 MeV 6.802 × 10 1 9.956 9.956 1.147 × 10 0 30.0 MeV 8.509 × 10 1 7.684 7.684 2.307 × 10 0 40.0 MeV 1.003 × 10 2 6.539 6.539 3.727 × 10 0 80.0 MeV 1.527 × 10 2 4.870 4.870 1.105 × 10 1 100. MeV 1.764 × 10 2 4.550 4.550 1.531 × 10 1 140. MeV 2.218 × 10 2 4.217 4.217 2.448 × 10 1 200. MeV 2.868 × 10 2 4.018 0.000 4.018 3.912 × 10 1 300. MeV 3.917 × 10 2 3.926 0.000 3.926 6.438 × 10 1 356. MeV 4.497 × 10 2 3.919 0.000 3.919 Minimum ionization 400. MeV 4.945 × 10 2 3.922 0.000 3.922 8.988 × 10 1 800. MeV 8.995 × 10 2 4.029 0.000 4.030 1.906 × 10 2 1.00 GeV 1.101 × 10 3 4.084 0.001

351

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Cortical bone (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52130 1.850 106.4 0.06198 3.5919 0.1161 3.0919 3.6488 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.142 7.142 7.765 × 10 -1 14.0 MeV 5.616 × 10 1 5.581 5.581 1.417 × 10 0 20.0 MeV 6.802 × 10 1 4.366 4.366 2.646 × 10 0 30.0 MeV 8.509 × 10 1 3.393 3.393 5.281 × 10 0 40.0 MeV 1.003 × 10 2 2.900 2.901 8.489 × 10 0 80.0 MeV 1.527 × 10 2 2.179 2.179 2.489 × 10 1 100. MeV 1.764 × 10 2 2.044 2.044 3.440 × 10 1 140. MeV 2.218 × 10 2 1.907 1.907 5.475 × 10 1 200. MeV 2.868 × 10 2 1.830 1.830 8.700 × 10 1 300. MeV 3.917 × 10 2 1.803 0.000 1.803 1.422 × 10 2 303. MeV 3.950 × 10 2 1.803 0.000 1.803 Minimum ionization 400. MeV 4.945 × 10 2 1.812 0.000 1.812 1.976 × 10 2 800. MeV 8.995 × 10 2 1.888 0.000 0.000 1.889 4.138 × 10 2 1.00 GeV 1.101 × 10 3 1.922 0.000 0.000 1.923 5.187 × 10 2 1.40 GeV 1.502

352

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-13B1 (CF 3 Br) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.45665 1.500 210.5 0.03925 3.7194 0.3522 3.7554 5.3555 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.678 5.678 9.844 × 10 -1 14.0 MeV 5.616 × 10 1 4.454 4.454 1.788 × 10 0 20.0 MeV 6.802 × 10 1 3.498 3.498 3.325 × 10 0 30.0 MeV 8.509 × 10 1 2.729 2.729 6.606 × 10 0 40.0 MeV 1.003 × 10 2 2.339 2.339 1.059 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.086 × 10 1 100. MeV 1.764 × 10 2 1.671 1.671 4.251 × 10 1 140. MeV 2.218 × 10 2 1.574 1.574 6.729 × 10 1 200. MeV 2.868 × 10 2 1.524 1.524 1.062 × 10 2 266. MeV 3.567 × 10 2 1.513 0.000 1.513 Minimum ionization 300. MeV 3.917 × 10 2 1.515 0.000 1.515 1.721 × 10 2 400. MeV 4.945 × 10 2 1.531 0.000 0.000 1.532 2.378 × 10 2 800. MeV 8.995 × 10 2 1.616 0.000 0.000 1.616 4.919 × 10 2 1.00 GeV 1.101 × 10 3 1.650 0.001 0.000 1.651 6.142 × 10 2 1.40 GeV

353

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium carbonate (Na 2 CO 3 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49062 2.532 125.0 0.08715 3.5638 0.1287 2.8591 3.7178 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.575 6.575 8.449 × 10 -1 14.0 MeV 5.616 × 10 1 5.142 5.142 1.540 × 10 0 20.0 MeV 6.802 × 10 1 4.026 4.026 2.874 × 10 0 30.0 MeV 8.509 × 10 1 3.131 3.131 5.729 × 10 0 40.0 MeV 1.003 × 10 2 2.679 2.679 9.204 × 10 0 80.0 MeV 1.527 × 10 2 2.017 2.017 2.695 × 10 1 100. MeV 1.764 × 10 2 1.895 1.895 3.721 × 10 1 140. MeV 2.218 × 10 2 1.771 1.772 5.914 × 10 1 200. MeV 2.868 × 10 2 1.703 1.703 9.381 × 10 1 298. MeV 3.894 × 10 2 1.681 0.000 1.681 Minimum ionization 300. MeV 3.917 × 10 2 1.681 0.000 1.681 1.531 × 10 2 400. MeV 4.945 × 10 2 1.690 0.000 1.691 2.125 × 10 2 800. MeV 8.995 × 10 2 1.764 0.000 0.000 1.764 4.440 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.563 × 10 2 1.40

354

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Tungsten hexafluoride (WF 6 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42976 2.400 354.4 0.03658 3.5134 0.3020 4.2602 5.9881 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.928 4.928 1.143 × 10 0 14.0 MeV 5.616 × 10 1 3.880 3.880 2.067 × 10 0 20.0 MeV 6.802 × 10 1 3.057 3.057 3.828 × 10 0 30.0 MeV 8.509 × 10 1 2.393 2.393 7.574 × 10 0 40.0 MeV 1.003 × 10 2 2.056 2.056 1.211 × 10 1 80.0 MeV 1.527 × 10 2 1.565 1.565 3.509 × 10 1 100. MeV 1.764 × 10 2 1.479 1.479 4.827 × 10 1 140. MeV 2.218 × 10 2 1.396 1.396 7.623 × 10 1 200. MeV 2.868 × 10 2 1.353 1.353 1.200 × 10 2 253. MeV 3.431 × 10 2 1.346 0.000 1.346 Minimum ionization 300. MeV 3.917 × 10 2 1.349 0.000 0.000 1.349 1.942 × 10 2 400. MeV 4.945 × 10 2 1.367 0.000 0.000 1.367 2.679 × 10 2 800. MeV 8.995 × 10 2 1.451 0.001 0.000 1.452 5.516 × 10 2 1.00 GeV 1.101 × 10 3 1.485 0.001 0.000 1.486 6.877

355

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Standard rock Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.50000 2.650 136.4 0.08301 3.4120 0.0492 3.0549 3.7738 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.619 6.619 8.400 × 10 -1 14.0 MeV 5.616 × 10 1 5.180 5.180 1.530 × 10 0 20.0 MeV 6.802 × 10 1 4.057 4.057 2.854 × 10 0 30.0 MeV 8.509 × 10 1 3.157 3.157 5.687 × 10 0 40.0 MeV 1.003 × 10 2 2.701 2.702 9.133 × 10 0 80.0 MeV 1.527 × 10 2 2.028 2.029 2.675 × 10 1 100. MeV 1.764 × 10 2 1.904 1.904 3.695 × 10 1 140. MeV 2.218 × 10 2 1.779 1.779 5.878 × 10 1 200. MeV 2.868 × 10 2 1.710 1.710 9.331 × 10 1 297. MeV 3.884 × 10 2 1.688 0.000 1.688 Minimum ionization 300. MeV 3.917 × 10 2 1.688 0.000 1.688 1.523 × 10 2 400. MeV 4.945 × 10 2 1.698 0.000 1.698 2.114 × 10 2 800. MeV 8.995 × 10 2 1.774 0.000 0.000 1.775 4.418 × 10 2 1.00 GeV 1.101 × 10 3 1.808 0.000 0.000 1.808 5.534 × 10 2 1.40 GeV 1.502 × 10

356

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Ceric sulfate dosimeter solution Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55279 1.030 76.7 0.07666 3.5607 0.2363 2.8769 3.5212 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.909 7.909 6.989 × 10 -1 14.0 MeV 5.616 × 10 1 6.170 6.170 1.278 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.391 × 10 0 30.0 MeV 8.509 × 10 1 3.739 3.739 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.193 3.193 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.398 2.398 2.261 × 10 1 100. MeV 1.764 × 10 2 2.255 2.255 3.123 × 10 1 140. MeV 2.218 × 10 2 2.102 2.102 4.968 × 10 1 200. MeV 2.868 × 10 2 2.013 2.014 7.896 × 10 1 300. MeV 3.917 × 10 2 1.980 0.000 1.980 1.292 × 10 2 317. MeV 4.096 × 10 2 1.979 0.000 1.979 Minimum ionization 400. MeV 4.945 × 10 2 1.986 0.000 1.986 1.797 × 10 2 800. MeV 8.995 × 10 2 2.062 0.000 0.000 2.062 3.774 × 10 2 1.00 GeV 1.101 × 10 3 2.096 0.000 0.000 2.097 4.735 × 10

