Powered by Deep Web Technologies
Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Appendix B 1BStandards Tables 116-A and 116-B Page 1 2008 Residential Compliance Manual August 2009  

E-Print Network [OSTI]

Residential Compliance Manual August 2009 TABLE 116-B DEFAULT SOLAR HEAT GAIN COEFFICIENT (SHGC) FRAME TYPE or on an existing back-up tank for a solar water-heating system, it shall have an R-value of at least R-12 or transparent panels shall use glass block values. #12;Appendix B ­ 2B§118 (d) and §118 (e) Page 2 2008

2

Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2009-2013  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota6,979. Light Usage6 Table 9.6

3

Table Search (or Ranking Tables)  

E-Print Network [OSTI]

;Table Search #3 #12;Outline · Goals of table search · Table search #1: Deep Web · Table search #3 search Table search #1: Deep Web · Table search #3: (setup): Fusion Tables · Table search #2: WebTables ­Version 1: modify document search ­Version 2: recover table semantics #12;Searching the Deep Web store

Halevy, Alon

4

Table Contents Page i 2013 Nonresidential Compliance Manual January 2014  

E-Print Network [OSTI]

Table B-1 Room Air Conditioner, Room Air-Conditioning Heat Pump, Packaged Terminal Air Conditioner ....................................................................................11 Table B-2 Standards for Room Air Conditioners and Room Air-Conditioning Heat Pumps...........12 Central Air Conditioner Test Methods

5

Table B1. Summary Table: Totals and Means of Floorspace, Number of Workers, and  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (EstimatesA9.6.

6

Environmental Justice Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

H Environmental Justice Tables I-5 Corridor Reinforcement Project Draft EIS H-i March 2012 Environmental Justice Tables for BPA I-5 Corridor Reinforcement Project Table of Contents...

7

Systematic Errors in measurement of b1  

SciTech Connect (OSTI)

A class of spin observables can be obtained from the relative difference of or asymmetry between cross sections of different spin states of beam or target particles. Such observables have the advantage that the normalization factors needed to calculate absolute cross sections from yields often divide out or cancel to a large degree in constructing asymmetries. However, normalization factors can change with time, giving different normalization factors for different target or beam spin states, leading to systematic errors in asymmetries in addition to those determined from statistics. Rapidly flipping spin orientation, such as what is routinely done with polarized beams, can significantly reduce the impact of these normalization fluctuations and drifts. Target spin orientations typically require minutes to hours to change, versus fractions of a second for beams, making systematic errors for observables based on target spin flips more difficult to control. Such systematic errors from normalization drifts are discussed in the context of the proposed measurement of the deuteron b(1) structure function at Jefferson Lab.

Wood, S A

2014-10-27T23:59:59.000Z

8

Cancellation of DOE G 440.2B-1A  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Cancels DOE G 440.2B-1A, Implementation Guide - Performance Indicators (Metrics) for Use with Doe O 440.2B, Aviation Management and Safety.

2011-02-15T23:59:59.000Z

9

A Study to Verify the Material Surface Concept of Water Table by Examining Analytical and Numerical Models.  

E-Print Network [OSTI]

The highly nonlinear nature of unsaturated flow results in different ways to approximate the delayed or instantaneous movement of the water table. In nearly all the approaches, the water table is conceptually treated as a material surface...

Dadi, Sireesh Kumar

2011-10-21T23:59:59.000Z

10

TABLE VENDOR General Information  

E-Print Network [OSTI]

TABLE VENDOR General Information The following are the terms and conditions for renting table Affairs. York University assumes no responsibility or liability for vendors and their agent including racks provided by the vendor are charged at the rate of $25.00 per day per additional display. All

11

PHAM THANH SON a c a b (1)  

E-Print Network [OSTI]

[1] =(0,0,1) (2) a c a b (1) Newton-Raphson 3 Arduino Bluetooth ( 1) Android Engineering, Faculty of Engineering, Information and Systems, University of Tsukuba Arduino #12;4 3cm

Tanaka, Jiro

12

US006430333B1 (12) United States Patent (10) Patent N0.: US 6,430,333 B1  

E-Print Network [OSTI]

US006430333B1 (12) United States Patent (10) Patent N0.: US 6,430,333 B1 Little et al. (45) Date of Patent: Aug. 6, 2002 (54) MONOLITHIC 2D OPTICAL SWITCH AND 5,546,209 A * 8/1996 Willner et al and, may be con?gured to function as US. PATENT DOCUMENTS baf?es to reduce crosstalk betWeen adjacent

Tang, William C

13

US006481285B1 (12) United States Patent (16) Patent N68 US 6,481,285 B1  

E-Print Network [OSTI]

US006481285B1 (12) United States Patent (16) Patent N68 US 6,481,285 B1 Shkel et al. (45) Date of Patent: Nov. 19, 2002 (54) MICRO-MACHINED ANGLE-MEASURING 6,089,088 A * 7/2000 Chawet Of this "Micromachined Vibratory Rate Gyroscopes", William patent iS @Xtended 0r adjusted under 35 Albert Clark, Fall

Tang, William C

14

Fast Approximate Convex Decomposition  

E-Print Network [OSTI]

Approximate convex decomposition (ACD) is a technique that partitions an input object into "approximately convex" components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can...

Ghosh, Mukulika

2012-10-19T23:59:59.000Z

15

New probability table treatment in MCNP for unresolved resonances  

SciTech Connect (OSTI)

An upgrade for MCNP has been implemented to sample the neutron cross sections in the unresolved resonance range using probability tables. These probability tables are generated with the cross section processor code NJOY, by using the evaluated statistical information about the resonances to calculate cumulative probability distribution functions for the microscopic total cross section. The elastic, fission, and radiative capture cross sections are also tabulated as the average values of each of these partials conditional upon the value of the total. This paper summarizes how the probability tables are utilized in this MCNP upgrade and compares this treatment with the approximate smooth treatment for some example problems.

Carter, L.L. [Carter M.C. Analysis, Richland, WA (United States); Little, R.C.; Hendricks, J.S.; MacFarlane, R.E. [Los Alamos National Lab., NM (United States)

1998-04-01T23:59:59.000Z

16

Suspended microfluidics Benjamin P. Casavanta,b,1  

E-Print Network [OSTI]

Suspended microfluidics Benjamin P. Casavanta,b,1 , Erwin Berthiera,b,c,1 , Ashleigh B. Thebergea (received for review February 14, 2013) Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the acces- sibility and adoption of microfluidics

Beebe, David J.

17

Fast mix table construction for material discretization  

SciTech Connect (OSTI)

An effective hybrid Monte Carlo-deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a 'mix table,' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table in O(number of voxels x log number of mixtures) time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation. (authors)

Johnson, S. R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2013-07-01T23:59:59.000Z

18

Advanced Vehicle Technologies Awards Table  

Broader source: Energy.gov [DOE]

The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project.

19

Approximation of Stochastic Process  

E-Print Network [OSTI]

May 8, 2012 ... The approximation of stochastic processes by trees is an important topic in ... process ? is replaced by a finitely valued stochastic scenario...

Alois Pichler

2012-05-08T23:59:59.000Z

20

EA-1909: South Table Wind Farm Project, Kimball County, Nebraska  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Westerns existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska.

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table for Reports - ESG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. Home Office11

22

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. Home Office11SECTION

23

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. Home

24

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTION III:

25

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTION III:IV:

26

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTION III:IV:V:

27

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTION

28

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII: HEAVY

29

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII:

30

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII:IV:

31

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII:IV:V:

32

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a. HomeSECTIONII:IV:V:I:

33

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.

34

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm Elliptic Flow at

35

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm Elliptic Flow

36

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm Elliptic

37

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm Elliptic1

38

compare_tables.xlsx  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827 Table 7.2c43Current

39

ARM - Instrument Location Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsListgovInstrumentsLocation Table

40

Microsoft Word - table_09  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table 9

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microsoft Word - table_10  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table 94

42

Microsoft Word - table_11  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table 9425

43

8Be General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables The General

44

8C General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables The GeneralCC

45

8He General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables The

46

8Li General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables Theβ--DecayLi

47

9B General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables8 2BB General

48

9Be General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables8 2BBBe General

49

9C General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables8 2BBBe

50

9He General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables8 2BBBeHeHe

51

9Li General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBe General Tables8 2BBBeHeHeLiLi

52

A = 6 General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 General Tables The

53

A = 7 General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 General Tables The7

54

A = 8 General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 General Tables

55

A = 9 General Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 General Tables9

56

FY 2005 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCityTheDepartmentKey9Statistical Table by

57

FY 2007 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5Statistical Table by

58

FY 2008 Laboratory Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControl Table08Total

59

FY 2008 State Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState Table

60

FY 2009 State Table  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControlState6State Tables

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A=19 Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See Energy0AJ04)86AJ04)1978AJ03) (See95TI07) (See EnergyTables

62

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbon intensity of theTABLE OF

63

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbon intensity of theTABLE OF2

64

Tables of Energy Levels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbon intensity of theTABLE

65

(Fission product transport experiments (HFR-B1))  

SciTech Connect (OSTI)

Travel to the JRC Petten was for the purpose of discussing the HFR-B1 experiment and post irradiation activities. Technical assessment of the experiment strongly supports the concept of enhanced fission gas release at temperatures above 1100{degree}C, the extensive release of stored fission gas at water vapor levels postulated in accident scenarios, an increase in the steady-state fission gas release under hydrolyzing conditions, and an increase in gas release during thermal cycling. Schedules were established for completion of the work and issuance of reports by September 1990. At the KFA Juelich agreement was reached on the PIE activities for HFR-B1 and a schedule established. The final PIE report is due June 1991. Choices of accident condition tests in the PIE have yet to be made by the US participants. A proposal for the establishment of a new cooperative effort on model and code development was presented at the Institut fuer Nukleare Sicherheitsforschung of KFA. The proposal was considered premature; discussions dealing with general principles, basic aims, and organization were requested; particular concerns about free exchange of information, overlap with the existing safety subprogram, and exclusive cooperation with ORNL were raised. A strong desire for cooperation and the opinion that the raised problems could be resolved were expressed. Technical discussions at the KFA were beneficial.

Myers, B.F.

1989-12-05T23:59:59.000Z

66

Remaining Sites Verification Package for the 1607-B1 Septic System, Waste Site Reclassification Form 2007-015  

SciTech Connect (OSTI)

The 1607-B1 Septic System includes a septic tank, drain field, and associated connecting pipelines and influent sanitary sewer lines. This septic system serviced the former 1701-B Badgehouse, 1720-B Patrol Building/Change Room, and the 1709-B Fire Headquarters. The 1607-B1 waste site received unknown amounts of nonhazardous, nonradioactive sanitary sewage from these facilities during its operational history from 1944 to approximately 1970. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-08-30T23:59:59.000Z

67

Quantization of the B=1 and B=2 Skyrmions  

SciTech Connect (OSTI)

We propose to set the Skyrme parameters F{sub {pi}} and e such that they reproduce the physical masses of the nucleon and the deuteron. We allow deformation using an axially symmetric solution and simulated annealing to minimize the total energy for the B=1 nucleon and B=2 deuteron. First we find that axial deformations are responsible for a significant reduction (factor of {approx_equal}4) of the rotational energy but also that it is not possible to get a common set of parameters F{sub {pi}} and e which would fit both nucleon and deuteron masses simultaneously at least for m{sub {pi}}=138 MeV, 345 MeV and 500 MeV. This suggests that either m{sub {pi}}>500 MeV or additional terms must be added to the Skyrme Lagrangian.

Fortier, Jimmy; Marleau, Luc [Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec, G1K 7P4 (Canada)

2008-03-01T23:59:59.000Z

68

E-Print Network 3.0 - aflatoxin b1 pharmacokinetics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards (B1, B2, G1, G2) on silica gel plates... . After development in diethyl ether methanolwater (96:3:1), aflatoxin B1 was quantified directly... and the pellet was...

69

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Expenditures by Major Fuel c2-pdf c2.xls c2.html Table C3. Consumption and Gross Energy Intensity for Sum of Major Fuels c3.pdf c3.xls c3.html Table C4. Expenditures for...

70

Supplemental Tables to the Annual Energy Outlook - Energy Information...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Module Regions (NERC Region Map) Table 73. Texas Regional Entity Table 74. Florida Reliability Coordinating Council Table 75. Midwest Reliability Council East Table 76. Midwest...

71

Phosphorous chemistry in the shocked region L1157 B1  

E-Print Network [OSTI]

We study the evolution of phosphorous-bearing species in one-dimensional C-shock models. We find that the abundances of P-bearing species depend sensitively on the elemental abundance of P in the gas phase and on the abundance of N atoms in the pre-shock gas. The observed abundance of PN and the non-detection of PO towards L1157 B1 are reproduced in C-shock models with shock velocity v=20km s-1 and pre-shock density n(H2) =10^4 - 10^5, if the elemental abundance of P in the gas phase is 10^-9 and the N-atom abundance is n(N)/nH - 10^-5 in the pre-shock gas. We also find that P-chemistry is sensitive to O- and N-chemistry, because N atoms are destroyed mainly by OH and NO. We identify the reactions of O-bearing and N-bearing species that significantly affect P chemistry.

Aota, Takuhiro

2012-01-01T23:59:59.000Z

72

TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v  

E-Print Network [OSTI]

............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump QUARTZ CONTENT OF SEDIMENTARY ROCK LAYERS ........ 17 TABLE 10. PROPERTIES OF SEDIMENTARY ROCK LAYERS OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL

Oak Ridge National Laboratory

73

FIRE SAFETY PROGRAM TABLE OF CONTENTS  

E-Print Network [OSTI]

FIRE SAFETY PROGRAM TABLE OF CONTENTS Overview................................................................................................. 5 Health and Life Safety Fund........................................................................................................... 5 Hot work

Lin, Zhiqun

74

E-Print Network 3.0 - aflatoxin b1 quantification Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for aflatoxin B1 in cottonseed fed to dairy cows is 20 J... Displacement ofAflatoxin-Producing Fungi from Cottonseed, Peter J. Cotty, Agricultural Research... Service, USDA...

75

E-Print Network 3.0 - aflatoxin b1 metabolism Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for aflatoxin B1 in cottonseed fed to dairy cows is 20 J... Displacement ofAflatoxin-Producing Fungi from Cottonseed, Peter J. Cotty, Agricultural Research... Service, USDA...

76

E-Print Network 3.0 - aflatoxin b1 degradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explorit Topic List Advanced Search Sample search results for: aflatoxin b1 degradation Page: << < 1 2 3 4 5 > >> 1 Mycopathologia 153: 4148, 2001. 2002 Kluwer Academic...

77

Radioactive decay data tables  

SciTech Connect (OSTI)

The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

Kocher, D.C.

