Sample records for rvp benzene content

  1. Potential Supply Impacts of Removal of 1-Pound RVP Waiver

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    trends, and current laws and regulations. The EIA's Annual Energy Outlook 2002 (AEO2002) is usedPotential Supply Impacts of Removal of 1-Pound RVP Waiver September 2002 #12;ii Energy Information by the Office of Oil and Gas of the Energy Information Administration. General questions concerning the report

  2. Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

  3. Drinking Water Problems: Benzene

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2009-04-16T23:59:59.000Z

    on their property, live within a half-mile of a gasoline station or petroleum storage or refining facility, or notice a sweet, chemical smell in their water should have their water wells tested for benzene. Benzene attacks the central nervous system; acute ex... of red and white blood cells and platelets. Breathing high levels of benzene for a long time can cause leukemia and/or disruptions of the bone marrow. Long-term exposures also can damage chromosomes, depress the immune system, reduce the size...

  4. Drinking Water Problems: Benzene 

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2009-04-16T23:59:59.000Z

    Drinking water in Texas sometimes contains potentially harmful chemicals, including benzene. Well owners can learn how to treat their well water to remove these chemicals. 4 pages, 3 images...

  5. Quantum chromodynamics quark benzene

    E-Print Network [OSTI]

    Jialun Ping; Chengrong Deng; Fan Wang; T. Goldman

    2007-11-28T23:59:59.000Z

    A six-quark state with the benzene-like structure is proposed and studied based on color string model. The calculation with the quadratic confinement show that such structure has the lowest energy among the various hidden color six-quark structures proposed so far. Its possible effect on $NN$ scattering is discussed.

  6. Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase-Peroxidase Coupling Reactions

    E-Print Network [OSTI]

    Chen, Wilfred

    Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX) Using Toluene Dioxygenase, whole-cell bioassay for the detection of bioavailable benzene, toluene, ethyl benzene, and xylenes (BTEX of the response obtained from the blank) of 10, 10, 20, and 50 µM was observed for benzene, toluene, ethyl benzene

  7. Fuel Dependence of Benzene Pathways

    SciTech Connect (OSTI)

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14T23:59:59.000Z

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.

  8. Collision lifetimes of polyatomic molecules at low temperatures: Benzene–benzene vs benzene–rare gas atom collisions

    SciTech Connect (OSTI)

    Cui, Jie; Krems, Roman V. [Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Li, Zhiying [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-28T23:59:59.000Z

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  9. Process for the preparation of ethyl benzene

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1995-12-19T23:59:59.000Z

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.

  10. Process for the preparation of ethyl benzene

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Houston, TX); Arganbright, Robert P. (Houston, TX); Hearn, Dennis (Houston, TX)

    1995-01-01T23:59:59.000Z

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.

  11. Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Kellogg, Ryan

    2009-01-01T23:59:59.000Z

    Massachusetts during the years these measurements were taken. In contrast to RVP, CARB regulations (

  12. Interphase Cytogenetics of Workers Exposed to Benzene

    E-Print Network [OSTI]

    California at Berkeley, University of

    Interphase Cytogenetics of Workers Exposed to Benzene Luoping Zhang,1 Nathaniel Rothman,2 Yunxia has been used to demonstrate that the benzene metabolites hydroquinone and 1,2,4-benzenetriol induce FISH procedure to perform cytogenetic analyses on the blood cells of 43 workers exposed to benzene

  13. Products of the Benzene + O(3P) Reaction

    E-Print Network [OSTI]

    Osborn, David L.

    2010-01-01T23:59:59.000Z

    Chemistry Products of the Benzene + O( 3 P) Reaction CraigThe gas-phase reaction of benzene with O( 3 P) is ofthe addition of the O atom to benzene, forming an initial

  14. ON THE PURPORTED FISCHER-TROPSCH ALKYLATION OF BENZENE: THE REACTION OF BENZENE WITH ALUMINUM TRICHLORIDE REVISITED

    E-Print Network [OSTI]

    Benner, Linda S.

    2014-01-01T23:59:59.000Z

    ON THE PURPORTED FISCHER-TROPSCH ALKYLATION OF BENZENE: THEOn the Purported Fischer-Tropsch Alkylation of Benzene: TheAbstract The purported Fischer-Tropsch alkylation of benzene

  15. Benzene Dimer: Dynamic Structure and Thermodynamics Derived from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benzene Dimer: Dynamic Structure and Thermodynamics Derived from On-the-Fly ab initio DFT-D Molecular Dynamic Simulations. Benzene Dimer: Dynamic Structure and Thermodynamics...

  16. Development of Probabilistic Emission Inventories of Benzene, Formaldehyde

    E-Print Network [OSTI]

    Frey, H. Christopher

    Development of Probabilistic Emission Inventories of Benzene, Formaldehyde And Chromium emission inventories (EI) of benzene, formaldehyde and chromium for the Houston area. This project

  17. Comparative Investigation of Benzene Steam Reforming over Spinel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts....

  18. Numerical analysis of the effect of acetylene and benzene addition to low-pressure benzene-rich flat flames on polycyclic aromatic hydrocarbon formation

    SciTech Connect (OSTI)

    Kunioshi, Nilson [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Komori, Seisaku [6th Group, Central Research Laboratory, Hamamatsu Photonics K. K. 500 Hirakuchi, Hamakita City, Shizuoka 434-8601 (Japan); Fukutani, Seishiro [Department of System Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan)

    2006-10-15T23:59:59.000Z

    A modification of the CHEMKIN II package has been proposed for modeling addition of an arbitrary species at an arbitrary temperature to an arbitrary distance from the burner along a flat flame. The modified program was applied to the problem of addition of acetylene or benzene to different positions of a 40-Torr, {phi}=2.4 benzene/O{sub 2}/40%-N{sub 2} premixed flame to reach final equivalence ratios of {phi}=2.5 and 2.681. The results obtained showed that acetylene addition to early positions of the flame led to significant increase in pyrene production rates, but pyrene concentrations were lower in the flames with acetylene addition in both the {phi}=2.5 and 2.681 cases. Addition of benzene to the flame did not alter pyrene production rates in either the {phi}=2.5 or 2.681 cases; however, for {phi}=2.5, pyrene concentrations increased with benzene addition, while for {phi}=2.681, pyrene contents decreased in comparison to the correspondent flames with no addition. Acetylene addition led to a significant increase in pyrene production rates, but the pyrene levels dropped due to increase in the flow velocity. Pyrene production rates were not sensitive to benzene addition, but pyrene contents increased with benzene addition when the flow velocity decreased. These results show that PAH concentration changes accompanying species addition to flames should be interpreted carefully, because an increase or decrease in the content of a PAH species does not necessarily reflect an effect on its formation rate or mechanism. (author)

  19. The development of a passive dosimeter for airborne benzene vapors

    E-Print Network [OSTI]

    Hager, David William

    1978-01-01T23:59:59.000Z

    THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BENZENE VAPORS A Thesis DAVID NII LIAM HAGER Submitted to the Graduate Colleqe of Texas ASM University in partial fulfillment of the requirement for the d"gree of MASTER OF SC. IENCE May IB...7B Major Subject: Indus t& ial Hyqiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BFNZENE VAPORS A Thesis by DAVID NILLIAM HAGER Approved as to style and content by: Z Chairman of Commi t e~ ~'g C'S~ Head of Department~ Member...

  20. Benzene Dimer DOI: 10.1002/anie.201300653

    E-Print Network [OSTI]

    Benzene Dimer DOI: 10.1002/anie.201300653 Structure of the Benzene Dimer--Governed by Dynamics van der Avoird* The benzene dimer is a prototypical system for studying noncovalent interactions in the structure and dynamic behavior of proteins and DNA. The first (1975) experimental study of the benzene dimer

  1. Original article 789 Genetic polymorphisms and benzene metabolism in humans

    E-Print Network [OSTI]

    California at Berkeley, University of

    Original article 789 Genetic polymorphisms and benzene metabolism in humans exposed to a wide Range on levels of benzene metabolites in 250 benzene-exposed and 136 control workers in Tianjin, China (for all, catechol, and hydroquinone) and nine polymorphisms in seven genes coding for key enzymes in benzene

  2. Formation and distribution of benzene on Titan V. Vuitton,1

    E-Print Network [OSTI]

    Yelle, Roger V.

    Formation and distribution of benzene on Titan V. Vuitton,1 R. V. Yelle,1 and J. Cui1 Received 29 a study of the formation and distribution of benzene (C6H6) on Titan. Analysis of the Cassini Mass Spectrometer (INMS) measurements of benzene densities on 12 Titan passes shows that the benzene signal exhibits

  3. Protein Adducts of 1,4-Benzoquinone and Benzene Oxide among Smokers and Nonsmokers Exposed to Benzene in China1

    E-Print Network [OSTI]

    California at Berkeley, University of

    Protein Adducts of 1,4-Benzoquinone and Benzene Oxide among Smokers and Nonsmokers Exposed to Benzene in China1 Karen Yeowell-O'Connell, Nathaniel Rothman, Suramya Waidyanatha, Martyn T. Smith [W. E. B.] Abstract Hemoglobin (Hb) and albumin (Alb) adducts of the benzene metabolites benzene

  4. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    E-Print Network [OSTI]

    Trevitt, Adam J.

    2010-01-01T23:59:59.000Z

    of the CN Radical with Benzene and Toluene: Productare measured for the CN + benzene and CN + toluene reactionsdetection. The CN + benzene reaction rate coefficient at

  5. Anhydrous aluminum chloride as an alkylation catalyst: identification of mono- and dialkyl-benzenes from the condensation of tertiary butyl alcohol with benzene.

    E-Print Network [OSTI]

    Scoggins, Lacey E

    1959-01-01T23:59:59.000Z

    LIBRARY a a w c"I. I. SI - O~ TI:YAf ANHYDROUS ALUMINUM CHLORIDE AS AN ALKYLATION CATALYST: IDENTIFICATION OF MONO- AND DIALKYIZENZENES FROM THE CONDENSATION QF TERTIARY BUTYL ALCOHOL WITH BENKENE IACEY EUGENE SCOGGINS 4 A Thesis Submitted...: IDENTIFICATION OF MONO- AND DI~NZZNES FROM THE CONDENSATION OF TERTIARY BUTYL ALCOHOL WITH BENZENE A Thesis By LACEY EUGENE SCOGGINS Approved as to style and content hy: Chairman of Committee Head of Chemistry Department 1959 ACKNOWLEDGME1VTS The author...

  6. Polyfunctional catalyst for processiing benzene fractions

    SciTech Connect (OSTI)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  7. Benzene waste NESHAP update and requirements

    SciTech Connect (OSTI)

    Bennett, C.D. (Ashland Petroleum Co., Russell, KY (United States))

    1993-01-01T23:59:59.000Z

    On January 7, 1993, USEPA promulgated the clarified National Emission Standard for Hazardous Air Pollutants (NESHAP) for Benzene Waste Operations, 40 CFR 61 Subpart FF. This rule limits benzene emissions from petroleum refinery wastewater systems and other waste management units. Since the time of initial promulgation, March 7, 1990, EPA admits that there has been widespread confusion among refiners concerning the key provisions of the rule. This paper provides clarifications of the new final rule and an overview of both the new alternative compliance options and the compliance waiver provisions.

  8. Pilot-Scale Benzene Retention and Release Demonstration

    SciTech Connect (OSTI)

    Marek, J.C.

    2003-11-10T23:59:59.000Z

    During the initial months of In-Tank Precipitation radioactive operation in 1995 the process experienced high rates of tetraphenylborate decomposition with assumed corresponding high rates of benzene generation. In March 1996 after a two month quiescent period, a water addition to Tank 48H resulted in an unexpected benzene release to the tank vapor phase. This was the first time a low energy input resulted in a significant release rate. This led to questions about how benzene, generated in-situ by TPB decomposition, was retained in the surrounding potassium tetraphenylborate slurry. It was postulated the retention mechanism may have changed during the quiescent period prior to March so the benzene present became readily releasable to the vapor phase with low energy input to the slurry or that enough benzene accumulated that some of it was in a different, more releasable form. Readily releasable is a qualitative term defined as a rapid release of benzene at a rate approaching evaporation of a free benzene layer. It is intended to distinguish between benzene in a form with high liquid phase resistance to mass transfer diffusion controlled from benzene in a form with minimal liquid phase resistance to mass transfer free benzene layer evaporation. If a readily releasable form of benzene was present, the vapor space profile during release tests was anticipated to have an initial benzene vapor space concentration peak followed by a lower vapor concentration, longer duration release.

  9. Modeling Human Metabolism of Benzene Following Occupational and Environmental Exposures

    E-Print Network [OSTI]

    California at Berkeley, University of

    Modeling Human Metabolism of Benzene Following Occupational and Environmental Exposures Sungkyoon) models to investigate nonlinear relationships between levels of benzene metabolites (E,E- muconic acid, S-phenylmercapturic acid, phenol, hydroqui- none, and catechol) and benzene exposure among 386 exposed and control workers

  10. BIOMARKERS IN THE MOLECULAR EPIDEMIOLOGY OF BENZENE-EXPOSED WORKERS

    E-Print Network [OSTI]

    California at Berkeley, University of

    BIOMARKERS IN THE MOLECULAR EPIDEMIOLOGY OF BENZENE-EXPOSED WORKERS Martyn T. Smith Division from workers exposed to high levels of benzene. The goal of these studies is to develop and validate (1) biomarkers of exposure to benzene, such as albumin or hemoglobin adducts; (2) molecular markers

  11. Products of the Benzene + O(3 P) Reaction

    E-Print Network [OSTI]

    Krylov, Anna I.

    Products of the Benzene + O(3 P) Reaction Craig A. Taatjes,*, David L. Osborn, Talitha M. Selby ReceiVed: January 7, 2010 The gas-phase reaction of benzene with O(3 P) is of considerable interest mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which

  12. Molecular dynamics of liquid benzene via femtosecond pulses laser excitation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1749 Molecular dynamics of liquid benzene via femtosecond pulses laser excitation J. Etchepare, G moléculaires. Abstract. 2014 We analyse the complex response of liquid benzene to the applied 45 fs FHWM new results obtained by the transient grating temporal behaviour analysis of benzene, a molecule

  13. Nonlinear diffusion in Acetone-Benzene Solution

    E-Print Network [OSTI]

    Obukhovsky, Vjacheslav V

    2010-01-01T23:59:59.000Z

    The nonlinear diffusion in multicomponent liquids under chemical reactions influence has been studied. The theory is applied to the analysis of mass transfer in a solution of acetone-benzene. It has been shown, that the creation of molecular complexes should be taken into account for the explanation of the experimental data on concentration dependence of diffusion coefficients. The matrix of mutual diffusivities has been found and effective parameters of the system have been computed.

  14. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

    E-Print Network [OSTI]

    Hang, Bo

    2010-01-01T23:59:59.000Z

    in a historical UK cohort of benzene exposed workers. OccupEnvironmental exposure to benzene: an update. Environ Health2004. Genotoxicity of benzene and its metabolites. Mutat Res

  15. Resonant ion-dip infrared spectroscopy of the S4 and D2d water octamers in benzene-,,water...8 and benzene2-,,water...8

    E-Print Network [OSTI]

    Zwier, Timothy S.

    Resonant ion-dip infrared spectroscopy of the S4 and D2d water octamers in benzene-,,water...8 and benzene2-,,water...8 Christopher J. Gruenloh, Joel R. Carney, Fredrick C. Hagemeister, Caleb A. Arrington the hydrogen-bonding topologies of two isomers each of the benzene- water)8 and (benzene 2 water)8 gas

  16. 28 VOLUME 115 | NUMBER 1 | January 2007 Environmental Health Perspectives Benzene is a ubiquitous environmental conta-

    E-Print Network [OSTI]

    California at Berkeley, University of

    28 VOLUME 115 | NUMBER 1 | January 2007 · Environmental Health Perspectives Research Benzene matter, including cigarette smoking. Air concentra- tions of benzene are typically environments but can exceed 10 ppm in industrial settings where benzene- containing products are used

  17. ENVIRONMENTAL BENZENE EXPOSURE ASSESSMENT FOR PARENT-CHILD PAIRS IN ROUEN, FRANCE

    E-Print Network [OSTI]

    Boyer, Edmond

    1 ENVIRONMENTAL BENZENE EXPOSURE ASSESSMENT FOR PARENT-CHILD PAIRS IN ROUEN, FRANCE Amin KOUNIALIa environmental benzene exposure. In this study we compared personal benzene exposure and inhalation uptake in a group of children to those of their parents. We also compared levels of urinary benzene metabolites

  18. Modeling the Pi-electrons of Benzene as Particles in a Ring Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    Modeling the Pi-electrons of Benzene as Particles in a Ring Frank Rioux In this exercise benzene circumference is approximated as six benzene carbon-carbon bond lengths. h 6.6260755 10 34 joule sec c 2 in the ultraviolet just outside the visible range of the electromagnetic spectrum and benzene is a colorless liquid

  19. Phenol-benzene complexation dynamics: Quantum chemistry calculation, molecular dynamics simulations, and two dimensional IR spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Phenol-benzene complexation dynamics: Quantum chemistry calculation, molecular dynamics simulations the nature and dynamics of the phenol-benzene complex in the mixed solvent, benzene/CCl4. Under thermal used for the phenol-benzene interaction in the MD simulations is in good accord with the highest level

  20. The water-benzene interaction: Insight from electronic structure theories Jie Ma,1,2,3

    E-Print Network [OSTI]

    Alfè, Dario

    The water-benzene interaction: Insight from electronic structure theories Jie Ma,1,2,3 Dario Alfè,2 theories is challenging. Here we assess the ability of a variety of theories to describe a water-benzene- tween water and benzene. Water benzene is an interesting model system because it is a reasonably small

  1. Benzene quadrupolarity and arene-arene interactions Zhengyu Wu and Rainer Glaser*

    E-Print Network [OSTI]

    Glaser, Rainer

    1 Benzene quadrupolarity and arene-arene interactions Zhengyu Wu and Rainer Glaser* Department in employing benzenes as lateral synthons in crystal engineering. We recently synthesized a series of perfectly organic NLO crystals. The benzene-benzene T-contact plays a critical role in stabilizing the crystal

  2. Modeling Studies on the Transport of Benzene and H2S in CO2-Water Systems

    SciTech Connect (OSTI)

    Zheng, L.; Spycher, N.; Xu, T.; Apps, J.; Kharaka, Y.; Birkholzer, J.T.

