Powered by Deep Web Technologies
Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table B6. Building Size, Number of Buildings, 1999  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota6,979. Light Usage6 Table

2

Table B6. Building Size, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5.B6. Building

3

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:JulyBuildings Use

4

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:JulyBuildings UseEnergy

5

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:JulyBuildings

6

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:JulyBuildingsEnd-Use

7

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

8

1999 Commercial Buildings Characteristics--Building Size  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds, Buildings1999Size of

9

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Broader source: Energy.gov [DOE]

Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

10

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J (MillionCubic35775 84 8711757Detailed

11

Building America Webinar: HVAC Right-Sizing Part 1-Calculating...  

Energy Savers [EERE]

HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS...

12

Small- and Medium-Size Building Automation and Control System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Emerging...

13

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves,0050516,"AL",10610,"AlbertvilleReservesFeet)Product: Total0.2.A6. Building

14

Building an electronic drafting table for sketch recognition  

E-Print Network [OSTI]

Sketch recognition as developed by the CSAIL Design Rationale Group allows a designer to sketch out and test design ideas without the need for complicated CAD programs. An electronic drafting table is required to capture ...

Bruening, Oskar Ernst, 1979-

2004-01-01T23:59:59.000Z

15

Table B10. Employment Size Category, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (EstimatesA9.6.0.

16

2007 CBECS Large Hospital Building List of Tables  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827190List of Tables Main

17

Buildings and Energy in the 80's -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J (MillionCubic Feet)

18

CBECS - Buildings and Energy in the 1980's - Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J (MillionCubic35775 84 8711757 57

19

CBECS 1993 - Federal Buildings Supplement Survey - Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J (MillionCubic35775 84Publication >

20

Table S1. Cotton extent and Mexican free-tailed bat population size per county. County State  

E-Print Network [OSTI]

File S1 Table S1. Cotton extent and Mexican free-tailed bat population size per county. County State Bat population size Mean cotton hectares* County State Bat population size Mean cotton hectares 28,255 4,127 *From 1990 to 2008 Table S2. Upland and Pima cotton price over time. Year Upland Cotton

Russell, Amy L.

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports Building7.p e uData

22

Table B8. Year Constructed, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5.B6. BuildingB8.

23

Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study  

SciTech Connect (OSTI)

Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), about 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy抯 (DOE抯) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.

Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.; Taasevigen, Danny J.; Piette, M. A.; Granderson, J.; Brown, Rich E.; Lanzisera, Steven M.; Kuruganti, T.

2012-10-31T23:59:59.000Z

24

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

Total energy consumption outputs, lookup table controlMPC energy . . . . . . . . . . . Total energy consumptionyear. The annual total energy consumption (heating + cooling

Coffey, Brian

2011-01-01T23:59:59.000Z

25

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

Total energy consumption outputs, lookup table controlMPC energy . . . . . . . . . . . Total energy consumptionyear. The annual total energy consumption (heating + cooling

Coffey, Brian

2012-01-01T23:59:59.000Z

26

Building Retrofits: Energy Conservation and Employee Retention Considerations in Medium-Size Commercial Buildings  

E-Print Network [OSTI]

of Environmental Economics and Management, Lighting Design and Application, Academy of Management Executive, Artificial Intelligence Review, Indoor Built Environment, Journal of Corporate Real Estate, Science, Indoor Air, and Healthy Buildings, Journal of Real..., Science, Indoor Air, Healthy Buildings, Journal of Real Estate Research, Journal of Property Investment and Finance, Journal of Sustainable Real Estate. Reputable Organizations Rocky Mountain Institute, Environmental Protection Agency (EPA), Energy...

Freeman, Janice

2013-04-29T23:59:59.000Z

27

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

much to be learned from low-energy buildings designed beforefor innovative low-energy buildings. The approach grows outcontrols for low-energy building systems is challenging. It

Coffey, Brian

2011-01-01T23:59:59.000Z

28

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

much to be learned from low-energy buildings designed beforefor innovative low-energy buildings. The approach grows outcontrols for low-energy building systems is challenging. It

Coffey, Brian

2012-01-01T23:59:59.000Z

29

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

Building load model in Modelica, showing the two main sub-condensation. LBNL- M Wetter. Modelica-based modeling anda buildings library for Modelica (Wetter, 2009b). This US-

Coffey, Brian

2012-01-01T23:59:59.000Z

30

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

Building load model in Modelica, showing the two main sub-condensation. LBNL- M Wetter. Modelica-based modeling anda buildings library for Modelica (Wetter, 2009b). This US-

Coffey, Brian

2011-01-01T23:59:59.000Z

31

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

SciTech Connect (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

32

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network [OSTI]

ON BUILDING ENERGY USE, HVAC SIZING AND THERMAL COMFORT aThe results showed that when the HVAC is controlled based onequipment sizing. When the HVAC is controlled based on the

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

33

"Table B16. Employment Size Category, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for7. Average Prices1. Employment

34

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

building e?ciency. Thermal energy storage is becoming morestored in a strati?ed thermal energy storage (TES) tank andwith thermal storage. ACEEE Summer Study on Energy E?ciency

Coffey, Brian

2012-01-01T23:59:59.000Z

35

"Table B11. Employment Size Category, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for7. Average Prices1. Employment Size

36

THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS  

SciTech Connect (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) todetermine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e. ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB?s assumed utilization is far higher than is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inlandareas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27 percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

2009-12-31T23:59:59.000Z

37

BUILDING PROCTOR rev. April 2014  

E-Print Network [OSTI]

BUILDING PROCTOR MANUAL rev. April 2014 #12;Building Proctor Manual rev. April 2014 2 TABLE.........................................................................................................................................5 Role of a Building Proctor ..............................................................................................................5 Authority of Building Proctor

38

FORESTRY BUILDING: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

39

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium-Size Office Building  

E-Print Network [OSTI]

Uncertainties in Energy Consumption Introduced by Buildingand actual building energy consumption can be attributed touncertainties in energy consumption due to actual weather

Wang, Liping

2014-01-01T23:59:59.000Z

40

Sizing Thermally Activated Building Systems (TABS): A Brief Literature Review and Model Evaluation  

E-Print Network [OSTI]

m 2 /W Thermal resistance of the building envelope, K-m 2 /Wtemperature, envelope, slab and tubing thermal resistance,

Basu, Chandrayee; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table Search (or Ranking Tables)  

E-Print Network [OSTI]

;Table Search #3 #12;Outline 路 Goals of table search 路 Table search #1: Deep Web 路 Table search #3 search Table search #1: Deep Web 路 Table search #3: (setup): Fusion TablesTable search #2: WebTables 颅Version 1: modify document search 颅Version 2: recover table semantics #12;Searching the Deep Web store

Halevy, Alon

42

Trends in Commercial Buildings--Buildings and Floorspace  

Gasoline and Diesel Fuel Update (EIA)

Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings TrendDetail Commercial Floorspace TrendDetail Background: Adjustment to...

43

Office Buildings - Full Report  

Gasoline and Diesel Fuel Update (EIA)

1). Table 1. Totals and means of of floorspace, number of workers, and hours of operation for office buildings, 2003 Buildings (thousand) Total Floorspace (million sq. ft.)...

44

Better Buildings Alliance, Advanced Rooftop Unit Campaign: RTU Sizing Guidance (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet discusses the causes and consequences of incorrect RTU sizing (with respect to cooling tonnage and supply fan horsepower) and points to resources that can help ensure accurate sizing calculations.

Not Available

2014-09-01T23:59:59.000Z

45

Solar load ratio method applied to commercial building active solar system sizing  

SciTech Connect (OSTI)

The hourly simulation procedure is the DOE-2 building energy analysis computer program. It is capable of calculating the loads and of simulating various control strategies in detail for both residential and commercial buildings and yet is computationally efficient enough to be used for extensive parametric studies. In addition, to a Building Service Hot Water (BSHW) System and a combined space heating and hot water system using liquid collectors for a commercial building analyzed previously, a space heating system using an air collector is analyzed. A series of runs is made for systems using evacuated tube collectors for comparison to flat-plate collectors, and the effects of additional system design parameters are investigated. Also, the generic collector types are characterized by standard efficiency curves, rather than by detailed collector specifications. (MHR)

Schnurr, N.M.; Hunn, B.D.; Williamson, K.D. III

1981-01-01T23:59:59.000Z

46

Technical Letter Report Development of Flaw Size Distribution Tables Including Effects of Flaw Depth Sizing Errors for Draft 10CFR 50.61a (Alternate PTS Rule) JCN-N6398, Task 4  

SciTech Connect (OSTI)

This document describes a new method to determine whether the flaws in a particular reactor pressure vessel are consistent with the assumptions regarding the number and sizes of flaws used in the analyses that formed the technical justification basis for the new voluntary alternative Pressurized Thermal Shock (PTS) rule (Draft 10 CFR 50.61a). The new methodology addresses concerns regarding prior methodology because ASME Code Section XI examinations do not detect all fabrication flaws, they have higher detection performance for some flaw types, and there are flaw sizing errors always present (e.g., significant oversizing of small flaws and systematic under sizing of larger flaws). The new methodology allows direct comparison of ASME Code Section XI examination results with values in the PTS draft rule Tables 2 and 3 in order to determine if the number and sizes of flaws detected by an ASME Code Section XI examination are consistent with those assumed in the probabilistic fracture mechanics calculations performed in support of the development of 10 CFR 50.61a.

Simonen, Fredric A.; Gosselin, Stephen R.; Doctor, Steven R.

2013-04-22T23:59:59.000Z

47

Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2)  

SciTech Connect (OSTI)

There is a general paucity of measured equipment load datafor laboratories and other complex buildings and designers often useestimates based on nameplate rated data or design assumptions from priorprojects. Consequently, peak equipment loads are frequentlyoverestimated, and load variation across laboratory spaces within abuilding is typically underestimated. This results in two design flaws.Firstly, the overestimation of peak equipment loads results in over-sizedHVAC systems, increasing initial construction costs as well as energy usedue to inefficiencies at low part-load operation. Secondly, HVAC systemsthat are designed without accurately accounting for equipment loadvariation across zones can significantly increase simultaneous heatingand cooling, particularly for systems that use zone reheat fortemperature control. Thus, when designing a laboratory HVAC system, theuse of measured equipment load data from a comparable laboratory willsupport right-sizing HVAC systems and optimizing their configuration tominimize simultaneous heating and cooling, saving initial constructioncosts as well as life-cycle energy costs.In this paper, we present datafrom recent studies to support the above thesis. We first presentmeasured equipment load data from two sources: time-series measurementsin several laboratory modules in a university research laboratorybuilding; and peak load data for several facilities recorded in anational energy benchmarking database. We then contrast this measureddata with estimated values that are typically used for sizing the HVACsystems in these facilities, highlighting the over-sizing problem. Next,we examine the load variation in the time series measurements and analyzethe impact of this variation on energy use, via parametric energysimulations. We then briefly discuss HVAC design solutions that minimizesimultaneous heating and cooling energy use.

Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

2005-06-29T23:59:59.000Z

48

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0

49

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0Geographic

50

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July

51

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves

52

INSERT YOUR BUILDING NAME HERE: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

INSERT YOUR BUILDING NAME HERE: BUILDING EMERGENCY PLAN Date Adopted: 6/4/13 Date Revised: 6/4/13 Prepared By: Tracey Simmerman #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table of Contents Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

53

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network [OSTI]

Predictive Clothing Insulation Models based on Outdoor AirPREDICTIVE CLOTHING INSULATION MODELS ON BUILDING ENERGYthat the clothing insulation is equal to a constant value of

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

54

Building Supervisor Handbook Rev Feb 2011 Page 1 of 25 BUILDING SUPERVISOR'S  

E-Print Network [OSTI]

Building Supervisor Handbook Rev Feb 2011 Page 1 of 25 BUILDING SUPERVISOR'S HANDBOOK Revised February 2011 #12;Building Supervisor Handbook Rev Feb 2011 Page 2 of 25 TABLE of CONTENTS Page Facilities Services Mission Statements.....................................................3 Building Supervisor

Maxwell, Bruce D.

55

Using measured equipment load profiles to "right-size" HVAC systems and reduce energy use in laboratory buildings (Pt. 2)  

E-Print Network [OSTI]

load profiles to 搑ight-size HVAC systems and reduce energyGeorgia. ASHRAE [1999]. HVAC Applications Handbook 1999.Inefficiency of a Common Lab HVAC System, presented at the

Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

2008-01-01T23:59:59.000Z

56

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

57

City of Scottsdale- Green Building Policy for Public Buildings  

Broader source: Energy.gov [DOE]

In 2005, Scottsdale approved a green building policy for new city buildings and remodels. The resolution requires all new, occupied city buildings of any size to be designed, contracted and built...

58

Environmental Justice Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

H Environmental Justice Tables I-5 Corridor Reinforcement Project Draft EIS H-i March 2012 Environmental Justice Tables for BPA I-5 Corridor Reinforcement Project Table of Contents...