357

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Propane (C 3 H 8 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.58962 1.868 × 10 -3 47.1 0.09916 3.5920 1.4339 3.8011 8.7939 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.969 8.969 6.137 × 10 -1 14.0 MeV 5.616 × 10 1 6.982 6.982 1.125 × 10 0 20.0 MeV 6.802 × 10 1 5.441 5.441 2.109 × 10 0 30.0 MeV 8.509 × 10 1 4.212 4.213 4.228 × 10 0 40.0 MeV 1.003 × 10 2 3.592 3.592 6.815 × 10 0 80.0 MeV 1.527 × 10 2 2.688 2.688 2.010 × 10 1 100. MeV 1.764 × 10 2 2.525 2.526 2.780 × 10 1 140. MeV 2.218 × 10 2 2.365 2.365 4.424 × 10 1 200. MeV 2.868 × 10 2 2.281 2.281 7.018 × 10 1 267. MeV 3.577 × 10 2 2.262 0.000 2.263 Minimum ionization 300. MeV 3.917 × 10 2 2.265 0.000 2.265 1.143 × 10 2 400. MeV 4.945 × 10 2 2.291 0.000 2.291 1.582 × 10 2 800. MeV 8.995 × 10 2 2.434 0.000 0.000 2.435 3.275 × 10 2 1.00 GeV 1.101 × 10 3 2.495 0.000 0.000 2.496 4.086 × 10 2 1.40 GeV 1.502

358

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polystyrene ([C 6 H 5 CHCH 2 ] n ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53768 1.060 68.7 0.16454 3.2224 0.1647 2.5031 3.2999 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.803 7.803 7.077 × 10 -1 14.0 MeV 5.616 × 10 1 6.084 6.084 1.294 × 10 0 20.0 MeV 6.802 × 10 1 4.749 4.749 2.424 × 10 0 30.0 MeV 8.509 × 10 1 3.683 3.683 4.848 × 10 0 40.0 MeV 1.003 × 10 2 3.144 3.144 7.806 × 10 0 80.0 MeV 1.527 × 10 2 2.359 2.359 2.296 × 10 1 100. MeV 1.764 × 10 2 2.210 2.211 3.174 × 10 1 140. MeV 2.218 × 10 2 2.058 2.058 5.059 × 10 1 200. MeV 2.868 × 10 2 1.970 1.971 8.049 × 10 1 300. MeV 3.917 × 10 2 1.937 0.000 1.937 1.318 × 10 2 318. MeV 4.105 × 10 2 1.936 0.000 1.936 Minimum ionization 400. MeV 4.945 × 10 2 1.942 0.000 1.943 1.834 × 10 2 800. MeV 8.995 × 10 2 2.015 0.000 0.000 2.015 3.856 × 10 2 1.00 GeV 1.101 × 10 3 2.048 0.000 0.000 2.049 4.841 × 10 2 1.40

359

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Air (dry, 1 atm) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49919 1.205 × 10 -3 85.7 0.10914 3.3994 1.7418 4.2759 10.5961 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.039 7.039 7.862 × 10 -1 14.0 MeV 5.616 × 10 1 5.494 5.495 1.436 × 10 0 20.0 MeV 6.802 × 10 1 4.294 4.294 2.686 × 10 0 30.0 MeV 8.509 × 10 1 3.333 3.333 5.366 × 10 0 40.0 MeV 1.003 × 10 2 2.847 2.847 8.633 × 10 0 80.0 MeV 1.527 × 10 2 2.140 2.140 2.535 × 10 1 100. MeV 1.764 × 10 2 2.013 2.014 3.501 × 10 1 140. MeV 2.218 × 10 2 1.889 1.889 5.562 × 10 1 200. MeV 2.868 × 10 2 1.827 1.827 8.803 × 10 1 257. MeV 3.471 × 10 2 1.815 0.000 1.816 Minimum ionization 300. MeV 3.917 × 10 2 1.819 0.000 1.819 1.430 × 10 2 400. MeV 4.945 × 10 2 1.844 0.000 1.844 1.977 × 10 2 800. MeV 8.995 × 10 2 1.968 0.000 0.000 1.968 4.074 × 10 2 1.00 GeV 1.101 × 10 3 2.020 0.000 0.000 2.021 5.077 × 10 2 1.40 GeV 1.502

360

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead tungstate (PbWO 4 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.41315 8.300 600.7 0.22758 3.0000 0.4068 3.0023 5.8528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.333 4.333 1.311 × 10 0 14.0 MeV 5.616 × 10 1 3.426 3.426 2.360 × 10 0 20.0 MeV 6.802 × 10 1 2.710 2.711 4.350 × 10 0 30.0 MeV 8.509 × 10 1 2.131 2.131 8.566 × 10 0 40.0 MeV 1.003 × 10 2 1.835 1.835 1.365 × 10 1 80.0 MeV 1.527 × 10 2 1.406 1.406 3.931 × 10 1 100. MeV 1.764 × 10 2 1.331 1.331 5.397 × 10 1 140. MeV 2.218 × 10 2 1.261 1.261 8.498 × 10 1 200. MeV 2.868 × 10 2 1.231 1.231 1.333 × 10 2 227. MeV 3.154 × 10 2 1.229 1.230 Minimum ionization 300. MeV 3.917 × 10 2 1.237 0.000 0.000 1.238 2.145 × 10 2 400. MeV 4.945 × 10 2 1.260 0.000 0.000 1.260 2.946 × 10 2 800. MeV 8.995 × 10 2 1.349 0.001 0.000 1.350 6.007 × 10 2 1.00 GeV 1.101 × 10 3 1.383 0.001 0.000 1.385 7.469 × 10 2 1.40

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Carbon (compact) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) [12.0107 (8)] 2.265 78.0 0.26142 2.8697 -0.0178 2.3415 2.8680 0.12 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.116 7.116 7.772 × 10 -1 14.0 MeV 5.616 × 10 1 5.549 5.549 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.331 4.331 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.355 3.355 5.318 × 10 0 40.0 MeV 1.003 × 10 2 2.861 2.861 8.567 × 10 0 80.0 MeV 1.527 × 10 2 2.126 2.127 2.531 × 10 1 100. MeV 1.764 × 10 2 1.991 1.992 3.505 × 10 1 140. MeV 2.218 × 10 2 1.854 1.854 5.597 × 10 1 200. MeV 2.868 × 10 2 1.775 1.775 8.917 × 10 1 300. MeV 3.917 × 10 2 1.745 0.000 1.745 1.462 × 10 2 317. MeV 4.096 × 10 2 1.745 0.000 1.745 Minimum ionization 400. MeV 4.945 × 10 2 1.751 0.000 1.751 2.034 × 10 2 800. MeV 8.995 × 10 2 1.819 0.000 0.000 1.820 4.275 × 10 2 1.00 GeV 1.101 × 10 3 1.850 0.000 0.000 1.851 5.365 × 10

362

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Methanol (CH 3 OH) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56176 0.791 67.6 0.08970 3.5477 0.2529 2.7639 3.5160 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.169 8.169 6.759 × 10 -1 14.0 MeV 5.616 × 10 1 6.369 6.369 1.236 × 10 0 20.0 MeV 6.802 × 10 1 4.972 4.972 2.315 × 10 0 30.0 MeV 8.509 × 10 1 3.855 3.855 4.631 × 10 0 40.0 MeV 1.003 × 10 2 3.291 3.291 7.457 × 10 0 80.0 MeV 1.527 × 10 2 2.469 2.469 2.194 × 10 1 100. MeV 1.764 × 10 2 2.321 2.322 3.032 × 10 1 140. MeV 2.218 × 10 2 2.166 2.166 4.823 × 10 1 200. MeV 2.868 × 10 2 2.074 2.074 7.664 × 10 1 300. MeV 3.917 × 10 2 2.039 0.000 2.039 1.254 × 10 2 318. MeV 4.105 × 10 2 2.038 0.000 2.039 Minimum ionization 400. MeV 4.945 × 10 2 2.045 0.000 2.045 1.744 × 10 2 800. MeV 8.995 × 10 2 2.121 0.000 0.000 2.122 3.665 × 10 2 1.00 GeV 1.101 × 10 3 2.156 0.000 0.000 2.157 4.600 × 10 2 1.40 GeV 1.502 ×

363

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Carbon (amorphous) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) 12.0107 (8) 2.000 78.0 0.20240 3.0036 -0.0351 2.4860 2.9925 0.10 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.771 × 10 -1 14.0 MeV 5.616 × 10 1 5.550 5.551 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.332 4.332 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.357 3.357 5.317 × 10 0 40.0 MeV 1.003 × 10 2 2.862 2.862 8.564 × 10 0 80.0 MeV 1.527 × 10 2 2.129 2.129 2.529 × 10 1 100. MeV 1.764 × 10 2 1.994 1.994 3.502 × 10 1 140. MeV 2.218 × 10 2 1.857 1.857 5.591 × 10 1 200. MeV 2.868 × 10 2 1.778 1.779 8.905 × 10 1 300. MeV 3.917 × 10 2 1.749 0.000 1.749 1.459 × 10 2 313. MeV 4.055 × 10 2 1.749 0.000 1.749 Minimum ionization 400. MeV 4.945 × 10 2 1.755 0.000 1.756 2.030 × 10 2 800. MeV 8.995 × 10 2 1.824 0.000 0.000 1.825 4.266 × 10 2 1.00 GeV 1.101 × 10 3 1.855 0.000 0.000 1.856 5.353 × 10