    2010-11-05T23:59:59.000Z

    In this study, reactive transport simulations were used to assess the mobilization and transport of organics with supercritical CO{sub 2} (SCC), and the co-injection and transport of H{sub 2}S with SCC. These processes were evaluated at conditions of typical storage reservoirs, and for cases of hypothetical leakage from a reservoir to an overlying shallower fresh water aquifer. Modeling capabilities were developed to allow the simulation of multiphase flow and transport of H{sub 2}O, CO{sub 2}, H{sub 2}S, as well as specific organic compounds (benzene), coupled with multicomponent geochemical reaction and transport. This included the development of a new simulator, TMVOC-REACT, starting from existing modules of the TOUGH2 family of codes. This work also included an extensive literature review, calculation, and testing of phase-partitioning properties for mixtures of the phases considered. The reactive transport simulations presented in this report are primarily intended to illustrate the capabilities of the new simulator. They are also intended to help evaluate and understand various processes at play, in a more qualitative than quantitative manner, and only for hypothetical scenarios. Therefore, model results are not intended as realistic assessments of groundwater quality changes for specific locations, and they certainly do not provide an exhaustive evaluation of all possible site conditions, especially given the large variability and uncertainty in hydrogeologic and geochemical parameter input into simulations. The first step in evaluating the potential mobilization and transport of organics was the identification of compounds likely to be present in deep storage formations, and likely to negatively impact freshwater aquifers if mobilized by SCC. On the basis of a literature review related to the occurrence of these organic compounds, their solubility in water and SCC, and their toxicity (as reflected by their maximum contaminant levels MCL), benzene was selected as a key compound for inclusion into numerical simulations. Note that considering additional organic compounds and/or mixtures of such compounds in the simulations was beyond the scope of this study, because of the effort required to research, calculate, and validate the phase-partitioning data necessary for simulations. The injection of CO{sub 2} into a deep saline aquifer was simulated, followed by modeling the leaching of benzene by SCC and transport of benzene to an overlying aquifer along a hypothetical leakage pathway. One- and two-dimensional models were set up for this purpose. The target storage formation was assumed to initially contain about 10{sup -4} ppm benzene. Model results indicate that: (1) SCC efficiently extracts benzene from the storage formation. (2) Assuming equilibrium, the content of benzene in SCC is roportional to the concentration of benzene in the aqueous and solid phases. (3) Benzene may co-migrate with CO{sub 2} into overlying aquifers if a leakage pathway is present. Because the aqueous solubility of benzene in contact with CO{sub 2} is lower than the aqueous solubility of CO{sub 2}, benzene is actually enriched in the CO{sub 2} phase as the plume advances. (4) For the case studied here, the resulting aqueous benzene concentration in the overlying aquifer is on the same order of magnitude as the initial concentration in the storage formation. This generic modeling study illustrates, in a semi-quantitative manner, the possible mobilization of benzene by SCC. The extent to which the mobilization of this organic compound evolves temporally and spatially depends on a large number of controlling parameters and is largely site specific. Therefore, for more 'truly' predictive work, further sensitivity studies should be conducted, and further modeling should be integrated with site-specific laboratory and/or field experimental data. The co-injection of H{sub 2}S with CO{sub 2} into a deep saline aquifer was also simulated. In addition, the model considered leakage of the supercritical CO{sub 2}+H{sub 2}S mixture along a preferential p

  3. Hydrology Days 2014 Thermally Enhanced Attenuation of Substituted Benzenes

    E-Print Network [OSTI]

    at temperatures ranging from 10°C to 30°C, and biogas production has been monitored. Thus far, substituted benzene microcosms have produced less biogas than previous petroleum microcosm studies. This suggests

  4. Quantitative Measurement of Integrated Band Intensities of Benzene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cm-1. The spectra were recorded at a resolution of 0.112 cm-1 using a commercial Fourier transform spectrometer. The pressure of each benzene vapor sample was measured using...

  5. Intermolecular CH bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Intermolecular C­H bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex Jose G. Andino,a Uriah J. Kilgore,a Maren Pink of benzene and pyridine is observed with (PNP)V(CH2tBu)2 (1), and in the case of benzene, the formation

  6. One-Photon Mass-Analyzed Threshold Ionization Spectroscopy of Bis(6-benzene)chromium and Its Benzene and Ar Clusters

    E-Print Network [OSTI]

    Kim, Sang Kyu

    One-Photon Mass-Analyzed Threshold Ionization Spectroscopy of Bis(6-benzene)chromium and Its Benzene and Ar Clusters Kyo-Won Choi and Sang Kyu Kim* Department of Chemistry and School of Molecular-analyzed threshold ionization (MATI) spectroscopy of bis(6-benzene)chromium is reported. The adiabatic ionization

  7. SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

    E-Print Network [OSTI]

    Huang, Bo

    2008-01-01T23:59:59.000Z

    associated with low-level benzene exposure. EpidemiologyC. C. An overview of benzene metabolism. Environ. Healthstudies of human exposure to benzene in China and Europe An

  8. Soot precursor measurements in benzene and hexane diffusion flames

    SciTech Connect (OSTI)

    Kobayashi, Y.; Furuhata, T.; Amagai, K.; Arai, M. [Department of Mechanical System Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515 (Japan)

    2008-08-15T23:59:59.000Z

    To clarify the mechanism of soot formation in diffusion flames of liquid fuels, measurements of soot and its precursors were carried out. Sooting diffusion flames formed by a small pool combustion equipment system were used for this purpose. Benzene and hexane were used as typical aromatic and paraffin fuels. A laser-induced fluorescence (LIF) method was used to obtain spatial distributions of polycyclic aromatic hydrocarbons (PAHs), which are considered as soot particles. Spatial distributions of soot in test flames were measured by a laser-induced incandescence (LII) method. Soot diameter was estimated from the temporal change of LII intensity. A region of transition from PAHs to soot was defined from the results of LIF and LII. Flame temperatures, PAH species, and soot diameters in this transition region were investigated for both benzene and hexane flames. The results show that though the flame structures of benzene and hexane were different, the temperature in the PAHs-soot transition region of the benzene flame was similar to that of the hexane flame. Furthermore, the relationship between the PAH concentrations measured by gas chromatography in both flames and the PAH distributions obtained from LIF are discussed. It was found that PAHs with smaller molecular mass, such as benzene and toluene, remained in both the PAHs-soot transition and sooting regions, and it is thought that molecules heavier than pyrene are the leading candidates for soot precursor formation. (author)

  9. Products of the Benzene + O(3P) Reaction

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2010-01-01T23:59:59.000Z

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range 300?1000 K and pressure range 1?10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  10. Products of the Benzene + O(3P) Reaction

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21T23:59:59.000Z

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  11. Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan

    Changes in the peripheral blood transcriptome associated with occupational benzene exposure Available online 20 January 2009 Keywords: Benzene exposure Gene expression Human blood Toxicogenomics expression changes associated with well-characterized occupational benzene exposure in the peripheral blood

  12. THE JOURNAL OF CHEMICAL PHYSICS 134, 134701 (2011) Binding of hydrogen on benzene, coronene, and graphene from quantum

    E-Print Network [OSTI]

    Alfè, Dario

    2011-01-01T23:59:59.000Z

    THE JOURNAL OF CHEMICAL PHYSICS 134, 134701 (2011) Binding of hydrogen on benzene, coronene the binding energy curves of hydrogen on benzene, coronene, and graphene. The DMC results on benzene agree

  13. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    SciTech Connect (OSTI)

    Jacobs, R A [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1989-09-18T23:59:59.000Z

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  14. Benzene formation in the inner regions of protostellar disks

    E-Print Network [OSTI]

    Paul M. Woods; Karen Willacy

    2006-12-08T23:59:59.000Z

    Benzene (c-C6H6) formation in the inner 3 AU of a protostellar disk can be efficient, resulting in high abundances of benzene in the midplane region. The formation mechanism is different to that found in interstellar clouds and in protoplanetary nebulae, and proceeds mainly through the reaction between allene (C3H4) and its ion. This has implications for PAH formation, in that some fraction of PAHs seen in the solar system could be native rather than inherited from the interstellar medium.

  15. Synthesis of macroporous poly(styrene-divinyl benzene) microspheres by surfactant reverse micelles swelling method

    E-Print Network [OSTI]

    Gu, Tingyue

    Synthesis of macroporous poly(styrene-divinyl benzene) microspheres by surfactant reverse micelles poly(styrene-divinyl benzene) microspheres with pore size of about 500 nm were prepared by a new method

  16. Supramolecular assemblies of 1,4-benzene diboronic acid on KCl(001)

    E-Print Network [OSTI]

    Boyer, Edmond

    Supramolecular assemblies of 1,4-benzene diboronic acid on KCl(001) Rémy Pawlak, Laurent Nony The self-assembly of benzene diboronic acid molecules on KCl(001) is investigated at room temperature

  17. Sources and distribution of CuO-derived benzene carboxylic acids in soils and sediments

    E-Print Network [OSTI]

    Long, Bernard

    Sources and distribution of CuO-derived benzene carboxylic acids in soils and sediments Angela F vas- cular plant-derived OC, through the environment. The method produces a suite of benzene

  18. New packing in absorption systems for trapping benzene from coke-oven gas

    SciTech Connect (OSTI)

    V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

  19. Effect of ozonation on the composition of crude coal-tar benzene

    SciTech Connect (OSTI)

    Semenova, S.A.; Patrakov, Y.F. [Russian Academy of Sciences, Kemerovo (Russian Federation)

    2007-05-15T23:59:59.000Z

    The effect of ozonation on the composition of crude benzene produced by the coal-tar chemical industry was studied.

  20. Using urinary biomarkers to elucidate dose-related patterns of human benzene metabolism

    E-Print Network [OSTI]

    California at Berkeley, University of

    Using urinary biomarkers to elucidate dose-related patterns of human benzene metabolism Sungkyoon; Fax: þ1 919 966 0521; Email: stephen_rappaport@unc.edu Although the toxicity of benzene has been, particularly at low levels of exposure. We investigated unmetabolized benzene in urine (UBz) and all major

  1. Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general substrate ethanol on benzene fate and transport in fuel-contaminated groundwater and to discern the most influential benzene plume elongation mechanisms. The model, developed as a module for the Reactive Transport in 3

  2. Measurements of benzene concentration by difference-frequency laser absorption spectroscopy

    E-Print Network [OSTI]

    Measurements of benzene concentration by difference-frequency laser absorption spectroscopy Weidong Chen, Fabrice Cazier, Frank Tittel, and Daniel Boucher Measurements of benzene concentration based:sapphire lasers in a GaSe nonlinear optical crystal. A minimum benzene concentration detection of 11.5 parts

  3. The Mechanism of Benzene-induced Leukemia: A Hypothesis and Speculations on

    E-Print Network [OSTI]

    California at Berkeley, University of

    The Mechanism of Benzene-induced Leukemia: A Hypothesis and Speculations on the Causes of Leukemia hypothesis for benzene-induced leukemia is proposed. Key components of the hypothesis include a) activation of benzene in the liver to phenolic metabolites; b) transport of these metabo- lites to the bone marrow

  4. Carcinogenesis vol.19 no.9 pp.15651571, 1998 Hemoglobin and albumin adducts of benzene oxide among

    E-Print Network [OSTI]

    California at Berkeley, University of

    Carcinogenesis vol.19 no.9 pp.1565­1571, 1998 Hemoglobin and albumin adducts of benzene oxide among workers exposed to high levels of benzene Karen Yeowell-O'Connell, Nathaniel Rothman1, Martyn T.Smith2_rappaport@unc.edu Benzene oxide (BO) reacts with cysteinyl residues in hemo- globin (Hb) and albumin (Alb) to form protein

  5. Grain boundary premelting in crystalline benzene as studied by proton N.M.R.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2489 Grain boundary premelting in crystalline benzene as studied by proton N.M.R. C. J. Craven. 2014 The phenomenon of premelting has been investigated by proton n.m.r. in polycrystalline benzene in the case of polycrystalline benzene in which the molecular dynamics feature is essentially analogous

  6. Kekule's Benzene Structure: A Case Study of Teaching Usefulness of Symmetry

    E-Print Network [OSTI]

    Kreinovich, Vladik

    Kekul´e's Benzene Structure: A Case Study of Teaching Usefulness of Symmetry Olga Kosheleva1 at El Paso 500 W. University El Paso, TX 79968, USA olgak@utep.edu, vladik@utep.edu Abstract Benzene is one of the basic building blocks of organic molecules. One of the reasons for benzene's ubiquity

  7. Response to Comment on "Adsorption and Electronic States of Benzene on Ordered MgO

    E-Print Network [OSTI]

    Goodman, Wayne

    Response to Comment on "Adsorption and Electronic States of Benzene on Ordered MgO and Al2O3 Thin on the electronic states of benzene adsorbed on two metal oxides,1 particularly for pointing out a reference to recent work on the vibronic spectra of solid benzene,2 the dearth of which we lamented

  8. 946 volume 117 | number 6 | June 2009 Environmental Health Perspectives Benzene is an important industrial chem-

    E-Print Network [OSTI]

    California at Berkeley, University of

    946 volume 117 | number 6 | June 2009 · Environmental Health Perspectives Research Benzene smoke [International Agency for Research on Cancer (IARC) 1989]. In fact, benzene is truly ubiq- uitous million in some workplaces (IARC 1989; Wallace 1996). This is worrisome because benzene causes leukemia

  9. Discovery of benzene cation in a very long-lived excited electronic state Myung Soo Kima)

    E-Print Network [OSTI]

    Kim, Myung Soo

    Discovery of benzene cation in a very long-lived excited electronic state Myung Soo Kima) and Chan, University of Suwon, Suwon 440-600, Korea Received 19 May 2000; accepted 8 September 2000 Presence of benzene chemistry. © 2000 American Institute of Physics. S0021-9606 00 01745-1 I. INTRODUCTION The benzene molecular

  10. Thermal decomposition of norbornane (bicyclo[2.2.1]heptane) dissolved in benzene.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Thermal decomposition of norbornane (bicyclo[2.2.1]heptane) dissolved in benzene. Experimental (dissolved in benzene) has been studied in a jet stirred reactor at temperatures between 873 and 973 K decomposition of the norbornane ­ benzene binary mixture has been performed. Reactions involved in the mechanism

  11. Population Toxicokinetics of Benzene Frederic Yves Bois,1 Elise T. Jackson,1 Kaija Pekari,2 and

    E-Print Network [OSTI]

    California at Berkeley, University of

    Population Toxicokinetics of Benzene Frederic Yves Bois,1 Elise T. Jackson,1 Kaija Pekari,2 these problems. As an example, we modeled the distribution and metabolism of benzene in humans. We derive statistical distributions for the parameters of a physiological model of benzene, on the basis of existing

  12. Electronvibration coupling in time-dependent density-functional theory: Application to benzene

    E-Print Network [OSTI]

    Bertsch George F.

    Electron­vibration coupling in time-dependent density-functional theory: Application to benzene G://jcp.aip.org/about/rights_and_permissions #12;Electron­vibration coupling in time-dependent density-functional theory: Application to benzene G for electron­vibration coupling, we apply it to the optical properties of the ­ * transitions in benzene

  13. Assessment of dermal exposure to benzene and toluene in shoe manufacturing by activated carbon cloth patches

    E-Print Network [OSTI]

    California at Berkeley, University of

    Assessment of dermal exposure to benzene and toluene in shoe manufacturing by activated carbon activated carbon cloth (ACC) patches to study the probability and extent of dermal exposure to benzene for the contribution from the air through passive absorption of benzene and toluene on the ACC patches. Systemic

  14. Electronvibration coupling in time-dependent density-functional theory: Application to benzene

    E-Print Network [OSTI]

    Bertsch George F.

    Electron­vibration coupling in time-dependent density-functional theory: Application to benzene G for electron­vibration coupling, we apply it to the optical properties of the ­ * transitions in benzene with the electronic excitations. In this work, we have chosen the benzene model for an exploratory study

  15. Chemisorption of benzene and STM dehydrogenation products on Cu,,100... N. Lorente*

    E-Print Network [OSTI]

    Persson, Mats

    Chemisorption of benzene and STM dehydrogenation products on Cu,,100... N. Lorente* Laboratoire of individual chemisorbed benzene molecules on Cu 100 has recently been performed in atomic manipulation experiments J. Phys. Chem. A. 104, 2463 2000 ; Surf. Sci 451, 219 2000 . Benzene dissociates under controlled

  16. Electron Transfer Catalyzed [2 + 2] Cycloreversion of Benzene G. Devi Reddy and Olaf Wiest*

    E-Print Network [OSTI]

    Hudlicky, Tomas

    Electron Transfer Catalyzed [2 + 2] Cycloreversion of Benzene Dimers G. Devi Reddy and Olaf Wiest, Florida 32611-7200 Received December 8, 1998 The catalysis of the [2 + 2] cycloreversion of the anti-o,o-benzene dimer 1 and the syn-o,o- naphthalene-benzene dimer 2 through thermal and photoinduced electron transfer

  17. Anaerobic Benzene Oxidation in the Fe(III) Reduction Zone of

    E-Print Network [OSTI]

    Lovley, Derek

    Anaerobic Benzene Oxidation in the Fe(III) Reduction Zone of Petroleum-Contaminated Aquifers R O B North, University of Massachusetts, Amherst, Massachusetts 01003 The potential for anaerobic benzene. [14C]Benzene was not oxidized to 14CO2 at most sites examined, which is consistent with previous

  18. Low temperature oxidation of benzene and toluene in mixture with ndecane

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Low temperature oxidation of benzene and toluene in mixture with ndecane Olivier Herbinet Abstract The oxidation of two blends, benzene/ndecane and toluene/ndecane, was studied in a jetstirred of benzene, only phenol could be quantified. In the case of toluene, significant amounts

  19. Benzene Increases Aneuploidy in the Lymphocytes of Exposed Workers: A Comparison of Data Obtained by

    E-Print Network [OSTI]

    California at Berkeley, University of

    Benzene Increases Aneuploidy in the Lymphocytes of Exposed Workers: A Comparison of Data Obtained Benzene is an established human leukemogen that increases the level of chromosome aberrations in lym and 8 in healthy benzene-exposed human subjects. Metaphase and interphase cells from the peripheral

  20. An Epidemiologic Study of Early Biologic Effects of Benzene in Chinese Workers

    E-Print Network [OSTI]