1981-01-01T23:59:59.000Z

78

TABLE OF CONTENTS Introduction........................................................................................................................................... 1  

E-Print Network [OSTI]

-peak energy storage (e.g., use of a wind turbine tower to store hydrogen or hydro pumped storage systems by minimizing redundant systems (e.g., use of the wind turbine's controller and power electronics system........................................................................................................B-1 Workshop on Electrolysis Production of Hydrogen from Wind and Hydropower i #12;ii Workshop

79

Microsoft Word - table_19.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7 Table

80

Smectite clay adsorbents of aflatoxin B1 to amend animal feed  

E-Print Network [OSTI]

Smectite clay has been shown in studies over the past 20 years to sorb aflatoxin B1 (AfB1) in animal feed and thereby reduce its toxic influence on animals. In this study, 20 smectite samples were selected from industrial products or reference...

Kannewischer, Ines

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

INELASTIC NEUTRON SCATTERING SELECTION RULES OF 03B1 HgI2 M. SIESKIND  

E-Print Network [OSTI]

899 INELASTIC NEUTRON SCATTERING SELECTION RULES OF 03B1 HgI2 M. SIESKIND Laboratoire de The inelastic neutron scattering selection rules of 03B1 HgI2 in the directions 0394, 03A3 and 039B are derived Abstracts 63.20D Introduction. - Inelastic neutron scattering is a powerful technique for the determination

Boyer, Edmond

82

Uniform asymptotic approximations of integrals  

E-Print Network [OSTI]

In this thesis uniform asymptotic approximations of integrals are discussed. In order to derive these approximations, two well-known methods are used i.e., the saddle point method and the Bleistein method. To start with ...

Khwaja, Sarah Farid

2014-07-01T23:59:59.000Z

83

SOFA 2 Documentation Table of contents  

E-Print Network [OSTI]

SOFA 2 Documentation Table of contents 1 Overview...................................................................................................................... 2 2 Documentation............................................................................................................. 2 3 Other documentation and howtos

84

Chemistry Department Assessment Table of Contents  

E-Print Network [OSTI]

0 Chemistry Department Assessment May, 2006 Table of Contents Page Executive Summary 1 Prelude 1 Mission Statement and Learning Goals 1 Facilities 2 Staffing 3 Students: Chemistry Majors and Student Taking Service Courses Table: 1997-2005 graduates profile Table: GRE Score for Chemistry Majors, 1993

Bogaerts, Steven

85

Analytical approximations for x-ray cross sections III  

SciTech Connect (OSTI)

This report updates our previous work that provided analytical approximations to cross sections for both photoelectric absorption of photons by atoms and incoherent scattering of photons by atoms. This representation is convenient for use in programmable calculators and in computer programs to evaluate these cross sections numerically. The results apply to atoms of atomic numbers between 1 and 100 and for photon energiesgreater than or equal to10 eV. The photoelectric cross sections are again approximated by four-term polynomials in reciprocal powers of the photon energy. There are now more fitting intervals, however, than were used previously. The incoherent-scattering cross sections are based on the Klein-Nishina relation, but use simpler approximate equations for efficient computer evaluation. We describe the averaging scheme for applying these atomic results to any composite material. The fitting coefficients are included in tables, and the cross sections are shown graphically. 100 graphs, 1 tab.

Biggs, F; Lighthill, R

1988-08-01T23:59:59.000Z

86

Microsoft Word - table_18.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table

87

E-Print Network 3.0 - aflatoxina b1 trasmitida Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

probability and whose union is the entire sample space. Then for any event A and any j 1, . . . , n we have Summary: Bayes' Rule. Suppose B1, . . . , Bn are disjoint events...

88

E-Print Network 3.0 - aflatoxin b1-mediated genotoxicity Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

genotoxicity Page: << < 1 2 3 4 5 > >> 1 Improved Cancer Risk Assessment Using Text Mining Name Mode of Action Precision Summary: of Action Precision Aflatoxin B1 Genotoxic 189...

89

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity  

E-Print Network [OSTI]

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity is much and the low one to thin-film cadmium telluride PV systems. Fossil fuel power plants PV displaces. 5.8 External

90

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#: TWP-DOC-1.4TX

91

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#: TWP-DOC-1.4TX4

92

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#: TWP-DOC-1.4TX48

93

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:

94

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from

95

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from5.4 from

96

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from5.4 from6

97

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from5.4

98

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5 from5.47AJ02):

99

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:5

100

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:50AJ01): Some

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:50AJ01):

102

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104 DOC#:50AJ01):3TI07):

103

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.0100104

104

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.01001045TI07):

105

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TECHNOLOGIESTWP93.01001045TI07):8TI06):

106

Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR

107

Determinative Role of Exchange Cation and Charge Density of Smectites on their Adsorption Capacity and Affinity for Aflatoxin B1  

E-Print Network [OSTI]

Bentonite clays have long been used as additives in animal feed, aiming to improve pellet quality and prevent caking. Certain bentonites are also capable of deactivating aflatoxin B_(1) (AfB_(1)) in feed by adsorption, therefore, detoxifying...

Liu, Lian

2013-08-14T23:59:59.000Z

108

Microsoft Word - table_13.doc  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table 9425

109

Microsoft Word - table_13.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table 13.

110

Microsoft Word - table_14.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table 13.4

111

Microsoft Word - table_15.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table 13.40

112

Microsoft Word - table_17.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table 13.404

113

Microsoft Word - table_20.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7

114

Microsoft Word - table_21.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table79

115

Microsoft Word - table_22.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table790

116

Microsoft Word - table_23.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7906

117

Microsoft Word - table_24.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7906

118

Microsoft Word - table_25.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table79068

119

Microsoft Word - table_26.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table790687

120

Microsoft Word - table_27.doc  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 Table7906878

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

506 Johnsen et al. Protein L B1 domain Acta Cryst. (2000). D56, 506508 crystallization papers  

E-Print Network [OSTI]

(Ppl-B1) has proven to be a simple system for the study of the thermodynamics and kinetics of protein, folding and unfolding rates of a series of point mutations spanning Ppl-B1 correlate with the high- resolution structures. To this end, a tryptophan-containing variant of Ppl-B1 (herein known as wild type

Baker, David

122

Environmental Regulatory Update Table, December 1989  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlbert, L.M.; Langston, M.E. (Tennessee Univ., Knoxville, TN (USA)); Nikbakht, A.; Salk, M.S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

123

Environmental regulatory update table, March 1989  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

1989-04-01T23:59:59.000Z

124

Environmental Regulatory Update Table, April 1989  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

1989-05-01T23:59:59.000Z

125

Environmental Regulatory Update Table, October 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-11-01T23:59:59.000Z

126

Environmental Regulatory Update Table, November 1990  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Hawkins, G.T.; Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

1990-12-01T23:59:59.000Z

127

Environmental regulatory update table, July 1991  

SciTech Connect (OSTI)

This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-08-01T23:59:59.000Z

128

Environmental Regulatory Update Table, November 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-12-01T23:59:59.000Z

129

Environmental Regulatory Update Table, September 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-10-01T23:59:59.000Z

130

Environmental Regulatory Update Table, December 1991  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1992-01-01T23:59:59.000Z

131

Environmental Regulatory Update Table, August 1991  

SciTech Connect (OSTI)

This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

1991-09-01T23:59:59.000Z

132

Summary Statistics Table 1. Crude Oil Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Cost Report." Figure Energy Information Administration Petroleum Marketing Annual 1996 3 Table 2. U.S. Refiner Prices of Petroleum Products to End Users (Cents per Gallon...

133

TABLE OF CONTENTS NIST Map ...................................................................................................................................................3  

E-Print Network [OSTI]

TABLE OF CONTENTS NIST Map the Power Grid PML TIME SPEAKER UNIVERSITY TITLE LAB 3:00P Brian Weinstein American University Temperature

134

TableHC2.12.xls  

Gasoline and Diesel Fuel Update (EIA)

Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information Administration: 2005...

135

Approximation Algorithms for Covering Problems  

E-Print Network [OSTI]

?-approximation for general CIP with {0, 1} variables [24].details of an extension to CIP with general upper bounds onCovering Integer Programs ( CIP ). Given a non-negative cost

Koufogiannakis, Christos

2009-01-01T23:59:59.000Z

136

Mechanism design with approximate types  

E-Print Network [OSTI]

In mechanism design, we replace the strong assumption that each player knows his own payoff type exactly with the more realistic assumption that he knows it only approximately: each player i only knows that his true type ...

Zhu, Zeyuan Allen

2012-01-01T23:59:59.000Z

137

Transient approximations in queueing networks  

E-Print Network [OSTI]

TRANSIENT APPROXIMATIONS IN QUEUEING NETWORKS A Thesis by JOHN MICHAEL ANDREWARTHA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1989... Major Subject: Electrical Engineering TRANSIENT APPROXIMATIONS IN QUEUEING NETWORKS A Thesis JOHN MICHAEL ANDREWARTHA Approved as to style and content by: P. E. Cantrell (Chair of Committee) m P7~ W. K. Tsai (Member) J. D. Gibson (Member) R...

Andrewartha, John Michael

1989-01-01T23:59:59.000Z

138

Data:4277b1bc-e034-4b7b-9473-4b131034b1d5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498ed9aae No revisionb4b397df773-4b131034b1d5 No

139

,"Table 3B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to9"3 and Projected

140

Supplemental Tables to the Annual Energy Outlook  

Reports and Publications (EIA)

The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tables in Context: Integrating Horizontal Displays with  

E-Print Network [OSTI]

design challenges for tabletop interfaces: integrating access to public and private information, managing a cooperative gesture to organize digital documents on an interactive table. Our tabletop interface designTables in Context: Integrating Horizontal Displays with Ubicomp Environments Abstract Our work

Klemmer, Scott

142

Primate energy expenditure and life history Herman Pontzera,b,1  

E-Print Network [OSTI]

Primate energy expenditure and life history Herman Pontzera,b,1 , David A. Raichlenc , Adam D life histories reflect low total energy expenditure (TEE) (kilocalo- ries per day) relative to other), or allocation within the energy budget could change over evolutionary time to fuel changes in life history

Pontzer, Herman

143

Transdisciplinary electric power grid science Charles D. Brummitta,b,1  

E-Print Network [OSTI]

storm damage or build distributed generation?). The "smart grid," which monitors and controls electrical to cities couples distant regions. Connections among regions of a power grid spread risk, like in otherOPINION Transdisciplinary electric power grid science Charles D. Brummitta,b,1 , Paul D. H. Hinesc

D'Souza, Raissa

144

Graduate Student Internship/Fieldwork opportunity Location: USC Dornsife Student Special Services Student Union B1  

E-Print Network [OSTI]

Graduate Student Internship/Fieldwork opportunity Location: USC Dornsife Student Special Services ­ Student Union B1 Commitment: Sept. 15 ­ Dec. 1, 2014 Internship/Fieldwork units: 70-140 hrs. (1-2 units) USC Dornsife Student Special Services accounts for the development, administration, and assessment

Rohs, Remo

145

ME 303 B1: Fluid Mechanics TTH 12-2 pm GCB 209  

E-Print Network [OSTI]

ME 303 B1: Fluid Mechanics TTH 12-2 pm GCB 209 Instructor: Dr. Tyrone M. Porter Office: ENG 319 Required Textbook/Coursewebsite: Munson, Young, Okiishi, Heubsch. Fundamentals of Fluid Mechanics, John.wiley.com/he-bcs/Books?action=index&itemId=0470262842&bcsId=4532 Supplemental Textbook Cenegal, Cimbala. Fluid Mechanics: Fundamentals and Applications

Lin, Xi

146

E-Print Network 3.0 - aflatoxin b1 impairment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of Pyrosequencing to Quantify Incidence of Summary: Cl2, No DE 143 b 1.5 250 mM CaCl2 361 b 2.4 0.2%, wtvol, DE 420 b 3.3 250 mM CaCl2 + 0.2%, wtvol, DE... .9 10.3 B4...

147

Rare earth elements activate endocytosis in plant cells Lihong Wanga,b,1  

E-Print Network [OSTI]

Rare earth elements activate endocytosis in plant cells Lihong Wanga,b,1 , Jigang Lic,d,1 , Qing (sent for review May 15, 2014) It has long been observed that rare earth elements (REEs) regulate, such as rare earth elements (REEs), have been observed for a long time to be beneficial to plant growth (1, 2

Deng, Xing-Wang

148

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994  

E-Print Network [OSTI]

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Appendix B SUMMARY OF HYDROPOWER COSTS AND IMPACTS OF THE MAINSTEM PASSAGE ACTIONS This document summarizes regional hydropower costs and impacts of the mainstem passage actions in the Northwest Power Planning Council's 1994

149

B-1 SITE ENVIRONMENTAL REPORT 2000 APPENDIX B: CONCEPTS OF RADIOACTIVITY  

E-Print Network [OSTI]

such as paper and have a range in air of only an inch or so. Naturally occurring radioactive elements a range in air of several feet. Naturally occurring radioactive elements such as potassium- 40 (K-40) emitB-1 SITE ENVIRONMENTAL REPORT 2000 APPENDIX B: CONCEPTS OF RADIOACTIVITY COMMON TYPES OF RADIATION

Homes, Christopher C.

150

The control of mercury vapor using biotrickling filters Ligy Philip a,b,1  

E-Print Network [OSTI]

The control of mercury vapor using biotrickling filters Ligy Philip a,b,1 , Marc A. Deshusses b August 2007 Abstract The feasibility of using biotrickling filters for the removal of mercury vapor from. In particular, the biotrickling filters with sulfur oxidizing bacteria were able to remove 100% of mercury vapor

151

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B 1 Spectrum Sharing in Cognitive Radio Networks  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS ­ PART B 1 Spectrum Sharing in Cognitive Radio of radio frequency spectrum. In this paper, we consider the problem of spectrum sharing among primary (or Terms--Cognitive radio, spectrum sensing, spectrum sharing, game theory, Nash equilibrium. I

Wang, Xinbing

152

The integrity of oil and gas wells Robert B. Jacksona,b,1  

E-Print Network [OSTI]

COMMENTARY The integrity of oil and gas wells Robert B. Jacksona,b,1 a Department of Environmental concerns about oil and natural gas extraction these days inevitably turn to hydraulic fracturing, where--nearer the surface--emphasizing risks from spills, wastewater disposal, and the integrity of oil and natural gas

Jackson, Robert B.

153

A GIS-based Hydraulic Bulking Factor Map for New Mexico Gallegos, J.B.1  

E-Print Network [OSTI]

1 A GIS-based Hydraulic Bulking Factor Map for New Mexico Gallegos, J.B.1 ; Richardson, C and Environmental Engineering, New Mexico Tech, 801 Leroy Place Socorro, NM, 87801, joeyg@nmt.edu 2 Clinton P. Richardson, P.E., BCEE, Professor, Dept. of Civil and Environmental Engineering, New Mexico Tech 801 Leroy

Cal, Mark P.