364

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Mix D wax Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56479 0.990 60.9 0.07490 3.6823 0.1371 2.7145 3.0780 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.322 8.322 6.628 × 10 -1 14.0 MeV 5.616 × 10 1 6.485 6.486 1.213 × 10 0 20.0 MeV 6.802 × 10 1 5.060 5.060 2.273 × 10 0 30.0 MeV 8.509 × 10 1 3.922 3.922 4.549 × 10 0 40.0 MeV 1.003 × 10 2 3.347 3.347 7.327 × 10 0 80.0 MeV 1.527 × 10 2 2.505 2.506 2.158 × 10 1 100. MeV 1.764 × 10 2 2.346 2.346 2.985 × 10 1 140. MeV 2.218 × 10 2 2.182 2.182 4.761 × 10 1 200. MeV 2.868 × 10 2 2.087 2.087 7.584 × 10 1 300. MeV 3.917 × 10 2 2.049 0.000 2.049 1.243 × 10 2 328. MeV 4.201 × 10 2 2.048 0.000 2.048 Minimum ionization 400. MeV 4.945 × 10 2 2.053 0.000 2.053 1.731 × 10 2 800. MeV 8.995 × 10 2 2.125 0.000 0.000 2.125 3.647 × 10 2 1.00 GeV 1.101 × 10 3 2.158 0.000 0.000 2.159 4.581 × 10 2 1.40 GeV 1.502 × 10 3 2.213

365

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium nitrate NaNO 3 Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49415 2.261 114.6 0.09391 3.5097 0.1534 2.8221 3.6502 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.702 6.702 8.281 × 10 -1 14.0 MeV 5.616 × 10 1 5.239 5.239 1.510 × 10 0 20.0 MeV 6.802 × 10 1 4.100 4.100 2.820 × 10 0 30.0 MeV 8.509 × 10 1 3.187 3.187 5.624 × 10 0 40.0 MeV 1.003 × 10 2 2.726 2.726 9.039 × 10 0 80.0 MeV 1.527 × 10 2 2.053 2.053 2.648 × 10 1 100. MeV 1.764 × 10 2 1.927 1.927 3.656 × 10 1 140. MeV 2.218 × 10 2 1.800 1.800 5.814 × 10 1 200. MeV 2.868 × 10 2 1.729 1.729 9.228 × 10 1 298. MeV 3.894 × 10 2 1.705 0.000 1.705 Minimum ionization 300. MeV 3.917 × 10 2 1.705 0.000 1.705 1.507 × 10 2 400. MeV 4.945 × 10 2 1.714 0.000 1.714 2.092 × 10 2 800. MeV 8.995 × 10 2 1.787 0.000 0.000 1.787 4.377 × 10 2 1.00 GeV 1.101 × 10 3 1.819 0.000 0.000 1.819 5.486 × 10 2 1.40 GeV 1.502

366

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-12B2 (CF 2 Br 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.44901 1.800 284.9 0.05144 3.5565 0.3406 3.7956 5.7976 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.330 5.330 1.053 × 10 0 14.0 MeV 5.616 × 10 1 4.190 4.190 1.908 × 10 0 20.0 MeV 6.802 × 10 1 3.297 3.297 3.540 × 10 0 30.0 MeV 8.509 × 10 1 2.577 2.577 7.017 × 10 0 40.0 MeV 1.003 × 10 2 2.212 2.212 1.123 × 10 1 80.0 MeV 1.527 × 10 2 1.680 1.680 3.263 × 10 1 100. MeV 1.764 × 10 2 1.586 1.586 4.491 × 10 1 140. MeV 2.218 × 10 2 1.496 1.496 7.099 × 10 1 200. MeV 2.868 × 10 2 1.452 1.452 1.118 × 10 2 252. MeV 3.421 × 10 2 1.445 0.000 1.445 Minimum ionization 300. MeV 3.917 × 10 2 1.448 0.000 1.449 1.809 × 10 2 400. MeV 4.945 × 10 2 1.467 0.000 0.000 1.468 2.496 × 10 2 800. MeV 8.995 × 10 2 1.556 0.000 0.000 1.557 5.139 × 10 2 1.00 GeV 1.101 × 10 3 1.592 0.001 0.000 1.593 6.409 × 10 2 1.40 GeV

367

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Eye lens (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54977 1.100 73.3 0.09690 3.4550 0.2070 2.7446 3.3720 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.912 7.912 6.984 × 10 -1 14.0 MeV 5.616 × 10 1 6.171 6.171 1.277 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.390 × 10 0 30.0 MeV 8.509 × 10 1 3.738 3.738 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.192 3.192 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.396 2.396 2.262 × 10 1 100. MeV 1.764 × 10 2 2.251 2.251 3.125 × 10 1 140. MeV 2.218 × 10 2 2.095 2.096 4.976 × 10 1 200. MeV 2.868 × 10 2 2.006 2.006 7.914 × 10 1 300. MeV 3.917 × 10 2 1.971 0.000 1.971 1.296 × 10 2 318. MeV 4.105 × 10 2 1.971 0.000 1.971 Minimum ionization 400. MeV 4.945 × 10 2 1.977 0.000 1.977 1.803 × 10 2 800. MeV 8.995 × 10 2 2.051 0.000 0.000 2.051 3.790 × 10 2 1.00 GeV 1.101 × 10 3 2.085 0.000 0.000 2.085 4.756 × 10 2 1.40 GeV 1.502 × 10

368

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Compact bone (ICRU) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53010 1.850 91.9 0.05822 3.6419 0.0944 3.0201 3.3390 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.406 7.406 7.477 × 10 -1 14.0 MeV 5.616 × 10 1 5.783 5.783 1.365 × 10 0 20.0 MeV 6.802 × 10 1 4.521 4.521 2.552 × 10 0 30.0 MeV 8.509 × 10 1 3.511 3.511 5.097 × 10 0 40.0 MeV 1.003 × 10 2 3.000 3.000 8.199 × 10 0 80.0 MeV 1.527 × 10 2 2.247 2.247 2.408 × 10 1 100. MeV 1.764 × 10 2 2.106 2.106 3.330 × 10 1 140. MeV 2.218 × 10 2 1.962 1.962 5.307 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.444 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.850 1.382 × 10 2 314. MeV 4.065 × 10 2 1.849 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.856 0.000 1.857 1.922 × 10 2 800. MeV 8.995 × 10 2 1.930 0.000 0.000 1.930 4.036 × 10 2 1.00 GeV 1.101 × 10 3 1.963 0.000 0.000 1.964 5.063 × 10 2 1.40 GeV 1.502

369

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyimide film (C 22 H 10 N 2 O 5 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51264 1.420 79.6 0.15972 3.1921 0.1509 2.5631 3.3497 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.299 7.299 7.576 × 10 -1 14.0 MeV 5.616 × 10 1 5.695 5.695 1.385 × 10 0 20.0 MeV 6.802 × 10 1 4.449 4.449 2.590 × 10 0 30.0 MeV 8.509 × 10 1 3.453 3.453 5.177 × 10 0 40.0 MeV 1.003 × 10 2 2.949 2.949 8.332 × 10 0 80.0 MeV 1.527 × 10 2 2.214 2.214 2.448 × 10 1 100. MeV 1.764 × 10 2 2.074 2.074 3.384 × 10 1 140. MeV 2.218 × 10 2 1.932 1.932 5.392 × 10 1 200. MeV 2.868 × 10 2 1.851 1.851 8.577 × 10 1 300. MeV 3.917 × 10 2 1.820 0.000 1.820 1.404 × 10 2 314. MeV 4.065 × 10 2 1.820 0.000 1.820 Minimum ionization 400. MeV 4.945 × 10 2 1.826 0.000 1.827 1.953 × 10 2 800. MeV 8.995 × 10 2 1.897 0.000 0.000 1.898 4.102 × 10 2 1.00 GeV 1.101 × 10 3 1.929 0.000 0.000 1.930 5.147 × 10 2 1.40

370

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Silicon dioxide (fused quartz) (SiO 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49930 2.200 139.2 0.08408 3.5064 0.1500 3.0140 4.0560 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.591 6.591 8.438 × 10 -1 14.0 MeV 5.616 × 10 1 5.158 5.158 1.537 × 10 0 20.0 MeV 6.802 × 10 1 4.041 4.041 2.866 × 10 0 30.0 MeV 8.509 × 10 1 3.145 3.145 5.710 × 10 0 40.0 MeV 1.003 × 10 2 2.691 2.691 9.170 × 10 0 80.0 MeV 1.527 × 10 2 2.030 2.030 2.682 × 10 1 100. MeV 1.764 × 10 2 1.908 1.908 3.701 × 10 1 140. MeV 2.218 × 10 2 1.786 1.786 5.878 × 10 1 200. MeV 2.868 × 10 2 1.719 1.719 9.315 × 10 1 288. MeV 3.788 × 10 2 1.699 0.000 1.699 Minimum ionization 300. MeV 3.917 × 10 2 1.699 0.000 1.699 1.518 × 10 2 400. MeV 4.945 × 10 2 1.711 0.000 1.711 2.105 × 10 2 800. MeV 8.995 × 10 2 1.789 0.000 0.000 1.790 4.391 × 10 2 1.00 GeV 1.101 × 10 3 1.823 0.000 0.000 1.824 5.497

371

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Radon Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 86 (Rn) [222.01758 (2)]9.066 × 10 -3 794.0 0.20798 2.7409 1.5368 4.9889 13.2839 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 3.782 3.782 1.535 × 10 0 14.0 MeV 5.616 × 10 1 3.018 3.018 2.730 × 10 0 20.0 MeV 6.802 × 10 1 2.405 2.405 4.980 × 10 0 30.0 MeV 8.509 × 10 1 1.902 1.902 9.715 × 10 0 40.0 MeV 1.003 × 10 2 1.644 1.644 1.540 × 10 1 80.0 MeV 1.527 × 10 2 1.267 1.267 4.394 × 10 1 100. MeV 1.764 × 10 2 1.201 1.201 6.019 × 10 1 140. MeV 2.218 × 10 2 1.140 1.140 9.452 × 10 1 200. MeV 2.868 × 10 2 1.116 1.117 1.479 × 10 2 216. MeV 3.039 × 10 2 1.116 1.116 Minimum ionization 300. MeV 3.917 × 10 2 1.127 0.000 0.000 1.128 2.372 × 10 2 400. MeV 4.945 × 10 2 1.154 0.000 0.000 1.154 3.249 × 10 2 800. MeV 8.995 × 10 2 1.258 0.001 0.000 1.260 6.559 × 10 2 1.00 GeV 1.101 × 10 3 1.300 0.001 0.000 1.302 8.119