    California at Berkeley, University of

    An Epidemiologic Study of Early Biologic Effects of Benzene in Chinese Workers Nathaniel Rothman,1 and Anti-Epidemic Center, Shanghai, China Benzene is a recognized hematotoxin and leukemogen, but its a cross-sectional study of 44 healthy workers currently exposed to benzene (median 8-hr time

  1. Modulation of the Toxicity and Macromolecular Binding of Benzene Metabolites by NAD(P)H:Quinone

    E-Print Network [OSTI]

    California at Berkeley, University of

    Articles Modulation of the Toxicity and Macromolecular Binding of Benzene Metabolites by NAD, San Francisco, California 94143-0560 Received April 17, 1998 Benzene is oxidized in the liver of benzene metabolite toxicity. NQO1 expression reduced a class of hydroquinone- and benzenetriol-induced DNA

  2. Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by

    E-Print Network [OSTI]

    California at Berkeley, University of

    Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array (received for review October 3, 2004) Benzene is an important industrial chemical and environmental contaminant that causes leukemia. To obtain mechanistic insight into benzene's mechanism of action, we

  3. Current Collapse in Tunneling Transport through Benzene M. H. Hettler,1

    E-Print Network [OSTI]

    Current Collapse in Tunneling Transport through Benzene M. H. Hettler,1 W. Wenzel,1 M. R. Wegewijs; published 20 February 2003) We investigate the electrical transport through a system of benzene coupled model for the electrons of the benzene is derived that includes general two-body interactions. After

  4. Mechanisms for the formation of benzene in the atmosphere of Titan E. H. Wilson1

    E-Print Network [OSTI]

    Atreya, Sushil

    Mechanisms for the formation of benzene in the atmosphere of Titan E. H. Wilson1 and S. K. Atreya (PAHs) are important interstellar species, and their precursor benzene (C6H6) has been detected in our solar system. In this study the possibility of benzene formation in the atmosphere of Titan

  5. Benzene is an important industrial chemical (> 2 billion gallons produced annually in the

    E-Print Network [OSTI]

    California at Berkeley, University of

    Benzene is an important industrial chemical (> 2 billion gallons produced annually in the United leukemia (Snyder 2002). However, the mechanisms of benzene-induced hematotoxicity and leukemo- genesis further light on these mechanisms and better understand the risk benzene poses, we examined the effects

  6. Negative Differential Conductance in a Benzene-Molecular Device Maarten R. Wegewijs1

    E-Print Network [OSTI]

    Negative Differential Conductance in a Benzene-Molecular Device Maarten R. Wegewijs1 , Matthias (Received August 14, 2002) KEYWORDS: molecular, tunneling, transport, benzene, blocking 1. Introduction of the molecular orbitals leads to nontrivial current voltage (I-V ) characteristics.6,7) Using benzene

  7. Evidence of a tilted columnar structure for mesomorphic phases of benzene-hexa-n-alkanoates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1285 Evidence of a tilted columnar structure for mesomorphic phases of benzene-hexa-n-alkanoates F. 2014 Optical observations on the mesomorphs of benzene-hexa-n-alkanoates, and their admixtures with benzene, show that the planes of these discotic molecules are not perpendicular to the columns in which

  8. OH-initiated oxidation of benzene Part I. Phenol formation under atmospheric conditions

    E-Print Network [OSTI]

    OH-initiated oxidation of benzene Part I. Phenol formation under atmospheric conditions Rainer-radical initiated oxidation of benzene was studied in two simulation chambers: (1) the large-volume outdoor chamber-red spectroscopy (FTIR) were used to simultaneously measure phenol and benzene. The second study used only FTIR

  9. LETTER TO THE EDITOR Regarding ``Meta-analysis and Causal Inference: A Case Study of Benzene

    E-Print Network [OSTI]

    California at Berkeley, University of

    LETTER TO THE EDITOR Regarding ``Meta-analysis and Causal Inference: A Case Study of Benzene of a causal association between non-Hodgkin lymphoma (NHL) and benzene and between NHL and petroleum refinery identified provide ``further evidence that benzene exposure causes NHL.'' However, his review of each

  10. www.rsc.org/analyst The airliquid interface of benzene, toluene, m-xylene, and

    E-Print Network [OSTI]

    ANALYST FULLPAPER THE www.rsc.org/analyst The air­liquid interface of benzene, toluene, m as an Advance Article on the web 10th April 2003 The air­liquid interface and the liquid-phase of benzene-zero hyperpolarizabilities of benzene and 1,3,5-trimethylbenzene. The orientation of the aromatic rings of these compounds

  11. Molecular dynamics simulations of the effects of salts on the aggregation properties of benzene in water.

    SciTech Connect (OSTI)

    Smith, P. E.

    2003-07-16T23:59:59.000Z

    The specific aims of the project were: to provide an atomic level description of the interactions between benzene, water and ions in solutions. To determine the degree of association between two benzene molecules in aqueous and salt solutions. To investigate the structure and dynamics of the interface between benzene and water or salt solution.

  12. Group Theoretical Analysis of the Vibrational and Electronic Spectrum of Benzene Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    Group Theoretical Analysis of the Vibrational and Electronic Spectrum of Benzene Frank Rioux CSB|SJU This tutorial deals with the interpretation of the vibrational and electronic spectra of benzene using group benzene's electrons. The symmetry of the relevant -electron molecular orbitals is determined by examining

  13. Viscosity and reptation time in polystyrene-benzene semidilute solutions M. Adam and M. Delsanti

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    L-523 Viscosity and reptation time in polystyrene-benzene semidilute solutions M. Adam and M viscosity ~ and reptation time TR in semidilute polystyrene-benzene solutions. We have obtained, our aim is to study the viscoelastic properties of polystyrene-benzene systems in a well defined

  14. The benzene molecule as a molecular resonant-tunneling transistor M. Di Ventraa)

    E-Print Network [OSTI]

    Pantelides, Sokrates T.

    The benzene molecule as a molecular resonant-tunneling transistor M. Di Ventraa) and S. T of transport through a benzene-1, 4-dithiolate molecule with a third capacitive terminal gate . We find rectification was demonstrated in 1993.2 More recently, Reed et al. investigated the benzene-1, 4-dithiol rings

  15. Distorted benzene bearing two bulky substituents on adjacent positions: structure of

    E-Print Network [OSTI]

    Kaszynski, Piotr

    Distorted benzene bearing two bulky substituents on adjacent positions: structure of 1,2-bis(1,2-dicarba-closo-dodecaboran-1-yl)benzene Yasuyuki Endo,a,* Chalermkiat Songkram,b Kiminori Ohta,a Piotr analysis of 1,2-bis(o-carboranyl)benzene were performed to examine the steric effects of the two extremely

  16. EFFECTS OF BENZENE (A TOXIC COMPONENT OF PETROLEUM) ON SPAWNING PACIFIC HERRING, CLUPEA HARENGUS PALLASI

    E-Print Network [OSTI]

    EFFECTS OF BENZENE (A TOXIC COMPONENT OF PETROLEUM) ON SPAWNING PACIFIC HERRING, CLUPEA HARENGUS and larvae through yolk absorption, 43%. Exposure to benzene also induced premature spawning and resulted-labeled benzene and/or metabolites in ovarian eggs (14 times initial concentration in water in 24-48 h; 1.4 ILlig

  17. Resonant ion-dip infrared spectroscopy of benzene,,water...9: Expanding the cube

    E-Print Network [OSTI]

    Zwier, Timothy S.

    Resonant ion-dip infrared spectroscopy of benzene­,,water...9: Expanding the cube Christopher J the hydrogen-bonding topologies of three isomers of benzene­ water 9. Isomers I and II, with R2PI transitions shifted, respectively, by 77 and 63 cm 1 from the benzene monomer, have similar intensities in the R2PI

  18. Noncovalent interaction or chemical bonding between alkaline earth cations and benzene? A quantum chemistry study using

    E-Print Network [OSTI]

    Sussman, Joel L.

    Noncovalent interaction or chemical bonding between alkaline earth cations and benzene? A quantum earth metal ion±benzene complexes were performed using the density-functional theory (DFT) B3LYP and ab of the al- kaline earth metal ions to benzene may be attributed to s±p and p±p interactions, which are signi

  19. Two-dimensional 1,3,5-Tris(4-carboxyphenyl)benzene self-assembly at

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Two-dimensional 1,3,5-Tris(4-carboxyphenyl)benzene self-assembly at the 1-phenyloctane-assembly of star-shaped 1,3,5-Tris(4-carboxyphenyl)benzene molecules is investigated. Scanning tunneling microscopy.22 showed that 1,3,5-Tris(4-carboxyphenyl)benzene star-shaped molecules can form two distinc self

  20. UPTAKE, DISTRIBUTION, AND DEPURATION OF 14C-BENZENE IN NORTHERN ANCHOVY, ENGRAULIS MORDAX, AND

    E-Print Network [OSTI]

    UPTAKE, DISTRIBUTION, AND DEPURATION OF 14C-BENZENE IN NORTHERN ANCHOVY, ENGRAULIS MORDAX striped bass, Morone saxatilis, were exposed to sublethal concentra- tions of HC-benzene for 48 h exhibited a rapid uptake over a wide range of benzene concentrations in the water column. Accumulation

  1. Modeling and Optimal Regulation of Erythropoiesis Subject to Benzene Intoxication

    E-Print Network [OSTI]

    humans and laboratory animals [11, 16]. Increased incidence of acute myelogenous leukemia in humans obtained in vitro [5, 6]. Since in vitro metabolic parameters are also available for humans, the model could then be extrapolated to humans for risk assessment. Since benzene is a known human leukemogen

  2. Lithium-Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons

    E-Print Network [OSTI]

    Hod, Oded

    Lithium-Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons Dana Krepel and Oded Hod on lithium adsorption sites at the surface of graphene and nanoribbons thereof are investigated. The effects, bare lithium adsorption turns armchair graphene nanoribbons metallic and their zigzag counterparts half

  3. ForReview.Confidential-ACS Catalytic Transformation of 1,3,5 -Trimethyl Benzene over USY Zeolite

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    and trimethylbenzenes (TMB) coming from the reforming and pyrolysis of gasoline, into benzene and xylenes via

  4. Electronic structure of the benzene dimer cation Piotr A. Pieniazek, Anna I. Krylov, and Stephen E. Bradforth

    E-Print Network [OSTI]

    Krylov, Anna I.

    Electronic structure of the benzene dimer cation Piotr A. Pieniazek, Anna I. Krylov, and Stephen E-0482 Received 20 March 2007; accepted 22 May 2007; published online 31 July 2007 The benzene and benzene dimer benzene. Both sandwich and t-shaped structures feature intense charge resonance bands, whose location

  5. Synthesis, Structure, and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

    E-Print Network [OSTI]

    Goddard III, William A.

    with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, and Roy A. Periana. All the R-Ir-Py complexes undergo quantitative, intermolecular CH activation reactions with benzene to benzene to generate a discrete benzene complex, cis-R-Ir-PhH; and (D) rapid C-H cleavage. Kinetic isotope

  6. PHYSICAL REVIEW B 86, 245405 (2012) Benzene adsorbed on metals: Concerted effect of covalency and van der Waals bonding

    E-Print Network [OSTI]

    Alavi, Ali

    2012-01-01T23:59:59.000Z

    PHYSICAL REVIEW B 86, 245405 (2012) Benzene adsorbed on metals: Concerted effect of covalency, but the role of the vdW energy in chemisorbed systems remains unclear. Here we study the interaction of benzene of covalently bonded benzene than they do when benzene is physisorbed. Comparison to experimental data

  7. Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate

    E-Print Network [OSTI]

    Goddard III, William A.

    Architecture of Alkyl Benzene Sulfonate Seung Soon Jang, Shiang-Tai Lin, Prabal K. Maiti, Mario Blanco the attachment position of benzene sulfonate on the hexadecane backbone, at the decane-water interface benzene sulfonates, denoted by m-C16, indicating a benzene sulfonate group attached to the mth carbon

  8. Computer simulations of benzene in faujasite-type zeolites

    SciTech Connect (OSTI)

    Henson, N.J.; Cheetham, A.K. [California Univ., Santa Barbara, CA (United States). Dept. of Materials; Redondo, A. [Los Alamos National Lab., NM (United States); Levine, S.M.; Newsam, J.M. [Biosym Technologies Inc., San Diego, CA (United States)

    1994-03-01T23:59:59.000Z

    The exact nature of the cation-benzene ring interaction is not yet known. In order to remedy this, energy minimization and Monte Carlo methods were used to probe the location and energetics of benzene in sodium zeolite-X and -Y. Sorption energies for the six-ring binding site in each of the zeolite models with the two forcefields (cff91 and cvff) are tabulated as function of Si/Al ratio. Both forcefields predict similar binding sites for each system; however, the final energies are sensitive to form and parameterization of the forcefield. Further work is needed to refine the forcefield for zeolite-sorbate interactions. 5 figs, 21 refs, 2 tabs.

  9. Binding Energies in Benzene Dimers: Nonlocal Density Functional Calculations

    E-Print Network [OSTI]

    Aaron Puzder; Maxime Dion; David C. Langreth

    2005-09-15T23:59:59.000Z

    The interaction energy and minimum energy structure for different geometries of the benzene dimer has been calculated using the recently developed nonlocal correlation energy functional for calculating dispersion interactions. The comparison of this straightforward and relatively quick density functional based method with recent calculations can elucidate how the former, quicker method might be exploited in larger more complicated biological, organic, aromatic, and even infinite systems such as molecules physisorbed on surfaces, and van der Waals crystals.

  10. Tip-contact related low-bias negative differential resistance and rectifying effects in benzene–porphyrin–benzene molecular junctions

    SciTech Connect (OSTI)

    Cheng, Jue-Fei [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); School of Electronics and Information Engineering, Suzhou Vocational University, Suzhou 215104 (China); Zhou, Liping, E-mail: zhoulp@suda.edu.cn, E-mail: leigao@suda.edu.cn; Liu, Man; Yan, Qiang; Han, Qin; Gao, Lei, E-mail: zhoulp@suda.edu.cn, E-mail: leigao@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2014-11-07T23:59:59.000Z

    The electronic transport properties of benzene–porphyrin–benzene (BPB) molecules coupled to gold (Au) electrodes were investigated. By successively removing the front-end Au atoms, several BPB junctions with different molecule-electrode contact symmetries were constructed. The calculated current–voltage (I–V) curves depended strongly on the contact configurations between the BPB molecules and the Au electrodes. In particular, a significant low-voltage negative differential resistance effect appeared at ?0.3 V in the junctions with pyramidal electrodes on both sides. Along with the breaking of this tip-contact symmetry, the low-bias negative differential resistance effect gradually disappeared. This tip-contact may be ideal for use in the design of future molecular devices because of its similarity with experimental processes.

  11. Modeling theta-theta Interactions with the Effective Fragment Potential Method: The Benzene Dimer and Substituents

    SciTech Connect (OSTI)

    Toni Smithl; Lyudmila V. Slipchenko; Mark S. Gordon

    2008-02-27T23:59:59.000Z

    This study compares the results of the general effective fragment potential (EFP2) method to the results of a previous combined coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] and symmetry-adapted perturbation theory (SAPT) study [Sinnokrot and Sherrill, J. Am. Chem. Soc., 2004, 126, 7690] on substituent effects in {pi}-{pi} interactions. EFP2 is found to accurately model the binding energies of the benzene-benzene, benzene-phenol, benzene-toluene, benzene-fluorobenzene, and benzene-benzonitrile dimers, as compared with high-level methods [Sinnokrot and Sherrill, J. Am. Chem. Soc., 2004, 126, 7690], but at a fraction of the computational cost of CCSD(T). In addition, an EFP-based Monte Carlo/simulated annealing study was undertaken to examine the potential energy surface of the substituted dimers.

  12. Quantum/Classical Mechanical Comparison of Cation-Interactions between Tetramethylammonium and Benzene

    E-Print Network [OSTI]

    Sussman, Joel L.

    and Benzene Clifford Felder, Hua-Liang Jiang,,§,|, Wei-Liang Zhu,§,| Kai-Xian Chen,§ Israel Silman, Simone A-methyl groups with a benzene ring, by use of density-functional theory (DFT) methods B3LYP/6-31G* and B3LYP/6 profiles of the complex as benzene was moved away from TMA in 0.2 Å intervals. Hence it is possible to use

  13. Occupational Exposure to Benzene from Painting with Epoxy and Other High Performance Coatings

    SciTech Connect (OSTI)

    JAHN, STEVEN

    2005-04-20T23:59:59.000Z

    Following the discovery of trace benzene in paint products, an assessment was needed to determine potential for benzene exposures to exceed the established ACGIH Threshold Limit Value (TLV) during painting operations. Sample data was collected by area industrial hygienists for benzene during routine maintenance and construction activities at Savannah River Site. A set of available data from the IH database, Sentry, was analyzed to provide guidance to the industrial hygiene staff and draw conclusions on the exposure potential during typical painting operations.

  14. Palladium-Catalyzed Direct Functionalization of Aromatic C-H Bonds: Development of Methods for Direct Amination and Mechanistic Studies of Direct Arylation of Benzene and Pyridine N-Oxide

    E-Print Network [OSTI]

    Tan, Yichen

    2013-01-01T23:59:59.000Z

    barrier of the reactions of benzene with phosphine-ligatedStudy on Direct Arylation of Benzene ………………..95-142proposed, and reaction of benzene and phthalimide in the

  15. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    SciTech Connect (OSTI)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15T23:59:59.000Z

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  16. Benzene Generation Testing for Tank 48H Waste Disposition

    SciTech Connect (OSTI)

    Peters, T

    2005-05-13T23:59:59.000Z

    In support for the Aggregation option1, researchers performed a series of tests using actual Tank 48H slurries. The tests were designed to examine potential benzene generation issues if the Tank 48H slurry is disposed to Saltstone. Personnel used the archived Tank 48H sample (HTF-E-03-127, collected September 17, 2003) for the experiments. The tests included a series of three experiments (Tests A, B, and F) performed in duplicate, giving a total of six experiments. Test A used Tank 48H slurry mixed with {approx}20:1 with Defense Waste Processing Facility (DWPF) Recycle from Tanks 21H and 22H. Test B used Tank 48H slurry mixed with {approx}2.7:1 with DWPF Recycle from Tanks 21H and 22H, while Test F used Tank 48H slurry as-is. Tests A and B occurred at 45 C, while Test F occurred at 55 C. Over a period of 8 weeks, personnel collected samples for analysis, once per week. Each sample was tested with the in-cell gamma counter. The researchers noted a decline in the cesium activity in solution which is attributed to temperature dependence of the complex slurry equilibrium. Selected samples were sent to ADS for potassium, boron, and cesium analysis. The benzene generation rate was inferred from the TPB destruction which is indirectly measured by the in-growth of cesium, potassium or boron. The results of all the analyses reveal no discernible in-growth of radiocesium, potassium or boron, indicating no significant tetraphenylborate (TPB) decomposition in any of the experiments. From boron measurements, the inferred rate of TPB destruction remained less than 0.332 mg/(L-h) implying a maximum benzene generation rate of <0.325 mg/(L-h).