59

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

60

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

M眉ller, Jens-Dominik

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

62

Commercial Buildings Characteristics 1992 - Publication and Tables  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208 283,507,467

63

Computers in Commercial Buildings - Table 1  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel OilTotalEIA

64

Computers in Commercial Buildings - Table 2  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel OilTotalEIAEIA

65

Computers in Commercial Buildings - Table 3  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel OilTotalEIAEIA

66

Computers in Commercial Buildings - Table 4  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel

67

Federal Buildings Supplemental Survey -- Publication and Tables  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011S5.Overview

68

Guidelines for conservation levels and for sizing passive-solar collection area  

SciTech Connect (OSTI)

Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar building. The guidelines are based on balancing the incremental cost/benefit of conservation and solar strategies. Tables are given for 209 cities in the US and the results are also displayed on maps. The procedures are developed in an appendix, which gives the cost assumptions used and explains how to develop different guidelines for different costs.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

69

Comparing Computer Run Time of Building Simulation Programs  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building Technologies, U.S.and renewable energy productions. The size of building and

Hong, Tianzhen

2008-01-01T23:59:59.000Z

70

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

71

Pounding and impact of base isolated buildings due to earthquakes  

E-Print Network [OSTI]

.3. Base isolation in both adjacent buildings.....................................................72 5. SUMMARY AND CONCLUSION.........................................................................85 5.1. Summary and scope of study... ..............................................................................................................................138 viii LIST OF TABLES TABLE Page 1.1 Survey of earlier research on pounding of buildings...............................................5 3.1 Adjacent building configurations used in this study...

Agarwal, Vivek Kumar

2005-08-29T23:59:59.000Z

72

A Look at Food Service Buildings - Index Page  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) FOOD SERVICE BUILDINGS There...

73

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building Technologies, U.S.and Renewable Energy (2005). 2005 Buildings Energy Databook,Buildings Energy Databook Table 1.2.3 (US DOE Office of Energy Efficiency and Renewable

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

74

Building Stones  

E-Print Network [OSTI]

3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

2012-01-01T23:59:59.000Z

75

Commercial Buildings Characteristics, 1992  

SciTech Connect (OSTI)

Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

Not Available

1994-04-29T23:59:59.000Z

76

TABLE VENDOR General Information  

E-Print Network [OSTI]

TABLE VENDOR General Information The following are the terms and conditions for renting table Affairs. York University assumes no responsibility or liability for vendors and their agent including racks provided by the vendor are charged at the rate of $25.00 per day per additional display. All

77

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

78

Assessment of Energy Use and Comfort in Buildings Utilizing Mixed-Mode Controls with Radiant Cooling  

E-Print Network [OSTI]

the course of designing low energy buildings. Standards Thecomfortable and usable low energy buildings. Specifically,is sized in a low-energy building. Thus the geometry,

Borgeson, Samuel Dalton

2010-01-01T23:59:59.000Z

79

SCHOOLOFARCHITECTURE Table of Contents  

E-Print Network [OSTI]

as a loan collection of 90,000 slides on contemporary and historical buildings, structural design, building 305; the Solar and Microclimate Laboratory, the School of Architecture Workshop, Field Study

Varela, Carlos

80

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

82

Types of Lighting in Commercial Buildings - Building Size and Year  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6Constructed

83

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves,0050516,"AL",10610,"AlbertvilleReservesFeet)Product: Total0.2. Heating3.B7.

84

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves,0050516,"AL",10610,"AlbertvilleReservesFeet)Product: Total0.2.

85

Buildings*","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves,0050516,"AL",10610,"AlbertvilleReservesFeet)Product: Total0.2.A6.B4.B9.B6.

86

Buildings*","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves,0050516,"AL",10610,"AlbertvilleReservesFeet)Product:

87

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

E-Print Network [OSTI]

1b] over different ranges of building area. Table 5. Results6. Results from Model [1b] for Different Ranges of BuildingArea Building Area ?50k sq. ft. 50<<600k sq. ft. ?600k sq.

Blum, Helcio

2010-01-01T23:59:59.000Z

88

Advanced Vehicle Technologies Awards Table  

Broader source: Energy.gov [DOE]

The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project.

89

Building America  

SciTech Connect (OSTI)

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

90

Transforming Commercial Building Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Publications Retrocommissioning and the Public Sector retrocommissioningpublicsector.doc Small- and Medium-Size Building Automation and Control System Needs: Scoping Study...

91

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

92

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

93

Beardmore Building  

High Performance Buildings Database

Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

94

SCHOOLOFARCHITECTURE Table of Contents  

E-Print Network [OSTI]

, as well as a loan collection of 90,000 slides on contemporary and historical buildings, structural design, the Laboratory of Human-Environment Interaction Research; the Electronic Studio 305; the Solar and Microclimate

Varela, Carlos

95

SCHOOLOFARCHITECTURE Table of Contents  

E-Print Network [OSTI]

, as well as a loan collection of over 100,000 slides on contemporary and historical buildings, structural, the Laboratory of Human- Environment Interaction Research; the Electronic Studio 305; the Solar and Microclimate

Varela, Carlos

96

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

97

Penn State Consortium for Building Energy Innovation  

Broader source: Energy.gov [DOE]

The Penn State Consortium for Building Energy Innovation (formerly the Energy Efficient Buildings Hub) develops, demonstrates, and deploys energy-saving technologies that can achieve 50% energy reduction in small- and medium-sized buildings. Its headquarters serves as a test bed for real-world integration of technology and market solutions.

98

Bagley University Classroom Building  

High Performance Buildings Database

Duluth, MN, MN LEED PLATINUM CERTIFIED AND PASSIVHAUS ( certification pending) CLASSROOM BUILDING The Nature Preserve where this building is located is a contiguous natural area, 55 acres in size, deeded to the University in the 1950's for educational and recreational use. The site has hiking trails through old growth hard woods frequented by the university students as well as the public. We were charged with designing a facility to serve eight different departments for the nature portions of their teaching and study at a regional University.

99

Building Stones  

E-Print Network [OSTI]

was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

2012-01-01T23:59:59.000Z

100

Table for Reports - ESG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. Home Office11

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. Home Office11SECTION

102

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. Home

103

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTION III:

104

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTION III:IV:

105

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTION III:IV:V:

106

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTION

107

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII: HEAVY

108

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII:

109

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII:IV:

110

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII:IV:V:

111

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII:IV:V:I:

112

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.

113

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm Elliptic Flow at

114

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm Elliptic Flow

115

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm Elliptic

116

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm Elliptic1

117

compare_tables.xlsx  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827 Table 7.2c43Current

118

ARM - Instrument Location Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsListgovInstrumentsLocation Table

119

Microsoft Word - table_09  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table 9

120

Microsoft Word - table_10  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table 94

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microsoft Word - table_11  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table 9425

122

8Be General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables The General

123

8C General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables The GeneralCC

124

8He General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables The

125

8Li General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables The尾--DecayLi

126

9B General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables8 2BB General

127

9Be General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables8 2BBBe General

128

9C General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables8 2BBBe

129

9He General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables8 2BBBeHeHe

130

9Li General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBe General Tables8 2BBBeHeHeLiLi

131

A = 6 General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBenew20-Year6 General Tables The

132

A = 7 General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBenew20-Year6 General Tables The7

133

A = 8 General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBenew20-Year6 General Tables

134

A = 9 General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience hands-onASTROPHYSICSHe 尾- DecayBenew20-Year6 General Tables9

135

FY 2005 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCityTheDepartmentKey9Statistical Table by

136

FY 2007 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5Statistical Table by

137

FY 2008 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControl Table08Total

138

FY 2008 State Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState Table

139

FY 2009 State Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6State Tables

140

A=19 Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered聣PNGExperience4AJ01) (See Energy0AJ04)86AJ04)1978AJ03) (See95TI07) (See EnergyTables

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbon intensity of theTABLE OF

142

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbon intensity of theTABLE OF2

143

Tables of Energy Levels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbon intensity of theTABLE

144

High Performance Buildings Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

145

INL Green Building Strategy  

SciTech Connect (OSTI)

Green buildings, also known as sustainable buildings, resource efficient buildings, and high performance buildings, are structures that minimize the impact on the environment by using less energy and water, reducing solid waste and pollutants, and limiting the depletion of natural resources. As Idaho National Laboratory (INL) becomes the nation抯 premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish the mission. This infrastructure, particularly the buildings, should incorporate green design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. With this in mind, the recommendations described in this strategy are intended to form the INL foundation for green building standards. The recommendations in this strategy are broken down into three levels: Baseline Minimum, Leadership in Energy and Environmental Design (LEED)Certification, and Innovative. Baseline Minimum features should be included in all new occupied buildings no matter what the purpose or size. These features do not require significant research, design, or capital costs and yet they can reduce Operation and Maintenance (O&M) costs and produce more environmentally friendly buildings. LEED Certification features are more aggressive than the Baseline Minimums in that they require documentation, studies, and/or additional funding. Combined with the Baseline Minimums, many of the features in this level will need to be implemented to achieve the goal of LEED certification. LEED Silver certification should be the minimum goal for all new buildings (including office buildings, laboratories, cafeterias, and visitor centers) greater than 25,000 square feet or a total cost of $10 million. Innovative features can also contribute to LEED certification, but are less mainstream than those listed in the previous two levels. These features are identified as areas where INL can demonstrate leadership but they could require significant upfront cost, additional studies, and/or development. Appendix A includes a checklist summary of the INL Green Building Strategy that can be used as a tool during the design process when considering which green building features to include. It provides a quick reference for determining which strategies have lower or no increased capital cost, yield lower O&M costs, increase employee productivity, and contribute to LEED certification.

Jennifer Dalton

2005-05-01T23:59:59.000Z

146

Table 1. Personal Computers and Computer Terminals in Commercial Buildings,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 272Production3

147

Types of Lighting in Commercial Buildings - Table L1  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDFL1. Floorspace Lit by

148

Types of Lighting in Commercial Buildings - Table L2  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDFL1. Floorspace Lit

149

Types of Lighting in Commercial Buildings - Table L3  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDFL1. Floorspace LitL3.

150

Buildings and Energy in the 80's -- Detailed Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22, 20131Detailed

151

Table B15. Number of Establishments in Building, Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number of

152

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Expenditures by Major Fuel c2-pdf c2.xls c2.html Table C3. Consumption and Gross Energy Intensity for Sum of Major Fuels c3.pdf c3.xls c3.html Table C4. Expenditures for...

153

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

154

Building America Expert Meeting: Transforming Existing Buildings...  

Energy Savers [EERE]

Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

155

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

156

Supplemental Tables to the Annual Energy Outlook - Energy Information...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Module Regions (NERC Region Map) Table 73. Texas Regional Entity Table 74. Florida Reliability Coordinating Council Table 75. Midwest Reliability Council East Table 76. Midwest...

157

The Living Building Challenge v1.0 In Pursuit of True Sustainability in the Built Environment  

E-Print Network [OSTI]

. McLennan 路 email: jason@cascadiagbc.org 路 Draft Living Building Standard #12;NOTIFICATION The Living: jason@cascadiagbc.org 路 Draft Living Building Standard #12;Table of Contents The Living Building Challenge 2 Executive Summary 2 How The Living Building Standard Works 4 Site Design 6 Energy 8 Materials

Zaferatos, Nicholas C.

158

Building Stones  

E-Print Network [OSTI]

1992 Are the pyramids of Egypt built of poured concreteel-Anba抲t, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

2012-01-01T23:59:59.000Z

159

Building Science  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question 岺ow do we first do no harm with high-r enclosures??

160

Building debris  

E-Print Network [OSTI]

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Healthy buildings  

SciTech Connect (OSTI)

This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

Not Available

1991-01-01T23:59:59.000Z

162

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

163

Healthy buildings  

SciTech Connect (OSTI)

This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

1991-01-01T23:59:59.000Z

164

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

165

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

166

1995 Detailed Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds, Buildings &

167

1999 CBECS Detailed Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds, Buildings

168

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...

169

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network [OSTI]

A demand-side management framework from building operationsdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This paper summarizes the integration of DR in demand-side management

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

170

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

a building operations perspective, a demand-side managementdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This report summarizes the integration of DR in demand-side management

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

171

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

172

Better Buildings Alliance  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

173

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network [OSTI]

CAM Analysis of Policy, Tariff Design, Building Energy Use,14 3.3 Comparison of Utility Tariffs in Japan and the14 Table 4: Electricity Tariffs at Several Facilities in the

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

174

TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v  

E-Print Network [OSTI]

............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump QUARTZ CONTENT OF SEDIMENTARY ROCK LAYERS ........ 17 TABLE 10. PROPERTIES OF SEDIMENTARY ROCK LAYERS OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL

Oak Ridge National Laboratory

175

Comfort standards and variation in exceedance for mixed-mode buildings.  