372

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Solid carbon dioxide (dry ice; CO 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49989 1.563 85.0 0.43387 3.0000 0.2000 2.0000 3.4513 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.057 7.057 7.841 × 10 -1 14.0 MeV 5.616 × 10 1 5.508 5.508 1.432 × 10 0 20.0 MeV 6.802 × 10 1 4.304 4.304 2.679 × 10 0 30.0 MeV 8.509 × 10 1 3.341 3.341 5.353 × 10 0 40.0 MeV 1.003 × 10 2 2.854 2.854 8.612 × 10 0 80.0 MeV 1.527 × 10 2 2.145 2.145 2.529 × 10 1 100. MeV 1.764 × 10 2 2.017 2.017 3.493 × 10 1 140. MeV 2.218 × 10 2 1.886 1.886 5.554 × 10 1 200. MeV 2.868 × 10 2 1.812 1.812 8.811 × 10 1 300. MeV 3.917 × 10 2 1.787 0.000 1.787 1.438 × 10 2 303. MeV 3.950 × 10 2 1.787 0.000 1.787 Minimum ionization 400. MeV 4.945 × 10 2 1.795 0.000 1.795 1.997 × 10 2 800. MeV 8.995 × 10 2 1.866 0.000 0.000 1.866 4.182 × 10 2 1.00 GeV 1.101 × 10 3 1.896 0.000 0.000 1.897 5.245 × 10

373

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0 40.0 MeV 1.003 10 2 1.623 1.623 1.564 10 1 80.0 MeV 1.527 10 2 1.249 1.249 4.456 10 1 100. MeV 1.764 10 2 1.183 1.183 6.106 10 1 140. MeV 2.218 10 2 1.123...

374

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

GeV 3.104 10 3 1.413 0.007 0.003 0.001 1.425 2.316 10 3 4.00 GeV 4.104 10 3 1.456 0.011 0.006 0.002 1.475 3.006 10 3 8.00 GeV 8.105 10 3 1.556 0.026 0.022 0.003...

375

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0 30.0 MeV 8.509 10 1 2.008 2.009 9.168 10 0 40.0 MeV 1.003 10 2 1.733 1.733 1.456 10 1 80.0 MeV 1.527 10 2 1.328 1.328 4.171 10 1 100. MeV 1.764 10 2 1.256...

376

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0 30.0 MeV 8.509 10 1 3.053 3.053 5.894 10 0 40.0 MeV 1.003 10 2 2.615 2.615 9.456 10 0 80.0 MeV 1.527 10 2 1.968 1.968 2.764 10 1 100. MeV 1.764 10 2 1.850...

377

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

GeV 4.104 10 3 2.346 0.001 0.001 0.002 2.350 1.799 10 3 8.00 GeV 8.105 10 3 2.456 0.003 0.003 0.004 2.467 3.455 10 3 10.0 GeV 1.011 10 4 2.490 0.004 0.004 0.005...

378

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

2 400. MeV 4.945 10 2 1.371 0.000 0.000 1.372 2.674 10 2 800. MeV 8.995 10 2 1.456 0.001 0.000 1.457 5.500 10 2 1.00 GeV 1.101 10 3 1.490 0.001 0.000 1.491 6.857 ...

379

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

4.011 10 4 1.698 0.202 0.233 0.014 2.147 2.294 10 4 80.0 GeV 8.011 10 4 1.761 0.456 0.567 0.027 2.812 3.918 10 4 100. GeV 1.001 10 5 1.780 0.591 0.747 0.034 3.153...

380

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

8.226 10 0 40.0 MeV 1.003 10 2 1.906 1.906 1.312 10 1 80.0 MeV 1.527 10 2 1.456 1.456 3.785 10 1 100. MeV 1.764 10 2 1.376 1.376 5.202 10 1 140. MeV 2.218 ...

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

10.0 MeV 4.704 10 1 6.951 6.951 7.977 10 -1 14.0 MeV 5.616 10 1 5.429 5.430 1.456 10 0 20.0 MeV 6.802 10 1 4.246 4.246 2.720 10 0 30.0 MeV 8.509 10 1 3.298...

382

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.031 0.008 2.173 1.006 10 4 30.0 GeV 3.011 10 4 2.155 0.044 0.054 0.012 2.265 1.456 10 4 40.0 GeV 4.011 10 4 2.188 0.061 0.079 0.016 2.345 1.890 10 4 80.0 GeV...

383

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

GeV 1.411 10 4 2.409 0.006 0.007 0.007 2.428 6.155 10 3 20.0 GeV 2.011 10 4 2.456 0.010 0.011 0.009 2.486 8.595 10 3 30.0 GeV 3.011 10 4 2.506 0.016 0.019 0.014...

384

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.003 0.003 0.004 2.420 3.522 10 3 10.0 GeV 1.011 10 4 2.443 0.004 0.004 0.005 2.456 4.342 10 3 14.0 GeV 1.411 10 4 2.490 0.006 0.007 0.007 2.510 5.952 10 3 20.0...

385

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

1.334 0.047 4.360 5.250 10 4 200. GeV 2.001 10 5 1.923 1.625 2.040 0.066 5.656 6.456 10 4 300. GeV 3.001 10 5 1.956 2.546 3.219 0.099 7.822 7.954 10 4 400. GeV...

386

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

GeV 1.502 10 3 1.397 0.002 0.000 0.001 1.399 1.061 10 3 2.00 GeV 2.103 10 3 1.456 0.003 0.001 0.001 1.461 1.480 10 3 3.00 GeV 3.104 10 3 1.522 0.006 0.003 0.001...

387

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.039 3.670 Muon critical energy 140. GeV 1.401 10 5 1.849 0.986 1.242 0.047 4.126 5.456 10 4 200. GeV 2.001 10 5 1.877 1.477 1.898 0.067 5.321 6.734 10 4 300. GeV...

388

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

4.0044 5000. 1.5381 2.1876 0.4429 4.1687 10000. 1.5732 2.2238 0.4632 4.2604 20000. 1.5980 2.2468 0.4870 4.3318 50000. 1.6181 2.2651 0.5242 4.4075 100000. 1.6279 2.2726 0.5560 4.456...

389

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.019 0.023 0.013 2.401 1.341 10 4 40.0 GeV 4.011 10 4 2.379 0.026 0.033 0.017 2.456 1.753 10 4 80.0 GeV 8.011 10 4 2.455 0.060 0.081 0.034 2.629 3.324 10 4 100....

390

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

0.377 0.029 2.674 3.738 10 4 100. GeV 1.001 10 5 2.007 0.363 0.495 0.036 2.902 4.456 10 4 140. GeV 1.401 10 5 2.037 0.533 0.739 0.050 3.360 5.736 10 4 200. GeV...

391

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

10 2 1.685 0.000 1.685 2.136 10 2 800. MeV 8.995 10 2 1.763 0.000 0.000 1.763 4.456 10 2 1.00 GeV 1.101 10 3 1.796 0.000 0.000 1.797 5.579 10 2 1.40 GeV 1.502 ...

392

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

6.914 10 1 200. MeV 2.868 10 2 1.469 1.469 1.094 10 2 273. MeV 3.633 10 2 1.456 0.000 1.456 Minimum ionization 300. MeV 3.917 10 2 1.457 0.000 1.457 1.779 10 2...

393

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH 4 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.62334 6.672 10 -4 41.7 0.09253 3.6257 1.6263 3.9716 9.5243 0.00 T p Ionization Brems Pair prod Photonucl Total...

394

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane based) ZA 0.54993 E GeV b brems b pair b nucl b tot 2. 0.2587 0.1125 0.4738 0.8450 5. 0.3510 0.2787 0.5012 1.1309 10. 0.4276 0.4232 0.4859 1.3367 20. 0.5086 0.5806...

395

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane based) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.54993 1.064 10 -3 61.2 0.09946 3.4708 1.6442 4.1399 9.9500 0.00 T p Ionization Brems Pair prod Photonucl Total...

396

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH 4 ) ZA 0.62334 E GeV b brems b pair b nucl b tot 2. 0.2088 0.0873 0.4904 0.7865 5. 0.2841 0.2205 0.5178 1.0224 10. 0.3477 0.3424 0.5009 1.1909 20. 0.4158 0.4754...

397

Tables.............................................................  

E-Print Network (OSTI)

The work described in this study was supported by the Assistant Secretary of Energy Efficiency and Renewable Energy,

Evan Jones; Joseph Eto

1997-01-01T23:59:59.000Z

398

Tables.............................................................  

E-Print Network (OSTI)

The work described in this study was funded by the Assistant Secretary of Energy Efficiency and Renewable Energy,

Charles Goldman; Willett Kempton Anita Eide; Maithili Iyer; Mindi Farber; Richard Scheer

1996-01-01T23:59:59.000Z

399

Table  

U.S. Energy Information Administration (EIA)

Total LNG Exports 2,593 2,085 8,664 7,946 5,299 5,272 14,705 Total Exports 113,280 119,626 132,019 126,576 144,647 125,238 136,038 Average Price (dollars ...