154

Forensic identification using skin bacterial communities Noah Fierera,b,1  

E-Print Network [OSTI]

Forensic identification using skin bacterial communities Noah Fierera,b,1 , Christian L. Lauberb are personalized, we hypothesized that we could use the residual skin bacteria left on objects for forensic approach, this series ofstudies introducesa forensics approach that could eventually be used

Fierer, Noah

155

Ancilla Approximable Quantum State Transformations  

E-Print Network [OSTI]

We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We consider primarily the issue of approximation to within a specified positive epsilon, but we also address the question of arbitrarily close approximation.

Andreas Blass; Yuri Gurevich

2014-03-30T23:59:59.000Z

156

Quasiclassical Born-Oppenheimer approximations  

E-Print Network [OSTI]

We discuss several problems in quasiclassical physics for which approximate solutions were recently obtained by a new method, and which can also be solved by novel versions of the Born-Oppenheimer approximation. These cases include the so-called bouncing ball modes, low angular momentum states in perturbed circular billiards, resonant states in perturbed rectangular billiards, and whispering gallery modes. Some rare, special eigenstates, concentrated close to the edge or along a diagonal of a nearly rectangular billiard are found. This kind of state has apparently previously escaped notice.

Oleg Zaitsev; R. Narevich; R. E. Prange

2000-09-29T23:59:59.000Z

157

Sur le parcours des rayons 03B1 de l'uranium Par Lon BLOCH,  

E-Print Network [OSTI]

Sur le parcours des rayons 03B1 de l'uranium Par Léon BLOCH, Agrégé de l'Université de Paris parcours des rayons x de l'uranium a été dé- terminé par Bragg1 au moyen d'une méthode indirecte. Bragg a mesuré l'ionisatiol totale due au rayonnement de l'uranium lorsque la substance est recouverte d

Boyer, Edmond

158

Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris.

J. M. Capron

2008-01-21T23:59:59.000Z

159

MESURE DU PARCOURS MOYEN DES RAYONS 03B1 DU THORIUM PAR LA MTHODE PHOTOGRAPHIQUE  

E-Print Network [OSTI]

MESURE DU PARCOURS MOYEN DES RAYONS 03B1 DU THORIUM PAR LA M?THODE PHOTOGRAPHIQUE Par Mme HENRIETTE thorium dans l'émulsion des plaques photo- graphiques, on déduit leur parcours moyen dans l'air à150 thorium a déjà fait l'objet de plusieurs mesures dont les résultats ne sont pas toujours concordants. Les

Paris-Sud XI, Université de

160

Table of Contents Producing Hydrogen................1  

E-Print Network [OSTI]

. It can store the energy from diverse domestic resources (including clean coal, nuclear renewable resources, nuclear energy, and coal with carbon capture and storage. 1 #12;Potential for clean1 #12;Table of Contents Producing Hydrogen................1 Hydrogen Production Technologies

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table of Contents Resilient Sustainable Communities  

E-Print Network [OSTI]

..................................... 5 Onondaga County: Sustainable Development Plan....................... 9 Comparison of the Hazard Mitigation Plan and Onondaga County Sustainable Development Plan DraftTable of Contents Resilient Sustainable Communities: Integrating Hazard Mitigation & Sustainability

162

Table of Contents Chapter and Content Pages  

E-Print Network [OSTI]

#12;Page 2 Table of Contents Chapter and Content Pages 1. Field Trip Itinerary ................................................................................. 7 4. Geologic Framework of the Netherlands Antilles 5. Coral Reefs of the Netherlands Antilles

Fouke, Bruce W.

163

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Spring 2002 Vol. 3, No. 2 Lightning in Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Colorado Climate in Review

164

The Kinematic and Chemical Properties of a Potential Core-Forming Clump: Perseus B1-E  

E-Print Network [OSTI]

We present 13CO and C18O (1-0), (2-1), and (3-2) maps towards the core-forming Perseus B1-E clump using observations from the James Clerk Maxwell Telescope (JCMT), Submillimeter Telescope (SMT) of the Arizona Radio Observatory, and IRAM 30 m telescope. We find that the 13CO and C18O line emission both have very complex velocity structures, indicative of multiple velocity components within the ambient gas. The (1-0) transitions reveal a radial velocity gradient across B1-E of 1 km/s/pc that increases from north-west to south-east, whereas the majority of the Perseus cloud has a radial velocity gradient increasing from south-west to north-east. In contrast, we see no evidence of a velocity gradient associated with the denser Herschel-identified substructures in B1-E. Additionally, the denser substructures have much lower systemic motions than the ambient clump material, which indicates that they are likely decoupled from the large-scale gas. Nevertheless, these substructures themselves have broad line widths (0...

Sadavoy, Sarah I; Di Francesco, James; Henning, Thomas; Currie, Malcolm J; Andre, Philippe; Pezzuto, Stefano

2015-01-01T23:59:59.000Z

165

Approximate convex decomposition and its applications  

E-Print Network [OSTI]

in representations with an unmanageable number of components. In this work, we have developed an approximate technique, called Approximate Convex Decomposition (ACD), which decomposes a given polygon or polyhedron into "approximately convex" pieces that may provide...

Lien, Jyh-Ming

2009-05-15T23:59:59.000Z

166

Using Graphs for Fast Error Term Approximation of Time-varying Datasets  

SciTech Connect (OSTI)

We present a method for the efficient computation and storage of approximations of error tables used for error estimation of a region between different time steps in time-varying datasets. The error between two time steps is defined as the distance between the data of these time steps. Error tables are used to look up the error between different time steps of a time-varying dataset, especially when run time error computation is expensive. However, even the generation of error tables itself can be expensive. For n time steps, the exact error look-up table (which stores the error values for all pairs of time steps in a matrix) has a memory complexity and pre-processing time complexity of O(n2), and O(1) for error retrieval. Our approximate error look-up table approach uses trees, where the leaf nodes represent original time steps, and interior nodes contain an average (or best-representative) of the children nodes. The error computed on an edge of a tree describes the distance between the two nodes on that edge. Evaluating the error between two different time steps requires traversing a path between the two leaf nodes, and accumulating the errors on the traversed edges. For n time steps, this scheme has a memory complexity and pre-processing time complexity of O(nlog(n)), a significant improvement over the exact scheme; the error retrieval complexity is O(log(n)). As we do not need to calculate all possible n2 error terms, our approach is a fast way to generate the approximation.

Nuber, C; LaMar, E C; Pascucci, V; Hamann, B; Joy, K I

2003-02-27T23:59:59.000Z

167

Approximating Metal-Insulator Transitions  

E-Print Network [OSTI]

We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase similar to the divergence of the localization length in the insulating phase.

C. Danieli; K. Rayanov; B. Pavlov; G. Martin; S. Flach

2014-05-06T23:59:59.000Z

168

Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics for the alluvium (Stephens et al.).  

E-Print Network [OSTI]

A-1 Appendix A. Hydraulic Properties Statistics Tables Table A1. Hydraulic properties statistics Deviation .1708 4.274 28.95 Harmonic Mean Number of Observations 9 8 8 2 2 2 2 2 Table A2. Hydraulic.310-5 Number of Observations 10 10 10 34 34 4 4 4 #12;A-2 Table A3. Hydraulic properties statistics

169

DOE TRANSCOM Technical Support Services DE-EM0002903 B-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newmango!DepartmentServiceDOE TRANSCOM B-1

170

Sulforaphane-Mediated Reduction of Aflatoxin B-1-N-7-Guanine in Rat Liver DNA: Impacts of Strain and Sex  

E-Print Network [OSTI]

Aflatoxin B1 (AFB1) is a DNA-binding toxin that contributes to the burden of liver cancer in tropical areas. AFB1-DNA adducts are powerful biomarkers that discern individual and population risk from exposure to this ...

Fiala, Jeannette Louise Allen

171

Table of hyperfine anomaly in atomic systems  

SciTech Connect (OSTI)

This table is a compilation of experimental values of magnetic hyperfine anomaly in atomic and ionic systems. The last extensive compilation was published in 1984 by Bttgenbach [S. Bttgenbach, Hyperfine Int. 20 (1984) 1] and the aim here is to make an up to date compilation. The literature search covers the period up to January 2011.

Persson, J.R., E-mail: jonas.persson@ntnu.no

2013-01-15T23:59:59.000Z

172

STUDENT HANDBOOK Table of Contents Page Number  

E-Print Network [OSTI]

STUDENT HANDBOOK Campus #12;Table of Contents Page Number Welcome 1 The School 1 Mission Statement Student Resources 8 Financial Aid and Funding Sources Writing Supports 9 Special Needs Computers Libraries RefWorks 10 Student Services 11 Administrative Information 14 Student ID, and Email Accounts U of R

Saskatchewan, University of

173

Student Mobile Device Survey Table of Contents  

E-Print Network [OSTI]

CiCS. Student Mobile Device Survey 2011 Table of Contents Section Number Subject Page 1 With little information and supporting evidence on student ownership and usage of mobile devices at the University of Sheffield, making decisions on our services and support for mobile devices has been based

Martin, Stephen John

174

Philosophy 57 Greensheet (Syllabus) Table of Contents  

E-Print Network [OSTI]

Philosophy 57 Greensheet (Syllabus) Table of Contents: Instructor Information Course Home Page Greensheet Page Page 1 of 3http://philosophy.wisc.edu/fitelson/57/syllabus.htm #12;I highly recommend using/syllabus.htm #12;Your 2 lowest quiz grades will be dropped ( , your 5 best quiz scores will be averaged). i

Fitelson, Branden

175

CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents  

E-Print Network [OSTI]

1 CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents 1. Accessing the Advanced Search Page 1 2. Navigating the Advanced Search Page 3 3. Selecting your collection to search Advanced Search from the right navigation menu. 2 This will take you into the CONTENTdm database

O'Laughlin, Jay

176

VEHICLE SERVICES POLICY Table of Contents  

E-Print Network [OSTI]

VEHICLE SERVICES POLICY Table of Contents 1. Policy 2. Procedures a. Vehicle Services Oversight b. Vehicle Maintenance and Inspection c. Authorized Drivers d. Responsibilities Back to Top (To download requirements for AUB's vehicles, the University has adopted a policy of centralizing these activities under one

Shihadeh, Alan

177

Section 4. Inventory Table of Contents  

E-Print Network [OSTI]

Section 4. Inventory Table of Contents 4.1 Existing Legal Protections........................................................................................................... 14 #12;Draft Umatilla/Willow Subbasin Plan May 28, 2004 4. Inventory of Existing Activities The following section contains information derived from an inventory questionnaire that was sent

178

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Winter 2001-2002 Vol. 3, No. 1 Why Is the Park Range Colorado's Snowfall Capital? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 The Cold-Land Processes Field Experiment: North-Central Colorado

179

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents An Unusually Heavy Snowfall in North Central Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A Brief History of Colorado's Most Notable Snowstorms" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Colorado Climate Water Year 2003 Vol. 4, No. 1-4 If you have a photo or slide that your would like

180

VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents  

E-Print Network [OSTI]

of a license/permit for each piece of equipment, an Operator Equipment Qualification Record (DA Form 348EM 385-1-1 XX Sep 13 i Section 18 VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents Section: Page...................................................................18-16 18.G Machinery And Mechanized Equipment.........................18-16 18.H Drilling Equipment

US Army Corps of Engineers

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Communication: Random phase approximation renormalized many-body perturbation theory  

SciTech Connect (OSTI)

We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Mller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations.

Bates, Jefferson E.; Furche, Filipp, E-mail: filipp.furche@uci.edu [Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025 (United States)] [Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025 (United States)

2013-11-07T23:59:59.000Z

182

Reflectance Function Approximation for Material Classification  

E-Print Network [OSTI]

Reflectance Function Approximation for Material Classification Edward Wild CS 766 Final Project This report summarizes the results of a project to approximate reflectance functions and classify materials to classify materials. Classification algorithms are proposed to deal with unseen materials. Experimental

Dyer, Charles R.

183

ORIGINAL ARTICLE Approximate Truth and Descriptive Nesting  

E-Print Network [OSTI]

ORIGINAL ARTICLE Approximate Truth and Descriptive Nesting Jeffrey Alan Barrett Received: 7 July. This paper presents a notion of local probable approximate truth in terms of descriptive nesting relations

Barrett, Jeffrey A.

184

Fast Local Approximation to Global Illumination  

E-Print Network [OSTI]

based technique #12;Approach to Shadows · Assume: ­ Approximate shadow umbra with hard shadow ­ Object

Wyman, Chris

185

Kinetic Modeling and Thermodynamic Closure Approximation of ...  

E-Print Network [OSTI]

Oct 5, 2007 ... Kinetic Modeling and Thermodynamic Closure. Approximation of Liquid Crystal Polymers. Haijun Yu. Program in Applied and Computational...

2007-10-03T23:59:59.000Z

186

Primary lead smelter, Doe Run, Herculaneum, Missouri: Volume 2 -- Appendix B.1. Final report  

SciTech Connect (OSTI)

The United States Environmental Protection Agency`s (EPA) Emission Standards Division (ESD) is investigating the primary lead smelting source category to identify and quantify organic hazardous air pollutants (HAPs) emitted from blast furnaces. The primary objective was to obtain data on the emissions of volatile and semi-volatile organic HAPs, aldehydes, and ketones from primary lead smelter blast furnaces. A secondary objective was to obtain data on the emissions of carbon monoxide. The data will be used by ESD to determine whether organic HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program. The Doe Run Company, which operates a primary lead smelter in Herculaneum, Missouri was selected by the ESD as the host facility for this project. This volume consists of Appendix B.1.

Phoenix, F.J.

1999-08-01T23:59:59.000Z

187

Direct Observation of Born-Oppenheimer Approximation  

E-Print Network [OSTI]

Direct Observation of Born-Oppenheimer Approximation Breakdown in Carbon Nanotubes Adam W of the theoretically predicted breakdown of the Born-Oppenheimer approximation in individual single-walled carbon nanotubes. The Born-Oppenheimer (BO) or adiabatic approximation is widely used to simplify the very complex

Cronin, Steve

188

Mathematical Analysis of Born{Oppenheimer Approximations  

E-Print Network [OSTI]

Mathematical Analysis of Born{Oppenheimer Approximations George A. Hagedorn and Alain Joye concerning Born{Oppenheimer approximations in molecular quantum mechanics. Introduction The goal of this paper is to review rigorous mathematical results concerning Born{Oppenheimer approximations. We make

Hagedorn, George A.

189

SciTech Connect: Radioactive decay data tables  

Office of Scientific and Technical Information (OSTI)

Radioactive decay data tables Citation Details In-Document Search Title: Radioactive decay data tables You are accessing a document from the Department of Energy's (DOE) SciTech...