E-Print Network [OSTI]

of designing low-energy buildings. In spite of traditionalis sized in a low-energy building. Thus, the geometry,operation of every low-energy building requires striking a

Brager, Gail; Borgeson, Sam

2010-01-01T23:59:59.000Z

176

FIRE SAFETY PROGRAM TABLE OF CONTENTS  

E-Print Network [OSTI]

FIRE SAFETY PROGRAM TABLE OF CONTENTS Overview................................................................................................. 5 Health and Life Safety Fund........................................................................................................... 5 Hot work

Lin, Zhiqun

177

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

SciTech Connect (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

178

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

179

Building on Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

easy-to-use tools to size and finance rooftop solar panels; and download virtual energy audit software that can cut costs for building owners and help get retrofits started...

180

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance, integrated building燿esign燼nd爋peration,營ntegrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Use and Design Options for Texas State Buildings  

E-Print Network [OSTI]

of improved glass type. The results are shown in Table 1. The EUI is defined as the Energy Utilization Index and is a measure of the annual energy consumption of the building in kBtu's per square foot per year. ii Table 1 - Comparison of EUI For Travis....3 ASHRAE Standard Rating Conditions &. Minimum Performance.7 2.4 California Prescriptive Standard 10 2.5 Energy Budget for Offices of Four or Habitable Stories 11 3.1 Comparison of Energy Use for Travis Building at Different Locations in Texas 14 3...

Katipamula, S.; O'Neal, D. L.

1988-01-01T23:59:59.000Z

182

Microsoft Word - table_19.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7 Table

183

Automatic CX Tool for Electrical Building  

E-Print Network [OSTI]

under Matlab [MATLAB, 2005]. This environment was selected for its capacity to use complex matrixes. Its goal is to help the designers and Cx providers to test and evaluate energy performance of an electrical building. The objective of the tool... period, the hourly programming of the lighting and the hourly programming of the heating. Results of automatic FTPs are presented in graphs or tables. Electricity tariff structure As first example, the graph on Figure 8 shows the electric load...

Couillaud, N.; Jandon, M.; Viaud, B.; Clemoncon, B.

2007-01-01T23:59:59.000Z

184

Limiting Abnormal Mold Growth in Buildings  

E-Print Network [OSTI]

discussion of mold is not complete without discussions of fungi, a type of mold that leads to biodegradation in wood and wood products, because the conditions under which they grow are similar. The basic developmental unit of all filamentous fungi..., because molds do not grow as readily at humidity levels below about 55% (http://www.epa.gov/iaq/molds/prevention.html). Table 1. Mold and Temperature Relationships Mold in Buildings A lengthy discussion of all the molds that may...

Graham, C. W.

2002-01-01T23:59:59.000Z

185

Table B14. Number of Establishments in Building, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "

186

Table of Contents flux a publication of the national high magnetic field laboratory  

E-Print Network [OSTI]

......Kitchen Table Science How to make an electromagnet of your own, step by step. PG. 0......Great experiments 颅 everything from the mechanics of cancer to the behavior of particles that make up matter in its most to building and mentoring the next generation of scientists. At the heart of the Magnet Lab's mission

Weston, Ken

187

Table of Contents Preface vii  

E-Print Network [OSTI]

environmental public health areas: capacity building, research, leadership, communication and marketing Inspections 路 Groundwater Pollution Control 路 Vector Control 路 Environmental Emergency Response 路 Food Goal I. Build Capacity 15 Goal II. Support Research 18 Goal III. Foster Leadership 21 Goal IV

188

3Building a Business Building a Business  

E-Print Network [OSTI]

15 3Building a Business Building a Business This section provides direction on the kinds. If you contemplate building a "garage- based" company to sell a product into a niche market, you should-ups conjure up images of future wealth, of building the next Amgen or Microsoft, of launching what will become

Arnold, Jonathan

189

Building America Building Science Translator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryanR BUILDING AMERICA

190

SOFA 2 Documentation Table of contents  

E-Print Network [OSTI]

SOFA 2 Documentation Table of contents 1 Overview...................................................................................................................... 2 2 Documentation............................................................................................................. 2 3 Other documentation and howtos

191

Chemistry Department Assessment Table of Contents  

E-Print Network [OSTI]

0 Chemistry Department Assessment May, 2006 Table of Contents Page Executive Summary 1 Prelude 1 Mission Statement and Learning Goals 1 Facilities 2 Staffing 3 Students: Chemistry Majors and Student Taking Service Courses Table: 1997-2005 graduates profile Table: GRE Score for Chemistry Majors, 1993

Bogaerts, Steven

192

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961  

E-Print Network [OSTI]

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

193

BUILDING EFFECTIVENESS COMMUNICATION RATIOS FOR IMPROVED BUILDING LIFE CYCLE MANAGEMENT  

E-Print Network [OSTI]

BUILDING EFFECTIVENESS COMMUNICATION RATIOS FOR IMPROVED BUILDING LIFE CYCLE MANAGEMENT Elmer building energy performance assessment frameworks, quantifying and categorising buildings post occupancy a performance-based strategy utilising building effectiveness communication ratios stored in Building

194

TABLE OF CONTENTS DIRECTOR'S DESK  

E-Print Network [OSTI]

Phase of a Two-Leg Spin-1/2 Ladder with Strong Leg Interactions 14 EPR Study on a DiCl4(CN)2]2- Magnetic Molecular Building Block 40 Lithium Isotope Evolution of Cenozoic Seawater

Weston, Ken

195

CHP NOTEBOOK Table of Contents  

E-Print Network [OSTI]

-Specific Standard Operating Procedures (SOPs) Section 8 Employee Training Section 9 Inspections and Exposure Contact Information Section 3 Emergency Procedures Section 4 Lab and Building-Specific Evacuation Monitoring Records Section 10 Housekeeping and Maintenance Inspections Section 11 Incidents, Injuries

Braun, Paul

196

"Renewing" UBC Renew Building Full Cost Assessment into  

E-Print Network [OSTI]

"Renewing" UBC Renew Building Full Cost Assessment into Renovate vs. Rebuild Decisions at UBC, 2006 #12;`Renewing' UBC Renew 2 Table of Contents Summary 3 List of Acronyms 5 1. Aspirations: `Renewing' UBC Renew 6 1.1 UBC Renew: Background 6 1.2 Moving Forward: Implementing UBC's Vision

197

Building Statistical Models and Scoring with UDFs Carlos Ordonez  

E-Print Network [OSTI]

77204, USA ABSTRACT Multidimensional statistical models are generally computed outside a relational DBMS are computed inside the DBMS in a single table scan exploiting SQL and User-Defined Functions (UDFs into the Teradata DBMS. Two major database processing tasks are discussed: building a model and scoring a data set

Ordonez, Carlos

198

Optimum mix of conservation and solar energy in buildings  

SciTech Connect (OSTI)

A methodology is developed for optimally allocating resources between conservation and solar strategies in building design. Formulas are presented for a constrained optimum in which the initial investment is limited. The procedure is amenable to hand analysis if tables are available which give the Solar Savings Fraction as a function of the Load Collector Ratio for the locality. A numerical example is given.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

199

Microsoft Word - table_18.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table

200

BUILDING 96 PCB SOIL (AOC 26B)EXCAVATION CLOSEOUT REPORT  

E-Print Network [OSTI]

OU III BUILDING 96 PCB SOIL (AOC 26B)EXCAVATION CLOSEOUT REPORT Prepared by: Brookhaven National Laboratory Environmental Restoration Upton, N.Y., 11973 Prepared for: U.S. Department of Energy MARCH 2005 #12;TABLE OF CONTENTS Closeout Report: Building 96 PCB Soil (AOC 26B) Remediation i X

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

202

and Pollutant Safeguarding Buildings  

E-Print Network [OSTI]

commercial buildings, these flows are driven primarily by the building's ventilation system, but natural2004 Airflow and Pollutant Transport Group Safeguarding Buildings Against Chemical and Biological research since 1998 to protect buildings and building occupants from threats posed by airborne chemical

203

Design of a lens table for a double toroidal electron spectrometer  

SciTech Connect (OSTI)

We report here on the method we developed to build a lens table for a four-element electrostatic transfer lens operated together with a double toroidal electron energy analyzer designed by one of us, and whose original design and further improvements are described in detail in Miron et al. [Rev. Sci. Instrum. 68, 3728 (1997)] and Le Guen et al. [Rev. Sci. Instrum. 73, 3885 (2002)]. Both computer simulations and laboratory instrument tuning were performed in order to build this lens table. The obtained result was tested for a broad range of electron kinetic energies and analyzer pass energies. Based on this new lens table, allowing to easily computer control the spectrometer working conditions, we could routinely achieve an electron energy resolution ranging between 0.6% and 0.8% of the analyzer pass energy, while the electron count rate was also significantly improved. The establishment of such a lens table is of high importance to relieve experimentalists from the tedious laboring of the lens optimization, which was previously necessary prior to any measurement. The described method can be adapted to any type of electron/ion energy analyzer, and will thus be interesting for all experimentalists who own, or plan to build or improve their charged particle energy analyzers.

Liu Xiaojng; Nicolas, Christophe; Miron, Catalin [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France)

2013-03-15T23:59:59.000Z

204

Building Science-Based Climate Maps - Building America Top Innovation...  

Energy Savers [EERE]

Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on...

205

Building America Top Innovations Hall of Fame Profile - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top...

206

Building America Webinar: Building America Research Tools | Department...  

Energy Savers [EERE]

Building America Research Tools Building America Webinar: Building America Research Tools This webinar was held on March 18, 2015, and reviewed Building America research tools,...

207

Building America  

SciTech Connect (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

208

An Energy and Peak Loads Analysis of the TYC/TRC Building Final Report  

E-Print Network [OSTI]

the alternatives reduced energy consumption of the building. The ASHRAE and California standards had a reductions of more than 38% and 44%, respectively. iii iv TABLE OF CONTENTS CHAPTER Page SUMMARY ii ABSTRACT iii TABLE OF CONTENTS iv I INTRODUCTION 1 II... using the DOE 2.IB building energy simulation program [4]. The program simulates hourly loads profiles and hourly system performance of HVAC equipment in the building. It also has a provision to output various data, such as, peak loads for each zone...

Katipamula, S.; O'Neal, D. L.

1987-01-01T23:59:59.000Z

209

Building Performance Simulation  

E-Print Network [OSTI]

a爁uture爓ith very爈ow爀nergybuildings爎esulting爄n爒ery燾onsumption of low energy buildings, with site EUI燿esign燼nd爋peration爋f爈ow爀nergybuildings爐hrough燽etter

Hong, Tianzhen

2014-01-01T23:59:59.000Z

210

Thick Buildings [Standards  

E-Print Network [OSTI]

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

211

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect (OSTI)

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

212

Building a Molecule Building Structures in Moe  

E-Print Network [OSTI]

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder 路 Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

213

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#: TWP-DOC-1.4TX

214

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#: TWP-DOC-1.4TX4

215

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#: TWP-DOC-1.4TX48

216

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:

217

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from

218

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from5.4 from

219

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from5.4 from6

220

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from5.4

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from5.47AJ02):

222

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5

223

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:50AJ01): Some

224

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:50AJ01):

225

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:50AJ01):3TI07):

226

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104

227

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.01001045TI07):

228

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.01001045TI07):8TI06):

229

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR

230

Building Scale DC Microgrids  

E-Print Network [OSTI]

Folsom CA, Integration of Renewable Resources: OperationalOffice of Energy Efficiency and Renewable Energy, BuildingOffice of Energy Efficiency and Renewable Energy, Building

Marnay, Chris

2013-01-01T23:59:59.000Z

231

BUILDING MATERIALS RECLAMATION PROGRAM  

SciTech Connect (OSTI)

This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

2010-08-31T23:59:59.000Z

232

Microsoft Word - table_13.doc  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table 9425

233

Microsoft Word - table_13.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table 13.

234

Microsoft Word - table_14.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table 13.4

235

Microsoft Word - table_15.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table 13.40

236

Microsoft Word - table_17.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table 13.404

237

Microsoft Word - table_20.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7

238

Microsoft Word - table_21.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table79

239

Microsoft Word - table_22.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table790

240

Microsoft Word - table_23.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7906

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microsoft Word - table_24.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7906

242

Microsoft Word - table_25.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table79068

243

Microsoft Word - table_26.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table790687

244

Microsoft Word - table_27.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7906878

245

Sizing sliding gate valves for steam service  

SciTech Connect (OSTI)

Sliding gate valves have been used in thousands of applications during the past 40 yr. While steam control is a common application for these valves, thy are also used to control other gases and liquids. The sliding gate design provides straight-through flow, which minimizes turbulence, vibration, and noise. Seats are self-cleaning and self-lapping to provide a tight, long-lasting shutoff. A correctly sized valve is essential for accurate control. Valve size should be determined by service and system requirements, not by the size of the existing pipeline. Sizing a valve on the basis of pipeline size usually results in an oversized valve and poor control. Generally, regulator size is smaller than pipe size. Whenever complete information is known (inlet pressure, outlet pressure, or pressure drop, and required flow), determine the valve flow coefficient (C{sub v}) using the equations in ANSI/ISA S75.01 or a flow sizing chart. Tables of values for various types of valves are available from manufacturers. However, when complete system requirements are not known, valve oversizing is prevented by determining the design capacity of piping downstream from the valve. The valve should not be sized to pass more flow than the maximum amount the pipe can handle at a reasonable velocity. An example calculation is given.