400

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

2.3317 500. 0.8862 1.2710 0.4196 2.5768 1000. 0.9471 1.3640 0.4263 2.7374 2000. 0.9977 1.4297 0.4378 2.8652 5000. 1.0486 1.4879 0.4592 2.9957 10000. 1.0758 1.5153 0.4809...

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

4.4716 50. 2.2613 2.9815 0.3855 5.6282 100. 2.5384 3.5148 0.3768 6.4300 200. 2.7949 3.9977 0.3726 7.1653 500. 3.0885 4.4516 0.3726 7.9126 1000. 3.2692 4.6973 0.3785 8.3449 2000....

402

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride (CsF) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.42132 4.115 440.7 0.22052 2.7280 0.0084 3.3374 5.9046 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA...

403

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride MgF 2 ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.48153 3.000 134.3 0.07934 3.6485 0.1369 2.8630 3.7105 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA...

404

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride (LiF) ZA 0.46262 E GeV b brems b pair b nucl b tot 2. 0.2703 0.1209 0.4631 0.8543 5. 0.3668 0.2972 0.4895 1.1536 10. 0.4464 0.4463 0.4751 1.3679 20. 0.5299 0.6083...

405

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride (CaF 2 ) ZA 0.49670 E GeV b brems b pair b nucl b tot 2. 0.5234 0.2436 0.4381 1.2051 5. 0.7116 0.5985 0.4659 1.7760 10. 0.8649 0.8837 0.4539 2.2026 20. 1.0236 1.1853...

406

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride (CaF 2 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.49670 3.180 166.0 0.06942 3.5263 0.0676 3.1683 4.0653 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA...

407

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride (BaF 2 ) ZA 0.42207 E GeV b brems b pair b nucl b tot 2. 1.1904 0.4473 0.3939 2.0317 5. 1.6414 1.3428 0.4200 3.4042 10. 2.0088 2.0396 0.4108 4.4591 20. 2.3862 2.7132...

408

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride CH 2 CHF 2 n ZA 0.49973 E GeV b brems b pair b nucl b tot 2. 0.2888 0.1285 0.4625 0.8800 5. 0.3917 0.3160 0.4897 1.1974 10. 0.4765 0.4748 0.4755 1.4269 20. 0.5656...

409

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride (LiF) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.46262 2.635 94.0 0.07593 3.7478 0.0171 2.7049 3.1667 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA...

410

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride MgF 2 ZA 0.48153 E GeV b brems b pair b nucl b tot 2. 0.3729 0.1703 0.4493 0.9925 5. 0.5058 0.4161 0.4767 1.3985 10. 0.6144 0.6183 0.4638 1.6966 20. 0.7276 0.8364...

411

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride (BaF 2 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.42207 4.893 375.9 0.15991 2.8867 -0.0099 3.3870 5.4116 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA...

412

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

fluoride (CsF) ZA 0.42132 E GeV b brems b pair b nucl b tot 2. 1.2915 0.4882 0.3881 2.1679 5. 1.7810 1.4610 0.4141 3.6561 10. 2.1794 2.2166 0.4053 4.8014 20. 2.5885 2.9458...

413

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol (C 2 H 5 OH) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.56437 0.789 62.9 0.09878 3.4834 0.2218 2.7052 3.3699 0.00 T p Ionization Brems Pair prod Photonucl Total...

414

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol (C 2 H 5 OH) ZA 0.56437 E GeV b brems b pair b nucl b tot 2. 0.2493 0.1077 0.4770 0.8341 5. 0.3385 0.2678 0.5044 1.1107 10. 0.4126 0.4080 0.4888 1.3095 20. 0.4912...

415

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Compact bone (ICRU) ZA 0.53010 E GeV b brems b pair b nucl b tot 2. 0.3535 0.1593 0.4614 0.9742 5. 0.4801 0.3928 0.4889 1.3618 10. 0.5841 0.5875...

416

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Lithium oxide Li 2 O ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.46952 2.013 73.6 0.08035 3.7878 -0.0511 2.5874 2.9340 0.00 T p Ionization Brems Pair prod Photonucl...

417

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Lithium tetraborate Li 2 B 4 O 7 ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.48487 2.440 94.6 0.11075 3.4389 0.0737 2.6502 3.2093 0.00 T p Ionization Brems Pair...

418

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Lithium carbonate (Li 2 C-O 3 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.49720 2.110 87.9 0.09936 3.5417 0.0551 2.6598 3.2029 0.00 T p Ionization Brems Pair prod...

419

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Lithium iodide (LiI) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.41939 3.494 485.1 0.23274 2.7146 0.0892 3.3702 6.2671 0.00 T p Ionization Brems Pair prod Photonucl...

420

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Lithium amide (LiNH 2 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.52257 1.178 55.5 0.08740 3.7534 0.0198 2.5152 2.7961 0.00 T p Ionization Brems Pair prod...

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Lithium Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 3 (Li) 6.941 (2) 0.534 40.0 0.95136 2.4993 0.1304 1.6397 3.1221 0.14 T p Ionization Brems Pair prod...

422

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Lithium hydride (LiH) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.50321 0.820 36.5 0.90567 2.5849 -0.0988 1.4515 2.3580 0.00 T p Ionization Brems Pair prod...

423

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Hydrogen gas (H 2 ) Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 1 (H) 1.00794 (7) 8.376 10 -5 19.2 0.14092 5.7273 1.8639 3.2718 9.5834 0.00 T p Ionization...

424

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Hydrogen BC liquid DEG calc to check code Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 1 (H) 1.00794 (7) 6.000 10 -2 21.8 0.35807 3.0000 0.2000 2.0000...

425

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Liquid hydrogen (H 2 ) Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 1 (H) 1.00794 (7) 7.080 10 -2 21.8 0.13483 5.6249 0.4400 1.8856 3.0977 0.00 T p...

426

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Sodium nitrate NaNO 3 ZA 0.49415 E GeV b brems b pair b nucl b tot 2. 0.3298 0.1482 0.4566 0.9346 5. 0.4470 0.3631 0.4840 1.2941 10. 0.5431...

427

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

E GeV b brems b pair b nucl b tot 2. 0.2843 0.1249 0.4706 0.8798 5. 0.3858 0.3088 0.4982 1.1927 10. 0.4697 0.4666 0.4832 1.4195 20. 0.5582 0.6382 0.4608 1.6572 50. 0.6786...

428

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

sucrose ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.55014 1.070 74.2 0.09143 3.4982 0.2187 2.7680 3.4216 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range...

429

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

5000. 6.1071 8.3929 0.3806 14.8806 10000. 6.2164 8.5045 0.3963 15.1172 20000. 6.2891 8.5773 0.4146 15.2810 50000. 6.3493 8.6318 0.4431 15.4243 100000. 6.3763 8.6544 0.4675 15.4982...

430

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Liquid chlorine (Cl 2 ) Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 17 (Cl) 35.453 (2) 1.574 174.0 0.18024 3.0000 0.2000 3.0000 4.8776 0.00 T p Ionization...

431

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Chlorine gas (Cl 2 ) Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 17 (Cl) 35.453 (2) 2.980 10 -3 174.0 0.19849 2.9702 1.5566 4.3005 11.1470 0.00 T p...

432

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Chlorine gas (Cl 2 ), Z 17, A 35.453(2) E GeV b brems b pair b nucl b tot 2. 0.5866 0.2765 0.4289 1.2920 5. 0.7980 0.6769 0.4568 1.9317 10....

433

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Liquid chlorine (Cl 2 ), Z 17, A 35.453(2) E GeV b brems b pair b nucl b tot 2. 0.5866 0.2765 0.4289 1.2920 5. 0.7980 0.6769 0.4568 1.9317 10....

434

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Air (dry, 1 atm) ZA 0.49919 E GeV b brems b pair b nucl b tot 2. 0.2898 0.1282 0.4628 0.8808 5. 0.3927 0.3151 0.4901 1.1979 10. 0.4774 0.4735 0.4758 1.4267 20. 0.5663 0.6460...

435

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Plutonium, Z 94, A 244.06420(4) E GeV b brems b pair b nucl b tot 2. 2.1316 0.2707 0.3572 2.7595 5. 2.9643 1.9434 0.3812 5.2888 10. 3.6451...

436

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Plutonium dioxide (PuO 2 ) ZA 0.40583 E GeV b brems b pair b nucl b tot 2. 1.9169 0.2552 0.3693 2.5414 5. 2.6644 1.7544 0.3937 4.8124 10. 3.2756...

437

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Plutonium dioxide (PuO 2 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.40583 11.460 746.5 0.20594 2.6522 -0.2311 3.5554 5.9719 0.00 T p Ionization Brems Pair prod...

438

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Technetium, Z 43, A 97.90722(3) E GeV b brems b pair b nucl b tot 2. 1.2093 0.5181 0.3896 2.1169 5. 1.6623 1.4129 0.4163 3.4915 10. 2.0305...

439

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Technetium Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 43 (Tc) 97.90722 (3) 11.500 428.0 0.16572 2.9738 0.0949 3.1253 4.7769 0.14 T p Ionization Brems Pair...

440

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Benzene C 6 H 6 ZA 0.53769 E GeV b brems b pair b nucl b tot 2. 0.2319 0.0995 0.4765 0.8079 5. 0.3146 0.2475 0.5035 1.0656 10. 0.3835 0.3777...