  17. Atomic Structure of Benzene Which Accounts for Resonance Energy

    E-Print Network [OSTI]

    Raji Heyrovska

    2008-07-09T23:59:59.000Z

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there are two kinds of CH bonds of slightly different lengths. The bond energies account for the resonance energy.

  18. Ab initio investigation of intermolecular interactions in solid benzene

    E-Print Network [OSTI]

    O. Bludsky; M. Rubes; P. Soldan

    2008-01-04T23:59:59.000Z

    A computational strategy for the evaluation of the crystal lattice constants and cohesive energy of the weakly bound molecular solids is proposed. The strategy is based on the high level ab initio coupled-cluster determination of the pairwise additive contribution to the interaction energy. The zero-point-energy correction and non-additive contributions to the interaction energy are treated using density functional methods. The experimental crystal lattice constants of the solid benzene are reproduced, and the value of 480 meV/molecule is calculated for its cohesive energy.

  19. Internal degrees of freedom and transport of benzene on graphite

    E-Print Network [OSTI]

    Astrid S. de Wijn

    2011-07-13T23:59:59.000Z

    In this paper, the chaotic internal degrees of freedom of a benzene molecule adsorbed on a graphite substrate, their interplay with thermal noise, and their effects on the diffusion and drift are investigated analytically by making use of the presence of two different time scales as well as by molecular-dynamics simulations. The effects of thermal noise are investigated, and it is found that noise does not significantly alter the dynamics of the internal degrees of freedom, yet affects the friction and diffusion of the center of mass. Qualitative and quantitative theoretical predictions for the friction and diffusion of the molecule on the substrate are made and are compared to molecular-dynamics simulations. Contributions to the friction and diffusion from the finite heat bath as well as the slow dynamics of the center of mass are formally identified. It is shown that the torsion in benzene, which dominates the nonlinear coupling, significantly affects the friction of the molecule on the surface. The results compare favorably with recent results from He/neutron spin echo experiments on this system. Based on the analytical and numerical results, some suggestions are made for experimental conditions under which the effects of internal degrees of freedom might be observable.

  20. Femtosecond Near-Infrared Laser Desorption of Multilayer Benzene on Pt{111}: A Molecular Newton's Cradle?

    E-Print Network [OSTI]

    Levis, Robert J.

    Femtosecond Near-Infrared Laser Desorption of Multilayer Benzene on Pt{111}: A Molecular Newton Recently, the intense near-infrared laser desorption of intact benzene molecules has been reported.1 Three to alter the pure thermal distribution to one having a stream velocity.4 The high heating rates achievable

  1. Hydrologic and geochemical controls on soluble benzene migration in sedimentary basins

    E-Print Network [OSTI]

    Polly, David

    , a coupled ground- water flow and heat transfer model computes the hydraulic head, stream function, and temperature in the basin. A coupled mass transport model simulates water washing of benzene from an oil reservoir and its miscible, advective/dispersive transport by groundwater. Benzene mass transfer at the oil­water

  2. Adsorption of Benzene, Fluorobenzene and Meta-di-Fluorobenzene on Cu(110): A Computational Study

    E-Print Network [OSTI]

    Gao, Hongjun

    Adsorption of Benzene, Fluorobenzene and Meta-di-Fluorobenzene on Cu(110): A Computational Study L.interscience.wiley.com). Abstract: We modelled the adsorption of benzene, fluorobenzene and meta-di-fluorobenzene on Cu(110) by Den- sity Functional Theory. We found that the adsorption configuration depends on the coverage. At high

  3. Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies Rula A. Deeb1 ; Jonathan with Federal Clean Air Act requirements for carbon monoxide and ozone attainment, ethanol is being considered as a replacement for MTBE. The objective of this study is to evaluate the potential impact of ethanol on benzene

  4. A Multicompartment LiverBased Pharmacokinetic Model for Benzene and Its Metabolites in Mice

    E-Print Network [OSTI]

    extrapolated to predict in vivo data for benzene metabolism and dosimetry. 1 Introduction and Problem in a variety of blood and bone marrow disorders in both humans and laboratory animals [9, 18]. IncreasedA Multicompartment Liver­Based Pharmacokinetic Model for Benzene and Its Metabolites in Mice Cammey

  5. A Multicompartment Liver-Based Pharmacokinetic Model for Benzene and Its Metabolites in Mice

    E-Print Network [OSTI]

    extrapolated to predict in vivo data for benzene metabolism and dosimetry. 1 Introduction and Problem in a variety of blood and bone marrow disorders in both humans and laboratory animals [9, 18]. IncreasedA Multicompartment Liver-Based Pharmacokinetic Model for Benzene and Its Metabolites in Mice Cammey

  6. Physiologically Based Pharmacokinetic Modeling of Benzene Metabolism in Mice through Extrapolation

    E-Print Network [OSTI]

    metabolic constants for humans can subsequently be extrapolated to predict the dosimetry of benzene and itsPhysiologically Based Pharmacokinetic Modeling of Benzene Metabolism in Mice through Extrapolation parameters are also available for humans. Unknown parameters were estimated by fitting the model to published

  7. Analytical solution of electronic transport through a benzene molecule using lattice Green's functions

    E-Print Network [OSTI]

    E. J. C. Dias; N. M. R. Peres

    2015-02-25T23:59:59.000Z

    Using a Green's function formalism we derive analytical expressions for the electronic transmittance through a benzene ring. To motivate the approach we first solve the resonant level system and then extend the method to the benzene case. These results can be used to validate numerical methods.

  8. Intermolecular C?H bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex

    SciTech Connect (OSTI)

    Andino, José G.; Kilgore, Uriah J.; Pink, Maren; Ozarowski, Andrew; Krzystek, J.; Telser, Joshua; Baik, Mu-Hyun; Mindiola, Daniel J. (Roosevelt); (FSU); (Indiana)

    2012-01-20T23:59:59.000Z

    Breaking of the carbon-hydrogen bond of benzene and pyridine is observed with (PNP)V(CH{sub 2}tBu){sub 2} (1), and in the case of benzene, the formation of an intermediate benzyne complex (C) is proposed, and indirect proof of its intermediacy is provided by identification of (PNP)VO({eta}{sup 2}-C{sub 6}H{sub 4}) in combination with DFT calculations.

  9. Tuning the oxide/organic interface: Benzene on SnO2,,101... Matthias Batzill,a)

    E-Print Network [OSTI]

    Diebold, Ulrike

    Tuning the oxide/organic interface: Benzene on SnO2,,101... Matthias Batzill,a) Khabibulakh Katsiev,16 As a model molecule for simulating an organic semiconductor film benzene was chosen as a simple -conjugated

  10. Clustering Dynamics of the Metal-Benzene Sandwich Complex: The Role of Microscopic Structure of the Solute In the Bis(6-benzene)chromium Arn Clusters (n ) 1-15)

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Clustering Dynamics of the Metal-Benzene Sandwich Complex: The Role of Microscopic Structure of the Solute In the Bis(6-benzene)chromium ·Arn Clusters (n ) 1-15) Kyo-Won Choi, Sunyoung Choi, Doo-Sik AhnVised Manuscript ReceiVed: June 25, 2008 Ar clustering dynamics around the metal-benzene sandwich complex, bis(6

  11. Benzene Exposure and Risk of Non-Hodgkin Lymphoma Martyn T. Smith, Rachael M. Jones, and Allan H. Smith

    E-Print Network [OSTI]

    California at Berkeley, University of

    Benzene Exposure and Risk of Non-Hodgkin Lymphoma Martyn T. Smith, Rachael M. Jones, and Allan H of California, Berkeley, California Abstract Exposure to benzene, an important industrial chemical and component studies that identified probable occupational exposures to benzene and NHL morbidity or mortality. We

  12. Electronic structure of benzene adsorbed on single-domain Si,,001...-,,2 1...: A combined experimental and theoretical study

    E-Print Network [OSTI]

    Birkenheuer, Uwe

    Electronic structure of benzene adsorbed on single-domain Si,,001...-,,2 1...: A combined Received 20 October 1997; accepted 31 December 1997 Benzene adsorption on a single-domain Si 001 -(2 1 for the saturated benzene layer exhibit well-defined polarization and azimuthal dependencies compatible with a flat

  13. (CANCER RESEARCH 50, 393-399. January 15. 1990] Characterization of Micronuclei Induced in Human Lymphocytes by Benzene

    E-Print Network [OSTI]

    California at Berkeley, University of

    Lymphocytes by Benzene Metabolites1 Janice W. Yager, David A. Eastmond,2 Moire L. Robertson, William M Division, Lawrence Livermore National Laboratory, Livermore, California 94550 fD. A. E.] ABSTRACT Benzene is an established human leukemogen. Workers occupational!) exposed to benzene exhibit increased frequencies of both

  14. J. Am. Chem. SOC. The m ( b 2 u ) Mode of Benzene in SOand SI and the

    E-Print Network [OSTI]

    Haas, Yehuda

    J. Am. Chem. SOC. The m ( b 2 u ) Mode of Benzene in SOand SI and the Distortive Nature of the z structure. The symmetry analysis of the vibrational modes of benzene by Wilson4was one of the first and assigned of vibrational spectra of benzene and its derivatives. Early on it was noticed that b2u modes

  15. Electronic Structure and Properties of Transition Metal-Benzene Ravindra Pandey, Bijan K. Rao,*, Purusottam Jena, and Miguel Alvarez Blanco

    E-Print Network [OSTI]

    Pandey, Ravi

    Electronic Structure and Properties of Transition Metal-Benzene Complexes Ravindra Pandey, Bijan Kd transition metal atoms (M) interacting with benzene molecules (Bz) is carried out using density. The variation of the metal-benzene distances, dissociation energies, ionization potentials, electron affinities

  16. Polymorphisms in genes involved in DNA double-strand break repair pathway and susceptibility to benzene-induced hematotoxicity

    E-Print Network [OSTI]

    California at Berkeley, University of

    to benzene-induced hematotoxicity Min Shen1,Ã, Qing Lan1 , Luoping Zhang2 , Stephen Chanock1,3 , Guilan Li4; Email: shenmi@mail.nih.gov Benzene is a recognized hematotoxicant and carcinogen that produces genotoxic and indirectly by benzene metabolites. DSB may lead to chromosome aberrations, apoptosis and hematopoietic

  17. Electronic Transitions of Protonated Benzene and Fulvene, and of C6H7 Isomers in Neon Matrices

    E-Print Network [OSTI]

    Maier, John Paul

    Electronic Transitions of Protonated Benzene and Fulvene, and of C6H7 Isomers in Neon Matrices: Electronic transitions of protonated benzene (A~ 1 B2rX~ 1 A1, origin at 325 nm) and R-protonated fulvene (A) with simple atomic and molecular species was investigated.3,4 It was found, for example, that benzene cations

  18. Charge localization and JahnTeller distortions in the benzene dimer cation Piotr A. Pieniazek, Stephen E. Bradforth,a

    E-Print Network [OSTI]

    Krylov, Anna I.

    Charge localization and Jahn­Teller distortions in the benzene dimer cation Piotr A. Pieniazek August 2008 Jahn­Teller JT distortions and charge localization in the benzene dimer cation are analyzed.1063/1.2969107 I. INTRODUCTION The benzene dimer cation is an important model system for radiation

  19. Detailed Hydration Maps of Benzene and Cyclohexane Reveal Distinct Water Structures Tanya M. Raschke* and Michael Levitt

    E-Print Network [OSTI]

    Raschke, Tanya M.

    Detailed Hydration Maps of Benzene and Cyclohexane Reveal Distinct Water Structures Tanya M of the hydrophobic solutes benzene and cyclohexane were investigated using molecular dynamics (MD) simulations O and H atoms surrounding either benzene or cyclohexane were generated from the simulation data. MD

  20. The nature of the exalted Kekule vibration of styrene and other benzene derivatives in the S1 state

    E-Print Network [OSTI]

    Haas, Yehuda

    The nature of the exalted Kekule vibration of styrene and other benzene derivatives in the S1 state vibrational frequency of several benzene derivatives in the ®rst excited state S1. It is found of benzene are treated as `twin states'. The physical nature of this vibration is discussed in view

  1. Fully ab initio atomization energy of benzene via Weizmann-2 theory Srinivasan Parthiban and Jan M. L. Martina)

    E-Print Network [OSTI]

    Martin, Jan M.L.

    Fully ab initio atomization energy of benzene via Weizmann-2 theory Srinivasan Parthiban and Jan M at absolute zero, (TAE0) of benzene, C6H6, was computed fully ab initio by means of W2h theory as 1306.6 kcal for systems the size of benzene, chemically accurate molecular atomization energies can be obtained from fully

  2. 2590 J. Am. Chem. SOC.1995,117, 2590-2599 The C-H Bond Energy of Benzene

    E-Print Network [OSTI]

    Ellison, Barney

    2590 J. Am. Chem. SOC.1995,117, 2590-2599 The C-H Bond Energy of Benzene Gustavo E. Davico ion with benzene and phenide ion with ammonia: c&6 +NH2- C6H5- +NH3. The ratio of these rate constants for derived. The enthalpy of deprotonationof benzene, the C-H bond dissociationenergy, and the electron

  3. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of benzene: Vibrational analysis of C6H6

    E-Print Network [OSTI]

    Kim, Myung Soo

    Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of benzene: Vibrational analysis-photon spectra agrees with the previous suggestion that the geometry of benzene cation in the ground electronic. INTRODUCTION Benzene cation has been the focus of an intensive re- search effort, both experimental1

  4. J. Am. Chem. SOC.1987, 109, 6825-6836 6825 `H NMR (22 O C , benzene-d6): 6 3.26 (s, OSCMe), 3.03 (s, 2JwH=

    E-Print Network [OSTI]

    Prentiss, Mara

    J. Am. Chem. SOC.1987, 109, 6825-6836 6825 `H NMR (22 O C , benzene-d6): 6 3.26 (s, OSCMe), 3.03 (s to yield a yellow powder (0.35 g, 92%). `H NMR (22 O C , benzene-d6): 6 2.66 (s, bridge 02CNMe2),2.59 (s of C 0 2was reacted with W,Bz;(NMe,),. `H NMR (22 OC. benzene-dr): 6 3.79 (s, CH,Ph), 2.67, 2.28 S, 02

  5. Isothermal vapor-liquid equilibria for benzene + cyclohexane + 1-propanol and for three constituent binary systems

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Uchiyama, Masanori; Kojima, Kazuo [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry] [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry

    1997-01-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured for the ternary system of benzene + cyclohexane + 1-propanol and its constituent binary systems of benzene + cyclohexane, cyclohexane + 1-propanol, and benzene + 1-propanol at 323.15 and 333.15 K, using the apparatus proposed in a previous study. The experimental binary data were correlated using the NRTL equation. The ternary system was predicted using the binary NRTL parameters. The average absolute percent deviations between the predicted and experimental ternary total pressures are 0.5% at 323.15 K and 0.4% at 333.15 K.

  6. Bond Energy Sums in Benzene, Cyclohexatriene and Cyclohexane Prove Resonance Unnecessary

    E-Print Network [OSTI]

    Raji Heyrovska

    2008-07-27T23:59:59.000Z

    The recent new structure of benzene shows that it consists of three C atoms of radii as in graphite alternating with three C atoms with double bond radii. This is different from the hypothetical cyclohexatriene (Kekule structure) involving alternate double and single bonds. It was shown that the difference in the bond energy sum of the atomic structure of benzene from that of the Kekule structure is the energy (erroneously) assumed to be due to resonance. Here it is shown that the present structure of benzene also explains the energy of hydrogenation into cyclohexane and its difference from that of cyclohexatriene.

  7. Resonant ion-dip infrared spectroscopy of benzene(methanol)m clusters R. Nathaniel Pribble, Fredrick C. Hagemeister, and Timothy S. Zwiera)

    E-Print Network [OSTI]

    Zwier, Timothy S.

    Resonant ion-dip infrared spectroscopy of benzene­(methanol)m clusters with m 1­6 R. Nathaniel bonding between benzene and methanol. The m 2 spectrum features two strong transitions at 3506 and 3605 cm in the absence of benzene, is redshifted by 76 cm 1 due to a strengthened hydrogen bond. In benzene­ CH3OH 3

  8. COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN'S MOON TITAN

    SciTech Connect (OSTI)

    Zhou Li; Zheng Weijun; Kaiser, Ralf I. [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI (United States); Landera, Alexander; Mebel, Alexander M. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); Liang, Mao-Chang [Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan (China); Yung, Yuk L. [Division of Geological and Planetary Sciences, Caltech, Pasadena, CA (United States)

    2010-08-01T23:59:59.000Z

    The aromatic benzene molecule (C{sub 6}H{sub 6})-a central building block of polycyclic aromatic hydrocarbon molecules-is of crucial importance for the understanding of the organic chemistry of Saturn's largest moon, Titan. Here, we show via laboratory experiments and electronic structure calculations that the benzene molecule can be formed on Titan's surface in situ via non-equilibrium chemistry by cosmic-ray processing of low-temperature acetylene (C{sub 2}H{sub 2}) ices. The actual yield of benzene depends strongly on the surface coverage. We suggest that the cosmic-ray-mediated chemistry on Titan's surface could be the dominant source of benzene, i.e., a factor of at least two orders of magnitude higher compared to previously modeled precipitation rates, in those regions of the surface which have a high surface coverage of acetylene.

  9. DYNAMIC MODELING AND CONTROL OF REACTIVE DISTILLATION FOR HYDROGENATION OF BENZENE 

    E-Print Network [OSTI]

    Aluko, Obanifemi

    2010-01-16T23:59:59.000Z

    This work presents a modeling and control study of a reactive distillation column used for hydrogenation of benzene. A steady state and a dynamic model have been developed to investigate control structures for the column. The most important aspects...