Bollinger, R. [Jordan Value, Cincinnati, OH (United States)

1995-11-06T23:59:59.000Z

246

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network [OSTI]

. In this study, the prototypical small and large-size office buildings of the USDOE commercial reference is further benchmarked against those from similar office buildings in two U.S. commercial buildings databases is the largest one [USDOE]. The U.S. Energy Information Administration [EIA] 2003 Commercial Building Energy

247

Environmental Regulatory Update Table, December 1989  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlbert, L.M.; Langston, M.E. (Tennessee Univ., Knoxville, TN (USA)); Nikbakht, A.; Salk, M.S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

248

Environmental regulatory update table, March 1989  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

1989-04-01T23:59:59.000Z

249

Environmental Regulatory Update Table, April 1989  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

1989-05-01T23:59:59.000Z

250

Environmental Regulatory Update Table, October 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-11-01T23:59:59.000Z

251

Environmental Regulatory Update Table, November 1990  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Hawkins, G.T.; Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

1990-12-01T23:59:59.000Z

252

Environmental regulatory update table, July 1991  

SciTech Connect (OSTI)

This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-08-01T23:59:59.000Z

253

Environmental Regulatory Update Table, November 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-12-01T23:59:59.000Z

254

Environmental Regulatory Update Table, September 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-10-01T23:59:59.000Z

255

Environmental Regulatory Update Table, December 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1992-01-01T23:59:59.000Z

256

Environmental Regulatory Update Table, August 1991  

SciTech Connect (OSTI)

This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

1991-09-01T23:59:59.000Z

257

Summary Statistics Table 1. Crude Oil Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Cost Report." Figure Energy Information Administration Petroleum Marketing Annual 1996 3 Table 2. U.S. Refiner Prices of Petroleum Products to End Users (Cents per Gallon...

258

TABLE OF CONTENTS NIST Map ...................................................................................................................................................3  

E-Print Network [OSTI]

TABLE OF CONTENTS NIST Map the Power Grid PML TIME SPEAKER UNIVERSITY TITLE LAB 3:00P Brian Weinstein American University Temperature

259

TableHC2.12.xls  

Gasoline and Diesel Fuel Update (EIA)

Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information Administration: 2005...

260

Better Buildings Neighborhood Program  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

deYoung, Brad

262

Community Development Building Division  

E-Print Network [OSTI]

California Energy Commission 1516 Ninth Street Sacramento, Ca 95814-5514 Re: Green Building Ordinance of Los Altos Energy Efficiency Ordinance, Green Building Regulations under the 2005 California Building by the Board on that date. The Green Building Regulation, Chapter 12.66 of the City Municipal code, will ensure

263

Building Technology MSc Programme  

E-Print Network [OSTI]

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

264

NIST Preliminary Reconnaissance, Building  

E-Print Network [OSTI]

NIST Preliminary Reconnaissance, Building Performance and Emergency Communications, Joplin)): Support R&D to improve building codes and standards and practices for design and construction of buildings of and data collection on the impact of severe wind on buildings, structures, and infrastructure 颅 Section 204

Magee, Joseph W.

265

RESEARCH BUILDING AT NORTHWESTERN  

E-Print Network [OSTI]

BIOMEDICAL RESEARCH BUILDING AT NORTHWESTERN MEDICINE #12;"Our new Biomedical Research Building-intensive medical schools. Perkins+Will has designed a building that will be superbly functional and have great a magnificent 12-story Biomedical Research Building to address this priority. The new 600,000 square foot

Engman, David M.

266

BUILDING MANAGEMENT & RESTRICTED ACCESS  

E-Print Network [OSTI]

BUILDING MANAGEMENT & RESTRICTED ACCESS Plan Annex 2014 VIII #12;#12;#12;The University of Texas at Austiniv #12;Building Management & Restricted Access Plan Annex v CONTENTS RECORD OF CHANGES .......................................................................................................15 J. BUILDING SECURITY OPERATIONS RESTRICTED ACCESS PROCEDURES FOR BUILDINGS ON ELECTRONIC ACCESS

Johnston, Daniel

267

Table of Contents Page i 2013 Residential Compliance Manual January 2014  

E-Print Network [OSTI]

design (the budget). The standard design is a building with the same size as the proposed design equal or less TDV energy than the standard design, then the building complies. Computer programs used..........................................................................................................2 8.3.1 Defining the Standard Design

268

Building Green in Greensburg: City Hall Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

269

Uncalibrated Building Energy Simulation Modeling Results  

E-Print Network [OSTI]

for the Level 1 and Level 2 models with measured data for WERC (2004 post-commissioning data). ESL-PA-06-10-01 VOLUME 12, NUMBER 4, OCTOBER 2006 1151 Figure 6. Comparison of simulated daily total energy consumption for the Level 1 and Level 2 models with 1999...,450 m2]), the simulation using 1999 data underestimates the energy use in all categories except the whole building electrical usage. Table 3 identifies the magnitude of these discrepancies for a full year抯 consumption. The Level 1 model actually per...

Ahmad, M.; Culp, C.H.

270

Supplemental Tables to the Annual Energy Outlook  

Reports and Publications (EIA)

The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

2014-01-01T23:59:59.000Z

271

Tables in Context: Integrating Horizontal Displays with  

E-Print Network [OSTI]

design challenges for tabletop interfaces: integrating access to public and private information, managing a cooperative gesture to organize digital documents on an interactive table. Our tabletop interface designTables in Context: Integrating Horizontal Displays with Ubicomp Environments Abstract Our work

Klemmer, Scott

272

Selection, Sizing, and Testing of Stream Traps in Commercial Buildings  

E-Print Network [OSTI]

waterhammer exists, and until it is erad- icated, the use of the float and thermostatic trap is to be avoSded because the ball float can be damaged by waterhammer. Inverted bucket traps can also discharge conden- sate at steam temperature, almost... is acceptable, and encourage using the steam's sensible heat as well as the latent heat. Typical uses are some storage coils, but they also can be used to drain condensate from dead ends in systems to prevent freezing when steam is shut down, or waterhammer...

Armer, A.; Risko, J. R.

1984-01-01T23:59:59.000Z

273

Joseph Vance Building, The  

High Performance Buildings Database

Seattle, WA In 2006, the Rose Smart Growth Investment Fund acquired the historic Joseph Vance Building with the purpose of transforming it into "the leading green and historic class B" building in the marketplace. The terra cotta Vance Building was constructed in 1929 and has 14 floors - 13 floors of offices over ground-floor retail with a basement for mechanical equipment and storage. In 2009 the U.S. Green Building Council (USGBC) awarded the Vance Building LEED for Existing Buildings (EB) Gold certification.

274

Monitoring conservative retrofits in single family buildings  

SciTech Connect (OSTI)

This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant's names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

Richardson, C.S.

1992-12-06T23:59:59.000Z

275

Building Green in Greensburg: Business Incubator Building | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Incubator Building Building Green in Greensburg: Business Incubator Building This poster highlights energy efficiency, renewable energy, and sustainable features of the...

276

Building operating systems services: An architecture for programmable buildings.  

E-Print Network [OSTI]

7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

277

Building America Top Innovations Hall of Fame Profile - Building...  

Energy Savers [EERE]

Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top Innovations Hall of Fame...

278

1999 Commercial Buildings Characteristics--CBECS Building Types  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds, Buildings1999Size

279

KT Monograph Section B Table  

E-Print Network [OSTI]

Diagnostics Small Stones - esp. NW & E Late Roman/Byz. Sherds Trefoil Rims Terra Sigillata - esp. S & SW Stone Artefacts Red Hittite Wares Hellenistic Sherds Architectural Fragments Total Sherds Large Stones Early Bronze Age Decorated Sherds Feature... Site Period Approx. Site Size No. of Squares Size of Squares Area Collected No. of Artefacts Comments / Conclusions 莂y鰊, Turkey Pre-ceramic 250 m max 83 5 x 5 m 2,100m2 - 10% c. 15,000 Simple random sample Ayngerm, Turkey Prehistoric 200 x...

Thomas, D C

2004-12-09T23:59:59.000Z

280

2003 CBECS Detailed Tables: Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports Building7.p e

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Building Energy Code  

Broader source: Energy.gov [DOE]

Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy抯 (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

282

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy抯 (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

283

Financing green buildings  

E-Print Network [OSTI]

An emerging trend in real estate is the development of sustainable buildings, partially due to the huge environmental impact of the design, construction and operation of commercial buildings. This thesis provides a brief ...

Pierce, Christopher John, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

284

Building condition monitoring  

E-Print Network [OSTI]

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

285

Building Energy Standards  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy抯 (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

286

Special Building Renovations  

Broader source: Energy.gov [DOE]

A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

287

Building, landscape and section  

E-Print Network [OSTI]

All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

Johnson, Daniel B. (Daniel Bryant)

1992-01-01T23:59:59.000Z

288

Change in historic buildings  

E-Print Network [OSTI]

Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

Yin, Chien-Ni

1992-01-01T23:59:59.000Z

289

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy抯 (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

290

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy抯 (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

291

Green Building Requirement  

Broader source: Energy.gov [DOE]

The District of Columbia City Council enacted [http://dcclims1.dccouncil.us/images/00001/20061218152322.pdf B16-515] on December 5, 2006, establishing green building standards for public buildings...

292

Integrated Energy Systems (IES) for Buildings: A Market Assessment...  

Open Energy Info (EERE)

15 November, 2012 - 13:05 Literature Review The author analyzed the market of combine heat and power in commercial buildings. The paper provided the market size of CHP. It...

293

Kiowa County Commons Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

294

Building Songs 5  

E-Print Network [OSTI]

. Sman shad building song 5.WAV Length of track 00:02:14 Related tracks (include description/relationship if appropriate) Title of track Building Songs 5 Translation of title Description (to be used in archive entry) Skar ma chos mdzin... sings a building song. Such songs are traditionally sung antiphonally between two groups of men while they are ramming walls. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma...

Zla ba sgrol ma

2009-10-28T23:59:59.000Z

295

Building Songs 8  

E-Print Network [OSTI]

. Sman shad building song 8.WAV Length of track 00:01:28 Related tracks (include description/relationship if appropriate) Title of track Building Songs 8 Translation of title Description (to be used in archive entry) Skar ma chos mdzin... sings a building song. Such songs are traditionally sung antiphonally between two groups of men while they are ramming walls. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma...

Zla ba sgrol ma

2009-10-28T23:59:59.000Z

296

Building Songs 7  

E-Print Network [OSTI]

. Sman shad building song 7.WAV Length of track 00:09:57 Related tracks (include description/relationship if appropriate) Title of track Building Songs 7 Translation of title Description (to be used in archive entry) Skar ma chos mdzin... sings a building song. Such songs are traditionally sung antiphonally between two groups of men while they are ramming walls. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma...

Zla ba sgrol ma

2009-10-28T23:59:59.000Z

297

Building Operator Certification  

E-Print Network [OSTI]

Building Operator Certification Energy Efficiency through Operator Training CATEE December 18, 2013 San Antonio, TX Dennis Lilley, CEM, PMP ESL-KT-13-12-49 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Building Operator Certification Energy Efficiency through Operator Training What is Building Operator Certification? Industry-recognized credential in energy efficient building operation practices Created with 100 industry experts Launched in 1996 9...

Lilley, D.

2013-01-01T23:59:59.000Z

298

The Economics of Green Building  

E-Print Network [OSTI]

Environment Quality in Green Buildings: A Review," Nationalof Popular Attention to Green Building Notes: Sources:2007 - 2009 panel of green buildings and nearby control

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

299

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

300

The Economics of Green Building  

E-Print Network [OSTI]

Benjamin. "Do LEED-Certified Buildings Save Energy? Yes,But,." Energy and Buildings, 2009, 41, pp. 897-905. Royalrating, and publicizing buildings along these dimensions (

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

HEEP CENTER Building # 1502  

E-Print Network [OSTI]

1 HEEP CENTER Building # 1502 EMERGENCY EVACUATION PLAN Prepared by: Harry Cralle and Mark Wright a building. Examples of such occasions include: smoke/fire, gas leak, bomb threat. Pre-planning and rehearsal are effective ways to ensure that building occupants recognize the evacuation alarm and know how to respond

Tomberlin, Jeff

302

Digital Planetaria: Building Bridges  

E-Print Network [OSTI]

Digital Planetaria: Building Bridges Building Bridges Between Institutions, Universities Group Goals & Objectives: The goal of the Building Bridges focus group was to create a framework applications and dreaming about their potential in the digital dome environment. #12;L to R, Back to front

Collar, Juan I.