190

MemTable : contextual memory in group workspaces  

E-Print Network [OSTI]

This thesis presents the design and implementation of MemTable, an interactive touch table that supports co-located group meetings by capturing both digital and physical interactions in its memory. The goal of the project ...

Hunter, Seth E

2009-01-01T23:59:59.000Z

191

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

99.2 - 105.3 See footnotes at end of table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

192

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

66.6 - 72.3 See footnotes at end of table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

193

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

133.6 - 276.4 See footnotes at end of table. 220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

194

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

201.3 - 453.3 See footnotes at end of table. 262 Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

195

Environmental Regulatory Update Table, January/February 1992  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action. This table is for January/February 1992.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1992-03-01T23:59:59.000Z

196

Effective July 1, 2013 Table of Organization: College of Law  

E-Print Network [OSTI]

Effective July 1, 2013 Table of Organization: College of Law Dean Gail Agrawal Assistant to the Dean Legal Clinic Julie Kramer {See Clinic Table for organization} Special Assistant to the Dean Gerhild Krapf Centers {See separate tables for organization} Assoc. Dean for Research Assoc. Dean Assoc

Stanier, Charlie

197

Environmental Regulatory Update Table, January/February 1995  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives impacting environmental, health, and safety management responsibilities. the table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Mayer, S.J.; Salk, M.S.

1995-03-01T23:59:59.000Z

198

SPECTROMTRE 03B1 A SCINTILLATION AVEC I Cs(Tl) Par J. FLEURY, P. PERRIN, M. BOGE et J. LAUGIER,  

E-Print Network [OSTI]

480. SPECTROMTRE 03B1 A SCINTILLATION AVEC I Cs(Tl) Par J. FLEURY, P. PERRIN, M. BOGE et J 03B1 de 9 MeV. Abstract. 2014 In spectrometry with CsI(Tl) crystals the following characteristicsV with NaI). The best resolution in spectrometry 03B1 is 2.5 % with 9 MeV 03B1-particles. LE .IOURNAL DE

Paris-Sud XI, Universit de

199

DSC --12B --1 EXPERIMENTAL NON-LINEAR DYNAMICS OF A  

E-Print Network [OSTI]

lifting capabilities are presented. This actuator consists of 48 SMA wires mechanically bundled in parallel forming one powerful muscle. It was designed to lift up to 100 lbs., which is approximately 300 wire (Grant, 1995). Since 1983, SMA artificial muscles have been used in micro- robotics (Honma, Miwa

Mavroidis, Constantinos

200

Un exemple de conversion d'une table de production en volume en tables de production en biomasse  

E-Print Network [OSTI]

Un exemple de conversion d'une table de production en volume en tables de production en biomasse secteur ligérien, proposée par PARD? en 1962, est convertie en quatre tables de production en biomasse correspondant chacune à une partie de l'arbre ou à l'arbre entier, biomasse foliaire exclue. La conversion est

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Formation of Boundary Clinopyroxenes and Associated Glass Veins in Type B1 CAIs  

SciTech Connect (OSTI)

We used focused ion beam thin section preparation and scanning transmission electron microscopy (FIB/STEM) to examine the interfacial region between spinel and host melilite for three spinel grains, two from the mantle and one from the core of an Allende type B1 inclusion, and a second pair of spinel grains from a type B1 inclusion from the Leoville carbonaceous chondrite. The compositions of boundary clinopyroxenes decorating spinel surfaces are generally consistent with those of coarser clinopyroxenes from the same region of the inclusion, suggesting little movement of spinels between mantle and core regions after the formation of boundary clinopyroxenes. The host melilite displays no anomalous compositions near the interface, and anorthite or other late-stage minerals are not observed, suggesting that crystallization of residual liquid was not responsible for the formation of boundary clinopyroxenes. Allende spinels display either direct spinel-melilite contact or an intervening boundary clinopyroxene between the two phases. In the core, boundary clinopyroxene is mantled by a thin (1-2 {micro}m thick) layer of normally zoned (X{sub Ak} increasing away from the melilite-clinopyroxene contact) melilite with X{sub Ak} matching that of the host melilite at the melilite-melilite contact. In the mantle, X{sub Ak} near boundary spinels is constant. Spinels in a Leoville type B1 inclusion are more complex with boundary clinopyroxene, as observed in Allende, but also variable amounts of glass ({approx}1 {micro}m width), secondary calcite, perovskite, and an unknown Mg-, Al-, OH-rich and Ca-, Si-poor crystalline phase that may be a layered double hydrate. Glass compositions are consistent to first order with a precursor consisting mostly of Mg-carpholite or sudoite with some aluminous diopside. One possible scenario of formation for the glass veins is that open system alteration of melilite produced a porous, hydrated aggregate of Mg-carpholite or sudoite + aluminous diopside that was shock melted and quenched to a glass. The unknown crystalline phase may be a shocked remnant of the precursor phase assemblage but is more likely to have formed later by alteration of the glass. Calcite appears to be an opportunistic fracture filling that postdated all major shock events. Boundary clinopyroxenes probably share a common origin with coarser-grained pyroxenes from the same region of the inclusion. In the mantle, these crystals may represent clinopyroxene crystallized in Ti-rich liquids caused by the direct dissolution of perovskite and an associated Sc-Zr-rich phase or as a reaction product between dissolving perovskite and liquid (i.e., indirect dissolution of perovskite). In the core, any perovskite and associated Ti-enriched liquids that may have originally been present disappeared before the growth of boundary clinopyroxene.

Paque, J M; Beckett, J R; Ishii, H A; Toppani, A; Burnett, D S; Teslich, N; Dai, Z R; Bradley, J P

2008-05-18T23:59:59.000Z

202

Integral CFLs performance in table lamps  

SciTech Connect (OSTI)

This paper focuses on performance variations associated with lamp geometry and distribution in portable table luminaires. If correctly retrofit with compact fluorescent lamps (CFLs), these high use fixtures produce significant energy savings, but if misused, these products could instead generate consumer dissatisfaction with CFLs. It is the authors assertion that the lumen distribution of the light source within the luminaires plays a critical role in total light output, fixture efficiency and efficacy, and, perhaps most importantly, perceived brightness. The authors studied nearly 30 different integral (screw-based) CFLs available on the market today in search of a lamp, or group of lamps, which work best in portable table luminaires. The findings conclusively indicate that horizontally oriented CFLs outperform all other types of CFLs in nearly every aspect.

Page, E.; Driscoll, D.; Siminovitch, M.

1997-03-01T23:59:59.000Z

203

Tables of thermodynamic properties of sodium  

SciTech Connect (OSTI)

The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

Fink, J.K.

1982-06-01T23:59:59.000Z

204

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number

205

Born-Oppenheimer approximation in open systems  

E-Print Network [OSTI]

We generalize the standard Born-Oppenheimer approximation to the case of open quantum systems. We define the zeroth order Born-Oppenheimer approximation of an open quantum system as the regime in which its effective Hamiltonian can be diagonalized with fixed slowly changing variables. We then establish validity and invalidity conditions for this approximation for two kinds of dissipations--the spin relaxation and the dissipation of center-of-mass motion. As an example, the Born-Oppenheimer approximation of a two-level open system is analyzed.

X. L. Huang; X. X. Yi

2009-09-16T23:59:59.000Z

206

Finite Element Approximation of Coupled Seismic and ...  

E-Print Network [OSTI]

numerical approximation of coupled seismic and electromagnetic waves in 2D bounded fluid- saturated porous media, with absorbing boundary conditions at...

2009-02-15T23:59:59.000Z

207

Finite element approximation of coupled seismic and ...  

E-Print Network [OSTI]

layer, having a thickness of about 10 nm. Finite element approximation of coupled seismic and electromagnetic waves in gas hydrate-bearing sediments p.

zyserman

208

Evaluation and design of ventilation systems for autopsy and surgical examination tables  

E-Print Network [OSTI]

)-TLV of 1 ppm and the 2 ppm Short Term Exposure Limit. '" NIOSH has also lowered its 8-hr TWA and Ceiling Level to 0. 016 ppm and 0. 1 ppm, respectively. "' Formaldehyde is a gas at room temperature. Its threshold of odor is approximately 1 ppm. It is a... double cone down-draft local exhaust ventilation (LEV) design produced by Shandon Lipshaw was evaluated in order to determine if personnel working at dissection tables are overexposed to formaldehyde. Mannequin exposure monitoring and static pressure...

Murgash, Mark John

1993-01-01T23:59:59.000Z

209

PROPERTY TABLES AND CHARTS (SI UNITS) Table A1 Molar mass, gas constant, and  

E-Print Network [OSTI]

.0943 Carbon monoxide CO 28.011 0.2968 133 3.50 0.0930 Carbon tetrachloride CCl4 153.82 0.05405 556.4 4.56 0 Table A­20 Ideal-gas properties of carbon dioxide, CO2 Table A­21 Ideal-gas properties of carbon.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304.2 7.39 0

Kostic, Milivoje M.

210

Optimal Tree Approximation with Wavelets Richard Baraniuk  

E-Print Network [OSTI]

simply represented: the energy from a singularity localizes along one branch of the tree (see Figure 1Optimal Tree Approximation with Wavelets Richard Baraniuk Department of Electrical and Computer on trees and point out that an optimal tree approximant exists and is easily computed. The optimal tree

211

Vacancies in ordered and disordered titanium monoxide: Mechanism of B1 structure stabilization  

SciTech Connect (OSTI)

The electronic structure and stability of three phases of titanium monoxide TiO{sub y} with B1 type of the basic structure have been studied. Cubic phase without structural vacancies, TiO, and two phases with structural vacancies, monoclinic Ti{sub 5}O{sub 5} and cubic disordered TiO{sub 1.0}, was treated by means of first-principles calculations within the density functional theory with pseudo-potential approach based on the plane wave's basis. The ordered monoclinic phase Ti{sub 5}O{sub 5} was found to be the most stable and the cubic TiO without vacancies the less stable one. The role of structural vacancies in the titanium sublattice is to decrease the Fermi energy, the role of vacancies in the oxygen sublattice is to contribute to the appearance of TiTi bonding interactions through these vacancies and to reinforce the TiTi interactions close to them. Listed effects are significantly pronounced if the vacancies in the titanium and oxygen sublattices are associated in the so called vacancy channels which determine the formation of vacancy ordered structure of monoclinic Ti{sub 5}O{sub 5}-type. - Graphical abstract: Changes in total DOS of titanium monoxide when going from vacancy-free TiO to TiO with disordered structural vacancies and to TiO with ordered structural vacancies. Highlights: Ordered monoclinic Ti{sub 5}O{sub 5} is the most stable phase of titanium monoxide. Vacancy-free TiO is the less stable phase of the titanium monoxide. Ordering of oxygen vacancies leads to the appearance of TiTi bonding interactions. Titanium vacancies contribute significantly to the decreasing of the Fermi energy.

Kostenko, M.G. [Institute of Solid State Chemistry, The Ural Branch of the Russian Academy of Sciences, Pervomayskaya 91, Ekaterinburg 620990 (Russian Federation); Lukoyanov, A.V. [Institute of Metal Physics, The Ural Branch of the Russian Academy of Sciences, S. Kovalevskoy 18, Ekaterinburg 620990 (Russian Federation); Ural Federal University named after First President of Russia B.N. Yeltsin, Mira 19, Ekaterinburg 620002 (Russian Federation); Zhukov, V.P. [Institute of Solid State Chemistry, The Ural Branch of the Russian Academy of Sciences, Pervomayskaya 91, Ekaterinburg 620990 (Russian Federation); Rempel, A.A., E-mail: rempel@ihim.uran.ru [Institute of Solid State Chemistry, The Ural Branch of the Russian Academy of Sciences, Pervomayskaya 91, Ekaterinburg 620990 (Russian Federation); Ural Federal University named after First President of Russia B.N. Yeltsin, Mira 19, Ekaterinburg 620002 (Russian Federation)

2013-08-15T23:59:59.000Z

212

Approximate error conjugation gradient minimization methods  

DOE Patents [OSTI]

In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

Kallman, Jeffrey S

2013-05-21T23:59:59.000Z

213

Solution of the Schrodinger equation for the inverse-square potential using Pade approximants  

E-Print Network [OSTI]

functions of the first and second type, H (z) and H (z), rather than the expansion for J (z). 1 2 v v v These expansions are 1( ) /2 ) g i(z-&/zmv-g~) Z (v s) s=O ~iz) (2. 8) with (-+(arg zc 27( ) H2( ) ]2 ) $ -i(z-5'-gn' ) + (v s) 3. Z s=O (2. e... routine of this program calculates the diagonal portion of the Pade table already discussed, 57 terminating with the jNPADE, NPM3Ej approximate to (z). Generalization of the program to accommodate V other functions entails only the changing...

Golden, Jack Emitt

1972-01-01T23:59:59.000Z

214

MFR PAPER 1276 Table I.-The approximate shelf life of cod fillets (Ronalvalll et aI., 1973).  

E-Print Network [OSTI]

their quality and image are improved. This paper describes the concept, its implementation under federal. " Articles by other consumer groups have been even more damaging to the image of fish as food. Some of them have condemned the processors, be- cause by their brand name they were the only identifiable elements

215

EMISSION SPECTRUM OF V3+ -03B1Al2O3 J. Physique Lett. 38 (1977) L-299  

E-Print Network [OSTI]

ADDENDUM EMISSION SPECTRUM OF V3+ -03B1Al2O3 J. Physique Lett. 38 (1977) L-299 B. CHAMPAGNON and E Villeurbanne, France The letter Emission spectrum of V 3 +_aA1203, J. Physique Lett. 38 (1977) L-299 does measurements carried out in our work give more detailed information on this emission. Behaviour of the lines

Boyer, Edmond

216

Scaling laws for convection and jet speeds in the giant planets Adam P. Showman a,b,,1  

E-Print Network [OSTI]

Scaling laws for convection and jet speeds in the giant planets Adam P. Showman a,b,,1 , Yohai in these models, but no previous theories have been advanced to explain these trends. Here, we show using simple arguments that if convective release of potential energy pumps the jets and viscosity damps them, the mean

217

Nano/Microfluidics for diagnosis of infectious diseases in developing countries Won Gu Lee a,b,1  

E-Print Network [OSTI]

Nano/Microfluidics for diagnosis of infectious diseases in developing countries Won Gu Lee a,b,1 history: Received 15 June 2009 Accepted 14 September 2009 Available online 30 November 2009 Keywords: Nano/Microfluidics Infectious diseases HIV/AIDS Point-of-care Diagnostics Global health Nano/Microfluidic technologies

Demirci, Utkan

218

Vacancy diffusion in the Cu001 surface I: an STM study R. van Gastel a,*, E. Somfai b,1  

E-Print Network [OSTI]

Vacancy diffusion in the Cuð001? surface I: an STM study R. van Gastel a,*, E. Somfai b,1 , S Abstract We have used the indium/copper surface alloy to study the dynamics of surface vacancies on the Cu, are used as probes to detect the rapid diffusion of surface vacancies. STM measurements show

van Saarloos, Wim

219

Table 3.1 Fuel Consumption, 2010;  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: ReportedEnergyChanges to3.1

220

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:PrincipalExplorationPrices

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number of Producing Gas WellsLNG

222

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number of Producing Gas

223

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number of Producing GasU.S. Underground

224

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number of Producing GasU.S.