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Benzene C 6 H 6 ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.53769 0.879 63.4 0.16519 3.2174 0.1710 2.5091 3.3269 0.00 T p Ionization Brems Pair prod Photonucl Total...

442

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Butane (C 4 H 10 ) ZA 0.59497 E GeV b brems b pair b nucl b tot 2. 0.2191 0.0928 0.4841 0.7961 5. 0.2977 0.2326 0.5114 1.0417 10. 0.3637 0.3582...

443

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Butane (C 4 H 10 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.59497 2.489 10 -3 48.3 0.10852 3.4884 1.3792 3.7528 8.5651 0.00 T p Ionization Brems Pair prod...

444

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Thorium Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 90 (Th) 232.03806 (2) 11.720 847.0 0.08655 3.2610 0.4202 3.7681 6.2473 0.14 T p Ionization Brems Pair...

445

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Thorium, Z 90, A 232.03806(2) E GeV b brems b pair b nucl b tot 2. 2.0665 0.3212 0.3589 2.7466 5. 2.8718 1.9386 0.3831 5.1934 10. 3.5299 3.1965...

446

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Liquid propane (C 3 H 8 ) ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.58962 0.493 52.0 0.10329 3.5620 0.2564 2.6271 3.4162 0.00 T p Ionization Brems Pair prod...

447

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Liquid propane (C 3 H 8 ) ZA 0.58962 E GeV b brems b pair b nucl b tot 2. 0.2179 0.0921 0.4849 0.7949 5. 0.2961 0.2311 0.5122 1.0394 10. 0.3618...

448

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Propane (C 3 H 8 ) ZA 0.58962 E GeV b brems b pair b nucl b tot 2. 0.2179 0.0921 0.4849 0.7949 5. 0.2961 0.2311 0.5122 1.0394 10. 0.3618 0.3563...

449

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Tissue-equivalent gas (Propane based) ZA 0.55027 E GeV b brems b pair b nucl b tot 2. 0.2506 0.1085 0.4751 0.8342 5. 0.3400 0.2692 0.5024 1.1116...

450

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Rhenium, Z 75, A 186.207(1) E GeV b brems b pair b nucl b tot 2. 1.8307 0.4713 0.3667 2.6686 5. 2.5366 1.8861 0.3916 4.8143 10. 3.1125 2.9839...

451

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Rhenium Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 75 (Re) 186.207 (1) 21.020 736.0 0.15184 2.8627 0.0559 3.4845 5.3445 0.08 T p Ionization Brems Pair prod...

452

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Carbon (graphite), Z 6, A 12.0107(8) E GeV b brems b pair b nucl b tot 2. 0.2422 0.1049 0.4703 0.8175 5. 0.3282 0.2595 0.4971 1.0848 10. 0.3994...

453

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Carbon (amorphous), Z 6, A 12.0107(8) E GeV b brems b pair b nucl b tot 2. 0.2422 0.1049 0.4703 0.8175 5. 0.3282 0.2595 0.4971 1.0848 10. 0.3994...

454

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Carbon (compact), Z 6, A 12.0107(8) E GeV b brems b pair b nucl b tot 2. 0.2422 0.1049 0.4703 0.8175 5. 0.3282 0.2595 0.4971 1.0848 10. 0.3994...

455

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

b(E) 10 6 cm 2 g -1 for Carbon (gem diamond), Z 6, A 12.0107(8) E GeV b brems b pair b nucl b tot 2. 0.2422 0.1049 0.4703 0.8175 5. 0.3282 0.2595 0.4971 1.0848 10....

456

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons in Element 118 Z A gmol gcm 3 I eV a k m s x 0 x 1 C 0 118 (Un) 294.215 (8) 1.200 10 -2 1242.0 -0.07035 3.0000 2.0204 -1.9972 13.8662 0.00 T p...

457

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Total CSDA range MeVc MeV cm 2 g gcm 2 10.0 MeV 4.704 10 1 4.596 4.596 1.241 10 0 14.0 MeV 5.616 10 1 3.637 3.637 2.228 10 0 20.0 MeV 6.802 10 1 2.877...

458

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

1.011 10 1 40.0 MeV 1.003 10 2 1.601 1.602 1.596 10 1 80.0 MeV 1.527 10 2 1.241 1.241 4.515 10 1 100. MeV 1.764 10 2 1.178 1.179 6.173 10 1 140. MeV 2.218 ...

459

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Silicon Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 14 (Si) 28.0855 (3) 2.329 173.0 0.14921 3.2546 0.2015 2.8716 4.4355 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.363 6.363 8.779 × 10 -1 14.0 MeV 5.616 × 10 1 4.987 4.987 1.595 × 10 0 20.0 MeV 6.802 × 10 1 3.912 3.912 2.969 × 10 0 30.0 MeV 8.509 × 10 1 3.047 3.047 5.905 × 10 0 40.0 MeV 1.003 × 10 2 2.608 2.608 9.476 × 10 0 80.0 MeV 1.527 × 10 2 1.965 1.965 2.770 × 10 1 100. MeV 1.764 × 10 2 1.849 1.849 3.822 × 10 1 140. MeV 2.218 × 10 2 1.737 1.737 6.064 × 10 1 200. MeV 2.868 × 10 2 1.678 1.678 9.590 × 10 1 273. MeV 3.633 × 10 2 1.664 0.000 1.664 Minimum ionization 300. MeV 3.917 × 10 2 1.665 0.000 1.666 1.559 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.157 × 10 2 800. MeV 8.995 × 10 2 1.767 0.000 0.000 1.768 4.475 × 10 2 1.00 GeV 1.101 × 10 3 1.803 0.000 0.000 1.804 5.595 × 10 2 1.40 GeV

460

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyethylene terephthalate (Mylar) (C 10 H 8 O 4 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52037 1.400 78.7 0.12679 3.3076 0.1562 2.6507 3.3262 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.420 7.420 7.451 × 10 -1 14.0 MeV 5.616 × 10 1 5.789 5.789 1.362 × 10 0 20.0 MeV 6.802 × 10 1 4.522 4.522 2.548 × 10 0 30.0 MeV 8.509 × 10 1 3.509 3.509 5.093 × 10 0 40.0 MeV 1.003 × 10 2 2.997 2.997 8.197 × 10 0 80.0 MeV 1.527 × 10 2 2.250 2.250 2.409 × 10 1 100. MeV 1.764 × 10 2 2.108 2.108 3.329 × 10 1 140. MeV 2.218 × 10 2 1.963 1.964 5.305 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.440 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.849 1.382 × 10 2 317. MeV 4.096 × 10 2 1.848 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.855 0.000 1.855 1.922 × 10 2 800. MeV 8.995 × 10 2 1.926 0.000 0.000 1.926 4.039 × 10 2 1.00 GeV 1.101 × 10 3 1.958 0.000 0.000 1.959

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Dichlorodiethyl ether C 4 Cl 2 H 8 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51744 1.220 103.3 0.06799 3.5250 0.1773 3.1586 4.0135 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.789 × 10 -1 14.0 MeV 5.616 × 10 1 5.561 5.561 1.421 × 10 0 20.0 MeV 6.802 × 10 1 4.349 4.349 2.655 × 10 0 30.0 MeV 8.509 × 10 1 3.380 3.380 5.300 × 10 0 40.0 MeV 1.003 × 10 2 2.889 2.889 8.521 × 10 0 80.0 MeV 1.527 × 10 2 2.174 2.174 2.499 × 10 1 100. MeV 1.764 × 10 2 2.042 2.042 3.450 × 10 1 140. MeV 2.218 × 10 2 1.907 1.907 5.486 × 10 1 200. MeV 2.868 × 10 2 1.832 1.832 8.708 × 10 1 298. MeV 3.894 × 10 2 1.807 0.000 1.807 Minimum ionization 300. MeV 3.917 × 10 2 1.807 0.000 1.807 1.422 × 10 2 400. MeV 4.945 × 10 2 1.817 0.000 1.817 1.974 × 10 2 800. MeV 8.995 × 10 2 1.895 0.000 0.000 1.896 4.129 × 10 2 1.00 GeV 1.101 × 10 3 1.930 0.000 0.000 1.931 5.174 × 10

462

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 82 (Pb) 207.2 (1) 11.350 823.0 0.09359 3.1608 0.3776 3.8073 6.2018 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 3.823 3.823 1.524 × 10 0 14.0 MeV 5.616 × 10 1 3.054 3.054 2.705 × 10 0 20.0 MeV 6.802 × 10 1 2.436 2.436 4.927 × 10 0 30.0 MeV 8.509 × 10 1 1.928 1.928 9.600 × 10 0 40.0 MeV 1.003 × 10 2 1.666 1.666 1.521 × 10 1 80.0 MeV 1.527 × 10 2 1.283 1.283 4.338 × 10 1 100. MeV 1.764 × 10 2 1.215 1.215 5.943 × 10 1 140. MeV 2.218 × 10 2 1.151 1.152 9.339 × 10 1 200. MeV 2.868 × 10 2 1.124 1.124 1.463 × 10 2 226. MeV 3.145 × 10 2 1.122 0.000 1.123 Minimum ionization 300. MeV 3.917 × 10 2 1.130 0.000 0.000 1.131 2.352 × 10 2 400. MeV 4.945 × 10 2 1.151 0.000 0.000 1.152 3.228 × 10 2 800. MeV 8.995 × 10 2 1.237 0.001 0.000 1.238 6.572 × 10 2 1.00 GeV 1.101 × 10 3 1.270 0.001 0.000 1.272 8.165 × 10 2 1.40