303

Link Building Martin Olsen  

E-Print Network [OSTI]

Link Building Martin Olsen PhD Dissertation Department of Computer Science Aarhus University Denmark #12;#12;Link Building A Dissertation Presented to the Faculty of Science of Aarhus University The Computational Complexity of Link Building Proc. Computing and Combinatorics, 14th Annual International

304

Sportsfield Service Building  

E-Print Network [OSTI]

Bank Office Building Parking R 0.1 Regis Center for Art - West 0.02 Rarig Center 0.31 Middlebrook HallHumphrey Center Hubert H. 0.4 Sportsfield Service Building 0.74 Bierman Track and Field Stadium 0/Nagurski Football Facility 0.44 UTEC Bldg 717 East River Parkway Heating Plant Storage Building 0.25 Education

Webb, Peter

305

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network [OSTI]

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

306

Bioengineering/ Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction Roble Hall 'CO NNO R LN Skilling HEPL South Green Earth Sciences Mitchell Earth Sciences Moore Materials Rsrch. Durand David Packard Elect. Eng. Paul G. Allen Building Godzilla Thornton Center Bambi Roble Gym e

Bogyo, Matthew

307

Bioengineering/ Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction HFD HFD HFD GALVEZST CAPISTRANOW BOWDOIN LN L VIAORTEGA VIAPALOU O 'CO NNO R LN Skilling HEPL South Green Earth Building Godzilla Thornton Center Bambi Roble Gym e Cypress Hall Cedar Hall Cogen Facility Tresidder Union

Bogyo, Matthew

308

High resolution coherent diffractive imaging with a table-top extreme ultraviolet source  

SciTech Connect (OSTI)

We demonstrate a resolution of 45?nm with a sample size down to 3??m 3??m is achieved in a short exposure time of 2?s, from the diffraction pattern generated by a table-top high harmonic source at around 30?nm. By using a narrow-bandwidth focusing mirror, the diffraction pattern's quality is improved and the required exposure time is significantly reduced. In order to obtain a high quality of the reconstructed image, the ratio of the beam size to the sample size and the curvature of the focused beam need to be considered in the reconstruction process. This new experimental scheme is very promising for imaging sub-10?nm scale objects with a table-top source based on a small inexpensive femtosecond laser system.

Vu Le, Hoang, E-mail: vuhoangle@swin.edu.au; Ba Dinh, Khuong; Hannaford, Peter; Van Dao, Lap [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122 (Australia)

2014-11-07T23:59:59.000Z

309

Archive Reference Buildings by Building Type: Large office  

Office of Energy Efficiency and Renewable Energy (EERE)

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

310

Archive Reference Buildings by Building Type: Strip mall  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

311

Archive Reference Buildings by Building Type: Stand-alone retail  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

312

Archive Reference Buildings by Building Type: Small office  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

313

Archive Reference Buildings by Building Type: Primary school  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

314

Archive Reference Buildings by Building Type: Fast food  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

315

Archive Reference Buildings by Building Type: Secondary school  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

316

Building America Webinar: Building America Technology-to-Market...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America Webinar: Building America Technology-to-Market Roadmaps Building America Webinar: Building America Technology-to-Market Roadmaps April 7, 2015 3:00PM to 4:30PM EDT...

317

Building America Webinar: Building America: Research for Real...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Webinar: Building America: Research for Real-World Results Building America Webinar: Building America: Research for Real-World Results December 17, 2014 3:00PM to...

318

Energy Analysis and Energy Conservation Options for the Supreme Court and Attorney General Buildings Final Report, Prepared for the Energy Efficiency Division, Texas Public Utility Commission  

E-Print Network [OSTI]

loads, is solar film on the windows. Both the proposed ASHRAE standards and the California standards appear to reduce energy use. The following Table shows EUIs for the Supreme Court and Attorney General buildings with different options. EUI...'s For The Supreme Court and Attorney General Buildings (KBtu/sf-yr) ABSTRACT The energy use and peak load requirement of the Supreme Court & Attorney General Buildings in Austin, Texas were analyzed using the DOE 2.IB building energy simulation program. An analysis...

Farzad, M.; O'Neal, D. L.

1986-01-01T23:59:59.000Z

319

Building integrated photovoltaic systems analysis: Preliminary report  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) has estimated that the deployment of photovoltaics (PV) in the commercial buildings sector has the potential to contribute as much as 40 gigawatts peak electrical generation capacity and displace up to 1.1 quads of primary fuel use. A significant portion of this potential exists for smaller buildings under 25,000 square feet (2,300 square meters) in size or two stories or less, providing a strong cross over potential for residential applications as well. To begin to achieve this potential, research is needed to define the appropriate match of PV systems to energy end-uses in the commercial building sector. This report presents preliminary findings for a technical assessment of several alternative paths to integrate PV with building energy systems.

none,

1993-08-01T23:59:59.000Z

320

Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India  

E-Print Network [OSTI]

assuming north?south and east?west facings of the building. For each orientation, different types of glazing (Table 4) and different glazing areas are considered. The first case(the base case) assumes a single clear glazing with a window-to-wall ratio.... Floor plan of the east-west oriented residential building taken for study (not to scale) Table 1. The zones basic characteristics Zone Area (m2) Volume (m3) Occupancy (people/m2) Venti- lation (l/s) HVAC system Bed room1 15.12 52...

Sahoo, P. K.; Sahoo, R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Passive solar buildings  

SciTech Connect (OSTI)

Developments in passive solar buildings that took place from the early 1970`s through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

Balcomb, J.D. [ed.] [Solar Energy Research Inst., Golden, CO (United States)

1992-10-01T23:59:59.000Z

322

Passive solar buildings  

SciTech Connect (OSTI)

Developments in passive solar buildings that took place from the early 1970's through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

Balcomb, J.D. (ed.) (Solar Energy Research Inst., Golden, CO (United States))

1992-01-01T23:59:59.000Z

323

Table of Contents Producing Hydrogen................1  

E-Print Network [OSTI]

. It can store the energy from diverse domestic resources (including clean coal, nuclear renewable resources, nuclear energy, and coal with carbon capture and storage. 1 #12;Potential for clean1 #12;Table of Contents Producing Hydrogen................1 Hydrogen Production Technologies

324

Table of Contents Resilient Sustainable Communities  

E-Print Network [OSTI]

..................................... 5 Onondaga County: Sustainable Development Plan....................... 9 Comparison of the Hazard Mitigation Plan and Onondaga County Sustainable Development Plan DraftTable of Contents Resilient Sustainable Communities: Integrating Hazard Mitigation & Sustainability

325

Table of Contents Chapter and Content Pages  

E-Print Network [OSTI]

#12;Page 2 Table of Contents Chapter and Content Pages 1. Field Trip Itinerary ................................................................................. 7 4. Geologic Framework of the Netherlands Antilles 5. Coral Reefs of the Netherlands Antilles

Fouke, Bruce W.

326

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Spring 2002 Vol. 3, No. 2 Lightning in Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Colorado Climate in Review

327

Buildings and Areas 1001 Broadway Building D1 BDWY  

E-Print Network [OSTI]

Design (LEED) Green Building Rating System is a nationally accepted benchmark for the designBuildings and Areas 1001 Broadway Building D1 BDWY 1313 East Columbia Building B3 CLMB Administration Building D1 ADMN Admissions & C2 ADAL Alumni Building Archbishop Murphy A1 ATMA Apartments Arrupe

Carter, John

328

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network [OSTI]

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

329

Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Office Buildings  

E-Print Network [OSTI]

per 2009 IECC Section 501.2 15% Above-Code Analysis for Small Office, p.5 January 2012 Energy Systems Laboratory, Texas A&M University Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL...-19341 (Thornton et al. 2010) Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al. 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341...

Kim, H.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

2012-01-01T23:59:59.000Z

330

Also Known As (Room or Building)  

E-Print Network [OSTI]

Room No. Also Known As (Room or Building) Hearing Assistance Type 702 InfraRed 704 InfraRed 706 Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam

Mottram, Nigel

331

Strategy Guideline: HVAC Equipment Sizing  

SciTech Connect (OSTI)

The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

Burdick, A.

2012-02-01T23:59:59.000Z

332

Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics for the alluvium (Stephens et al.).  

E-Print Network [OSTI]

A-1 Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics Deviation .1708 4.274 28.95 Harmonic Mean Number of Observations 9 8 8 2 2 2 2 2 Table A2. Hydraulic.310-5 Number of Observations 10 10 10 34 34 4 4 4 #12;A-2 Table A3. Hydraulic properties statistics

333

BUILDING EMERGENCY ACTION PLAN [Medical Sciences Building, Building # 192] / [506 S. Mathews, Urbana  

E-Print Network [OSTI]

BUILDING EMERGENCY ACTION PLAN [Medical Sciences Building, Building # 192] / [506 S. Mathews requires the BUILDING EMERGENCY MANAGEMENT TEAM: Building Command Post1 1. M2 classroom, Carle Forum This Building Emergency Action Plan (BEAP) is to be used in conjunction with the Emergency Response Guide (ERG

Gilbert, Matthew

334

The Lovejoy Building  

High Performance Buildings Database

Portland, OR Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

335

Building South Weyburn Avenue  

E-Print Network [OSTI]

36 P32 PCHS P9 P1 P8 P6 P2 P3 P5 17 P4 P7 PRO 11 15 10 Kinross Building Kinross Building South Road Charles E. Young Drive North R oyce D rive CharlesE.YoungDriveNorth Manning Avenue Manning Avenue/Engineering and Mathematical Sciences 8270 Boelter Hall SEL/Geology-Geophysics 4697 Geology Building Music Library 1102

Williams, Gary A.

336

High Performance Sustainable Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to achieve Leadership in Energy and Environmental Design gold certification from the U.S. Green Building Council. The Center for Integrated Nanotechnologies brings together...

337

Buildings Interoperability Landscape ? DRAFT  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The capability for buildings to react to opportunities and challenges that occur in the energy system (i.e., dynamic pricing, demand-response events, and retail energy...

338

Whole Building Energy Simulation  

Broader source: Energy.gov [DOE]

Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

339

Building Science- Ventilation  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "What are the best ventilation techniques"

340

Forest Road Building Regulations  

Broader source: Energy.gov [DOE]

The Wisconsin Department of Natural Resources has regulations for building a forest road, if development requires one. Regulations include zoning ordinances and permits for stream crossing, grading...

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

building.ppt  

E-Print Network [OSTI]

Building Parenting Skills and Interactions with Kangaroo Care. Sharon A. Wilkerson, PhD, RN. Associate Professor of Nursing. Purdue University. West Lafayette...

342

Building Songs 10  

E-Print Network [OSTI]

. Sman shad building song 10.WAV Length of track 00:06:03 Related tracks (include description/relationship if appropriate) Title of track Building Songs 10 Translation of title Description (to be used in archive entry) Male villagers... sing a building song. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma Date of recording November 6th 2009. Place of recording Gad dmar khug market Mda' ma Township, Sde dge...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

343

What is Building America?  

SciTech Connect (OSTI)

DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

None

2013-06-20T23:59:59.000Z

344

Building Songs 11  

E-Print Network [OSTI]

. Sman shad building song 11.WAV Length of track 00:21:12 Related tracks (include description/relationship if appropriate) Title of track Building Songs 11 Translation of title Description (to be used in archive entry) Male villagers... sing a building song. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma Date of recording November 6th 2009. Place of recording Gad dmar khug market Mda' ma Township, Sde dge...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

345

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

346

Building Energy Code  

Broader source: Energy.gov [DOE]

'''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to...

347

What is Building America?  

ScienceCinema (OSTI)

DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

None

2013-07-22T23:59:59.000Z

348

Revisit of Energy Use and Technologies of High Performance Buildings  

SciTech Connect (OSTI)

Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

Li , Cheng; Hong , Tianzhen

2014-03-30T23:59:59.000Z

349

MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS  

E-Print Network [OSTI]

) Common Use Areas All floored areas in the building for circulation and standard facilities provided and the like. These are extracts of NWPC standard method of measurement of building areas with an addition fromSection S ANNEXURE 4 MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS 1. GROSS BUILDING

Wang, Yan

350

New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors  

E-Print Network [OSTI]

New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors Building energy codes are complex. Plans examiners and building inspectors are expected to understand and enforce energy savings. This new, hands-on course strives to provide plans examiners and building inspectors

351

Building and Facility Codes Code Building Location Bldg # Coordinates  

E-Print Network [OSTI]

Building and Facility Codes Code Building Location Bldg # Coordinates APM Applied Physics & Mathematics Building Muir 249 F7 ASANT Asante Hall Eleanor Roosevelt 446 F5 BIO Biology Building Muir 259 F7 BIRCH Birch Aquarium SIO 2300 S-D7 BONN Bonner Hall Revelle 131 G8 BSB Biomedical Sciences Building

Russell, Lynn

352

Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps  

SciTech Connect (OSTI)

In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2014-01-01T23:59:59.000Z

353

Building Technologies Research and  

E-Print Network [OSTI]

Impact of Buildings Centers of Excellence 路 40% of total primary energy consumption 路 74% of electricity consumption 路 56% of natural gas consumption (including gas-generated electricity used in buildings) 路 39 the nation accounts for its energy consumption, making the energy savings potential even greater. National

Oak Ridge National Laboratory

354

Antony Phin Crew Building  

E-Print Network [OSTI]

human exposure to contamination. Gained experience in analysing environmental samples using ICPAntony Phin Crew Building The King's Buildings West Mains Road University of Edinburgh EH9 3JN +44" September 2006 颅 September 2007 Royal Holloway, University of London MSc Environmental Analysis

355

Tell: Building a consistent,  

E-Print Network [OSTI]

, Joseph M. Hellerstein, William R. Marczak UC Berkeley November 19, 2010 #12;Show and Tell: BuildingShow and Tell: Building a consistent, replicated shopping cart in Bloom Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. Marczak Background The CALM Conjecture Introducing Bloom Writing

California at Irvine, University of

356

The Research Building Blocks  

E-Print Network [OSTI]

The Research Building Blocks For Teaching Children to Read Third Edition Put Reading First Kindergarten Through Grade 3 Third Edition #12;#12;The Research Building Blocks for Teaching Children to Read Centers Program, PR/Award Number R305R70004, as administered by the Office of Educational Research

Rau, Don C.