225

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number of Producing

226

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number ofExports Definitions Key Terms

227

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number ofExports Definitions Key

228

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number ofExports DefinitionsImports by

229

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number ofExportsPreliminary Crude

230

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number ofExportsPreliminary

231

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.Number ofExportsPreliminaryNumber

232

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefiner Net Production

233

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefiner NetAPI GravityNo.

234

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefiner NetAPI GravityNo.Weekly

235

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotor Gasoline Prices

236

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotor GasolineSpot Prices

237

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotor GasolineSpotStocks

238

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotor

239

Table Definitions, Sources, and Explanatory Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic: Weekly

240

TableHC10.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.1 Housing Unit

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

TableHC10.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.1 Housing

242

TableHC10.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.1 Housing20.6

243

TableHC10.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.1

244

TableHC11.12.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.115.1 5.5

245

TableHC11.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.115.1 5.515.1

246

TableHC11.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.115.1

247

TableHC11.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.115.1Number of

248

TableHC12.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.115.1Number

249

TableHC12.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use6a.Charm0.115.1Number5.6

250

TableHC12.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total

251

TableHC12.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water Heaters

252

TableHC13.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water Heaters3.1

253

TableHC13.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water Heaters3.10.7

254

TableHC13.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water Heaters3.10.70.7

255

TableHC13.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water

256

TableHC14.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.1 Housing Unit

257

TableHC14.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.1 Housing

258

TableHC14.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.1 Housing4.2 7.6

259

TableHC14.5.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.1 Housing4.2

260

TableHC14.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.1

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TableHC15.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.15.1 Housing

262

TableHC15.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.15.1 Housing7.1

263

TableHC15.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.15.1 Housing7.18

264

TableHC2.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.15.1

265

TableHC2.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.15.1

266

TableHC2.10.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.15.1Coventional

267

TableHC2.11.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Water4.15.1Coventional

268

TableHC2.12.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of

269

TableHC2.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million U.S. Housing

270

TableHC2.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million U.S. Housing

271

TableHC2.2.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million U.S.

272

TableHC2.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million

273

TableHC2.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million

274

TableHC2.4.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.5 72.1 7.6 N

275

TableHC2.5.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.5 72.1 7.6 N

276

TableHC2.6.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.5 72.1 7.6

277

TableHC2.7.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.5 72.1

278

TableHC2.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.5 72.1Number

279

TableHC2.9.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.5 72.1Number9

280

TableHC3.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.5

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

TableHC3.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.578.1 64.1

282

TableHC4.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.578.1

283

TableHC4.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.578.1.. 111.1

284

TableHC4.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.578.1..

285

TableHC5.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.578.1...

286

TableHC5.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.578.1...

287

TableHC5.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of Million81.578.1...14.7

288

TableHC6.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of

289

TableHC6.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.0 34.8 18.4

290

TableHC6.6.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.0 34.8 18.46

291

TableHC6.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.0 34.8 18.468

292

TableHC7.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.0 34.8 18.468

293

TableHC7.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.0 34.8 18.468

294

TableHC7.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.0 34.8

295

TableHC7.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.0 34.8Number

296

TableHC8.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.0

297

TableHC8.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.07.1 19.0 22.7

298

TableHC8.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.07.1 19.0

299

TableHC8.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.07.1

300

TableHC9.1.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.07.1Census

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TableHC9.13.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.07.1Census

302

TableHC9.3.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1 30.07.1Census10.9

303

TableHC9.8.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. TotalNumber of 111.1

304

TABLE53.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. NetTable 53.

305

TABLE54.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. NetTable

306

TABLE55.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. NetTableSource:

307

Microsoft Word - table_C01  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999, 19996,3 Table

308

FY 2005 Summary Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCityTheDepartmentKey9Statistical Table

309

FY 2007 Summary Table by Appropriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5Statistical Table by5

310

FY 2007 Summary Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollars in5Statistical Table by55

311

FY 2008 Control Table by Appriopriation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControl Table by

312

FY 2008 Control Table by Organization  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganization (dollarsControl Table byControl

313

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J (MillionCubic35775 84 8711757Detailed

314

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J (MillionCubic35775 84

315

Peetz Table Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County isParadise, Nevada:PavilionSunPeetz TablePeetz

316

Precision Flow Table | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder RiverPratt, Kansas:PrebleTable Jump to:

317

Table-top transient collisional excitation x-ray laser research at LLNL: Status June 1997  

SciTech Connect (OSTI)

This is a status report of transient collisional excitation x-ray laser experiments at LLNL during June 1997 that have the advantage of being conducted on a table-top. Two laser drivers with modest energy {approximately}6 J are used in the scheme: a long {approximately}1 ns pulse to preform and ionize the plasma followed by a short {approximately}1 ps pulse to produce the excitation and population inversion. The beams are co-propagated and focused using a combination of a cylindrical lens and paraboloid to a line of {approximately}70 {micro}m x 12.5 mm dimensions. High repetition rates approaching 1 shot/3 min. allow typically in excess of 50 target shots in a day. Various slab targets have been irradiated and we report preliminary results for x-ray laser gain in 3p-3s J=0-1 Ne-like Ti and Fe transitions where gains as high as 24 cm{sup -1} and gL products of {approximately}15 have been observed.

Dunn, J., LLNL

1997-07-01T23:59:59.000Z

318

Environmental regulatory update table, July/August 1994  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Salk, M.S.

1994-09-01T23:59:59.000Z

319

Environmental Regulatory Update Table, July--August 1992  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

1992-09-01T23:59:59.000Z

320

Environmental sciences division: Environmental regulatory update table July 1988  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Langston, M.E.; Nikbakht, A.; Salk, M.S.

1988-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Environmental regulatory update table, September--October 1992  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

1992-11-01T23:59:59.000Z

322

Environmental Regulatory Update Table, January--February 1993  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

1993-03-01T23:59:59.000Z

323

Environmental Regulatory Update Table, November--December 1992  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly wit information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Lewis, E.B.; Salk, M.S.

1993-01-01T23:59:59.000Z

324

Environmental Regulatory Update Table, May--June 1994  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bimonthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Salk, M.S.

1994-07-01T23:59:59.000Z

325

Environmental regulatory update table: September/October 1994  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Bock, R.E.; Salk, M.S.

1994-11-01T23:59:59.000Z

326

Environmental Regulatory Update Table, September/October 1993  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operation and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

1993-11-01T23:59:59.000Z

327

Environmental Regulatory Update Table, January--February 1994  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations ad contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

1994-03-01T23:59:59.000Z

328

Environmental Regulatory Update Table, November--December 1993  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.; Danford, G.S.; Lewis, E.B.

1994-01-01T23:59:59.000Z

329

Environmental Regulatory Update Table, March/April 1992  

SciTech Connect (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1992-05-01T23:59:59.000Z

330

Table 23. Coal Receipts at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 23. Coal Receipts at Coke Plants by Census Division...

331

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

332

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

333

Table of Contents About the Weizmann Institute of Science.........................................................................................................1  

E-Print Network [OSTI]

#12;Table of Contents About the Weizmann Institute of Science..........................................................................................................9 Department of Plant Sciences...........................................................................................................40 Department of Earth and Planetary Sciences

Maoz, Shahar

334

About the Weizmann Institute of Science Table of Contents  

E-Print Network [OSTI]

About the Weizmann Institute of Science #12;Table of Contents About the Weizmann Institute of Science.........................................................................................................7 Department of Plant Sciences

Maoz, Shahar

335

About the Weizmann Institute of Science Table of Contents  

E-Print Network [OSTI]

About the Weizmann Institute of Science #12;Table of Contents About the Weizmann Institute of Science..........................................................................................................8 Department of Plant Sciences

Maoz, Shahar

336

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

337

Table of Contents Alumni Staff and Council Directories  

E-Print Network [OSTI]

1 Table of Contents Alumni Staff and Council Directories Alumni Relations Staff Directory....................................................................................................................................3 Alumni Council Directory and Staff Directory ................................................................................53 Your

von der Heydt, Rüdiger

338

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1998 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

339

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

340

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

342

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy...

343

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

344

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

345

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

346

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

347

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

220 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

348

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

349

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

134 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

350

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

351

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

352

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

Information Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

353

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

354

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

- - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

355

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

356

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

357

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

358

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

359

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

360

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

362

EIA - Annual Energy Outlook (AEO) 2013 Data Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Interactive Table Viewer Topics Source OilLiquids Natural Gas Coal Electricity RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand...

363

EIA - Annual Energy Outlook (AEO) 2011 Data Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Interactive Table Viewer Topics Source OilLiquids Natural Gas Coal Electricity RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand...

364

EIA - Annual Energy Outlook (AEO) 2012 Data Tables  

Gasoline and Diesel Fuel Update (EIA)

Interactive Table Viewer Topics Source OilLiquids Natural Gas Coal Electricity RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand...

365

Table of contents 1 What is software architecture? ......................................................................... 1  

E-Print Network [OSTI]

Table of contents 1 What is software architecture? ......................................................................... 1 1.1 Software architecture as abstraction ............................................................ 2 1.2 Software architecture as blueprint

Dustdar, Schahram

366

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

367

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

368

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

369

Table of Contents Central Colorado's Severe Downslope Windstorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  

E-Print Network [OSTI]

#12;Table of Contents Central Colorado's Severe Downslope Windstorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Colorado Climate in Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 National Weather Service Length of Service Awards for Western Colorado

370

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

371

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

372

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

373

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

374

Approximate Bivariate Factorization, a Geometric Andre Galligo  

E-Print Network [OSTI]

INRIA) Laboratoire de Mathematiques Parc Valrose 06108 Nice cedex 02, France galligo@unice.fr Mark van, Maple Code 1. INTRODUCTION 1.1 Approximate algebra Over the past ten years symbolic-numeric algorithms

Hoeij, Mark van

375

Optimization in Geometric Graphs: Complexity and Approximation  

E-Print Network [OSTI]

We consider several related problems arising in geometric graphs. In particular, we investigate the computational complexity and approximability properties of several optimization problems in unit ball graphs and develop algorithms to find exact...

Kahruman-Anderoglu, Sera

2011-02-22T23:59:59.000Z

376

Hardness of approximation for quantum problems  

E-Print Network [OSTI]

The polynomial hierarchy plays a central role in classical complexity theory. Here, we define a quantum generalization of the polynomial hierarchy, and initiate its study. We show that not only are there natural complete problems for the second level of this quantum hierarchy, but that these problems are in fact hard to approximate. Using these techniques, we also obtain hardness of approximation for the class QCMA. Our approach is based on the use of dispersers, and is inspired by the classical results of Umans regarding hardness of approximation for the second level of the classical polynomial hierarchy [Umans, FOCS 1999]. The problems for which we prove hardness of approximation for include, among others, a quantum version of the Succinct Set Cover problem, and a variant of the local Hamiltonian problem with hybrid classical-quantum ground states.

Sevag Gharibian; Julia Kempe

2012-09-05T23:59:59.000Z

377

Approximation algorithms for QMA-complete problems  

E-Print Network [OSTI]

Approximation algorithms for classical constraint satisfaction problems are one of the main research areas in theoretical computer science. Here we define a natural approximation version of the QMA-complete local Hamiltonian problem and initiate its study. We present two main results. The first shows that a non-trivial approximation ratio can be obtained in the class NP using product states. The second result (which builds on the first one), gives a polynomial time (classical) algorithm providing a similar approximation ratio for dense instances of the problem. The latter result is based on an adaptation of the "exhaustive sampling method" by Arora et al. [J. Comp. Sys. Sci. 58, p.193 (1999)] to the quantum setting, and might be of independent interest.

Sevag Gharibian; Julia Kempe

2011-01-20T23:59:59.000Z

378

Optimization Online - An Approximation Algorithm for Constructing ...  

E-Print Network [OSTI]

Sep 2, 2006 ... In this paper, we propose an approximation algorithm for the 2-bit Hamming prefix code problem. Our algorithm spends $O(n \\log^3 n)$ time to...

Artur Pessoa

2006-09-02T23:59:59.000Z

379

RESTRICTED-TRACE APPROXIMATION FOR NUCLEAR ANTIFERROMAGNETISM  

E-Print Network [OSTI]

1353 RESTRICTED-TRACE APPROXIMATION FOR NUCLEAR ANTIFERROMAGNETISM M. GOLDMAN and G. SARMA Service to predict several properties of nuclear antiferromagnetic structures : sublattice magnetization of nuclear dipolar magnetic ordering, either antiferromagnetic or ferromagnetic, has been reported

Boyer, Edmond

380

A fresh look at the adhesion approximation  

E-Print Network [OSTI]

I report on a systematic derivation of the phenomenological ``adhesion approximation'' from gravitational instability together with a brief evaluation of the related status of analytical modeling of large-scale structure.

Thomas Buchert

1997-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Harmonic Wavelet Transform and Image Approximation  

E-Print Network [OSTI]

DOI 10.1007/s10851-010-0202-x Harmonic Wavelet Transform andwe approximate f by a harmonic function u such that thebanks. We call this the Harmonic Wavelet Transform (HWT).

Zhang, Zhihua; Saito, Naoki

2010-01-01T23:59:59.000Z

382

Transient queueing approximations for computer networks  

E-Print Network [OSTI]

for just the mean. Rothkopf/Oren's and Chang/Wang's methods obtained mean and variance values, and Clark's method produced several quantities which were used to find mean and variance statistics. For the M/M/1 case, the approximations by Gark and Chang... were very ac- curate over a wide range of input patterns and initial conditions. Rothkopf's was accurate over sll conditions but never as accurate as Chang or Clark. Johnston's and Rider's approximations performed acceptably only over some...

Baker, William A.