463

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium iodide (NaI) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42697 3.667 452.0 0.12516 3.0398 0.1203 3.5920 6.0572 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.703 4.703 1.202 × 10 0 14.0 MeV 5.616 × 10 1 3.710 3.710 2.169 × 10 0 20.0 MeV 6.802 × 10 1 2.928 2.928 4.009 × 10 0 30.0 MeV 8.509 × 10 1 2.297 2.297 7.917 × 10 0 40.0 MeV 1.003 × 10 2 1.975 1.975 1.264 × 10 1 80.0 MeV 1.527 × 10 2 1.509 1.509 3.652 × 10 1 100. MeV 1.764 × 10 2 1.427 1.427 5.019 × 10 1 140. MeV 2.218 × 10 2 1.347 1.348 7.916 × 10 1 200. MeV 2.868 × 10 2 1.310 1.310 1.245 × 10 2 243. MeV 3.325 × 10 2 1.305 1.305 Minimum ionization 300. MeV 3.917 × 10 2 1.310 0.000 0.000 1.310 2.010 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.330 2.768 × 10 2 800. MeV 8.995 × 10 2 1.417 0.001 0.000 1.418 5.677 × 10 2 1.00 GeV 1.101 × 10 3 1.452 0.001 0.000 1.453 7.070 × 10 2 1.40 GeV

464

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyvinyl alcohol (C 2 H3-O-H) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54480 1.300 69.7 0.11178 3.3893 0.1401 2.6315 3.1115 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.891 7.891 6.999 × 10 -1 14.0 MeV 5.616 × 10 1 6.153 6.153 1.280 × 10 0 20.0 MeV 6.802 × 10 1 4.804 4.804 2.396 × 10 0 30.0 MeV 8.509 × 10 1 3.726 3.726 4.793 × 10 0 40.0 MeV 1.003 × 10 2 3.181 3.181 7.717 × 10 0 80.0 MeV 1.527 × 10 2 2.383 2.384 2.270 × 10 1 100. MeV 1.764 × 10 2 2.231 2.232 3.140 × 10 1 140. MeV 2.218 × 10 2 2.076 2.076 5.007 × 10 1 200. MeV 2.868 × 10 2 1.986 1.986 7.974 × 10 1 300. MeV 3.917 × 10 2 1.950 0.000 1.950 1.307 × 10 2 324. MeV 4.161 × 10 2 1.949 0.000 1.949 Minimum ionization 400. MeV 4.945 × 10 2 1.955 0.000 1.955 1.820 × 10 2 800. MeV 8.995 × 10 2 2.026 0.000 0.000 2.026 3.830 × 10 2 1.00 GeV 1.101 × 10 3 2.059 0.000 0.000 2.059 4.809 × 10 2 1.40

465

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Cesium Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 55 (Cs)132.9054519 (2) 1.873 488.0 0.18233 2.8866 0.5473 3.5914 6.9135 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.464 4.464 1.277 × 10 0 14.0 MeV 5.616 × 10 1 3.532 3.532 2.294 × 10 0 20.0 MeV 6.802 × 10 1 2.794 2.794 4.224 × 10 0 30.0 MeV 8.509 × 10 1 2.195 2.195 8.315 × 10 0 40.0 MeV 1.003 × 10 2 1.890 1.890 1.325 × 10 1 80.0 MeV 1.527 × 10 2 1.444 1.444 3.820 × 10 1 100. MeV 1.764 × 10 2 1.366 1.366 5.248 × 10 1 140. MeV 2.218 × 10 2 1.291 1.291 8.274 × 10 1 200. MeV 2.868 × 10 2 1.257 1.257 1.300 × 10 2 236. MeV 3.250 × 10 2 1.254 1.254 Minimum ionization 300. MeV 3.917 × 10 2 1.261 0.000 0.000 1.261 2.096 × 10 2 400. MeV 4.945 × 10 2 1.284 0.000 0.000 1.285 2.882 × 10 2 800. MeV 8.995 × 10 2 1.378 0.001 0.000 1.380 5.881 × 10 2 1.00 GeV 1.101 × 10 3 1.415 0.001 0.000 1.417 7.311 × 10 2

466

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationzone site- scale model, Yucca Mountain Project Milestonelateral diversion at Yucca Mountain, Nevada, Water Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

467

Modeling water seepage into heated waste emplacement drifts at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

2003-01-01T23:59:59.000Z

468

Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data  

E-Print Network (OSTI)

of hydrogeologic units at Yucca Mountain, Nevada. U.S.infiltration for the Yucca Mountain Area, Nevada. Milestonethe unsaturated zone at Yucca Mountain, Nevada. J. Contam.

Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

2002-01-01T23:59:59.000Z

469

Characterization and Prediction of Subsurface Pneumatic Pressure Variations at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Group Exposed at Yucca Mountain, Nevada, U. S. Geologicalunsaturated zone, Yucca Mountain, Nevada, Water Resourcesgeologic map of Yucca Mountain, Nye County, Nevada, with

Ahlers, C. Fredrik; Finsterle, Stefan; Bodvarsson, Gudmundur S.

1998-01-01T23:59:59.000Z

470

Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada. Lawrencestudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

Wu, Yu-Shu; Pruess, Karsten

1998-01-01T23:59:59.000Z

471

Multiple-point statistical prediction on fracture networks at Yucca Mountain  

E-Print Network (OSTI)

on fracture networks at Yucca Mountain Xiaoyan Liu 1 ,systems, such as at Yucca Mountain, water flow rate andflow field behavior at the Yucca Mountain waste repository

Liu, X.Y

2010-01-01T23:59:59.000Z

472

Temporal Damping Effect of the Yucca Mountain Fractured Unsaturated Rock on Transient Infiltration Pulses  

E-Print Network (OSTI)

unsaturated zone at Yucca Mountain. J. of Cont. Hydrol. ,2003b. Calibration of Yucca Mountain unsaturated zone flowthe unsaturated zone, Yucca Mountain, USGS Water Resources

Zhang, Keni; Wu, Yu-Shu; Pan, Lehua

2005-01-01T23:59:59.000Z

473

Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

474

Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada  

E-Print Network (OSTI)

Central Block Area, Yucca Mountain, Nye County, Nevada. Mapunsaturated zone, Yucca Mountain, Nevada. Water-Resourcesisotope distributions at Yucca Mountain. Sandia National

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

475

Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone at Yucca Mountain, Nevada. U.S. Geologicalzone model at Yucca Mountain, Nevada. J. Contaminantinvesti- gations at Yucca Mountain - the potential

Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

2002-01-01T23:59:59.000Z

476

Experimental and numerical simulation of dissolution and precipitation: Implications for fracture sealing at Yucca Mountain, Nevada  

E-Print Network (OSTI)

FRACTURE SEALING AT YUCCA MOUNTAIN, NEVADA Patrick F. Dobsonpotential repository at Yucca Mountain, Nevada, would reducewas flowed through crushed Yucca Mountain tuff at 94C. The

Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

2001-01-01T23:59:59.000Z

477

Development of discrete flow paths in unsaturated fractures at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain. Journal of Contaminantof infiltration for the Yucca Mountain Area, Nevada, U. S.matrix properties, Yucca Mountain, Nevada, U.S. Geological

Bodvarsson, G.S.; Wu, Yu-Shu; Zhang, Keni

2002-01-01T23:59:59.000Z

478

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain...  

Open Energy Info (EERE)

DOI: Unavailable Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Geothermal...

479

Annual Energy Outlook 2007 - Low Economic Growth Case Tables  

Gasoline and Diesel Fuel Update (EIA)

Low Macroeconomic Growth Case Tables (2004-2030) Low Macroeconomic Growth Case Tables (2004-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Economic Growth Case Tables (2004-2030) Table Title Formats Summary Low Economic Growth Case Tables Low Economic Growth Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity

480

Annual Energy Outlook 2007 - Low Price Case Tables  

Gasoline and Diesel Fuel Update (EIA)

4-2030) 4-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Price Case Tables (2004-2030) Table Title Formats Summary Low Price Case Tables Low Price Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity Table 10. Electricity Trade Table 11. Petroleum Supply and Disposition Balance

Note: This page contains sample records for the topic "table mountain complex" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Products of an Artificially Induced Hydrothermal System at Yucca Mountain  

DOE Green Energy (OSTI)

Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than during the deposition of natural calcite-opal deposits.

S. Levy

2000-08-07T23:59:59.000Z

482

Paleoseismic investigations of Stagecoach Road fault, southeastern Yucca Mountain, Nye County, Nevada  

Science Conference Proceedings (OSTI)

This report summarizes the results of paleoseismic investigations at two trenches (SCR-T1 and SCR-T3) excavated across the Stagecoach Road (SCR) fault at the southeastern margin of Yucca Mountain. The results of these studies are based on detailed mapping or logging of geologic and structural relationships exposed in trench walls, combined with descriptions of lithologic units, associated soils, and fault-related deformation. The ages of trench deposits are determined directly from geochronologic dating of selected units and soils, supplemented by stratigraphic and soil correlations with other surficial deposits in the Yucca Mountain area. The time boundaries used in this report for subdivision of the Quaternary period are listed in a table. These data and interpretations are used to identify the number, amounts, timing, and approximately lengths of late to middle Quaternary (less than 200 ka) surface-faulting events associated with paleoearthquakes at the trench sites. This displacement history forms the basis for calculating paleoearthquake recurrence intervals and fault-slip rates for the Stagecoach Road fault and allows comparison with fault behavior on other Quaternary faults at or near Yucca Mountain.