  10. Diffusion of benzene confined in the oriented nanochannels of chrysotile asbestos fibers

    SciTech Connect (OSTI)

    Mamontov, E. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr., MS 8562, Gaithersburg, Maryland 20899-8562 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115 (United States); Kumzerov, Yu.A.; Vakhrushev, S.B. [Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation)

    2005-11-01T23:59:59.000Z

    We used quasielastic neutron scattering to study the dynamics of benzene that completely fills the nanochannels of chrysotile asbestos fibers with a characteristic diameter of about 5 nm. The macroscopical alignment of the nanochannels in fibers provided an interesting opportunity to study anisotropy of the dynamics of confined benzene by means of collecting the data with the scattering vector either parallel or perpendicular to the fibers axes. The translational diffusive motion of benzene molecules was found to be isotropic. While bulk benzene freezes at 278.5 K, we observed the translational dynamics of the supercooled confined benzene on the time scale of hundreds of picoseconds even below 200 K, until at about 160 K its dynamics becomes too slow for the {mu}eV resolution of the neutron backscattering spectrometer. The residence time between jumps for the benzene molecules measured in the temperature range of 260 K to 320 K demonstrated low activation energy of 2.8 kJ/mol.

  11. Multiple solutions of CCD equations for PPP model of benzene

    E-Print Network [OSTI]

    Podeszwa, R; Jankowski, K; Rubiniec, K; Podeszwa, Rafa{\\l}; Stolarczyk, Leszek Z.; Jankowski, Karol; Rubiniec, Krzysztof

    2002-01-01T23:59:59.000Z

    To gain some insight into the structure and physical significance of the multiple solutions to the coupled-cluster doubles (CCD) equations corresponding to the Pariser-Parr-Pople (PPP) model of cyclic polyenes, complete solutions to the CCD equations for the A^{-}_{1g} states of benzene are obtained by means of the homotopy method. By varying the value of the resonance integral beta from -5.0 eV to -0.5 eV, we cover the so-called weakly, moderately, and strongly correlated regimes of the model. For each value of beta 230 CCD solutions are obtained. It turned out, however, that only for a few solutions a correspondence with some physical states can be established. It has also been demonstrated that, unlike for the standard methods of solving CCD equations, some of the multiple solutions to the CCD equations can be attained by means of the iterative process based on Pulay's direct inversion in the iterative subspace (DIIS) approach.

  12. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    SciTech Connect (OSTI)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01T23:59:59.000Z

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  13. Low Energy Barrier Proton Transfer in Protonated Benzene-Water Complex Eugene S. Kryachko and Minh Tho Nguyen*

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Low Energy Barrier Proton Transfer in Protonated Benzene-Water Complex Eugene S. Kryachko and Minh-bonded benzene-water complex is studied at the MP2/6-31+G(d,p) computational level. It is shown that, contrary to the fact that benzene is more basic than water by 13.5 kcal/mol, the excess proton favors to reside

  14. In utero exposure to benzene increases embryonic c-Myb and Pim-1 protein levels in CD-1 mice

    SciTech Connect (OSTI)

    Wan, Joanne [Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M. [Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, K7L 3N6 (Canada); School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)], E-mail: winnl@queensu.ca

    2008-05-01T23:59:59.000Z

    Benzene is a known human leukemogen, but its role as an in utero leukemogen remains controversial. Epidemiological studies have correlated parental exposure to benzene with an increased incidence of childhood leukemias. We hypothesize that in utero exposure to benzene may cause leukemogenesis by affecting the embryonic c-Myb/Pim-1 signaling pathway and that this is mediated by oxidative stress. To investigate this hypothesis, pregnant CD-1 mice were treated with either 800 mg/kg of benzene or corn oil (i.p.) on days 10 and 11 of gestation and in some cases pretreated with 25 kU/kg of PEG-catalase. Phosphorylated and total embryonic c-Myb and Pim-1 protein levels were assessed using Western blotting and maternal and embryonic oxidative stress were assessed by measuring reduced to oxidized glutathione ratios. Our results show increased oxidative stress at 4 and 24 h after exposure, increased phosphorylated Pim-1 protein levels 4 h after benzene exposure, and increased Pim-1 levels at 24 and 48 h after benzene exposure. Embryonic c-Myb levels were elevated at 24 h after exposure. PEG-catalase pretreatment prevented benzene-mediated increases in embryonic c-Myb and Pim-1 protein levels, and benzene-induced oxidative stress. These results support a role for ROS in c-Myb and Pim-1 alterations after in utero benzene exposure.

  15. Dissociation of the benzene molecule by UV and soft X-rays in circumstellar environment

    E-Print Network [OSTI]

    H. M. Boechat-Roberty; R. Neves; S. Pilling; A. F. Lago; G. G. B. de Souza

    2008-11-30T23:59:59.000Z

    Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by UV and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule, using synchrotron radiation and time of flight mass spectrometry. Mass spectra were recorded at different energies corresponding to the vacuum ultraviolet (21.21 eV) and soft X-ray (282-310 eV) spectral regions. The production of ions from the benzene dissociative photoionization is here quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray than UV radiation, where 50% of the ionized benzene molecules survive to UV dissociation while only about 4% resist to X-rays. Partial ion yields of H+ and small hydrocarbons such as C2H2+, C3H3+ and C4H2+ are determined as a function of photon energy. Absolute photoionization and dissociative photoionization cross sections have also been determined. From these values, half-life of benzene molecule due to UV and X-ray photon fluxes in CRL 618 were obtained.

  16. Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition

    SciTech Connect (OSTI)

    Lian, Suoyuan [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China) [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); School of Chemical Engineering and Materials, Dalian Polytechnic University, Dalian 116034 (China); Tsang, Chi Him A. [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China) [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)] [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)] [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Wong, Ningbew [Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong (China)] [Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong (China); Lee, Shuit-Tong [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China) [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong (China)

    2011-12-15T23:59:59.000Z

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. Black-Right-Pointing-Pointer The Si/SiO{sub x} core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC-MS and UV-Vis spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 Multiplication-Sign 10{sup -4} M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.

  17. Total cross sections for positron scattering from benzene, cyclohexane, and aniline

    SciTech Connect (OSTI)

    Zecca, Antonio; Moser, Norberto; Perazzolli, Chiara; Salemi, Alessandro [Department of Physics, University of Trento, I-38050 Povo (Trento) (Italy); Brunger, Michael J. [ARC Centre for Antimatter-Matter Studies, School of Chemistry, Physics and Earth Sciences, Flinders University, G.P.O. Box 2100, Adelaide, South Australia 5001 (Australia)

    2007-08-15T23:59:59.000Z

    We use a linear transmission technique to measure total cross sections for positron scattering from benzene, cyclohexane, and aniline. In the case of cyclohexane, the energy range of the present study is 0.1-20 eV, while for benzene and aniline it is 0.2-20 eV. With respect to benzene and cyclohexane, comparison is made to the only other existing results we know of [Makochekanwa and co-workers, Phys. Rev. A 68, 032707 (2003); 72, 042705 (2005)]. Agreement with those data is only marginal, being particularly poor at the overlap lower energies. Unlike Kimura et al. [J. Phys. B 37, 1461 (2004)], we find the low-energy dependence of the positron-benzene total cross sections to be qualitatively similar to those found in the electron channel [Gulley et al., J. Phys. B 31, 2735 (1998)]. We believe that the present positron-aniline total cross sections represent the first time such data have been measured. These cross sections are almost identical to those we found for benzene, suggesting that substitution of hydrogen by the amine group on the aromatic ring is largely irrelevant to the scattering process in the energy regimes considered.

  18. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    SciTech Connect (OSTI)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20T23:59:59.000Z

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  19. Economic analysis: impact of CS/R process on benzene market

    SciTech Connect (OSTI)

    Spielberger, L.; Klein, J.

    1981-05-01T23:59:59.000Z

    Contract No. DE-AC01-78ET10159 (formerly ET-78-C-01-3117) between UOP/SDC and the United States Department of Energy (DOE) requires UOP/SDC to provide specific engineering and technical services to the DOE Office of Coal Processing in support of the Coal Gasification Program. This report covers an economic study on the projected price of benzene through the next decade based on the market factors and production costs. The impact of the CS/R process on the benzene market was evaluated. In addition, the cost of gas from the CS/R process was determined as a function of the byproduct credit for benzene.

  20. Vapor-liquid equilibria for the system benzene-thiophene-methanol

    SciTech Connect (OSTI)

    Triday, J.O.; Rodriguez, P.

    1985-01-01T23:59:59.000Z

    Isothermal vapor pressure data over the whole range of composition were obtained for the system benzene-thiophene-methanol. Data were taken at temperatures of 35, 40, and 45 /sup 0/C by using a static equilibrium cell. The systems benzene-methanol and thiophene-methanol are highly nonideal, while the system benzene-thiophene shows a very small deviation from ideality. The models suggested by Wilson and by Renon and Prausnitz (NRTL) and the modified equation of Abrams and Prausnitz (UNIQUAC) were used in the reduction of data. Physical parameters of these equations obtained from the binary data were used to predict the ternary system. The Wilson equation gives the best fit for the binary as well as the ternary data. Also, this equation gives the best prediction for the ternary system.

  1. Benzene Adsorbed on Metals: Concerted Effect of Covalency and van der Waals Bonding

    E-Print Network [OSTI]

    Liu, Wei; Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias; Tkatchenko, Alexandre

    2012-01-01T23:59:59.000Z

    The adsorption of aromatic molecules on metal surfaces plays a key role in condensed matter physics and functional materials. Depending on the strength of the interaction between the molecule and the surface, the binding is typically classified as either physisorption or chemisorption. Van der Waals (vdW) interactions contribute significantly to the binding in physisorbed systems, but the role of the vdW energy in chemisorbed systems remains unclear. Here we study the interaction of benzene with the (111) surface of transition metals, ranging from weak adsorption (Ag and Au) to strong adsorption (Pt, Pd, Ir, and Rh). When vdW interactions are accurately accounted for, the barrier to adsorption predicted by standard density functional calculations essentially vanishes, producing a metastable precursor state on Pt and Ir surfaces. Notably, vdW forces contribute more to the binding of covalently bonded benzene than they do when benzene is physisorbed.

  2. Theoretical study of reactions of HO{sub 2} in low-temperature oxidation of benzene

    SciTech Connect (OSTI)

    Altarawneh, Mohammednoor [Chemical Engineering Department, Al-Hussein Bin Talal University, Ma'an (Jordan); Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C. [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-07-15T23:59:59.000Z

    We have generated a set of thermodynamic and kinetic parameters for the reactions involving HO{sub 2} in the very early stages of benzene oxidation at low temperatures using density functional theory (DFT). In particular, we report the rate constants for the reactions of HO{sub 2} with benzene and phenyl. The calculated reaction rate constant for the abstraction of H-C{sub 6}H{sub 5} by HO{sub 2} is found to be in good agreement with the limited experimental values. HO{sub 2} addition to benzene is found to be more important than direct abstraction. We show that the reactions of HO{sub 2} with the phenyl radical generate the propagating radical OH in a highly exoergic reaction. The results presented herein should be useful in modeling the oxidation of aromatic compounds at low temperatures. (author)

  3. In utero and in vitro effects of benzene and its metabolites on erythroid differentiation and the role of reactive oxygen species

    SciTech Connect (OSTI)

    Badham, Helen J. [Department of Pharmacology and Toxicology. Queen's University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.c [Department of Pharmacology and Toxicology. Queen's University, Kingston, Ontario, K7L 3N6 (Canada); School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)

    2010-05-01T23:59:59.000Z

    Benzene is a ubiquitous occupational and environmental toxicant. Exposures to benzene both prenatally and during adulthood are associated with the development of disorders such as aplastic anemia and leukemia. Mechanisms of benzene toxicity are unknown; however, generation of reactive oxygen species (ROS) by benzene metabolites may play a role. Little is known regarding the effects of benzene metabolites on erythropoiesis. Therefore, to determine the effects of in utero exposure to benzene on the growth and differentiation of fetal erythroid progenitor cells (CFU-E), pregnant CD-1 mice were exposed to benzene and CFU-E numbers were assessed in fetal liver (hematopoietic) tissue. In addition, to determine the effect of benzene metabolite-induced ROS generation on erythropoiesis, HD3 chicken erythroblast cells were exposed to benzene, phenol, or hydroquinone followed by stimulation of erythrocyte differentiation. Our results show that in utero exposure to benzene caused significant alterations in female offspring CFU-E numbers. In addition, exposure to hydroquinone, but not benzene or phenol, significantly reduced the percentage of differentiated HD3 cells, which was associated with an increase in ROS. Pretreatment of HD3 cells with polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) prevented hydroquinone-induced inhibition of erythropoiesis, supporting the hypothesis that ROS generation is involved in the development of benzene erythrotoxicity. In conclusion, this study provided evidence that ROS generated as a result of benzene metabolism may significantly alter erythroid differentiation, potentially leading to the development of Blood Disorders.

  4. Determination of a peak benzene exposure to consumers at typical self-service gasoline stations

    E-Print Network [OSTI]

    Carapezza, Ted

    1977-01-01T23:59:59.000Z

    the public exposure to benzene at the self-serv1ce gas pump seems of paramount importance dur1ng this time of the highly publicized benzene hazard and increased gasoline consumption. These factors produced the amtivating effect for th1s research effort wh... Table ~Pa e I. HUMAN INHALATION EXPOSURE TO GASOLINE VAPOR. I I. SELF-SERVICE GASOLINE STATIONS . III. SAMPLING RESULTS IV. FIELD DATA: STATION I V. FIELD DATA: STATION II VI. FIEI D DATA: STATION III. VI I. FIELD DATA: STATION IV . VIII...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  6. 40 CFR Ch. I (7105 Edition)Pt. 194 1,2,4-Trichlorobenzene (Benzene, 1,2,4-

    E-Print Network [OSTI]

    36 40 CFR Ch. I (7­1­05 Edition)Pt. 194 Toxaphene 1,2,4-Trichlorobenzene (Benzene, 1,2,4- trichloro (Benzene, 1,3,5-trinitro-) Tris(1-aziridinyl)phosphine sulfide (Aziridine, 1,1,1phosphinothioylidyne

  7. Kinetics and modeling of mixture effects during complete catalytic oxidation of benzene and methyl tert-butyl ether

    SciTech Connect (OSTI)

    Dangi, S.; Abraham, M.A. [Univ. of Tulsa, OK (United States). Dept. of Chemical Engineering] [Univ. of Tulsa, OK (United States). Dept. of Chemical Engineering

    1997-06-01T23:59:59.000Z

    The performance of a catalytic incinerator depends on the nature of the compounds being oxidized and cannot be predicted simply by knowing the performance of the incinerator with pure-component model compounds. Considering the importance of mixture effects, an attempt was made to develop a combined model to predict the conversion when benzene and methyl tert-butyl ether (MTBE) are simultaneously oxidized. Complete catalytic oxidation of benzene and MTBE, singly and in mixtures, was investigated over a platinum catalyst. No inhibition effects were seen with benzene, but MTBE conversion was distinctly inhibited by benzene. A Mars-van Krevelen rate model was used to explain the results. Model parameters were obtained from pure-component experiments and then incorporated into a multicomponent model without any adjustment or additional rate parameters. The multicomponent model was able to predict the conversion of benzene and MTBE oxidation in the binary mixture using the pure-component data without adjustable parameters.

  8. (CANCER RESEARCH 53. I02.VI026. March I. 1993] Benzene and Its Phenolic Metabolites Produce Oxidative DNA Damage in HL60

    E-Print Network [OSTI]

    California at Berkeley, University of

    (CANCER RESEARCH 53. I02.VI026. March I. 1993] Benzene and Its Phenolic Metabolites Produce ABSTRACT Benzene, an important industrial chemical, is myelotoxic and leuke- mogenic in humans effects. Here we report the induction of oxida- tive DNA damage by benzene and its phenolic metabolites

  9. Theoretical Investigation of Benzene Alkylation with Ethene over H-ZSM-5 Niels Hansen,*, Till Bruggemann, Alexis T. Bell,*, and Frerich J. Keil

    E-Print Network [OSTI]

    Bell, Alexis T.

    Theoretical Investigation of Benzene Alkylation with Ethene over H-ZSM-5 Niels Hansen,*, Till Bru Benzene alkylation with ethene over zeolite H-ZSM-5 has been investigated using density functional theory with the formation of a stable ethoxide intermediate which subsequently reacts with benzene to form the reaction

  10. Water on BN doped benzene: A hard test for exchange-correlation functionals and the impact of exact exchange on weak binding

    E-Print Network [OSTI]

    Alavi, Ali

    Water on BN doped benzene: A hard test for exchange-correlation functionals and the impact of exact on benzene, coronene, and graphene from quantum Monte Carlo calculations J. Chem. Phys. 134, 134701 (2011); 10.1063/1.3569134 The water-benzene interaction: Insight from electronic structure theories J. Chem

  11. Identification of Adsorbed Phenyl (C6H5) Groups on Metal Surfaces: Electron-Induced Dissociation of Benzene on Au(111)

    E-Print Network [OSTI]

    Ellison, Barney

    of Benzene on Au(111) Denis Syomin, Jooho Kim, and Bruce E. Koel* Department of Chemistry, Uni thermal and electron-induced chemistry of benzene (C6H6) adsorbed on a Au(111) surface. Thermal desorption of benzene occurs in three desorption peaks: monolayer at 239 K, bilayer at 155 K, and multilayer films

  12. Modeling the -lectrons of Benzene as Particles on a Ring Calculate the wavelength of the photon required for the first allowed (HOMO-LUMO) electronic

    E-Print Network [OSTI]

    Rioux, Frank

    Modeling the -lectrons of Benzene as Particles on a Ring Calculate the wavelength of the photon required for the first allowed (HOMO-LUMO) electronic transition involving the -electrons of benzene. Energy Level Diagram for Benzene's Electrons _______ _______4 h 2 2 m C 2 n = +/- 2 LUMO h 2 2 m C 2

  13. Charge transfer from TiO2 into adsorbed benzene diazonium compounds Tel-Aviv University, School of Electrical Engineering, Ramat-Aviv 69978, Israel

    E-Print Network [OSTI]

    Shapira, Yoram

    Charge transfer from TiO2 into adsorbed benzene diazonium compounds A. Merson Tel-Aviv University benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two

  14. Spatial variation in ambient benzene concentrations over a city park1 Samantha Fridh, MSPH, and Amy L. Stuart, MS, PhD2

    E-Print Network [OSTI]

    Stuart, Amy L.