1986-01-01T23:59:59.000Z

383

An improved proximity force approximation for electrostatics  

SciTech Connect (OSTI)

A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

Fosco, Cesar D. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina) [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche (Argentina); Lombardo, Fernando C. [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina) [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); IFIBA (Argentina)] [Argentina; Mazzitelli, Francisco D., E-mail: fdmazzi@cab.cnea.gov.ar [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina); Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

2012-08-15T23:59:59.000Z

384

A reconstruction of the tables of the Shuli Jingyun  

E-Print Network [OSTI]

1722) and covering almost all mathematical knowledge known in China at that time. It was part of a larger collection movable copper type [23, p. 76], but the tables were certainly printed with xylography.2 The Shuli Jingyun was imported in other countries, such as 1 We have consulted the original tables at the Institut des Hautes

Boyer, Edmond

385

NOMBRE DE RAYONS 03B1 MIS PAR UNE PRPARATION DE DPOT ACTIF DU THORIUM MESURE PAR SON RAYONNEMENT PNTRANT  

E-Print Network [OSTI]

NOMBRE DE RAYONS 03B1 ?MIS PAR UNE PR?PARATION DE D?POT ACTIF DU THORIUM MESUR?E PAR SON cm de Pb. Résultats. 1. But du travail. - Le Radiothorium, le Thorium X et le dépôt actif du Thorium sont généralement dosés par leur rayonnement y provenant de Thorium (C + Cfl). A cet effet, à l

Paris-Sud XI, Université de

386

Approximate Killing Fields as an Eigenvalue Problem  

E-Print Network [OSTI]

Approximate Killing vector fields are expected to help define physically meaningful spins for non-symmetric black holes in general relativity. However, it is not obvious how such fields should be defined geometrically. This paper relates a definition suggested recently by Cook and Whiting to an older proposal by Matzner, which seems to have been overlooked in the recent literature. It also describes how to calculate approximate Killing fields based on these proposals using an efficient scheme that could be of immediate practical use in numerical relativity.

Christopher Beetle

2008-08-12T23:59:59.000Z

387

Stochastic Approximation and Its Application in MCMC  

E-Print Network [OSTI]

) is known as observational noise, which is de ned as follows: t+1 = H t+1( t; xt+1) h t+1( t); In 1951, Robin and Monro introduced the so-called Robbins - Monro algorithm (1951) to solve the integration equation and the algorithm works as follows...: Algorithm 1.1.1. Stochastic Approximation 1 a. Generate Xt+1 g t(x), where t indexes the iteration. b. Set t+1 = t + atH( t; Xt+1), where at is the gain factor. This Robbins a^ Monro algorithm is the most popular stochastic approximation method used...

Cheng, Yichen

2013-05-31T23:59:59.000Z

388

Realizing Physical Approximation of the Partial Transpose  

E-Print Network [OSTI]

The partial transpose by which a subsystem's quantum state is solely transposed is of unique importance in quantum information processing from both fundamental and practical point of view. In this work, we present a practical scheme to realize a physical approximation to the partial transpose using local measurements on individual quantum systems and classical communication. We then report its linear optical realization and show that the scheme works with no dependence on local basis of given quantum states. A proof-of-principle demonstration of entanglement detection using the physical approximation of the partial transpose is also reported.

Hyang-Tag Lim; Yong-Su Kim; Young-Sik Ra; Joonwoo Bae; Yoon-Ho Kim

2011-04-18T23:59:59.000Z

389

Approximations to the Distributed Activation Energy Model  

E-Print Network [OSTI]

), used for the pyrolysis of a range of materials (including coal, biomass, residual oils and kerogen applies to the pyrolysis of other materials, including biomass, residual oils, resin chars [1Approximations to the Distributed Activation Energy Model for Pyrolysis C.P. Please, 1 M.J. Mc

McGuinness, Mark

390

Kirchhoff approximation for diffusive waves Jorge Ripoll*  

E-Print Network [OSTI]

Laboratoire d'Energetique Moleculaire et Macroscopique, Combustion, Ecole Centrale Paris, Centre National de for accurately solving the direct scattering problem 17,18,23 for arbitrary geometries, but these methods,26 . This approximation is a linear method that does not involve matrix inversion while solving the forward problem

Lorenzo, Jorge Ripoll

391

Correcting the diffusion approximation at the boundary  

E-Print Network [OSTI]

, 2011 The diffusion approximation to the radiative transport equation applies for light that has solutions of the radiative transport equation to evaluate each of their accuracy. Nonetheless, nearly all transport equation · I þ aI þ sLI ¼ 0; ð1:1? governs continuous light propagation in tissues [1

Kim, Arnold D.

392

IMPROVING THE APPROXIMATION AND CONVERGENCE CAPABILITIES OF  

E-Print Network [OSTI]

­dimensional data. Projection pursuit learning (PPL) formulates PPR in a neural network framework. One major difference between PPR and PPL is that the smoothers in PPR are nonparametric, whereas those in PPL are based known, we demonstrate that PPL networks do not have the universal approximation and strong convergence

Yeung, Dit-Yan

393

Approximating the Permanent with Belief Propagation  

E-Print Network [OSTI]

, then use Bethe free energy to approximate this partition function. After deriving some speedups to standard, not to mention relatively high polynomial running times that discourage their usage in practical applications-connected networks such as trees. In certain special loopy graph cases, including graphs with a single loop

Huang, Bert

394

Blind Channel Equalization and -Approximation Algorithms  

E-Print Network [OSTI]

Blind Channel Equalization and #15;-Approximation Algorithms #3; Qingyu Li 1 , Er-Wei Bai 1 University of Iowa Iowa City, IA 52242 Abstract In this paper, we show that a blind equalizer can be obtained without using any sta- tistical information on the input by formulating the blind channel equalization

Ye, Yinyu

395

FRACTAL APPROXIMATION AND COMPRESSION USING PROJECTED IFS  

E-Print Network [OSTI]

FRACTAL APPROXIMATION AND COMPRESSION USING PROJECTED IFS ?ric Guérin, ?ric Tosan and Atilla, or images) with fractal models is an important center of interest for research. The general inverse problem.The most known of them is the fractal image compression method introduced by Jacquin. Generally speaking

Baskurt, Atilla

396

APPROXIMATION ALGORITHMS FOR SCHEDULING a dissertation  

E-Print Network [OSTI]

Approved for the University Committee on Graduate Studies: iii #12; iv #12; Abstract This thesis describes instance of the problem, returns a solution whose value is within some guaranteed multiplicative factor ff release dates only we obtain an e e\\Gamma1 ' 1:58 approximation. For the parallel machine case we obtain

Chekuri, Chandra

397

Symbolic Test Selection Based on Approximate Analysis  

E-Print Network [OSTI]

Symbolic Test Selection Based on Approximate Analysis Bertrand Jeannet, Thierry J´eron, Vlad Rusu}@irisa.fr Abstract. This paper addresses the problem of generating symbolic test cases for testing the conformance. The challenge we consider is the selection of test cases according to a test purpose, which is here a set

Paris-Sud XI, Université de

398

Approximate Inference and Protein-Folding  

E-Print Network [OSTI]

Approximate Inference and Protein-Folding Chen Yanover and Yair Weiss School of Computer Science Side-chain prediction is an important subtask in the protein-folding problem. We show that #12;nding algorithms, including a widely used protein-folding software (SCWRL). 1 Introduction Inference in graphical

Weiss, Yair

399

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

table. 56 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

400

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

table. 56 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

U.S. Energy Information Administration (EIA) Indexed Site

table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

402

"Table HC8.12 Home Electronics Usage Indicators by Urban/Rural...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey. " " Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC8.12 Home...

403

"Table HC8.10 Home Appliances Usage Indicators by Urban/Rural...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC8.10 Home...

404

Corrected Table for the Parametric Coefficients for the Optical Depth of the Universe to Gamma-rays at Various Redshifts  

E-Print Network [OSTI]

Table 1 in our paper, ApJ 648, 774 (2006) entitled "Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0 Optical Depth of the Universe to High Energy Gamma-Rays" had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays. The correct values for these parameters as described in the original text are given here in a corrected table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift. The parametric approximation is good for optical depths between 0.01 and 100 and for gamma-ray energies up to ~2 TeV for all redshifts but also for energies up to ~10 TeV for redshifts less than 1.

F. W. Stecker; M. A. Malkan; S. T. Scully

2007-02-02T23:59:59.000Z

405

Composite slip table of dissimilar materials for damping longitudinal modes  

DOE Patents [OSTI]

A vibration slip table for use in a vibration testing apparatus is disclosed. The tables comprised of at least three composite layers of material; a first metal layer, a second damping layer, and a third layer having a high acoustic velocity relative to the first layer. The different acoustic velocities between the first and third layers cause relative shear displacements between the layers with the second layer damping the displacements between the first and third layers to reduce the table longitudinal vibration modes. 6 figures.

Gregory, D.L.; Priddy, T.G.; Smallwood, D.O.; Woodall, T.D.

1991-06-18T23:59:59.000Z

406

TGF-?/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor  

SciTech Connect (OSTI)

Tympanic membrane perforations are common and represent a management challenge to clinicians. Current treatments for chronic perforations involve a graft surgery and require general anaesthesia, including associated costs and morbidities. Bioactive molecules (e.g. growth factors, cytokines) play an important role in promoting TM wound healing following perforation and the use of growth factors as a topical treatment for tympanic membrane perforations has been suggested as an alternative to surgery. However, the choice of bioactive molecules best suited to promote wound healing has yet to be identified. We investigated the effects of hyaluronic acid, vitronectin, TGF-?, IL-24 and their combinations on migration, proliferation and adhesion of cultured human tympanic membrane-derived keratinocytes (hTM), in addition to their possible mechanisms of action. We found that TGF-?, TGF-?/HA and TGF-?/IL-24 promoted wound healing by significantly increasing both migration and proliferation. TGF-? and/or HA treated cells showed comparable cellcell adhesion whilst maintaining an epithelial cell phenotype. With the use of receptor binding inhibitors for ErbB1 (AG1478) and CD44 (BRIC235), we revealed that the activation of ErbB1 is required for TGF-?/HA-mediated migration and proliferation. These results suggest factors that may be incorporated into a tissue-engineered membrane or directly as topical treatment for tympanic membrane perforations and hence reduce the need for a surgery. - Highlights: ? TGF-?, TGF-?/HA and TGF-?/IL-24 improved hTM keratinocyte migration and proliferation. ? TGF-? and/or HA maintained epithelial cell phenotype. ? TGF-?/HA-mediated migration and proliferation requires activation of ErbB1 receptor.

Mei Teh, Bing, E-mail: bing.teh@earscience.org.au [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA (Australia); Redmond, Sharon L. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Shen, Yi [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head and Neck, Ningbo Lihuili Hospital (Ningbo Medical Centre), Ningbo, Zhejiang (China); Atlas, Marcus D. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA (Australia); Marano, Robert J.; Dilley, Rodney J. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia)

2013-04-01T23:59:59.000Z

407

Historical Wetlands of the Southern California Coast B1 Appendix B: AdditionAl t-sheet imAges  

E-Print Network [OSTI]

OS angeleS lOng beach huntingtOn beach newpOrt beach laguna beach OceanSide San diegO ventura Pitas Pt. Pt Figure B1. location of t-sheets. #12;1:34,000 RegisteR NO.: T-1267 Published: 1871 suRveyoR: W. e. Green as facing T-sheet. #12;1:34,000 RegisteR NO.: T-1230 Published: 1870 suRveyoR: W.e. GreenWell AnD S. Forney

408

Data:Bde6f933-ddb9-4600-b1a5-181620571364 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revisionBde6f933-ddb9-4600-b1a5-181620571364 No revision has

409

Data:6362ce92-1584-4311-b025-b0cb05b1f119 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved fore6e8eee44 No revision hase0-c9bbf54265425b1f119 No revision has been

410

Data:63658822-5778-43f5-b1cd-bd7ee81571b3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved fore6e8eee44 No revision hase0-c9bbf54265425b1f119 No

411

Data:16852873-60df-4517-b1fb-0c4dc84af95c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 Nob97eb4d202d0 No revisiond86967932433 Nodc84af95c No revision has

412

Data:Dbdad3b1-04dc-40cd-843e-921faaade910 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revisionDbdad3b1-04dc-40cd-843e-921faaade910 No revision has been approved for this page. It is currently

413

Data:Dc00b1cc-729b-4810-b51a-0ebc30399936 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revisionDbdad3b1-04dc-40cd-843e-921faaade910 No revision has been approved for1a-0ebc30399936 No revision

414

Vibrational Superposition States Without Rotating Wave Approximation  

E-Print Network [OSTI]

We propose a scheme to generate superpositions of coherent states for the vibrational motion of a laser cooled trapped-ion. It is based on the interaction with a standing wave making use of the counter-rotating terms, i.e. not applying the rotating wave approximation. We also show that the same scheme can be exploited for quantum state measurement, i.e. with the same scheme non-classical states may be reconstructed

Mancini, S; Tombesi, P

2000-01-01T23:59:59.000Z

415

1/23/13 14:22Patent EP1276411B1 -Computer-based 3d visual field test system and analysis -Google Patents Page 1 of 7http://www.google.com/patents/EP1276411B1?cl=en  

E-Print Network [OSTI]

1/23/13 14:22Patent EP1276411B1 - Computer-based 3d visual field test system and analysis - Google Patents Page 1 of 7http://www.google.com/patents/EP1276411B1?cl=en Patents Publication number EP1276411 B1 this patent DRAWINGS (14) [0001] [0002] [0003] [0004] [0005] Application French GermanGrant English Sign

Arizona, University of

416

Description of 2003 CBECS Detailed Tables and Categories of Data  

Gasoline and Diesel Fuel Update (EIA)

floorspace heated, cooled, and lit, and energy-using equipment types (heating, cooling, water heating, lighting, and refrigeration). Tables C1-C12 and C1A-C12A contain energy usage...

417

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

418

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Broader source: Energy.gov [DOE]

Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

419

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

420

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

U.S. Energy Information Administration (EIA) Indexed Site

- - 466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

422

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

U.S. Energy Information Administration (EIA) Indexed Site

- - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

423

Building an electronic drafting table for sketch recognition  

E-Print Network [OSTI]

Sketch recognition as developed by the CSAIL Design Rationale Group allows a designer to sketch out and test design ideas without the need for complicated CAD programs. An electronic drafting table is required to capture ...

Bruening, Oskar Ernst, 1979-

2004-01-01T23:59:59.000Z

424

Knapsack Problems with Sigmoid Utilities: Approximation Algorithms via Hybrid Optimization$  

E-Print Network [OSTI]

Knapsack Problems with Sigmoid Utilities: Approximation Algorithms via Hybrid Optimization$ Vaibhav with sigmoid utilities. We merge approximation algorithms from discrete optimization with algorithms from continuous optimization to develop approximation algorithms for these NP-hard problems with sigmoid utilities

Bullo, Francesco

425

DRAFT Batched Answer : An Alternative Scheduling for Tabling Systems  

E-Print Network [OSTI]

between generation and consumption of answers, and so, implementations of tabled logic programs face of answers. Example 1.2 Consider the program p:­ q(X),r(X),s(X). q(f(X)):­ q(X). q(g(X)):­ q(X). q(a). r, NY 11794­4400 fjuliana,tswift,warreng@cs.sunysb.edu March 25, 1996 Abstract Tabled logic programs

Freire, Juliana

426

Verified integrity properties for safe approximate program transformations  

E-Print Network [OSTI]

Approximate computations (for example, video, audio, and image processing, machine learning, and many scientific computations) have the freedom to generate a range of acceptable results. Approximate program transformations ...