357

BUILDING ENERGY 1987 Edition  

E-Print Network [OSTI]

BUILDING ENERGY EFFICIENCY STANDARDS 1987 Edition 1988 SUPPLEMENT December 1987 Supplement May 1988 at: http://www.energy.ca.gov/title24/ #12;California Energy Commission Charles R. Imbrecht, Chairman, Executive Director Energy Efficiency & Local Aaalatance Dlvlalon Building and Appliance Efficiency Office

358

CONTACT INFO BUILDING SHELTER  

E-Print Network [OSTI]

CONTACT INFO SIGNALS BUILDING SHELTER THE DISABLED B.E.R.T. TEAM B.E.R.T.* EMERGENCY RESPONSE GUIDE, SIUC*Building Emergency Response Team Siren* Long Blast: Tornado High/Low: Any Other Emergency Radio needed. 2. Find two or three B.E.R.T. "buddies" who are willing to help you in the event of an emergency

King, David G.

359

High Performance Sustainable Building  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

2008-06-20T23:59:59.000Z

360

200 Market Building  

High Performance Buildings Database

Portland, OR The 200 Market Building is a high-rise built in 1973 and located in downtown Portland, Oregon. It was purchased in 1988 by its current owner, 200 Market Associates, primarily because of its optimal location in Portland's central business district. Since 1989 the building has undergone continuous improvements in multiple phases.

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--  

E-Print Network [OSTI]

management of electricity demand. 路 PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

Perez, Richard R.

362

Reference Buildings by Building Type: Secondary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

363

Reference Buildings by Building Type: Primary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

364

High Performance Building Standards in State Buildings  

Broader source: Energy.gov [DOE]

In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification...

365

Reference Buildings by Building Type: Hospital  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

366

Reference Buildings by Building Type: Large office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

367

Extending ER Models to Capture Database Transformations to Build Data Sets for Data Mining  

E-Print Network [OSTI]

transformation tables in abstract form can be useful not only for optimizing the generation of new data sets stages of data transformation, mathematical functions and the powerful SQL CASE statement, which doesExtending ER Models to Capture Database Transformations to Build Data Sets for Data Mining Carlos

Ordonez, Carlos

368

Ris-R-1531(EN) Design and building of a new  

E-Print Network [OSTI]

: 52 Tables: 13 References: 23 Abstract: For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applicationsRis酶-R-1531(EN) Design and building of a new experimental setup for testing hydrogen storage

369

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Geothermal Heat Pump Central AC by NG Electric water heaterwater heating Technologies Electric heater Gas boiler Coal Boiler Small cogen Stove District heating Heat pumpHeat Pump* *COP Reference Case Alternative Case Table 10 Office Buildings: Water Heating Efficiency Boiler Gas Boiler Small Cogen Electric Water Heater

Fridley, David G.

2008-01-01T23:59:59.000Z

370

High-performance commercial building systems  

SciTech Connect (OSTI)

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

371

NREL Buildings Research Video  

ScienceCinema (OSTI)

Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEED Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

None

2013-05-29T23:59:59.000Z

372

About Singapore Green Building Council  

E-Print Network [OSTI]

About Singapore Green Building Council About SGBC Green Building Conference Conference Programme Green Building Conference In line with the mission of the Singapore Green Building Council (SGBC is please to present the inaugural SGBC Green Building Conference 2010 to be held from 13 颅 16 September

373

BUILDING PERFORMANCE ENGINEERING DURING CONSTRUCTION  

E-Print Network [OSTI]

1 BUILDING PERFORMANCE ENGINEERING DURING CONSTRUCTION T. Michael Toole1 and Matthew Hallowell2 of building performance engineering tasks on design-bid-build projects are typically provided by entities building construction projects. Twenty four building performance engineering tasks were required

Toole, T. Michael

374

Building America Top Innovations 2013 Profile Building America Solution Center  

Broader source: Energy.gov [DOE]

PNNL set up the framework for the Building America Solution Center, a web tool connecting users to thousands of pieces of building science information developed by DOE抯 Building America research partners.

375

Report on the project Building knowledge  

E-Print Network [OSTI]

Building knowledge To build citizens To build cities Report on the project #12;#12;RectoR's message 1. oveReport on the project Building knowledge To build citizens To build cities UPF CAMPUS IC?RIA

376

Webinar: Make Your Building Sing!: Building-Retuning to Reduce...  

Broader source: Energy.gov (indexed) [DOE]

(PNNL) developed a curricula focused on retuning both large (with a building automation system, or BAS) and small (without a BAS) commercial buildings. Hear from Better...

377

Building America Solution Center - Building America Top Innovation...  

Energy Savers [EERE]

America Top Innovation SCimagemale.jpg The Building America Solution Center is a Web-based tool connecting users to fast, free, and expert building science and energy...

378

Building America Webinar: Building America Technology-to-Market...  

Broader source: Energy.gov (indexed) [DOE]

introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America's research, development, and demonstration activities over...

379

A Look at Principal Building Activities in Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public...

380

Information Technology Tools for Multifamily Building Programs...  

Energy Savers [EERE]

Information Technology Tools for Multifamily Building Programs Information Technology Tools for Multifamily Building Programs Better Buildings Neighborhood Program Multifamily ...

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Building Standard (Scotland) Amendment Regulations 1964  

E-Print Network [OSTI]

STATUTORY INSTRUMENTS 1964 No. 802 (S. 50) BUILDING AND BUILDINGS The Building Standards (Scotland) Amendment Regulations 1964...

Noble, Michael

1964-01-01T23:59:59.000Z

382

Better Buildings Neighborhood Program Grant Recipient Management...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Better Buildings Neighborhood Program Grant Recipient Management Handbook Better Buildings Neighborhood Program Grant Recipient Management Handbook Better Buildings Neighborhood...

383

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

Ma, Yudong

2012-01-01T23:59:59.000Z

384

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

385

Better Buildings Alliance Equipment Performance Specifications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's...

386

Better Buildings Residential Program Solution Center Demonstration...  

Energy Savers [EERE]

Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

387

Presentation: Better Buildings Residential Program Solution Center...  

Energy Savers [EERE]

Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

388

Membership Criteria: Better Buildings Residential Network | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

389

Minimum patch size thresholds of reproductive success of songbirds  

E-Print Network [OSTI]

-oak forests ............................................................................. 9 Figure 2 The number of white-eyed vireo pairs that fledged young was linearly related to patch size (r2 = 0.63) ..................................... 20...). ............................................................ 19 Table 3 Arthropod biomass (mg/g of leaves) collected from branch clippings taken in 12 patches of juniper-oak (Juniperus-Quercus) forest in east-central Texas. ............................ 22 1 1 INTRODUCTION It is often...

Butcher, Jerrod Anthony

2009-05-15T23:59:59.000Z

390

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings are18, 1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W.

Wall, L.W.

2009-01-01T23:59:59.000Z

391

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

a爁uture爓ith爒ery爈ow爀nergybuildings爎esulting爄n爒ery爉aking for low energy buildings. This project will燼nd爋peration爋f爈ow爀nergybuildings. 燬everal爏tudies,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

392

Table of hyperfine anomaly in atomic systems  

SciTech Connect (OSTI)

This table is a compilation of experimental values of magnetic hyperfine anomaly in atomic and ionic systems. The last extensive compilation was published in 1984 by B黷tgenbach [S. B黷tgenbach, Hyperfine Int. 20 (1984) 1] and the aim here is to make an up to date compilation. The literature search covers the period up to January 2011.

Persson, J.R., E-mail: jonas.persson@ntnu.no

2013-01-15T23:59:59.000Z

393

STUDENT HANDBOOK Table of Contents Page Number  

E-Print Network [OSTI]

STUDENT HANDBOOK Campus #12;Table of Contents Page Number Welcome 1 The School 1 Mission Statement Student Resources 8 Financial Aid and Funding Sources Writing Supports 9 Special Needs Computers Libraries RefWorks 10 Student Services 11 Administrative Information 14 Student ID, and Email Accounts U of R

Saskatchewan, University of

394

Student Mobile Device Survey Table of Contents  

E-Print Network [OSTI]

CiCS. Student Mobile Device Survey 2011 Table of Contents Section Number Subject Page 1 With little information and supporting evidence on student ownership and usage of mobile devices at the University of Sheffield, making decisions on our services and support for mobile devices has been based

Martin, Stephen John

395

Philosophy 57 Greensheet (Syllabus) Table of Contents  

E-Print Network [OSTI]

Philosophy 57 Greensheet (Syllabus) Table of Contents: Instructor Information Course Home Page Greensheet Page Page 1 of 3http://philosophy.wisc.edu/fitelson/57/syllabus.htm #12;I highly recommend using/syllabus.htm #12;Your 2 lowest quiz grades will be dropped ( , your 5 best quiz scores will be averaged). i

Fitelson, Branden

396

CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents  

E-Print Network [OSTI]

1 CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents 1. Accessing the Advanced Search Page 1 2. Navigating the Advanced Search Page 3 3. Selecting your collection to search Advanced Search from the right navigation menu. 2 This will take you into the CONTENTdm database

O'Laughlin, Jay

397

Fast mix table construction for material discretization  

SciTech Connect (OSTI)

An effective hybrid Monte Carlo-deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a 'mix table,' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table in O(number of voxels x log number of mixtures) time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation. (authors)

Johnson, S. R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2013-07-01T23:59:59.000Z

398

VEHICLE SERVICES POLICY Table of Contents  

E-Print Network [OSTI]

VEHICLE SERVICES POLICY Table of Contents 1. Policy 2. Procedures a. Vehicle Services Oversight b. Vehicle Maintenance and Inspection c. Authorized Drivers d. Responsibilities Back to Top (To download requirements for AUB's vehicles, the University has adopted a policy of centralizing these activities under one

Shihadeh, Alan

399

Section 4. Inventory Table of Contents  

E-Print Network [OSTI]

Section 4. Inventory Table of Contents 4.1 Existing Legal Protections........................................................................................................... 14 #12;Draft Umatilla/Willow Subbasin Plan May 28, 2004 4. Inventory of Existing Activities The following section contains information derived from an inventory questionnaire that was sent

400

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Winter 2001-2002 Vol. 3, No. 1 Why Is the Park Range Colorado's Snowfall Capital? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 The Cold-Land Processes Field Experiment: North-Central Colorado

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents An Unusually Heavy Snowfall in North Central Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A Brief History of Colorado's Most Notable Snowstorms" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Colorado Climate Water Year 2003 Vol. 4, No. 1-4 If you have a photo or slide that your would like

402

VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents  

E-Print Network [OSTI]

of a license/permit for each piece of equipment, an Operator Equipment Qualification Record (DA Form 348EM 385-1-1 XX Sep 13 i Section 18 VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents Section: Page...................................................................18-16 18.G Machinery And Mechanized Equipment.........................18-16 18.H Drilling Equipment

US Army Corps of Engineers

403

BETTER BUILDINGS ALLIANCE  

Office of Energy Efficiency and Renewable Energy (EERE)

Commercial buildings梠ur offices, schools, hospitals, restaurants, hotels and stores梒onsume nearly 20% of all energy used in the United States. We spend more than $200 billion each year to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by commissioning existing systems so they operate as intended. Energy efficiency is a cost-effective way to save money, support job growth, reduce pollution, and improve competitiveness.

404

Buildings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout 禄 BuildingBuildings Buildings

405

Open Automated Demand Response for Small Commerical Buildings  

SciTech Connect (OSTI)

This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

2009-05-01T23:59:59.000Z

406

Smart Buildings: Business Case and Action Plan  

E-Print Network [OSTI]

4: Use Integrated Design for All New Buildings New buildingsUse Integrated Design for All New Buildings Recommendation #an existing building, requires an integrated design approach

Ehrlich, Paul

2009-01-01T23:59:59.000Z

407

Green Energy Standards for Public Buildings  

Broader source: Energy.gov [DOE]

In March 2012, West Virginia enacted the Green Buildings Act, which applies to all new construction of public buildings, buildings receiving state grant funds, and buildings receiving state...