    1 Spatial variation in ambient benzene concentrations over a city park1 Samantha Fridh of South Florida3 4 Abstract5 Passive diffusive samplers were used to collect ambient benzene, passive sampling18 19 Introduction20 Benzene is a known human carcinogen (e.g. it is classified

  15. Supplement for "AMS and LC/MS analyses of SOA from the photooxidation of benzene and 1,3,5-trimethylbenzene in

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    1 Supplement for "AMS and LC/MS analyses of SOA from the photooxidation of benzene and 1@nies.go.jp) #12;2 Fig. S1: Time profiles (a) benzene concentration and HROrg and HRNO3 particulate product during the photooxidation of benzene (run 3). #12;3 Fig. S2. Yield curves for SOA formed from

  16. Hematotoxicity in Workers Exposed to Low Levels of Benzene Qing Lan1,*, Luoping Zhang2,*, Guilan Li3, Roel Vermeulen1, Rona S. Weinberg4, Mustafa

    E-Print Network [OSTI]

    California at Berkeley, University of

    Hematotoxicity in Workers Exposed to Low Levels of Benzene Qing Lan1,*, Luoping Zhang2,*, Guilan Li for Cancer Research, NCI, NIH, DHHS, Bethesda, MD 20892, USA. Abstract Benzene is known to have toxic effects million (ppm) remains uncertain. In a study of 250 workers exposed to benzene, white blood cell

  17. Dissociation of Benzene Dication [C6H6]2+: Exploring the Potential Energy Surface Smriti Anand and H. Bernhard Schlegel*

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Dissociation of Benzene Dication [C6H6]2+: Exploring the Potential Energy Surface Smriti Anand The singlet potential energy surface for the dissociation of benzene dication has been explored, and its three such as acetylene, cyclopropane, butadiene, cyclohexane, benzene, toluene, and naphthalene. The Coulomb explosion

  18. Primary and Secondary Glyoxal Formation from Aromatics: Experimental Evidence for the Bicycloalkyl-Radical Pathway from Benzene, Toluene, and p-Xylene

    E-Print Network [OSTI]

    -Radical Pathway from Benzene, Toluene, and p-Xylene R. Volkamer,*, U. Platt, and K. Wirtz Centro de Estudios Form: May 16, 2001 A new approach is presented to study the ring-cleavage process of benzene, toluene for the troposphere. The yield of glyoxal was determined to be 35% ( 10% for benzene and about 5% higher for toluene

  19. The Nature of the Intramolecular Charge Transfer Excited State in p-Pyrrolocyanobenzene (PBN) and Other Derivatives of Benzene Substituted by Electron Donor and Acceptor

    E-Print Network [OSTI]

    Haas, Yehuda

    -Pyrrolocyanobenzene (PBN) and Other Derivatives of Benzene Substituted by Electron Donor and Acceptor Groups Shmuel Zilberg analysis of these compounds, in which benzene is substituted by an electron withdrawing group of benzene and is of a covalent nature. Light emission from this state is due to local excitation

  20. Mesomorphic properties and molecular structure. II. Structure of the smectic A phase in the 4-propionyl-4' -n-alkanoyloxy-azo-benzene series

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -propionyl-4' -n-alkanoyloxy-azo-benzene series G. Albertini (*), E. Fanelli (**), D. Guillon (***), S dilatométrie et par diffraction des rayons X. La comparaison avec les données de la série 4-acetyl-4'-n-alkanoyloxy-azo-benzene-alka- noyloxy-azo-benzene series have been obtained by using dilatometry and X-ray diffraction techniques

  1. Study of the Thermal Diffusion Behavior of Alkane/Benzene Mixtures by Thermal Diffusion Forced Rayleigh Scattering Experiments and Lattice Model Calculations

    E-Print Network [OSTI]

    Luettmer-Strathmann, Jutta

    Study of the Thermal Diffusion Behavior of Alkane/Benzene Mixtures by Thermal Diffusion Forced mixtures of linear alkanes (heptane, nonane, undecane, tridecane, pentadecane, heptadecane) in benzene has and temperatures. The Soret coefficient ST of the alkane was found to be negative for these n-alkane/benzene

  2. Structure of hydrophobic hydration of benzene and hexafluorobenzene from first principles

    SciTech Connect (OSTI)

    Allesch, M; Schwegler, E; Galli, G

    2006-10-23T23:59:59.000Z

    We report on the aqueous hydration of benzene and hexafluorobenzene, as obtained by carrying out extensive (>100 ps) first principles molecular dynamics simulations. Our results show that benzene and hexafluorobenzene do not behave as ordinary hydrophobic solutes, but rather present two distinct regions, one equatorial and the other axial, that exhibit different solvation properties. While in both cases the equatorial regions behave as typical hydrophobic solutes, the solvation properties of the axial regions depend strongly on the nature of the {pi}-water interaction. In particular, {pi}-hydrogen and {pi}-lone pair interactions are found to dominate in benzene and hexafluorobenzene, respectively, which leads to substantially different orientations of water near the two solutes. We present atomic and electronic structure results (in terms of Maximally Localized Wannier Functions) providing a microscopic description of benzene- and hexafluorobenzene-water interfaces, as well as a comparative study of the two solutes. Our results point at the importance of an accurate description of interfacial water in order to characterize hydration properties of apolar molecules, as these are strongly influenced by subtle charge rearrangements and dipole moment redistributions in interfacial regions.

  3. Process Biochemistry 36 (2001) 765772 Benzene degradation in a two-phase partitioning bioreactor by

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2001-01-01T23:59:59.000Z

    Process Biochemistry 36 (2001) 765­772 Benzene degradation in a two-phase partitioning bioreactor November 2000; accepted 22 November 2000 Abstract An aqueous-organic, two-phase bioreactor system was used into the aqueous phase of the two-phase partitioning bioreactor, which consisted of a 1 l aqueous phase and 500 ml

  4. Physiologically Based Pharmacokinetic (PBPK) Modeling of Benzene in Humans: A Bayesian Approach

    E-Print Network [OSTI]

    that are now often used in risk assessment to better extrapolate from experimental animals to humans and from hPhysiologically Based Pharmacokinetic (PBPK) Modeling of Benzene in Humans: A Bayesian Approach for variability among humans, the mathematical model must be integrated into a statistical framework

  5. Antiferromagnetic Exchange Interaction between Electrons on Degenerate LUMOs in Benzene Dianion

    E-Print Network [OSTI]

    Matsuura, Hiroyasu; Fukuyama, Hidetoshi

    2012-01-01T23:59:59.000Z

    We discuss the ground state of Benzene dianion (Bz$^{2-}$) on the basis of the numerical diagonalization method of an effective model of $\\pi$ orbitals. It is found that the ground state can be the spin singlet state, and the exchange coupling between LUMOs can be antiferromagnetic.

  6. Formation of the diphenyl molecule in the crossed beam reaction of phenyl radicals with benzene

    SciTech Connect (OSTI)

    Zhang Fangtong; Gu Xibin; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822 (United States)

    2008-02-28T23:59:59.000Z

    The chemical dynamics to form the D5-diphenyl molecule, C{sub 6}H{sub 5}C{sub 6}D{sub 5}, via the neutral-neutral reaction of phenyl radicals (C{sub 6}H{sub 5}) with D6-benzene (C{sub 6}D{sub 6}), was investigated in a crossed molecular beams experiment at a collision energy of 185 kJ mol{sup -1}. The laboratory angular distribution and time-of-flight spectra of the C{sub 6}H{sub 5}C{sub 6}D{sub 5} product were recorded at mass to charge m/z of 159. Forward-convolution fitting of our data reveals that the reaction dynamics are governed by an initial addition of the phenyl radical to the {pi} electron density of the D6-benzene molecule yielding a short-lived C{sub 6}H{sub 5}C{sub 6}D{sub 6} collision complex. The latter undergoes atomic deuterium elimination via a tight exit transition state located about 30 kJ mol{sup -1} above the separated reactants; the overall reaction to form D5-diphenyl from phenyl and D6-benzene was found to be weakly exoergic. The explicit identification of the D5-biphenyl molecules suggests that in high temperature combustion flames, a diphenyl molecule can be formed via a single collision event between a phenyl radical and a benzene molecule.

  7. Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5: A multiscale approach

    E-Print Network [OSTI]

    Bell, Alexis

    Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5 Dehydrogenation a b s t r a c t Rate expressions are vital for analysis, design and operation of chemical reactors used the extended continuum model in the design equation of a fixed bed reactor and simulated

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content of

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat ContentHeat

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat Content

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content of

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content ofHeat

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeatHeat

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content of

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat ContentHeat

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat Content

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat Content

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content of

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat ContentHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat Content

  6. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts

    SciTech Connect (OSTI)

    Mei, Donghai; Lebarbier, Vanessa MC; Rousseau, Roger J.; Glezakou, Vassiliki Alexandra; Albrecht, Karl O.; Kovarik, Libor; Flake, Matthew D.; Dagle, Robert A.

    2013-06-01T23:59:59.000Z

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl2O4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl2O4 spinel support are stable during the BSR in the temperature range of 700-850?C. Compared to the Ir/MgAl2O4 catalyst, the Rh/MgAl2O4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function of the H2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR activity on the supported highly dispersed Rh catalyst can be rationalized by the thermodynamic limitation for the very first C-C bond scission of benzene on the small Ir50 catalyst. The C-C bond scission of benzene on the small Ir50 catalyst is highly endothermic although the barrier is competitive with the barriers of both the C-C and the C-H bond-breakings on the small Rh50 catalyst. The calculations also imply that, for the supported Rh catalysts the C-C and C-H bond scissions are competitive, independently of the Rh cluster sizes. After the initial dissociation step via either the C-C or the C-H bond scission, the C-H bond breaking seems to be more favorable rather than the C-C bond breaking on the larger Rh terrace surface. This work was financially supported by the United States Department of Energy’s Office of Biomass Program’s. Computing time was granted by a user project at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  7. On the role of delocalization in benzene: Theoretical and experimental investigation of the effects of strained ring fusion

    SciTech Connect (OSTI)

    Faust, R. [Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.; [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-04-01T23:59:59.000Z

    When an important compound`s discovery dates back as far as 1825, one would imagine that every facet of its chemical and physical properties has been illuminated in the meantime. Benzene, however, has not ceased to challenge the chemist`s notion of structure and bonding since its first isolation by Michael Faraday. This report is divided into the following six chapters: 1. Aromaticity -- Criteria, manifestations, structural limitations; 2. The role of delocalization in benzene; 3. The thermochemical properties of benzocyclobutadienologs; 4. Ab initio study of benzenes fused to four-membered rings; 5. Non-planar polycyclic aromatic hydrocarbons; and 6. Experimental details and input decks. 210 Refs.

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click

  15. Interaction energies of monosubstituted benzene dimers via nonlocal density functional theory

    E-Print Network [OSTI]

    T. Thonhauser; Aaron Puzder; David C. Langreth

    2005-09-15T23:59:59.000Z

    We present density-functional calculations for the interaction energy of monosubstituted benzene dimers. Our approach utilizes a recently developed fully nonlocal correlation energy functional, which has been applied to the pure benzene dimer and several other systems with promising results. The interaction energy as a function of monomer distance was calculated for four different substituents in a sandwich and two T-shaped configurations. In addition, we considered two methods for dealing with exchange, namely using the revPBE generalized gradient functional as well as full Hartree-Fock. Our results are compared with other methods, such as Moller-Plesset and coupled-cluster calculations, thereby establishing the usefulness of our approach. Since our density-functional based method is considerably faster than other standard methods, it provides a computational inexpensive alternative, which is of particular interest for larger systems where standard calculations are too expensive or infeasible.

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298 36,4875

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear JanAnnual",2014

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014 ,"Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014 ,"Release

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014Monthly","4/2015"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name or

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet%)"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground Storage

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- UndergroundTotal

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click-

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"Monthly","4/2015"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015" ,"Release

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015" ,"Release

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"Annual",2014

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015" ,"Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"Annual",2014

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"Release

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"ReleaseAnnual",2014

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"Monthly","4/2015"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release Date:","2015/06/30"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014 ,"Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015" ,"Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and Distribution

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015" ,"Next

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"ReleaseDaily","7/20/2015"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"Monthly","4/2015","1/15/1973"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data" ,"Worksheet

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas Proved

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas ProvedCoalbed

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural Gas

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDryNonproducing

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves, Wet

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves,

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available from

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from Web

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900" ,"Data

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural Gas

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973" ,"Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2Total

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.Propane

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.PropaneMotor

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products "

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available from

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click worksheet

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"ClickPercentages

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts by

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker, Pipeline,

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil by

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof by

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of Total

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers Prices

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices -

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPricesNo.

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea" ,"Click

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"for

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users "

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End UsersAcquisition

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2 Distillate

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo.

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil Weekly

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating OilPropane

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand Petroleum

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and Petroleum

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil andDomestic

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct SuppliedMonthly","4/2015","1/15/1981"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981" ,"Data

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"Data

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"DataU.S.

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"Marketed ProductionMarketedHeat Content

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural Gas

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural GasHeat

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeat

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeatHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeat

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeatHeat

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeat

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeatHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural Gas

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of NaturalHeat

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeat

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeatHeat

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeat

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeatto

  8. Correlating benzene, total hydrocarbon and carbon monoxide emissions from wood-fired boilers

    SciTech Connect (OSTI)

    Hubbard, A.J.; Grande, D.E.; Berens, J.R. [Wisconsin Dept. of Natural Resources, Madison, WI (United States); Piotrowski, J. [Tenneco Packaging, Inc., Tomahawk, WI (United States)

    1997-12-31T23:59:59.000Z

    Hazardous air pollutants, including benzene, are generated by the incomplete combustion of fuels. Organic compound emissions, which are generally products of incomplete combustion, are reduced by promoting high quality combustion, for example by controlling furnace exit temperatures and establishing minimum residence times. Monitoring carbon monoxide (CO) emissions is important since the amount of carbon monoxide emitted represents the quality of combustion which in turn represents the amount of hazardous air pollutants being generated. Total hydrocarbon (THC) emissions are also related to the quality of combustion. Recently the Wisconsin Department of Natural Resources (DNR) measured the benzene and total hydrocarbon emissions from two large industrial wood fired boilers. These boilers are located at Tenneco Packaging, a container board manufacturing facility in northern Wisconsin. Temperature, oxygen and carbon monoxide concentrations were sampled continuously by Tenneco Packaging`s emission monitoring system. The Department`s team used an organic vapor analyzer to continuously measure concentrations of total hydrocarbons (THC). The Department`s team also used a modified USEPA Method 18 sampling train to capture organic vapors for subsequent analysis by gas chromatography. The data show correlations between benzene and carbon monoxide, and between benzene and THC concentrations. The emissions sampling occurred both upstream of the particulate emissions control system as well as at the stack. The CO variations during actual boiler operation appeared to be well correlated with changes in boiler steam load. That is, increases in CO generally accompanied a change, either up or down, in boiler load. Lower concentrations of CO were associated with stable combustion, as indicated by periods of constant or nearly constant boiler load.

  9. Autoignition of toluene and benzene at elevated pressures in a rapid compression machine

    SciTech Connect (OSTI)

    Mittal, Gaurav; Sung, Chih-Jen [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2007-09-15T23:59:59.000Z

    Autoignition of toluene and benzene is investigated in a rapid compression machine at conditions relevant to HCCI (homogeneous charge compression ignition) combustion. Experiments are conducted for homogeneous mixtures over a range of equivalence ratios at compressed pressures from 25 to 45 bar and compressed temperatures from 920 to 1100 K. Experiments varying oxygen concentration while keeping the mole fraction of toluene constant reveal a strong influence of oxygen in promoting ignition. Additional experiments varying fuel mole fraction at a fixed equivalence ratio show that ignition delay becomes shorter with increasing fuel concentration. Moreover, autoignition of benzene shows significantly higher activation energy than that of toluene. In addition, the experimental pressure traces for toluene show behavior of heat release significantly different from the results of Davidson et al. [D.F. Davidson, B.M. Gauthier, R.K. Hanson, Proc. Combust. Inst. 30 (2005) 1175-1182]. Predictability of various detailed kinetic mechanisms is also compared. Results demonstrate that the existing mechanisms for toluene and benzene fail to predict the experimental data with respect to ignition delay and heat release. Flux analysis is further conducted to identify the dominant reaction pathways and the reactions responsible for the mismatch of experimental and simulated data. (author)

  10. Benzene under High Pressure: a Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase

    SciTech Connect (OSTI)

    Wen, Xiao-Dong [Cornell Univ., Ithaca, NY (United States). Lab. of Atomic and Solid State Physics (LASSP) and Cornell Center for Materials Research (CCMR); Hoffmann, Roald [Cornell Univ., Ithaca, NY (United States). Lab. of Atomic and Solid State Physics (LASSP) and Cornell Center for Materials Research (CCMR); Ashcroft, N. W. [Cornell Univ., Ithaca, NY (United States). Lab. of Atomic and Solid State Physics (LASSP) and Cornell Center for Materials Research (CCMR)

    2011-06-15T23:59:59.000Z

    In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P43212) is preferred in a narrow pressure range of 4–7 GPa. Phase III (P21/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P21 at 0 GPa; P21/c at high pressure) comes into play, slightly more stable than phase III in the range of 50–80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P21/c) is one such; it remains metastable to higher pressures up to ?200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C6H6)2 dimers are predicted.