Kim, Deokhwan

427

Relativistic Random Phase Approximation At Finite Temperature  

SciTech Connect (OSTI)

The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

Niu, Y. F. [State Key Laboratory for Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Physics Department, Faculty of Science, University of Zagreb (Croatia); Paar, N.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Meng, J. [State Key Laboratory for Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)

2009-08-26T23:59:59.000Z

428

Validity of the independent-particle approximation in x-ray photoemission: The exception, not the rule  

SciTech Connect (OSTI)

A combined experimental and theoretical study of argon valence photoionization illustrates the discovery of the broad lack of validity of the independent-particle approximation (IPA) for x-ray photoemission. In addition to previously known breakdowns of the IPA, which are limited to high photon energies and regions very near threshold, the observed breakdown in photoionization at intermediate energies demonstrates generally that the IPA is valid only in very restricted domains. These restrictions are expected to be relevant throughout the periodic table, with consequences for a wide variety of applications. {copyright} {ital 1999} {ital The American Physical Society}

Hansen, D.L.; Hemmers, O.; Wang, H.; Lindle, D.W. [Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4003 (United States)] [Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4003 (United States); Focke, P.; Sellin, I.A. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200 (United States)] [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200 (United States); Heske, C. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)] [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Chakraborty, H.S.; Deshmukh, P.C. [Department of Physics, Indian Institute of Technology-Madras, Chennai 600036 (India)] [Department of Physics, Indian Institute of Technology-Madras, Chennai 600036 (India); Manson, S.T. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303-3083 (United States)] [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303-3083 (United States)

1999-10-01T23:59:59.000Z

429

Entangled games are hard to approximate  

E-Print Network [OSTI]

We establish the first hardness results for the problem of computing the value of one-round games played by a verifier and a team of provers who can share quantum entanglement. In particular, we show that it is NP-hard to approximate within an inverse polynomial the value of a one-round game with (i) quantum verifier and two entangled provers or (ii) classical verifier and three entangled provers. Previously it was not even known if computing the value exactly is NP-hard. We also describe a mathematical conjecture, which, if true, would imply hardness of approximation to within a constant. We start our proof by describing two ways to modify classical multi-prover games to make them resistant to entangled provers. We then show that a strategy for the modified game that uses entanglement can be ``rounded'' to one that does not. The results then follow from classical inapproximability bounds. Our work implies that, unless P=NP, the values of entangled-prover games cannot be computed by semidefinite programs that are polynomial in the size of the verifier's system, a method that has been successful for more restricted quantum games.

Julia Kempe; Hirotada Kobayashi; Keiji Matsumoto; Ben Toner; Thomas Vidick

2007-11-21T23:59:59.000Z

430

Analytic approximate radiation effects due to Bremsstrahlung  

SciTech Connect (OSTI)

The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

Ben-Zvi I.

2012-02-01T23:59:59.000Z

431

On the mathematical treatment of the Born-Oppenheimer approximation.  

E-Print Network [OSTI]

On the mathematical treatment of the Born-Oppenheimer approximation. Thierry Jecko AGM, UMR 8088 du the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation of the approximation in Chemistry. We contribute in this way to the discussion on the Born-Oppenheimer approximation

Paris-Sud XI, Université de

432

Data:55384958-4444-43d9-a513-771c88b1e364 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No revision has2fea1047f348bf8a-400a6a445753 No revisionc65d672c88b1e364

433

Semiclassical approximation to supersymmetric quantum gravity  

SciTech Connect (OSTI)

We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schroedinger equation, and quantum gravitational correction terms to this Schroedinger equation. In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many-fingered) local time parameter has to be present on super Riem {sigma} (the space of all possible tetrad and gravitino fields) (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early Universe. The physical meaning of these equations and results, in particular, the similarities to and differences from the pure bosonic case, are discussed.

Kiefer, Claus; Lueck, Tobias; Moniz, Paulo [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Strasse 77, 50937 Cologne (Germany); Astronomy Unit, School of Mathematical Sciences, Queen Mary College, University of London, Mile End Road, London E1 4NS (United Kingdom)

2005-08-15T23:59:59.000Z

434

b1.pdf  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006to Five Six

435

b1.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006to Five Six1

436

b1.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006to Five

437

b1.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006to FiveAll

438

b1.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)Wyoming (Million CubicOctober 2006to FiveAll

439

Appendix B-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes LaboratoryAntonyaAppeals AppealsU.S.AppendixB STANDARD

440

World Oils`s 1995 coiled tubing tables  

SciTech Connect (OSTI)

Increasingly in demand in almost every aspect of today`s E and P market because of flexibility, versatility and economy, coiled tubing is being used for a variety of drilling, completion and production operations that previously required conventional jointed pipe, workover and snubbing units, or rotary drilling rigs. For 1995 the popular coiled tubing tables have been reformatted, expanded and improved to give industry engineering and field personnel additional, more specific selection, operational and installation information. Traditional specifications and dimensions have been augmented by addition of calculated performance properties for downhole workover and well servicing applications. For the first time the authors are presenting this information as a stand-alone feature, separate from conventional jointed tubing connection design tables, which are published annually in the January issue. With almost seven times as much usable data as previous listings, the authors hope that their new coiled tubing tables are even more practical and useful to their readers.

NONE

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Net alkalinity and net acidity 2: Practical considerations Carl S. Kirby a,*, Charles A. Cravotta III b,1  

E-Print Network [OSTI]

Net alkalinity and net acidity 2: Practical considerations Carl S. Kirby a,*, Charles A. Cravotta of the sample. The Hot Acidity directly measures net acidity (=?net alkalinity). Samples that had near-neutral p in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity

Kirby, Carl S.

442

THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE  

SciTech Connect (OSTI)

Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

Phillips, S.L.; Hale, F.V.; Silvester, L.F.

1988-05-01T23:59:59.000Z

443

Table 11.1 Electricity: Components of Net Demand, 2010;  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statistics for0 Table 10.:11.1

444

A COLD COMPLEX CHEMISTRY TOWARD THE LOW-MASS PROTOSTAR B1-b: EVIDENCE FOR COMPLEX MOLECULE PRODUCTION IN ICES  

SciTech Connect (OSTI)

Gas-phase complex organic molecules have been detected toward a range of high- and low-mass star-forming regions at abundances which cannot be explained by any known gas-phase chemistry. Recent laboratory experiments show that UV irradiation of CH{sub 3}OH-rich ices may be an important mechanism for producing complex molecules and releasing them into the gas phase. To test this ice formation scenario, we mapped the B1-b dust core and nearby protostar in CH{sub 3}OH gas using the IRAM 30 m telescope to identify locations of efficient non-thermal ice desorption. We find three CH{sub 3}OH abundance peaks tracing two outflows and a quiescent region on the side of the core facing the protostar. The CH{sub 3}OH gas has a rotational temperature of {approx}10 K at all locations. The quiescent CH{sub 3}OH abundance peak and one outflow position were searched for complex molecules. Narrow, 0.6-0.8 km s{sup -1} wide, HCOOCH{sub 3} and CH{sub 3}CHO lines originating in cold gas are clearly detected, CH{sub 3}OCH{sub 3} is tentatively detected, and C{sub 2}H{sub 5}OH and HOCH{sub 2}CHO are undetected toward the quiescent core, while no complex molecular lines were found toward the outflow. The core abundances with respect to CH{sub 3}OH are {approx}2.3% and 1.1% for HCOOCH{sub 3} and CH{sub 3}CHO, respectively, and the upper limits are 0.7%-1.1%, which is similar to most other low-mass sources. The observed complex molecule characteristics toward B1-b and the pre-dominance of HCO-bearing species suggests a cold ice (below 25 K, the sublimation temperature of CO) formation pathway followed by non-thermal desorption through, e.g., UV photons traveling through outflow cavities. The observed complex gas composition together with the lack of any evidence of warm gas-phase chemistry provides clear evidence of efficient complex molecule formation in cold interstellar ices.

Oeberg, Karin I. [Harvard-Smithsonian Center for Astrophysics, MS 42, 60 Garden Street, Cambridge, MA 02138 (United States); Bottinelli, Sandrine [Centre d'Etude Spatiale des Rayonnements, 9 avenue du Colonel Roche, BP 4346, 31028 Toulouse Cedex 4 (France); Joergensen, Jes K. [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K. (Denmark); Van Dishoeck, Ewine F. [Leiden Observatory, Leiden Sterrewacht, P.O. Box 9513, 2300 RA Leiden (Netherlands)

2010-06-10T23:59:59.000Z

445

RESOLVING THE OPTICAL EMISSION LINES OF Ly{alpha} BLOB ''B1'' AT z = 2.38: ANOTHER HIDDEN QUASAR  

SciTech Connect (OSTI)

We have used the SINFONI near-infrared integral field unit on the Very Large Telescope to resolve the optical emission line structure of one of the brightest (L{sub Ly{alpha}} Almost-Equal-To 10{sup 44} erg s{sup -1}) and nearest (z Almost-Equal-To 2.38) of all Ly{alpha} blobs (LABs). The target, known in the literature as object {sup B}1{sup ,} lies at a redshift where the main optical emission lines are accessible in the observed near-infrared. We detect luminous [O III] {lambda}{lambda}4959, 5007 and H{alpha} emission with a spatial extent of at least 32 Multiplication-Sign 40 kpc (4'' Multiplication-Sign 5''). The dominant optical emission line component shows relatively broad lines (600-800 km s{sup -1}, FWHM) and line ratios consistent with active galactic nucleus (AGN) photoionization. The new evidence for AGN photoionization, combined with previously detected C IV and luminous, warm infrared emission, suggest that B1 is the site of a hidden quasar. This is confirmed by the fact that [O II] is relatively weak compared with [O III] (extinction-corrected [O III]/[O II] of about 3.8), which is indicative of a high, Seyfert-like ionization parameter. From the extinction-corrected [O III] luminosity we infer a bolometric AGN luminosity of {approx}3 Multiplication-Sign 10{sup 46} erg s{sup -1}, and further conclude that the obscured AGN may be Compton-thick given existing X-ray limits. The large line widths observed are consistent with clouds moving within the narrow-line region of a luminous QSO. The AGN scenario is capable of producing sufficient ionizing photons to power the Ly{alpha}, even in the presence of dust. By performing a census of similar objects in the literature, we find that virtually all luminous LABs harbor obscured quasars. Based on simple duty-cycle arguments, we conclude that AGNs are the main drivers of the Ly{alpha} in LABs rather than the gravitational heating and subsequent cooling suggested by cold stream models. We also conclude that the empirical relation between LABs and overdense environments at high redshift must be due to a more fundamental correlation between AGNs (or massive galaxies) and environment.

Overzier, R. A. [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Nesvadba, N. P. H. [Institut d'Astrophysique Spatiale, CNRS, Universite Paris-Sud, F-91405 Orsay (France); Dijkstra, M. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Hatch, N. A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Lehnert, M. D. [GEPI, Observatoire de Paris, UMR 8111, CNRS, Universite Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Villar-Martin, M. [Centro de Astrobioloia (INTA-CSIC), Carretera de Ajalvir, km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Wilman, R. J. [Department of Physics, University of Durham, South Road, Durham DH13LE (United Kingdom); Zirm, A. W., E-mail: overzier@astro.as.utexas.edu [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

2013-07-10T23:59:59.000Z

446

Adaptive approximation of higher order posterior statistics  

SciTech Connect (OSTI)

Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization of the conditioned probability distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the best method for uncertainty propagation without observations. Nevertheless, the projection of the system variables in a fixed polynomial basis spanning the probability space might be a competitive representation in the presence of relatively frequent observations because the Wiener chaos approach not only leads to an accurate and efficient prediction for short time uncertainty quantification, but it also allows to apply several data assimilation methods that can be used to yield a better approximate filtering solution. The aim of the present paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic) Lorenz-63 system based on numerical simulations in which the uncertainty quantification method and the data assimilation method are adaptively selected by whether the dynamics is driven by Brownian motion and the near-Gaussianity of the measure to be updated, respectively.

Lee, Wonjung, E-mail: leew@maths.ox.ac.uk

2014-02-01T23:59:59.000Z

447

Coulomb crystals in the harmonic lattice approximation  

E-Print Network [OSTI]

The dynamic structure factor ${\\tilde S}({\\bf k},\\omega)$ and the two-particle distribution function $g({\\bf r},t)$ of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multi-phonon excitation and absorption. The static radial two-particle distribution function $g(r)$ is calculated for classical ($T \\gtrsim \\hbar \\omega_p$, where $\\omega_p$ is the ion plasma frequency) and quantum ($T \\ll \\hbar \\omega_p$) body-centered cubic (bcc) crystals. The results for the classical crystal are in a very good agreement with extensive Monte Carlo (MC) calculations at $1.5 \\lesssim r/a \\lesssim 7$, where $a$ is the ion-sphere radius. The HL Coulomb energy is calculated for classical and quantum bcc and face-centered cubic crystals, and anharmonic corrections are discussed. The inelastic part of the HL static structure factor $S''(k)$, averaged over orientations of wave-vector {\\bf k}, is shown to contain pronounced singularities at Bragg diffraction positions. The type of the singularities is different in classical and quantum cases. The HL method can serve as a useful tool complementary to MC and other numerical methods.

D. A. Baiko; D. G. Yakovlev; H. E. De Witt; W. L. Slattery

1999-12-23T23:59:59.000Z

448

Three fast computational approximation methods in hypersonic aerothermodynamics  

E-Print Network [OSTI]

Three fast computational approximation methods in hypersonic aerothermodynamics V.V. Riabov* Rivier analyzed to study nonequilibrium hypersonic viscous flows near blunt bodies. These approximations allow; Nonequilibrium hypersonic flows 1. Introduction Numerous methods [1,2] that require significant computational

Riabov, Vladimir V.