408

Building Technologies Program: Building America Publications  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout 禄 Building Technologies

409

Solar radiation data manual for buildings  

SciTech Connect (OSTI)

Architects and engineers use solar resource information to help design passive solar and daylighting features for buildings. Solar resource information includes data on how much solar radiation and illuminance are available for different window orientations, and how they vary. This manual provides solar radiation and illuminance values for a horizontal window and four vertical windows (facing north, east, south, and west) for 239 stations in the United States and its territories. The solar radiation values are monthly and yearly averages for the period of 1961--1990. Included are values showing the solar radiation incident on the window and the amount transmitted into the living space, with and without exterior shading of the window. Illuminance values are presented r average dismal profiles for 4 months of the year. In addition to the solar radiation and illuminance data, this manual contains tables listing climatic condition such as average temperature, average daily minimum and maximum temperature, record minimum and maxi mum temperature, average heating and cooling degree days, average humidity ratio, average wind speed, an average clearness index. The solar radiation, illuminance, and climatic data a presented in tables. Data for each station are presented on a single page, and the pages are arranged alphabetically by the state or territory two-letter abbreviation. Within a state or territory, the pages are arranged alp betically by city or island.

Marion, W.; Wilcox, S.

1995-09-01T23:59:59.000Z

410

Recommendations for 15% Above-Code Energy Efficiency Measures on Implementing Houston Amendments to Multifamily Residential Buildings in Houston Texas  

E-Print Network [OSTI]

on information provided by the city of Houston building officials, National Association of Home Builders (NAHB) and specifications for the ?Standard Design? building as defined in Chapter 4 of the 2001 IECC. Table 1 summarizes the base case building... obtained from the National Association of Home Builders (NAHB 2003). The wall insulation is R-11 2 and ceiling insulation is R-19 3 as recommended by the 2001 IECC. The building has wall and roof absorptance of 0.75. The window area is 8...

Mukhopadhyay, J.; Liu, Z.; Malhotra, M.; Kota, S.; Blake, S.; Haberl, J.; Culp, C.; Yazdani, B.

411

SciTech Connect: Radioactive decay data tables  

Office of Scientific and Technical Information (OSTI)

Radioactive decay data tables Citation Details In-Document Search Title: Radioactive decay data tables You are accessing a document from the Department of Energy's (DOE) SciTech...

412

MemTable : contextual memory in group workspaces  

E-Print Network [OSTI]

This thesis presents the design and implementation of MemTable, an interactive touch table that supports co-located group meetings by capturing both digital and physical interactions in its memory. The goal of the project ...

Hunter, Seth E

2009-01-01T23:59:59.000Z

413

Table Contents Page i 2013 Nonresidential Compliance Manual January 2014  

E-Print Network [OSTI]

Table B-1 Room Air Conditioner, Room Air-Conditioning Heat Pump, Packaged Terminal Air Conditioner ....................................................................................11 Table B-2 Standards for Room Air Conditioners and Room Air-Conditioning Heat Pumps...........12 Central Air Conditioner Test Methods

414

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

99.2 - 105.3 See footnotes at end of table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

415

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

66.6 - 72.3 See footnotes at end of table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

416

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

133.6 - 276.4 See footnotes at end of table. 220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

417

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

201.3 - 453.3 See footnotes at end of table. 262 Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

418

Frederick County- Green Building Program  

Broader source: Energy.gov [DOE]

Frederick County administers a green building program. It has two goals: (1) to ensure that County building projects implement strategies that enhance environmental performance and fiscal...

419

Solar Ready Buildings Planning Guide  

SciTech Connect (OSTI)

This guide offers a checklist for building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed.

Lisell, L.; Tetreault, T.; Watson, A.

2009-12-01T23:59:59.000Z

420

Building Random Trees from Blocks  

E-Print Network [OSTI]

Sep 18, 2012 ... We have a finite collection of unlabeled, rooted, nonplanar building ... We use these as building blocks of an unlabeled, rooted, nonplanar tree.

2012-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Better building: LEEDing new facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

422

Guam- Building Energy Code  

Broader source: Energy.gov [DOE]

NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

423

Safety in Buildings  

E-Print Network [OSTI]

Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, and the spread of disease...

Hutcheon, N. B.

424

Building a Foundation  

E-Print Network [OSTI]

Building a Foundation examines my personal history growing up in a Midwestern, conservative, farming community, within a family of boys. This exhibition of drawings and prints explores ideas of identity and the American male experience...

Metzger, Jonathan David

2013-05-31T23:59:59.000Z

425

Personalized building comfort control  

E-Print Network [OSTI]

Creating an appropriate indoor climate is essential to worker productivity and personal happiness. It is also an area of large expenditure for building owners. And, with rising fuel costs, finding ways of reducing energy ...

Feldmeier, Mark Christopher, 1974-

2009-01-01T23:59:59.000Z

426

Relationships in design build  

E-Print Network [OSTI]

As design build (DB) becomes more popular, different ways of writing contracts and forming relationships with the various parties are being considered. The main point of this paper is to look at the relationships between ...

Wampler, Charles Wilson

2010-01-01T23:59:59.000Z

427

BUILDING A STRONG FOUNDATION.  

E-Print Network [OSTI]

BUILDING A STRONG FOUNDATION. UALBANY FACTS. Enrollment: 12,822 undergraduates 4,516 graduate ('14-'15): NYS Resident Tuition: $6,170 Non-NYS Resident Tuition: $17,810 Room, Board, and Fees: $15

Linsley, Braddock K.

428

Building Energy Efficient Schools  

E-Print Network [OSTI]

for extremely inefficient buildings. To accomplish this, the school administrator must be an active participant in the design process. Energy efficient school design is a team effort involving the architect, engineer, and school administrator. This paper...

McClure, J. D.; Estes, J. M.

1985-01-01T23:59:59.000Z

429

High Performance Sustainable Building  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Cancels DOE G 413.3-6.

2011-11-09T23:59:59.000Z

430

Systems building in architecture  

E-Print Network [OSTI]

This work is an inquiry into the interventions of the systems design in the whole building process. At the beginning, three approaches which represent different points of view of interventions in production and use are ...

Tzannetakis, Charilaos Panayotis

1983-01-01T23:59:59.000Z

431

Building America Report Template  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

January 27 and 28, 2014 Denver, Colorado Prepared for The U.S. Department of Energy's Building America Program Office of Energy Efficiency and Renewable Energy Prepared by Sam...

432

Richland Analytical Building Blocks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Special Nuclear Material. Data as of April 5, 2013 1 of 10 Richland Analytical Building Blocks FY 2015 in Thousands Draft Pre-Decisional PBS ABB Title FY 2015 FY 2015 FY...

433

Passive solar buildings research  

SciTech Connect (OSTI)

This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

Balcomb, J.D.

1992-12-31T23:59:59.000Z

434

Environmental Regulatory Update Table, January/February 1992  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action. This table is for January/February 1992.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1992-03-01T23:59:59.000Z

435

Sustainable Building Basics  

Broader source: Energy.gov [DOE]

Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

436

Building Performance Evaluation  

E-Print Network [OSTI]

carbon technologies. ? Lack of proper system commissioning and installation led to the underperformance of systems and construction defects. ? Occupants had a lack of understanding of the building sustainability features. ? ?Unplanned changes... to space usage to meet new needs? led to poor internal environmental conditions. Building Performance Evaluation ? Impact survey The impact of the programme ? Three respondents have already added BPE to their portfolio ? Twenty will do more work...

King, A.; Harris, J.; Mbentin, B.

2012-01-01T23:59:59.000Z

437

Effective July 1, 2013 Table of Organization: College of Law  

E-Print Network [OSTI]

Effective July 1, 2013 Table of Organization: College of Law Dean Gail Agrawal Assistant to the Dean Legal Clinic Julie Kramer {See Clinic Table for organization} Special Assistant to the Dean Gerhild Krapf Centers {See separate tables for organization} Assoc. Dean for Research Assoc. Dean Assoc

Stanier, Charlie

438

Environmental Regulatory Update Table, January/February 1995  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives impacting environmental, health, and safety management responsibilities. the table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Mayer, S.J.; Salk, M.S.

1995-03-01T23:59:59.000Z

439

(TWST = Tri-Cities West Building) West Building  

E-Print Network [OSTI]

Elevator (TWST = Tri-Cities West Building) West Building 1st Floor Stage to parking lot Nursing TV Parking Lot and Cougar Garden Admissions Elevator Elevator Commons To the East Building Mac Lab Vet Center Professional Programs Student Affairs Nursing Lab Media Services Lobby West Building 2nd Floor (TWST = Tri

Collins, Gary S.

440

The Ruskin Building 4.1 Building Condition  

E-Print Network [OSTI]

39 The Ruskin Building 04 #12;40 4.1 Building Condition TEACHING ROOMS STUDENT ANCILLARY ADMIN First Floor Plan Second Floor Plan Third Floor Plan 4.1 Building Condition This Section provides an overview of the condition of the existing buildings. Below is a series of plans identifying the present

Flynn, E. Victor

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

F. MISSION CENTER BUILDING F. MISSION CENTER BUILDING  

E-Print Network [OSTI]

F. MISSION CENTER BUILDING 153 F. MISSION CENTER BUILDING BACKGROUND The 3.06 acre Mission Center Building site is located in the northeast portion of San Francisco's Mission District on the southern half of the block bounded by 14th, Harrison, 15th and Folsom Streets. The site contains a six-story brick building

Mullins, Dyche

442

3-100.1 Building Evacuation 1 Building Evacuation  

E-Print Network [OSTI]

3-100.1 Building Evacuation 1 SUBJECT: Building Evacuation Effective Date: 10-20-10 Policy Number and Safety APPLICABILITY/ACCOUNTABILITY: This policy applies to all individuals in all buildings on all University of Central Florida campuses. BACKGROUND INFORMATION: University buildings occasionally need

Glebov, Leon

443

1 | Building America eere.energy.gov DOE's Building America  

E-Print Network [OSTI]

1 | Building America eere.energy.gov DOE's Building America Low-E Storm Window Adoption Program Working Group #12;2 | Building America eere.energy.gov Pacific Northwest National Laboratory 路 Katie Cort, Larson Manufacturing Company Key Staff #12;3 | Building America eere.energy.gov Problem 路 Windows account

444

Building Knowledge about Buildings Matthew T. Young and Eyal Amir  

E-Print Network [OSTI]

Building Knowledge about Buildings Matthew T. Young and Eyal Amir University of Illinois, Urbana The ability to encode information about the structure of buildings is essential for the development of applications which are able to reason about buildings and answer queries concerning their design and function

Amir, Eyal

445

Building anBuilding an Entrepreneurship ProgramEntrepreneurship Program  

E-Print Network [OSTI]

Building anBuilding an Entrepreneurship ProgramEntrepreneurship Program At Your UniversityAt Your University Tina L. Seelig REE Latin America November 24 - 26, 2004 #12;Question of the Day: How do you build innovation Build networks within our own universities Create relationships with industry Develop

Prinz, Friedrich B.

446

Big Questions: The Ultimate Building Blocks of Matter  

ScienceCinema (OSTI)

The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

Lincoln, Don

2014-08-07T23:59:59.000Z

447

Big Questions: The Ultimate Building Blocks of Matter  

SciTech Connect (OSTI)

The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

Lincoln, Don

2013-11-06T23:59:59.000Z

448

BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN  

E-Print Network [OSTI]

BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A R RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDIN T PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEM

Florida, University of

449

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

SciTech Connect (OSTI)

We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

2006-06-01T23:59:59.000Z

450

Un exemple de conversion d'une table de production en volume en tables de production en biomasse  

E-Print Network [OSTI]

Un exemple de conversion d'une table de production en volume en tables de production en biomasse secteur lig茅rien, propos茅e par PARD? en 1962, est convertie en quatre tables de production en biomasse correspondant chacune 脿 une partie de l'arbre ou 脿 l'arbre entier, biomasse foliaire exclue. La conversion est

Paris-Sud XI, Universit茅 de

451

Building America Building Science Education Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryanR BUILDING AMERICA BEST

452

International Trends in Green Building  

E-Print Network [OSTI]

International Trends in Green Building Friday, August 26, 2011 Registration 8:00 a.m. Presentation, Canada Green Building Council The presentation will cover international trends and innovations in the green-building industry as well as new opportunities for green-building collaboration with Arizona

Zhang, Junshan

453

SIVE Workshop '95 Building Map  

E-Print Network [OSTI]

SIVE Workshop '95 Building Map Workshop . Room W401 in Pappajohn Business Administration Building RIVERSIDE DRIVE (HIGHWAYS 1 & 6) Highways 1 & 6 (from Coralville) Riverside Drive RIVER IOWA ART BUILDING 1234567890 1234567890 1234567890 1234567890 Pappajohn Business Administration Building IMU RAMP DUBUQUE ST

Cremer, James

454

EUCLIDEAN BUILDINGS By Guy Rousseau  

E-Print Network [OSTI]