  11. Adsorption of Benzene on a Mo(112)-c(2 2)-[SiO4] Surface M. S. Chen, A. K. Santra, and D. W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    Adsorption of Benzene on a Mo(112)-c(2 × 2)-[SiO4] Surface M. S. Chen, A. K. Santra, and D. W-3012 ReceiVed: May 21, 2004; In Final Form: August 13, 2004 The orientation and growth of benzene). Benzene on the c(2 × 2)-[SiO4] surface is bound with its molecular plane parallel to the surface plane

  12. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    SciTech Connect (OSTI)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23T23:59:59.000Z

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  13. Mobility of Supercooled liquid Toluene, Ethylbenzene, and Benzene near their Glass Transition Temperatures Investigated using Inert Gas Permeation

    SciTech Connect (OSTI)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-11-21T23:59:59.000Z

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg and as a result the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 K to 135 K. In this temperature range, diffusivities are found to vary across five orders of magnitude (~10-14 to 10-9 cm2/s). These data are compared to viscosity measurements and used to determine the low temperature fractional Stokes-Einstein exponent. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  14. The benzene metabolite trans,trans-muconaldehyde blocks gap junction intercellular communication by cross-linking connexin43

    SciTech Connect (OSTI)

    Rivedal, Edgar [Department of Cancer Prevention, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway)], E-mail: edgarr@rr-research.no; Leithe, Edward [Department of Cancer Prevention, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0310 Oslo (Norway)

    2008-11-01T23:59:59.000Z

    Benzene is used at large volumes in many different human activities. Hematotoxicity and cancer-causation as a result of benzene exposure was recognized many years ago, but the mechanisms involved remain unclear. Aberrant regulation of gap junction intercellular communication (GJIC) has been linked to both cancer induction and interference with normal hematopoietic development. We have previously suggested that inhibition of GJIC may play a role in benzene toxicity since benzene metabolites were found to block GJIC, the ring-opened trans,trans-muconaldehyde (MUC) being the most potent metabolite. In the present work we have studied the molecular mechanisms underlying the MUC-induced inhibition of gap junctional communication. We show that MUC induces cross-linking of the gap junction protein connexin43 and that this is likely to be responsible for the induced inhibition of GJIC, as well as the loss of connexin43 observed in Western blots. We also show that glutaraldehyde possesses similar effects as MUC, and we compare the effects to that of formaldehyde. The fact that glutaraldehyde and formaldehyde have been associated with induction of leukemia as well as disturbance of hematopoiesis, strengthens the possible link between the effect of MUC on gap junctions, and the toxic effects of benzene.

  15. Aggregation of hexylammonium propionate in DMSO-benzene and DMSO-D?O solvent systems

    E-Print Network [OSTI]

    Constein, Vernon George

    1974-01-01T23:59:59.000Z

    Fig. 18. Aggregation number plots for HAP in 75@a DpO/25$ DMSO-de ~ 72 3. 0 CHg (CH p ) 4CH pNH 3 2. 00 1. 00 ~ 0. 00 I A U 0 i 3. 00 + CHp (CHg) 4CHpNH3 0 0 2. 00 1. 00 0. 0 1. 00 1. 20 1. 40 1. 60 1. 80 2. 00 2 + log tS] 73 Fig... The relationships between a micelle forming surfactant, hexylammonium propionate (1), and the overlapping mixed solvent systems of benzene/dimethyl- sulfoxide/water have been investigated using 'H nuclear magnetic resonance techniques. The changes in t' he...

  16. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    SciTech Connect (OSTI)

    Steven B. Hawthorne

    2007-04-15T23:59:59.000Z

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  17. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    SciTech Connect (OSTI)

    Tan, C.; Ong, H.Y.; Kok, P.W. [and others

    1996-12-31T23:59:59.000Z

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  18. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect (OSTI)

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S. [Department of Chemical Engineering, University of Utah, Salt Lake City, UT (United States); D'Anna, Andrea [Dipartimento di Ingegneria Chimica, Universita ''Federico II'' di Napoli, Naples (Italy)

    2011-01-15T23:59:59.000Z

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  19. Multiple activation pathways of benzene leading to products with varying genotoxic characteristics

    SciTech Connect (OSTI)

    Glatt, H.; Ludewig, G.; Platt, K.L.; Klein, J.; Oesch, F. (Univ. of Mainz (West Germany)); Padykula, R.; Berchtold, G.A. (Massachusetts Institute of Technology, Cambridge (USA))

    1989-07-01T23:59:59.000Z

    Benzene and 13 potential metabolites were investigated for genotoxicity in Salmonella typhimurium and V79 Chinese hamster cells. In the presence of NADPH-fortified hepatic postmitochondrial fraction (S9 mix), benzene reverted his S. typhimurium strains. The effect was strongest in strain TA1535. Among the potential metabolites, only the trans-1,2-dihydrodiol, in the presence of S9 mix, and the diol epoxides, in the presence and absence of S9 mix, proved mutagenic in this strain. The anti-diol epoxide was more potent than the syndiastereomer. Both enantiomers of the anti-diastereomer showed similar activities. S9 mix did not appreciably affect the mutagenicity of the anti-diol epoxide. However, detoxification was observed when purified rat liver dihydrodiol dehydrogenase was used at concentrations comparable to that present in the liver. Elevated frequencies of micronucleated cells were observed after treatment with hydroquinone, 1,2,4-trihydroxybenzene, catechol, phenol, 1,2,3-trihydroxybenzene, and quinone. By far the most prominent effect in the whole study was the potent induction of gene mutations by quinone and hydroquinone. This unique and narrow spectrum of genotoxic activities differs from the broad spectrum observed with the antidiol epoxide, suggesting qualitative differences in their interaction with genetic material.

  20. CH-{\\pi} interaction-induced deep orbital deformation in a benzene-methane weak binding system

    E-Print Network [OSTI]

    Li, Jianfu

    2015-01-01T23:59:59.000Z

    The nonbonding interaction between benzene and methane, called CH-{\\pi} interaction, plays an important role in physical, chemical, and biological fields. CH-{\\pi} interaction can decrease the system total energy and promote the formation of special geometric configurations. This work investigates systemically the orbital distribution and composition of the benzene-methane complex for the first time using ab initio calculation based on different methods and basis sets. Surprisingly, we find strong deformation in HOMO-4 and LUMO+2 induced by CH-{\\pi} interaction, extending the general view that nonbonding interaction does not cause orbital change of molecules.

  1. Phase Behaviour of Carbon Dioxide + Benzene + Water Ternary Mixtures at High Pressures and Temperatures up to 300 MPa and 600 K

    E-Print Network [OSTI]

    1 Phase Behaviour of Carbon Dioxide + Benzene + Water Ternary Mixtures at High Pressures for the phase coexistence of carbon dioxide + benzene + water ternary mixtures. Phase coexistence was observed exceptions are the systematic studies6-9 of ternary mixtures containing carbon dioxide with large alkanes

  2. Adsorption, Desorption, and Dissociation of Benzene on TiO2(110) and Pd/TiO2(110)

    SciTech Connect (OSTI)

    Zhou, Jing [ORNL; Dag, Sefa [ORNL; Senanayake, Sanjaya D [ORNL; Hathorn, Bryan C [ORNL; Kalinin, Sergei V [ORNL; Meunier, Vincent [ORNL; Mullins, David R [ORNL; Overbury, Steven {Steve} H [ORNL; Baddorf, Arthur P [ORNL

    2006-01-01T23:59:59.000Z

    Adsorption and reaction of benzene molecules on clean TiO{sub 2}(110) and on TiO{sub 2}(110) with deposited Pd nanoparticles are investigated using a combination of scanning tunneling microscopy (STM), temperature-programmed desorption, and first-principles calculations. Above {approx}50 K, the one-dimensional motion of benzene between bridging oxygen rows is shown to be too fast for STM imaging. At 40 K benzene molecules form chains on top of titanium rows, with calculations indicating every other benzene is rotated 30{sup o}. Both experimental and theoretical studies find no dissociative reactivity of benzene on the clean TiO{sub 2}(110) surface, due to little hybridization between TiO{sub 2} and benzene electronic states. After deposition of Pd nanoparticles, molecular benzene is observed with STM both on the substrate and adjacent to metallic particles. Upon heating to 800 K, benzene fully breaks down into its atomic constituents in a multistep decomposition process.

  3. Exposure Evaluation for Benzene, Lead and Noise in Vehicle and Equipment Repair Shops

    SciTech Connect (OSTI)

    Sweeney, Lynn C.

    2013-04-10T23:59:59.000Z

    An exposure assessment was performed at the equipment and vehicle maintenance repair shops operating at the U. S. Department of Energy Hanford site, in Richland, Washington. The maintenance shops repair and maintain vehicles and equipment used in support of the Hanford cleanup mission. There are three general mechanic shops and one auto body repair shop. The mechanics work on heavy equipment used in construction, cranes, commercial motor vehicles, passenger-type vehicles in addition to air compressors, generators, and farm equipment. Services include part fabrication, installation of equipment, repair and maintenance work in the engine compartment, and tire and brake services. Work performed at the auto body shop includes painting and surface preparation which involves applying body filler and sanding. 8-hour time-weighted-average samples were collected for benzene and noise exposure and task-based samples were collected for lead dust work activities involving painted metal surfaces. Benzene samples were obtained using 3M™ 3520 sampling badges and were analyzed for additional volatile organic compounds. These compounds were selected based on material safety data sheet information for the aerosol products used by the mechanics for each day of sampling. The compounds included acetone, ethyl ether, toluene, xylene, VM&P naphtha, methyl ethyl ketone, and trichloroethylene. Laboratory data for benzene, VM&P naphtha, methyl ethyl ketone and trichloroethylene were all below the reporting detection limit. Airborne concentrations for acetone, ethyl ether, toluene and xylene were all less than 10% of their occupational exposure limit. The task-based samples obtained for lead dusts were submitted for a metal scan analysis to identify other metals that might be present. Laboratory results for lead dusts were all below the reporting detection limit and airborne concentration for the other metals observed in the samples were less than 10% of the occupational exposure limit. Noise dosimetry sampling was performed on a random basis and was representative of the different work activities within the four shops. Twenty three percent of the noise samples exceeded the occupational exposure limit of 85 decibels for an 8-hour time-weightedaverage. Work activities where noise levels were higher included use of impact wrenches and grinding wheels.

  4. Theoretical Insight into the Interactions of TMA-Benzene and TMA-Pyrrole with B3LYP Density-Functional Theory (DFT) and ab Initio Second Order Mller-Plesset Perturbation

    E-Print Network [OSTI]

    Sussman, Joel L.

    Theoretical Insight into the Interactions of TMA-Benzene and TMA-Pyrrole with B3LYP Density theoretical investigation of the tetramethylammonium(TMA)-benzene and TMA-pyrrole complexes has been performed density in the 5 6 aromatic system of pyrrole is larger than that in the 6 6 system of benzene

  5. Comparing the effects of various fuel alcohols on the natural attenuation of Benzene Plumes using a general substrate interaction model

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    and Environmental Engineering, Rice University, MS-317, 6100 Main St., Houston, TX 77005, USA a r t i c l e i n f o a b s t r a c t Article history: Received 30 October 2009 Received in revised form 26 January 2010 generalizations about the level of impact of specific fuel alcohols on benzene plume dynamics. © 2010 Elsevier B

  6. Diffusion and Catalytic Cracking of 1,3,5 Tri-iso-propyl-benzene in FCC Catalysts

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    1 Diffusion and Catalytic Cracking of 1,3,5 Tri-iso- propyl-benzene in FCC Catalysts S.Al-Khattaf1 describes catalytic cracking experiments developed in a novel CREC Riser Simulator using 1,3,5-Tri-iso

  7. Some new progress on the light absorption properties of linear alkyl benzene solvent

    E-Print Network [OSTI]

    Yu, Guang-You; Huang, Ai-Zhong; Yu, Lei; Loh, Chang-Wei; Wang, Wen-Wen; Qian, Zhi-Qiang; Yang, Hai-Bo; Huang, Huang; Xu, Zong-Qiang; Zhu, Xue-Yuan; Xu, Bin; Qi, Ming

    2015-01-01T23:59:59.000Z

    Linear alkyl benzene (LAB) will be used as the solvent of a liquid scintillator mixture for the JUNO antineutrino experiment in the near future. Its light absorption property should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the purpose of the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we have also presented in this work, a study on the carbon-hydrogen ratio and the relationship thereof with the attenuation length of the samples.

  8. Some new progress on the light absorption properties of linear alkyl benzene solvent

    E-Print Network [OSTI]

    Guang-You Yu; De-Wen Cao; Ai-Zhong Huang; Lei Yu; Chang-Wei Loh; Wen-Wen Wang; Zhi-Qiang Qian; Hai-Bo Yang; Huang Huang; Zong-Qiang Xu; Xue-Yuan Zhu; Bin Xu; Ming Qi

    2015-04-22T23:59:59.000Z

    Linear alkyl benzene (LAB) will be used as the solvent of a liquid scintillator mixture for the JUNO antineutrino experiment in the near future. Its light absorption property should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the purpose of the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we have also presented in this work, a study on the carbon-hydrogen ratio and the relationship thereof with the attenuation length of the samples.

  9. Remediation of overlapping benzene/MTBE and MTBE-only plumes: A case study

    SciTech Connect (OSTI)

    Carpenter, P.L. [TolTest, Inc., Pittsburgh, PA (United States); Vinch, C.A. [Ryder Transportation Services, Lawrenceville, NJ (United States)

    1997-12-31T23:59:59.000Z

    Two overlapping dissolved hydrocarbon plumes were identified in the shallow water-bearing zone at a commercial vehicle service and fueling facility. Plume 1 originated from a pre-1993 gasoline product line/dispenser leak. This plume contained a relatively common mix of benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tert-butyl ether (MTBE); benzene and MTBE were identified as the Plume 1 contaminants of concern based on their detection at approximately 200 {mu}g/l each, which exceeded regulatory guidance. Plume 2, which was detected in the tank cavity during UST removal, resulted from gasoline line leaks/underground storage tank overfills. Although the majority of impacted soils in both the dispenser and tank cavity areas were removed during UST excavation, rainfall during impacted soil removal mobilized the MTBE contained in the soils to groundwater. As a result, Plume 2 contained approximately 900 {mu}g/l MTBE while BTEX compounds were non-detect. Although the impacted zone sustained an approximate yield of only 0.3 gallon per minute, Pennsylvania regulations dictate that this zone must be treated as an aquifer. The failure of remediating gasoline plumes using pump-and-treat has been predominantly due to BTEX`s tendency to adsorb onto soil, creating a residual-phase product layer which acts as a continuing source of dissolved-phase BTEX. Based on this experience, most groundwater and remediation professionals reject pump-and-treat as a viable remedial option, except in situations where controlling groundwater movement is the predominant goal.

  10. Thermodynamic Features of Benzene-1,2-Diphosphonic Acid Complexes with Several Metal Ions

    SciTech Connect (OSTI)

    Syouhei Nishihama; Ryan P. Witty; Leigh R Martin; Kenneth L. Nash

    2013-08-01T23:59:59.000Z

    Among his many contributions to the advancement of f-element chemistry and separation science, Professor Gregory R. Choppin’s research group completed numerous investigations featuring the application of distribution techniques to the determination of metal complexation equilibrium quotients. Most of these studies focused on the chemistry of lanthanide and actinide complexes. In keeping with that tradition, this report discusses the complex formation equilibrium constants for complexes of trivalent europium (Eu3+) with benzene-1,2-diphosphonic acid (H4BzDP) determined using solvent extraction distribution experiments in 0.2 M (Na,H)ClO4 media in the temperature range of 5 – 45 degrees C. Protonation constants for HnBzDP4-n and stoichiometry and stability of BzDP4- complexes with Zn2+, Ni2+, and Cu2+ have also been determined using potentiometric titration (at I = 0.1 M) and 31P NMR spectroscopy. Heats of protonation of HnBzDPn-4 species have been determined by titration calorimetry. From the temperature dependence of the complex Eu3+-HnBzDPn-4 equilibrium constant, a composite enthalpy (?H = -15.1 (+/-1.0) kJ mol-1) of complexation has been computed. Comparing these thermodynamic parameters with literature reports on other diphosphonic acids and structurally similar carboxylic acids indicates that exothermic heats of complexation are unique to the Eu-BzDP system. Comparisons with thermodynamic data from the literature indicate that the fixed geometry imposed by the benzene ring enhances complex stability.

  11. Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: Attenuation by quercetin and curcumin

    SciTech Connect (OSTI)

    Singh, Mahendra P. [Embryotoxicology Section, Indian Institute of Toxicology Research (CSIR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (India); Mishra, M.; Sharma, A.; Shukla, A.K. [Embryotoxicology Section, Indian Institute of Toxicology Research (CSIR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (India); Council of Scientific and Industrial Research (CSIR), New Delhi (India); Mudiam, M.K.R.; Patel, D.K. [Analytical Chemistry Section, Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh (India); Council of Scientific and Industrial Research (CSIR), New Delhi (India); Ram, K. Ravi [Embryotoxicology Section, Indian Institute of Toxicology Research (CSIR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (India); Council of Scientific and Industrial Research (CSIR), New Delhi (India); Chowdhuri, D. Kar, E-mail: dkarchowdhuri@rediffmail.com [Embryotoxicology Section, Indian Institute of Toxicology Research (CSIR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (India); Council of Scientific and Industrial Research (CSIR), New Delhi (India)

    2011-05-15T23:59:59.000Z

    Monocyclic aromatic hydrocarbons (MAHs) such as benzene, toluene and xylene are being extensively used for various industrial and household purposes. Exposure to these hydrocarbons, occupationally or non-occupationally, is harmful to organisms including human. Several studies tested for toxicity of benzene, toluene and xylene, and interestingly, only a few studies looked into the attenuation. We used Drosophila model to test the genotoxic and apoptotic potential of these compounds and subsequently evaluated the efficiency of two phytochemicals, namely, quercetin and curcumin in attenuating test chemical induced toxicity. We exposed third instar larvae of wild type Drosophila melanogaster (Oregon R{sup +}) to 1.0-100.0 mM benzene, toluene or xylene, individually, for 12, 24 and 48 h and examined their apoptotic and genotoxic potential. We observed significantly (P < 0.001) increased apoptotic markers and genotoxicity in a concentration- and time-dependent manner in organisms exposed to benzene, toluene or xylene. We also observed significantly (P < 0.001) increased cytochrome P450 activity in larvae exposed to test chemicals and this was significantly reduced in the presence of 3',4'-dimethoxyflavone, a known Aryl hydrocarbon receptor (AhR) blocker. Interestingly, we observed a significant reduction in cytochrome P450 activity, GST levels, oxidative stress parameters, genotoxic and apoptotic endpoints when organisms were exposed simultaneously to test chemical along with quercetin or curcumin. The study further suggests the suitability of D. melanogaster as an alternate animal model for toxicological studies involving benzene, toluene and xylene and its potential in studying the protective role(s) of phytochemicals.