449

Approximate Linear Programming for Firstorder MDPs Scott Sanner  

E-Print Network [OSTI]

, the bounds that we derive for approximation error apply equally to all domain instantiations (i.eApproximate Linear Programming for First­order MDPs Scott Sanner University of Toronto Department

Sanner, Scott

450

Chapter 13 Employee Health and Safety Table of Contents  

E-Print Network [OSTI]

to understand their responsibility for the safety of all persons coming into their work areas. EmployeesChapter 13 Employee Health and Safety Table of Contents 13.01 Safety Policy and Accident Reporting 13.02 Workplace Violence Policy 13.03 Hazardous Employment Injury 13.04 Safety Committees 13

Sheridan, Jennifer

451

7 Predictive Risk Mapping of Water Table Depths in  

E-Print Network [OSTI]

, and so risks of water shortage appear. The preservation of these resources is important because73 7 Predictive Risk Mapping of Water Table Depths in a Brazilian Cerrado Area R. L. Manzione, M metabolize throughout the year, drawing on soil water reserves, and can withstand short-lived fires. contents

Camara, Gilberto

452

Table 1. HARVESTING MANAGEMENT STRATEGIES Strategy Name Use Typical location  

E-Print Network [OSTI]

channels Partial cutting systems PARTIAL To minimize fan destabilization Fans with high destabilization To reduce the logging debris load For gullies with high debris flow potential FS197C RVA 2002/03 #12;Table 2, BUFFER Hb NOLOG Hb NOLOG M LOG/CLWD M BUFFER, LS/CTWD Mb BUFFER, PARTIAL Mb BUFFE, PARTIA, LS/CLWD L LOG

453

2010 Air Canada Elite Program Table of contents  

E-Print Network [OSTI]

2010 Air Canada Elite Program Table of contents 2010 & 2011 Qualifying Criteria 2010 Privileges Benefits 2010TopTier Comparison Chart 2010 & 2011 Qualifying Criteria How to Achieve Air Canada Top Tier Q u a l i f y i n g C r i t e r i a How to Achieve Air Canada Top Tier Status The qualifying period

Flanagan, Randy

454

Student Conduct Code Procedure: Rochester Table of Contents  

E-Print Network [OSTI]

Student Conduct Code Procedure: Rochester PROCEDURE Table of Contents Introduction and purpose To whom does this policy apply Complaints of violations of Board of Regents Policy: Student Conduct Code Informal Resolution Formal Resolution Possible sanctions for violations of Board of Regents Policy: Student

Jiang, Tiefeng

455

Student Senate Constitution and Bylaws Table of Contents  

E-Print Network [OSTI]

1 Student Senate Constitution and Bylaws Table of Contents Student Government Overview 2 Constitution of Wittenberg University Student Government 2 ARTICLE I: Name 2 ARTICLE II: Charge 2 ARTICLE III: Mission 3 ARTICLE IV: Officers of Student Senate 3 ARTICLE V: Student Senate Committees 10 ARTICLE VI

Bogaerts, Steven

456

Supplementary Table 2 Conservation of helicase motifs. Conservation  

E-Print Network [OSTI]

Supplementary Table 2 Conservation of helicase motifs. Motif Lobe1 Structural Conservation between SF1/SF2 Function Structural conservation in Rad54 Comment I Conserved in SF1 and SF2 Nucleotide to the -phosphate of ATP. This sulfate group also interacts with motif VI. Ia Conserved in SF1 and SF2 DNA binding

Kowalczykowski, Stephen C.

457

Technical Note/ Improved Water Table Dynamics in MODFLOW  

E-Print Network [OSTI]

series of ground water simulation codes, developed by the U.S. Geological Survey, is possi- bly the most storage as well as the physical dimensions of the sat- urated region. The change in storage is modeled of the cell. While the change in storage occurs at the water table, the influence is applied to the entire

Barrash, Warren

458

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

61.5 70.8 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

459

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

62.6 71.7 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

460

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

U.S. Energy Information Administration (EIA) Indexed Site

71.8 W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W 68.4 70.8 W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

462

TABLE OF CONTENTS 2 Montreal, a student city  

E-Print Network [OSTI]

consumption, incorporating renewable energy sources, recycling and composting waste and sponsoring student transportation system, the Métro. · The Copenhagen Index of bike-friendly cities puts us first in North America#12;TABLE OF CONTENTS 2 Montreal, a student city 4 Concordia: Perfect for you 6 Sir George Williams

Doedel, Eusebius

463

Migration Health MIDSA Report -December 2009 Table of Contents  

E-Print Network [OSTI]

-Sectoral Approach . . . . . . . . . . . . . . . . . . . . . . . 17 5.5 PHC Reform and Provision of Health Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.10 Burden on Health Care System . . . . . . . . . . . . . . . . . . . 18 5.11 Condom#12;Migration Health MIDSA Report - December 2009 Table of Contents 1 Foreword 1 2 Acronyms 3 3

Abolmaesumi, Purang

464

Table of Contents 2 Find a Job or Internship  

E-Print Network [OSTI]

F 2 0 1 1 A L L #12;Table of Contents 2 Find a Job or Internship 4 All Students and Alumni 10 All begin November 18th Deadline to accept full-time offers Summer Internship Search through OCR November 2 to accept internship offers Employer Information Sessions Employer Information Sessions are hosted on campus

Hone, James

465

TABLE OF CONTENTS CALIFORNIA CODE OF REGULATIONS ADMINISTRATIVE REGULATIONS  

E-Print Network [OSTI]

#12;#12;i TABLE OF CONTENTS CALIFORNIA CODE OF REGULATIONS ADMINISTRATIVE REGULATIONS Section 10............................................. Admin-7 Section 10-106 -- Locally Adopted Energy Standards Product U-Values, Solar Heat Gain Coefficient, and Air Leakage....... Admin-12 Section 10-112 -- Criteria

466

Unobtrusive Tabletops: Linking Personal Devices with Regular Tables  

E-Print Network [OSTI]

1 Unobtrusive Tabletops: Linking Personal Devices with Regular Tables Abstract In this paper we with spatially tracked touch-enabled personal devices. This retains the normal usage of tabletop surfaces, solves privacy issues, and allows for storage of media items on the personal devices. Moreover, user input can

467

Bond selective chemistry beyond the adiabatic approximation  

SciTech Connect (OSTI)

One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

Butler, L.J. [Univ. of Chicago, IL (United States)

1993-12-01T23:59:59.000Z

468

Regular Type III and Type N Approximate Solutions  

E-Print Network [OSTI]

New type III and type N approximate solutions which are regular in the linear approximation are shown to exist. For that, we use complex transformations on self-dual Robinson-Trautman metrics rather then the classical approach. The regularity criterion is the boundedness and vanishing at infinity of a scalar obtained by saturating the Bel-Robinson tensor of the first approximation by a time-like vector which is constant with respect to the zeroth approximation.

Philip Downes; Paul MacAllevey; Bogdan Nita; Ivor Robinson

2001-05-18T23:59:59.000Z

469

Optimization Online - Approximation of rank function and its ...  

E-Print Network [OSTI]

Jul 10, 2011 ... Particularly, with two families of approximation functions, we ... Citation: Department of Mathematics, South China University of Technology,...

shujun Bi

2011-07-10T23:59:59.000Z

470

On the mathematical treatment of the Born-Oppenheimer approximation.  

E-Print Network [OSTI]

On the mathematical treatment of the Born-Oppenheimer approximation. Thierry Jecko AGM, UMR 8088 du the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation in this way to the discussion on the Born-Oppenheimer approximation initiated in [SW]. The paper neither

471

On the mathematical treatment of the Born-Oppenheimer approximation.  

E-Print Network [OSTI]

On the mathematical treatment of the Born-Oppenheimer approximation. Thierry Jecko AGM, UMR 8088 du the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation in this way to the discussion on the Born-Oppenheimer approximation initiated in [SW1]. The paper neither

Paris-Sud XI, Université de

472

SUBTRACTING A BEST RANK-1 APPROXIMATION MAY INCREASE TENSOR RANK  

E-Print Network [OSTI]

SUBTRACTING A BEST RANK-1 APPROXIMATION MAY INCREASE TENSOR RANK Alwin Stegeman Heymans Institute, fax: +33 4 92 94 28 98, pcomon@unice.fr ABSTRACT Is has been shown that a best rank-R approximation be solved by consecutively computing and substracting best rank-1 approximations. The reason

Paris-Sud XI, Université de

473

Smoluchowski-Kramers approximation in the case of variable friction  

E-Print Network [OSTI]

We consider the small mass asymptotics (Smoluchowski-Kramers approximation) for the Langevin equation with a variable friction coefficient. The limit of the solution in the classical sense does not exist in this case. We study a modification of the Smoluchowski-Kramers approximation. Some applications of the Smoluchowski-Kramers approximation to problems with fast oscillating or discontinuous coefficients are considered.

Mark Freidlin; Wenqing Hu

2012-03-03T23:59:59.000Z

474

Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003  

SciTech Connect (OSTI)

The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

R. A. Carlson

2006-04-24T23:59:59.000Z

475

Data:12fb5ab5-aabb-4746-b891-c824b1cd73f4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision has been approved6-b891-c824b1cd73f4 No revision has

476

Data:1302e0a5-8e1a-495e-a1b1-738457116d9a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 No revision has been approved6-b891-c824b1cd73f4 No

477

Data:1722db6d-be94-4a17-8e4c-5b1fa89b5548 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 Nob97eb4d202d0 No8827bff3a72b1fa89b5548 No revision has been

478

Data:1736b8df-6849-4388-bd0c-a228b1dc78ff | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 Nob97eb4d202d0 No8827bff3a72b1fa89b5548 No

479

U.S. Rare Earth Magnet Patents Table 11-10-2014 page...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rare Earth Magnet Patents Table 11-10-2014 page 1 Disclaimer: This U.S. Rare Earth Magnet Patents Table contains a sample of the rare- earth-magnet patents issued by the U.S....

480

Tables for solution of the heat-conduction equation with a time-dependent heating rate  

E-Print Network [OSTI]

Tables are presented for the solution of the transient onedimensional heat flow in a solid body of constant material properties with the heating rate at one boundary dependent on time. These tables allow convenient and ...

Bergles A. E.

1962-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "table b1 approximate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

Total energy consumption outputs, lookup table controlMPC energy . . . . . . . . . . . Total energy consumptionyear. The annual total energy consumption (heating + cooling

Coffey, Brian

2011-01-01T23:59:59.000Z

482

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

Total energy consumption outputs, lookup table controlMPC energy . . . . . . . . . . . Total energy consumptionyear. The annual total energy consumption (heating + cooling

Coffey, Brian

2012-01-01T23:59:59.000Z

483

B.1 Matlab basics This section contains some basics of Matlab. Matlab has a lot of powerful and painless toolboxes, but we will  

E-Print Network [OSTI]

B Matlab B.1 Matlab basics This section contains some basics of Matlab. Matlab has a lot of powerful and painless toolboxes, but we will try to do most things by translating mathematics into matlab There are two ways to get help in matlab. The first is command line, which is useful if you know the name

Lakey, Joseph D.

484

Semiclassical Molecular Dynamics Simulations of the Excited State Photodissociation Dynamics of H2O in the A1B1 Band  

E-Print Network [OSTI]

Semiclassical Molecular Dynamics Simulations of the Excited State Photodissociation Dynamics of H2O modeled in terms of classical molecular dynamics simulations.9,12 However, the photodissociation from The photodissociation dynamics of H2O in the A1 B1 band is investigated by implementing a recently developed time

Wu, Yinghua

485

Confirmatory Survey Report for Area B1S/B2S at the Chevron Mining Washington Remediation Project, Washington, PA  

SciTech Connect (OSTI)

During the period of October 2 and 3, 2007, the Oak Ridge Institute for Science and Education (ORISE) performed confirmatory radiological survey activities which included gamma surface scans within Area B1S/B2S and the collection of soil samples from these areas.

W. C. Adams

2007-11-20T23:59:59.000Z

486

Actes JFPC 2012 Optimisation energetique de tables horaires de  

E-Print Network [OSTI]

Actes JFPC 2012 Optimisation ´energ´etique de tables horaires de m´etros: une approche hybride´en´etique-lin´eaire a ´et´e impl´e- ment´e pour r´esoudre ce probl`eme et calculer la fonction de distribution d genetic/linear algorithm has been imple- mented to tackle this problem and compute the distri- bution

Paris-Sud XI, Université de

487

Tables des principaux minerais d'uranium et de thorium  

E-Print Network [OSTI]

233 Tables des principaux minerais d'uranium et de thorium Par B. SZILARD [Faculté des Sciences de minerais d'uranium et de thorium avec leurs données les plus importantes, telles que la com- position, la teneur en uranium et en thorium, la provenance et quelques indications générales. La liste ne prétend pas

Paris-Sud XI, Université de

488

FY 2014 Budget Request Laboratory Table | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program ExchangeLaboratory Table FY 2014 Budget

489

FY 2014 Budget Request State Table | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program ExchangeLaboratory Table FY 2014

490

FY 2014 Budget Request Statistical Table | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program ExchangeLaboratory Table FY

491

FY 2014 Budget Request Summary Table | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program ExchangeLaboratory Table FYSummary

492

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary

493

Table 4. Total Petroleum Consumption, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:

494

Table 10.1 Nonswitchable Minimum and Maximum Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"1. 1993250 Table

495

Outcome-Space Outer Approximation Algorithm for Linear ...  

E-Print Network [OSTI]

Jul 20, 2007 ... This paper presents an outcome-space outer approximation algo- rithm for globally solving the linear multiplicative programming prob- lem.

2007-07-20T23:59:59.000Z

496

Bethe free-energy approximations for disordered quantum systems  

E-Print Network [OSTI]

Given a locally consistent set of reduced density matrices, we construct approximate density matrices which are globally consistent with the local density matrices we started from when the trial density matrix has a tree structure. We employ the cavity method of statistical physics to find the optimal density matrix representation by slowly decreasing the temperature in an annealing algorithm, or by minimizing an approximate Bethe free energy depending on the reduced density matrices and some cavity messages originated from the Bethe approximation of the entropy. We obtain the classical Bethe expression for the entropy within a naive (mean-field) approximation of the cavity messages, which is expected to work well at high temperatures. In the next order of the approximation, we obtain another expression for the Bethe entropy depending only on the diagonal elements of the reduced density matrices. In principle, we can improve the entropy approximation by considering more accurate cavity messages in the Bethe approximation of the entropy. We compare the annealing algorithm and the naive approximation of the Bethe entropy with exact and approximate numerical simulations for small and large samples of the random transverse Ising model on random regular graphs.

I. Biazzo; A. Ramezanpour

2014-07-08T23:59:59.000Z

497

approximate analytical structural: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

developed method has been extended to a nonlocal equation arising in steady water wave propagation in two dimensions. We obtain analyic approximation of steady water wave...

498

E-Print Network 3.0 - approximation descriptions microscopiques...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de l'approximation locale. Ce calcul est entirement... :lpmmc.grenoble.cnrs.frspip.php?article404 Description : Les polaritons de cavit sont des quasiparticules hybrides...

499

On Low Rank Matrix Approximations with Applications to Synthesis ...  

E-Print Network [OSTI]

a given matrix by a matrix of specified (low rank) in the uniform norm. ... Note that in the existing literature on low rank approximation of matrices the empha-.

2011-05-23T23:59:59.000Z

500

Finding approximately rank-one submatrices with the nuclear norm ...  

E-Print Network [OSTI]

We propose a convex optimization formulation with the nuclear norm and l1-norm to find a large approximately rank-one submatrix of a given nonnegative matrix...

2010-11-08T23:59:59.000Z