EUCLIDEAN BUILDINGS By Guy Rousseau Buildings were introduced by Jacques Tits in the 1950s to give these buildings were called of spherical type [Tits-74]. Later Fran赂cois Bruhat and Jacques Tits constructed buildings associated to semi-simple groups over fields endowed with a non archimedean valuation. When

Remy, Bertrand

455

2008 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network [OSTI]

2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards the adoption of the 2008 Building Energy Efficiency Standards to Jon Leber, PE, (November 13, 1947 - February

456

To Collaborative LIfe Sciences Building  

E-Print Network [OSTI]

To Collaborative LIfe Sciences Building To Professional Development Center Collaborative Life Sciences Building SW MEADE SW PORTER SW M OODY I-5 To Main Campus To South Waterfront I-405 Collaborative Life Sciences Building 0650 SW Meade St. Academic & Student Recreation Center (ASRC) C8 Art Building

457

Manning building RoyalParade  

E-Print Network [OSTI]

Manning building (403) MileLane RoyalParade RoyalParade Tram stop No.16Walker Street Scott building (402) Sissons building (401) 399 Royal Parade (404) 381 Royal Parade Cafeteria Cossar Hall Main of Pharmacy and Pharmaceutical Sciences Building 401 G Reception G Student services G Cossar Hall G Sissons

Sekercioglu, Y. Ahmet

458

Building Address Locations -Assumes entire  

E-Print Network [OSTI]

Building Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC Biosquare III 670 Albany Floors 2, 3, 6, 7 BMC Biosquare III 670 Albany Floors 1, 4, 5, 8 BU Building

Guenther, Frank

459

Integral CFLs performance in table lamps  

SciTech Connect (OSTI)

This paper focuses on performance variations associated with lamp geometry and distribution in portable table luminaires. If correctly retrofit with compact fluorescent lamps (CFLs), these high use fixtures produce significant energy savings, but if misused, these products could instead generate consumer dissatisfaction with CFLs. It is the authors assertion that the lumen distribution of the light source within the luminaires plays a critical role in total light output, fixture efficiency and efficacy, and, perhaps most importantly, perceived brightness. The authors studied nearly 30 different integral (screw-based) CFLs available on the market today in search of a lamp, or group of lamps, which work best in portable table luminaires. The findings conclusively indicate that horizontally oriented CFLs outperform all other types of CFLs in nearly every aspect.

Page, E.; Driscoll, D.; Siminovitch, M.

1997-03-01T23:59:59.000Z

460

Tables of thermodynamic properties of sodium  

SciTech Connect (OSTI)

The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

Fink, J.K.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number

462

Bradshaw Construction New Office Building  

High Performance Buildings Database

Eldersburg, MD The New Office Building is part of an effort by Bradshaw Construction Corporation to combine office, off-site shop buildings and off-site storage yards at one consolidated location. The new site, located off Maryland Route 26, shall provide space for an office building and parking; and secured shop building and storage yard. The New Office Building Project has achieved LEED Silver certification. The office building is designed as a free standing building of approximately 8,200 square feet in area, one story in height.

463

Evaluation of Crawlspace Retrofits in Multifamily Buildings  

SciTech Connect (OSTI)

In 2011 and early 2012, Building Science Corporation (BSC) collaborated with Innova Services Corporation on a multifamily community unvented crawlspace retrofit project at Oakwood Gardens in Lansdale, Pennsylvania. BSC provided design consulting services and pre- and post-retrofit evaluation, testing, and data monitoring. The existing condition was a vented crawlspace with an uninsulated floor between the crawlspace and the dwelling units above. The crawlspace was therefore a critically weak link in the building enclosure and was ripe for improvement. Saving energy was the primary interest and goal, but the greatest challenge in this unvented crawlspace retrofit project was working through a crawlspace bulk water intrusion problem caused by inadequate site drainage, window well drainage, foundation wall drainage, and a rising water table during rainy periods. While the unvented crawlspace retrofit was effective in reducing heat loss, and the majority of the bulk water drainage problems had been resolved, the important finding was that some of the wood joists embedded in masonry pockets behind the brick veneer were showing signs of moisture damage.

Rudd, A.

2014-09-01T23:59:59.000Z

464

Decision-Making Aid Tool for the Evaluation and Improvement of the Energy Performance of Stock of Buildings  

E-Print Network [OSTI]

the most adapted one to develop each functionality of the decision- making aid tool for the evaluation and improvement of the energy performance of stock of buildings. Existing methods The Table 1 [1] & [4] shows a brief comparison between... buildings and distribute whole consumptions on end uses. Figure 3 shows the process used to validate the Benchmarking method. Simulations will be carried out with the SIMBAD Toolbox according to the stock data to evaluate energy consumptions...

Joutey, H. A.; Vaezi-Nejad, H.; Lahrech, R.

2005-01-01T23:59:59.000Z

465

Performance Metrics for Commercial Buildings  

SciTech Connect (OSTI)

Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

2010-09-30T23:59:59.000Z

466

Commercial & Institutional Green Building Performance  

E-Print Network [OSTI]

Buildings Voluntary Green Building Programs: LEED www.usgbc.org Living Building Challenge living-future.org/lbc Green Globes www.greenglobes.com WELL Buildings wellbuildinginstitute.com ENERGY STAR energystar.gov ESL-KT-14...The North Central Branch Texas Public Works Association Commercial & Institutional Green Building Performance 11.19.2014 ESL-KT-14-11-26 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Q&A Your Presenters: Chris...

Harrison, S.; Mundell,C.; Meline, K.; Kraatz,J.

2014-01-01T23:59:59.000Z

467

Community Development Department Building & Safety Division  

E-Print Network [OSTI]

BUILDING, RESIDENTIAL AND GREEN BUILDING CODES, AMENDING FREMONT MUNICIPAL CODE TITLE vn (BUILDING TO ENERGY REGULATIONS THE 2010 CALIFORNIA,GREEN BUILDING CODE The City of Fremont proposed to adopt local................ Community Development Department Building & Safety Division 39550 Liberty Street

468

PASSOLAR: a program library for estimating the annual performance of passive solar buildings with programmable calculators  

SciTech Connect (OSTI)

The Passive Solar Design Handbook, Volume 2, by J. Douglas Balcomb et al. describes in detail a method by which the performance of passive solar buildings can be estimated with the help of handheld calculators and a great number of tables and charts. PASSOLAR consists of a number of programs in the form of magnetic cards, which contain this method together with all the charts and tables. This reduces the necessary time to estimate the annual performance of direct gain, Trombe wall or water wall systems from hours to minutes. PASSOLAR allows the use of additional algorithms for the calculating of the insolation on the tilted surface and of shading effects.

Graeff, R.W.

1980-01-01T23:59:59.000Z

469

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

Weekly schedule for waste heat from people andsig- nificant ways: (1) waste heat from plug loads makes it16: Weekly schedule for waste heat from people and plugs

Coffey, Brian

2011-01-01T23:59:59.000Z

470

Lighting in Commercial Buildings (1986 Data)> -- Publication and Tables  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After898

471

Table B16. Multibuilding Facilities, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number of6.

472

Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number of6.9.

473

Table B24. Cooling Energy Sources, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number of6.9..4.

474

Table B27. Cooking Energy Sources, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number

475

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number8. Percent

476

Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number8.

477

Table B3. Census Region, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number8.. Census

478

Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number8..

479

Table B36. Refrigeration Equipment, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number8..6.

480

Table B37. Water Heating Equipment, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number8..6.7.

Note: This page contains sample records for the topic "table buildings size" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

"Table B22. Primary Space-Heating Energy Sources, Number of Buildings, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for7. Average Prices1. Employment1.2.

482

"Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for7. Average Prices1.5. Energy End

483

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

loads diagram of the cogeneration plant considered in this6 Abstract Case Study #3: Cogeneration Dispatch, Problemmodel of cogeneration system . . . . . . . . . . . . . . . .

Coffey, Brian

2012-01-01T23:59:59.000Z

484

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

loads diagram of the cogeneration plant considered in this6 Abstract Case Study #3: Cogeneration Dispatch, Problemmodel of cogeneration system . . . . . . . . . . . . . . . .

Coffey, Brian

2011-01-01T23:59:59.000Z

485

Identification of Market Requirements of Smart Buildings Technologies for High Rise Office Buildings  

E-Print Network [OSTI]

practices of utilizing hi-tech smart building technologies in office buildings, required additional features of smart building technologies for office buildings, challenges for integrating smart building technologies for office buildings, major benefits...

Reffat, R. M.

2010-01-01T23:59:59.000Z

486

Historic Building Renovations  

Broader source: Energy.gov [DOE]

When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

487

Re-Building Greensburg  

ScienceCinema (OSTI)

Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie;

2013-05-29T23:59:59.000Z

488

Building | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services 禄"Building theBuilding We're

489

VAV System Optimization through Continuous Commissioning in an Office Building  

E-Print Network [OSTI]

control Existing schedule: The existing control modulates the relief fan VFD to maintain the building pressure at its set-point (0.02 in.W.C). The relief damper is modulated according to the relief fan VFD speed. Table 3. Outside air damper.... AHU 2 serves the 3 rd , 4 th and 5 th floors. Both use similar control sequences, except that some parameter settings differ. The supply fans and relief fans have their respective VFD controls. One single-duct AHU system is shown in Figure 2...

Cho, Y.; Pang, X.; Liu, M.

2007-01-01T23:59:59.000Z

490

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect (OSTI)

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

491

PROPERTY TABLES AND CHARTS (SI UNITS) Table A1 Molar mass, gas constant, and  

E-Print Network [OSTI]

.0943 Carbon monoxide CO 28.011 0.2968 133 3.50 0.0930 Carbon tetrachloride CCl4 153.82 0.05405 556.4 4.56 0 Table A颅20 Ideal-gas properties of carbon dioxide, CO2 Table A颅21 Ideal-gas properties of carbon.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304.2 7.39 0

Kostic, Milivoje M.

492

ACADEMIC, ADMINISTRATIVE & MULTIPURPOSE BUILDINGS  

E-Print Network [OSTI]

ACADEMIC, ADMINISTRATIVE & MULTIPURPOSE BUILDINGS 1 Albright Health Center (HC) 2 Applied Science S SIBIL I T Y M A P R E V I S E D M AY 2 0 0 7 L Open Parking M Student Parking N Reserved Parking O Open/VIP Parking P Student Parking Q Student Parking R Student Parking** S Open Parking T Open Parking U Student

Boyce, Richard L.

493

Building Programming List Procedures  

E-Print Network [OSTI]

1 6.090 Building Programming Experience Lecture 4 1/16/2007 Outline 路 List Procedures 路 Compound)) (define (reverse-helper l r) (if (null? l) r (reverse-helper (cdr l) (cons (car l) r)))) list-ref 路 Write

494

BUILDING MOMENTUM ACHIEVING EXCELLENCE  

E-Print Network [OSTI]

BUILDING MOMENTUM ACHIEVING EXCELLENCE AnnuAlRepoRtofDonoRs July 1, 2013 颅 June 30, 2014 #12;the '82 Douglas R. Cliggott '78 Lecturer UMass Amherst Jeanette Cole^ Associate Chair & Director UMass Amherst David J. Der Hagopian '72 (Retired) CEO Ravago Holdings Americare George R. Ditomassi Jr. '57, '96

Mountziaris, T. J.

495

Building communities, creating relationships  

E-Print Network [OSTI]

Building communities, creating relationships c e n t e r f o r f a m i l i e s a n n u a l r e p o r t 2 0 0 7 颅 0 8 #12;c o n t e n t s 2 Council Provides New Direction 3 Providing Expert Knowledge

Ginzel, Matthew

496

Building diagnosable distributed systems  

E-Print Network [OSTI]

Building diagnosable distributed systems Petros Maniatis Intel Research Berkeley ICSI 颅 Security] Project response@R (R, K, SI) lookup response Specification #12;2/8/2006 Petros Maniatis9 Strawman Design Join lookup.NI == node.NI Join lookup.NI == succ.NI Select K in (N, S] Project response@R (R, K, SI

Maniatis, Petros

497

Fire in Buildings  

E-Print Network [OSTI]

During the lifetime of any building in Canada it is probable that one or more "unwanted" fires will occur. "Fire Loss in Canada, 1959," the report of the Dominion Fire Commissioner, states that for the period 1950-1959 the average number of reported...

Shorter, G.

498

SUSY Model Building  

E-Print Network [OSTI]

I review some of the latest directions in supersymmetric model building, focusing on SUSY breaking mechanisms in the minimal supersymmetric standard model [MSSM], the "little" hierarchy and $\\mu$ problems, etc. I then discuss SUSY GUTs and UV completions in string theory.

Stuart Raby

2007-10-19T23:59:59.000Z

499

String Model Building  

E-Print Network [OSTI]

In this talk I review some recent progress in heterotic and F theory model building. I then consider work in progress attempting to find the F theory dual to a class of heterotic orbifold models which come quite close to the MSSM.

Stuart Raby

2009-11-06T23:59:59.000Z

500

Santa Clara County- Green Building Policy for County Government Buildings  

Broader source: Energy.gov [DOE]

In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009.