Menges, C.M.; Oswald, J.A.; Coe, J.A.; Lundstrom, S.C.; Paces, J.B.; Mahan, S.A.; Widmann, B.; Murray, M.

1998-04-01T23:59:59.000Z

483

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2008 (Million Cubic Feet) Colorado ......................... 0 2 0 6,256 6,258 Delaware ........................ 0 2 0 0 2 Georgia........................... 0 * 0 0 * Hawaii............................. 2,554 5 0 0 2,559 Illinois.............................. 0 15 0 0 15 Indiana............................ 0 30 0 0 30 Iowa ................................ 0 24 3 0 27 Kentucky......................... 0 15 0 0 15 Maryland ......................... 0 181 0 0 181 Massachusetts................ 0 13 0 0 13 Minnesota ....................... 0 46 0 0 46 Missouri .......................... * 6 0 0 6 Nebraska ........................ 0 28 0 0 28 New Hampshire .............. 0 44 0 0 44 New Jersey ..................... 0 0 0 489 489 New York ........................

484

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2009 (Million Cubic Feet) Colorado ......................... 0 3 0 7,525 7,527 Connecticut..................... 0 * 0 0 * Delaware ........................ 0 2 0 0 2 Georgia........................... 0 0 52 * 52 Hawaii............................. 2,438 9 0 0 2,447 Illinois.............................. 0 20 0 0 20 Indiana............................ 0 * 0 0 * Iowa ................................ 0 3 0 0 3 Kentucky......................... 0 18 0 0 18 Maryland ......................... 0 170 0 0 170 Massachusetts................ 0 10 0 0 10 Minnesota ....................... 0 47 0 0 47 Missouri .......................... * 10 0 0 10 Nebraska ........................ 0 18 0 0 18 New Jersey ..................... 0 0 0 454 454 New York ........................

485

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2010 (Million Cubic Feet) Colorado ......................... 0 4 0 5,144 5,148 Delaware ........................ 0 1 0 0 1 Georgia........................... 0 0 732 0 732 Hawaii............................. 2,465 6 0 0 2,472 Illinois.............................. 0 17 0 0 17 Indiana............................ 0 1 0 0 1 Iowa ................................ 0 2 0 0 2 Kentucky......................... 0 5 0 0 5 Louisiana ........................ 0 0 249 0 249 Maryland ......................... 0 115 0 0 115 Massachusetts................ 0 * 0 0 * Minnesota ....................... 0 12 0 0 12 Missouri .......................... * 18 0 0 18 Nebraska ........................ 0 12 0 0 12 New Jersey ..................... 0 0 0 457 457 New York ........................

486

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2007 (Million Cubic Feet) Colorado ......................... 0 3 0 6,866 6,869 Delaware ........................ 0 5 0 0 5 Georgia........................... 0 2 0 0 2 Hawaii............................. 2,679 4 0 0 2,683 Illinois.............................. 0 11 0 0 11 Indiana............................ 0 81 0 554 635 Iowa ................................ 0 2 38 0 40 Kentucky......................... 0 124 0 0 124 Maryland ......................... 0 245 0 0 245 Massachusetts................ 0 15 0 0 15 Minnesota ....................... 0 54 0 0 54 Missouri .......................... 7 60 0 0 66 Nebraska ........................ 0 33 0 0 33 New Hampshire .............. 0 9 0 0 9 New Jersey ..................... 0 0 0 379 379 New York ........................

487

Table-top job analysis  

SciTech Connect

The purpose of this Handbook is to establish general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at Department of Energy (DOE) nuclear facilities. TTJA is not the only method of job analysis; however, when conducted properly TTJA can be cost effective, efficient, and self-validating, and represents an effective method of defining job requirements. The table-top job analysis is suggested in the DOE Training Accreditation Program manuals as an acceptable alternative to traditional methods of analyzing job requirements. DOE 5480-20A strongly endorses and recommends it as the preferred method for analyzing jobs for positions addressed by the Order.

Not Available

1994-12-01T23:59:59.000Z

488

International Centre for Integrated Mountain Development (ICIMOD) | Open  

Open Energy Info (EERE)

Centre for Integrated Mountain Development (ICIMOD) Centre for Integrated Mountain Development (ICIMOD) Jump to: navigation, search Name International Centre for Integrated Mountain Development (ICIMOD) Agency/Company /Organization International Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learned/best practices Website http://www.icimod.org/ Country Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Pakistan UN Region Southern Asia, Western Asia References ICIMOD[1] International Centre for Integrated Mountain Development (ICIMOD) Screenshot "The International Centre for Integrated Mountain Development, ICIMOD, is a regional knowledge development and learning centre serving the eight regional member countries of the Hindu Kush-Himalayas - Afghanistan,

489

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

EIA-Annual Energy Outlook 2010 - Low Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007- 2035) Economic Growth Tables (2007- 2035) Annual Energy Outlook 2010 Main Low Economic Growth Tables (2007- 2035) Table Title Formats Summary Low Economic Growth Case Tables PDF Gif Year-by-Year Low Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply, Disposition, and Price Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions

491

EIA-Annual Energy Outlook 2010 - High Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007-2035) Economic Growth Tables (2007-2035) Annual Energy Outlook 2010 Main High Economic Growth Tables (2007- 2035) Table Title Formats Summary High Economic Growth Case Tables PDF Gif Year-by-Year High Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif

492

Microsoft Word - table_09.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 9 Created on: 12/12/2013 2:08:24 PM Table 9. Underground natural gas storage - by season, 2011-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year, Season, and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2011 Refill Season April 4,304 1,788 6,092 -223 -11.1 312 100 -212 May 4,304 2,187 6,491 -233 -9.6 458 58 -399 June 4,302 2,530 6,831 -210 -7.7 421 80 -340 July 4,300 2,775 7,075 -190 -6.4 359 116 -244 August 4,300 3,019 7,319 -134 -4.2 370 126 -244 September 4,301 3,416 7,717 -92 -2.6 454 55

493

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

494

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

495

Microsoft Word - table_01.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 1 Table 1. Summary of natural gas supply and disposition in the United States, 2008-2013 (billion cubic feet) Year and Month Gross Withdrawals Marketed Production NGPL Production a Dry Gas Production b Supplemental Gaseous Fuels c Net Imports Net Storage Withdrawals d Balancing Item e Consumption f 2008 Total 25,636 21,112 953 20,159 61 3,021 34 2 23,277 2009 Total 26,057 21,648 1,024 20,624 65 2,679 -355 -103 22,910 2010 Total 26,816 22,382 1,066 21,316 65 2,604 -13 115 24,087 2011 January 2,299 1,953 92 1,861 5 236 811 R -24 R 2,889 February 2,104 1,729 82 1,647 4 186 594 R 20 R 2,452 March 2,411 2,002 95 1,908 5 171 151 R -4 R 2,230 April 2,350 1,961 93 1,868 5 R 152 -216 R 17 R 1,825 May 2,411 2,031

496

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural gas production, transmission, and consumption, by state, 2012 (million cubic feet) U.S. Energy Information Administration | Natural Gas Annual 4 Table 2 Alabama 215,710 7,110 -162,223 617,883 0 -2,478 0 666,738 Alaska 351,259 21,470 22,663 0 -9,342 0 0 343,110 Arizona 117 0 -13,236 389,036 -43,838 0 0 332,079 Arkansas 1,146,168 424 -18,281 -831,755 0 -103 0 295,811 California 246,822 12,755 104,820 2,222,355 -109,787 48,071 0 2,403,385 Colorado 1,709,376 81,943 -107,940 -1,077,968 0 2,570 4,412 443,367 Connecticut 0 0 4,191 225,228 0 260 0 229,159 Delaware 0 0 21,035 80,692 0 51 * 101,676 District of Columbia 0 0 497 28,075 0 0 0 28,572 Florida 18,681 0 15,168 1,294,620 0 0 0 1,328,469

497

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

1) 1) June 2013 State Energy Price and Expenditure Estimates 1970 Through 2011 2011 Price and Expenditure Summary Tables Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 3.09 5.66 26.37 22.77 25.54 27.12 13.18 19.42 25.90 0.61 3.01 8.75 2.56 27.08 19.85 Alaska 3.64 6.70 29.33 23.12 29.76 31.60 20.07 34.62 26.61 - 14.42 20.85 6.36 47.13 25.17 Arizona 1.99 7.07 27.73 22.84 31.95 26.97 17.00 17.23 26.71 0.75 6.31 10.79 2.16 28.46 25.23 Arkansas 1.93 6.94 26.37 22.45 26.66 27.35 17.35 33.22

498

Microsoft Word - table_13.doc  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration | Natural Gas Monthly 31 Table 13 Created on: 12/12/2013 2:28:44 PM Table 13. Activities of underground natural gas storage operators, by state, September 2013 (volumes in million cubic feet) State Field Count Total Storage Capacity Working Gas Storage Capacity Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Base Gas Working Gas Total Volume Percent Injections Withdrawals Alabama 2 35,400 27,350 8,050 21,262 29,312 2,852 15.5 1,743 450 Alaska a 5 83,592 67,915 14,197 20,455 34,652 NA NA 1,981 30 Arkansas 2 21,853 12,178 9,648 3,372 13,020 -1,050 -23.7 204 0 California 14 599,711 374,296

499

Environmental Regulatory Update Table, December 1989  

Science Conference Proceedings (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlbert, L.M.; Langston, M.E. (Tennessee Univ., Knoxville, TN (USA)); Nikbakht, A.; Salk, M.S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

500

Environmental Regulatory Update Table, April 1989  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

1989-05-01T23:59:59.000Z