  12. Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms

    SciTech Connect (OSTI)

    McHale, Cliona M.; Zhang, Luoping; Lan, Qing; Li, Guilan; Hubbard, Alan E.; Forrest, Matthew S.; Vermeulen, Roel; Chen, Jinsong; Shen, Min; Rappaport, Stephen M.; Yin, Songnian; Smith, Martyn T.; Rothman, Nathaniel

    2009-03-01T23:59:59.000Z

    Benzene is an established cause of leukemia and a possible cause of lymphoma in humans but the molecular pathways underlying this remain largely undetermined. This study sought to determine if the use of two different microarray platforms could identify robust global gene expression and pathway changes associated with occupational benzene exposure in the peripheral blood mononuclear cell (PBMC) gene expression of a population of shoe-factory workers with well-characterized occupational exposures to benzene. Microarray data was analyzed by a robust t-test using a Quantile Transformation (QT) approach. Differential expression of 2692 genes using the Affymetrix platform and 1828 genes using the Illumina platform was found. While the overall concordance in genes identified as significantly associated with benzene exposure between the two platforms was 26% (475 genes), the most significant genes identified by either array were more likely to be ranked as significant by the other platform (Illumina = 64%, Affymetrix = 58%). Expression ratios were similar among the concordant genes (mean difference in expression ratio = 0.04, standard deviation = 0.17). Four genes (CXCL16, ZNF331, JUN and PF4), which we previously identified by microarray and confirmed by real-time PCR, were identified by both platforms in the current study and were among the top 100 genes. Gene Ontology analysis showed over representation of genes involved in apoptosis among the concordant genes while Ingenuity{reg_sign} Pathway Analysis (IPA) identified pathways related to lipid metabolism. Using a two-platform approach allows for robust changes in the PBMC transcriptome of benzene-exposed individuals to be identified.

  13. Supporting Information Table of Contents

    E-Print Network [OSTI]

    Theodorakis, Emmanuel

    without further purification except where noted. Air- and moisture- sensitive liquids and solutions were), dichloromethane (DCM), toluene (PhCH3) and benzene (PhH) were purified by passage through a bed of activated) carried out on 0.25 mm E. Merck silica gel plates (60F-254) and visualized under UV light and/or developed

  14. Ex 7.6(a) The vapor pressure of benzene is 400 Torr at 60.6C, but it fell to 386 Torr when 19.0 g of an involatile organic compound was dissolved in 500 g of benzene. Calculate the

    E-Print Network [OSTI]

    Findley, Gary L.

    Ex 7.6(a) The vapor pressure of benzene is 400 Torr at 60.6°C, but it fell to 386 Torr when 19.0 g of an involatile organic compound was dissolved in 500 g of benzene. Calculate the molar mass of the involatile

  15. Sodium dodecyl benzene sulfonate-assisted synthesis through a hydrothermal reaction

    SciTech Connect (OSTI)

    Sobhani, Azam [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran (Iran, Islamic Republic of)] [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran (Iran, Islamic Republic of) [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317–51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2012-08-15T23:59:59.000Z

    Graphical abstract: Reaction of a SeCl{sub 4} aqueous solution with a NiCl{sub 2}·6H{sub 2}O aqueous solution in presence of sodium dodecyl benzene sulfonate (SDBS) as capping agent and hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant, produces nanosized nickel selenide through a hydrothermal method. The effect of temperature, reaction time and amounts of reductant on the morphology, particle sizes of NiSe nanostructures has been investigated. Highlights: ? NiSe nanostructures were synthesized by hydrothermal method. ? A novel Se source was used to synthesize NiSe. ? SDBS as capping agent plays a crucial role on the morphology of products. ? A mixture of Ni{sub 3}Se{sub 2} and NiSe was prepared in the presence of 2 ml hydrazine. ? A pure phase of NiSe was prepared in the presence of 4 or 6 ml hydrazine. -- Abstract: The effects of the anionic surfactant on the morphology, size and crystallization of NiSe precipitated from NiCl{sub 2}·6H{sub 2}O and SeCl{sub 4} in presence of hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant were investigated. The products have been successfully synthesized in presence of sodium dodecyl benzene sulfonate (SDBS) as surfactant via an improved hydrothermal route. A variety of synthesis parameters, such as reaction time and temperature, capping agent and amount of reducing agent have a significant effect on the particle size, phase purity and morphology of the obtained products. The sample size became bigger with decreasing reaction temperature and increasing reaction time. In the presence of 2 ml hydrazine, the samples were found to be the mixture of Ni{sub 3}Se{sub 2} and NiSe. With increasing the reaction time and amount of hydrazine a pure phase of hexagonal NiSe was obtained. X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images indicate phase, particle size and morphology of the products. Chemical composition and purity of the products were characterized by X-ray energy dispersive spectroscopy (EDS). Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  16. An evaluation of the Gilian TRACEAIR Organic Vapor Monitoring Diffusive Badge in measuring short-term exposure levels of benzene under field conditions 

    E-Print Network [OSTI]

    Pierce, Mark Edward

    1996-01-01T23:59:59.000Z

    The objective of this research is to evaluate the performance of the Gilian TRACEAIR Organic Vapor Monitoring I (OVMI) Diffusive Badge in measuring short-term benzene exposures under field conditions. In general, a diffusive badge is a device which...

  17. Exposure to methyl tert-butyl ether and benzene among service station attendants and operators

    SciTech Connect (OSTI)

    Hartle, R. [National Inst. for Occupational Safety and Health, Cincinnati, OH (United States)

    1993-12-01T23:59:59.000Z

    Concerns for atmospheric pollution from auto exhaust have led to the blending of {open_quotes}oxygenates{close_quotes} with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: (a) service stations that do not use MTBE or use it only as an octane enhancer, (b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and (c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). 4 refs., 4 tabs.

  18. Benchmark Theoretical Study of the ?–? Binding Energy in the Benzene Dimer

    SciTech Connect (OSTI)

    Miliordos, Evangelos; Apra, Edoardo; Xantheas, Sotiris S.

    2014-09-04T23:59:59.000Z

    We establish a new estimate for the interaction energy between two benzene molecules in the parallel displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum geometry, (ii) the expansion of the orbital basis set and (iii) the level of electron correlation. The calculations were performed at the second order Møller - Plesset perturbation (MP2) and the Coupled Cluster including Singles, Doubles and a perturbative estimate of Triples replacements [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for Basis Set Superposition Error (BSSE), we have estimated the Complete Basis Set (CBS) limit by employing the family of Dunning’s correlation consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2,772 basis functions), whereas the largest CCSD(T) calculation with the cc-pV5Z basis set (1,752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-? quality, observing that both its intra- and inter-molecular parts have practically converged with the triple-? quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [to within < 0.01 kcal/mol for MP2 and < 0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSEcorrected binding energies was found to converge to the same CBS limit must faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (?𝐸) and BSSE-corrected (?𝐸!") binding energies, their average value (?𝐸!"#) as well as the average of the latter over the plain and augmented sets (?𝐸!"#) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the ?-? interaction energy in the PD benzene dimer is De = 2.65 ± 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is 2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is 5.00 ± 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). The Spin-Component-Scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while Scaled-Opposite-Spin (SOS) yielded results that are too low when compared to CCSD(T).

  19. Laboratory investigations of the interaction between benzene and bare silicate grain surfaces

    E-Print Network [OSTI]

    J. D. Thrower; M. P. Collings; F. J. M. Rutten; M. R. S. McCoustra

    2008-12-17T23:59:59.000Z

    Experimental results on the thermal desorption of benzene (C6H6) from amorphous silica (SiO2) are presented. The amorphous SiO2 substrate was imaged using atomic force microscopy (AFM), revealing a surface morphology reminiscent of that of interplanetary dust particles (IDPs). Temperature programmed desorption (TPD) experiments were conducted for a wide range of C6H6 exposures, yielding information on both C6H6-SiO2 interactions and the C6H6-C6H6 interactions present in the bulk C6H6 ice. The low coverage experiments reveal complicated desorption behaviour that results both from porosity and roughness in the SiO2 substrate, and repulsive interactions between C6H6 molecules. Kinetic parameters were obtained through a combination of direct analysis of the TPD traces and kinetic modelling, demonstrating the coverage dependence of both desorption energy and pre-exponential factor. Experiments were also performed whereby the pores were blocked by pre-exposure of the SiO2 to water vapour. C6H6 was observed to be adsorbed preferentially on the SiO2 film not covered by H2O at the temperature at which these experiments were performed. This observation means that intermolecular repulsion likely becomes important at smaller C6H6 exposures on grains with a H2O mantle. Kinetic modelling of C6H6 multilayer desorption yields kinetic parameters in good agreement with previous studies, with the SiO2 having little impact on the desorption beyond the first few layers.

  20. CONTENTS PAGE INTRODUCTION

    E-Print Network [OSTI]

    Aslaksen, Helmer

    THE APPLICATIONS AND VALIDITY OF BODE'S LAW CAN WE EXPLAIN BODE'S LAW USING GRAVITY? 8 Law of Gravitation 8 Centre#12;#12;CONTENTS CONTENTS PAGE INTRODUCTION WHO, HOW AND WHEN IS THE BODE'S LAW DISCOVERED? 1 THE BODE'S LAW HOW THE BODE'S LAW SATISFIED URANUS 3 HOW THE BODE'S LAW LED TO THE DISCOVERY OF CERES

  1. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  2. Raman Spectroscopy of the Reaction of Thin Films of Solid-State Benzene with Vapor-Deposited Ag, Mg, and Al

    SciTech Connect (OSTI)

    Schalnat, Matthew C. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry; Hawkridge, Adam M. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry; Pemberton, Jeanne E. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry

    2011-07-21T23:59:59.000Z

    Thin films of solid-state benzene at 30 K were reacted with small quantities of vapor-deposited Ag, Mg, and Al under ultrahigh vacuum, and products were monitored using surface Raman spectroscopy. Although Ag and Mg produce small amounts of metal–benzene adduct products, the resulting Raman spectra are dominated by surface enhancement of the normal benzene modes from metallic nanoparticles suggesting rapid Ag or Mg metallization of the film. In contrast, large quantities of Al adduct products are observed. Vibrational modes of the products in all three systems suggest adducts that are formed through a pathway initiated by an electron transfer reaction. The difference in reactivity between these metals is ascribed to differences in ionization potential of the metal atoms; ionization potential values for Ag and Mg are similar but larger than that for Al. These studies demonstrate the importance of atomic parameters, such as ionization potential, in solid-state metal–organic reaction chemistry.

  3. Multielectron effects in high harmonic generation in N_2 and benzene: simulation using a non-adiabatic quantum molecular dynamics approach for laser-molecule interactions

    E-Print Network [OSTI]

    Dundas, Daniel

    2012-01-01T23:59:59.000Z

    A mixed quantum-classical approach is introduced which allows the dynamically response of molecules driven far from equilibrium to be modeled. This method is applied here to the interaction of molecules with intense, short-duration laser pulses. The electronic response of the molecule is described using time-dependent density functional theory (TDDFT) and the resulting Kohn-Sham equations are solved numerically using finite difference techniques in conjunction with local and global adaptations of an underlying grid in curvilinear coordinates. Using this approach, simulations can be carried out for a wide range of molecules and both all-electron and pseudopotential calculations can be performed. The approach is applied to the study of high harmonic generation in N_2 and benzene using linearly-polarized laser pulses and to the best of our knowledge, the results for benzene represent the first TDDFT calculations of high harmonic generation in benzene using linearly polarized laser pulses. For N_2 an enhancement ...

  4. Facile preparation of sphere-like copper ferrite nanostructures and their enhanced visible-light-induced photocatalytic conversion of benzene

    SciTech Connect (OSTI)

    Shen, Yu, E-mail: shenyuqing0322@gmail.com [School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Wu, Yanbo; Xu, Hongfeng; Fu, Jie [School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Li, Xinyong; Zhao, Qidong; Hou, Yang [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-10-15T23:59:59.000Z

    Graphical abstract: - Highlights: • Spinel CuFe{sub 2}O{sub 4} nanospheres were successfully synthesized via a facile method. • CuFe{sub 2}O{sub 4} nanospheres showed high photocatalytic activity toward benzene. • Ethyl acetate, carboxylic acid and aldehyde were the intermediate products. - Abstract: Spinel copper ferrite nanospheres with diameters of about 116 nm were synthesized in high yield via a facile solvothermal route. The prepared nanospheres had cubic spinel structure and exhibited good size uniformity and regularity. The band-gap energy of CuFe{sub 2}O{sub 4} nanospheres was calculated to be about 1.69 eV, indicating their potential visible-light-induced photocatalytic activity. The dramatically enhanced photocatalytic activity of the CuFe{sub 2}O{sub 4} nanospheres was evaluated via the photocatalytic conversion of benzene under Xe lamp irradiation. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO{sub 2} was produced as the final product during the reaction process. This study provided new insight into the design and preparation of functional nanomaterials with sphere structure in high yield, and the as-grown architectures demonstrated an excellent ability to remove organic pollutants in the atmosphere.

  5. SuStainability table of contentS

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    SuStainability table of contentS executive Summary-Related Sustainability Options ........................................... 41 Information Technology Infrastucture #12;sustainability 2 Private Giving

  6. Comparison of benzene hexachloride formulated from high and low gamma concentrates for cotton aphid control 

    E-Print Network [OSTI]

    Raven, Klaus Gustav

    1957-01-01T23:59:59.000Z

    by KLAUS GUSTAV RAVEN Approved as to style and content by: (Chairman of Committee) (Head f Department) May 1957 ACKNOWLEDGEMENTS The writer would like to express his sincere appreciation to Dr. D. F. Martin for his constant encouragement and aid... technical material. Several processes have bees developed to soncentrate the gamsa isomer, Host processes are based on tha differential solubility of the ismsars in organic solvents. The solubility may be increased by vary- ing tha temperature...

  7. Hanna, S.R., D. Heinold, R. Paine, H.C. Frey, D. Baker, R. Karp, and H. Feldman, "A Monte Carlo Study of the Uncertainties in Predictions by ISC3ST and AERMOD of Annual Average Benzene and 1,3-Butadiene Concentrations

    E-Print Network [OSTI]

    Frey, H. Christopher

    Study of the Uncertainties in Predictions by ISC3ST and AERMOD of Annual Average Benzene and 1 of Annual Average Benzene and 1,3-Butadiene Concentrations around the Houston Ship Channel Control # 735 is on uncertainties in ISC3ST and AERMOD predictions of annual averaged concentrations of benzene and 1,3-butadiene

  8. Content Provider Speeds Application

    E-Print Network [OSTI]

    Fisher, Kathleen

    protocols like SMPP for SMS and MM7 for MMS are industry standards, carriers typically layer their own APIs.0 standards," says Rose, "and we thought that would help speed development." The AT&T API Platform includesContent Provider Speeds Application Development AT&T API Platform cuts development time and costs

  9. Liquid-liquid equilibria for the ternary systems sulfolane + octane + benzene, sulfolane + octane + toluene and sulfolane + octane + p-xylene

    SciTech Connect (OSTI)

    Lee, S.; Kim, H. [Seoul National Univ. (Korea, Republic of). Dept. of Chemical Engineering

    1995-03-01T23:59:59.000Z

    Sulfolane is widely used as a solvent for the extraction of aromatic hydrocarbons. Ternary phase equilibrium data are essential for the proper understanding of the solvent extraction process. Liquid-liquid equilibrium data for the systems sulfolane + octane + benzene, sulfolane + octane + toluene and sulfolane + octane + p-xylene were determined at 298.15, 308.15, and 318.15 K. Tie line data were satisfactorily correlated by the Othmer and Tobias method. The experimental data were compared with the values calculated by the UNIQUAC and NRTL models. Good quantitative agreement was obtained with these models. However, the calculated values based on the NRTL model were found to be better than those based on the UNIQUAC model.

  10. TableofContentsEnvironmentalStudies Table of Contents Environmental Studies

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 · Environmental Management: Policy, Resources and Conservation345 TableofContents­EnvironmentalStudies Table of Contents ­ Environmental Studies Faculty of Environmental Studies . . . . . . . . . . . . . . . . 347 The Bachelor in Environmental Studies

  11. Web Content Filtering 1 User Guidelines Web content filter guidelines

    E-Print Network [OSTI]

    Web Content Filtering 1 User Guidelines Web content filter guidelines Introduction The basic criterion for blocking a Web page Categories of material which will be blocked Requesting the unblocking of Aberdeen applies a Web Content Filtering service to all web pages accessed from the undergraduate network

  12. Fermilab Today - Related Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOEFigure 1.Related Content Subscribe

  13. Mentoring Guide TABLE OF CONTENTS

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    Mentoring Guide 1 #12;TABLE OF CONTENTS Introduction...........................................................................................................3 CCFA Mentoring Guide.........................................................................................3 Why Do I Need A Mentor

  14. A density functional theory study of magneto-electric Jones birefringence of noble gases, furan homologues, and mono-substituted benzenes

    SciTech Connect (OSTI)

    Fahleson, Tobias; Norman, Patrick, E-mail: panor@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Coriani, Sonia, E-mail: coriani@units.it [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, I-34127 Trieste (Italy); Rizzo, Antonio, E-mail: rizzo@ipcf.cnr.it [CNR - Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico Fisici (IPCF-CNR), UOS di Pisa, I-56124 Pisa (Italy); Rikken, Geert L. J. A., E-mail: geert.rikken@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, UPR3228, CNRS/INSA/UJF/UPS, Toulouse and Grenoble (France)

    2013-11-21T23:59:59.000Z

    We report on the results of a systematic ab initio study of the Jones birefringence of noble gases, of furan homologues, and of monosubstituted benzenes, in the gas phase, with the aim of analyzing the behavior and the trends within a list of systems of varying size and complexity, and of identifying candidates for a combined experimental/theoretical study of the effect. We resort here to analytic linear and nonlinear response functions in the framework of time-dependent density functional theory. A correlation is made between the observable (the Jones constant) and the atomic radius for noble gases, or the permanent electric dipole and a structure/chemical reactivity descriptor as the para Hammett constant for substituted benzenes.

  15. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    SciTech Connect (OSTI)

    Hamilton, D.C.

    1986-10-08T23:59:59.000Z

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  16. Image Content Engine (ICE)

    SciTech Connect (OSTI)

    Brase, J M

    2007-03-26T23:59:59.000Z

    The Image Content Engine (ICE) is being developed to provide cueing assistance to human image analysts faced with increasingly large and intractable amounts of image data. The ICE architecture includes user configurable feature extraction pipelines which produce intermediate feature vector and match surface files which can then be accessed by interactive relational queries. Application of the feature extraction algorithms to large collections of images may be extremely time consuming and is launched as a batch job on a Linux cluster. The query interface accesses only the intermediate files and returns candidate hits nearly instantaneously. Queries may be posed for individual objects or collections. The query interface prompts the user for feedback, and applies relevance feedback algorithms to revise the feature vector weighting and focus on relevant search results. Examples of feature extraction and both model-based and search-by-example queries are presented.

  17. ContentsContents2424Fourier 1. The Fourier transform

    E-Print Network [OSTI]

    Vickers, James

    ContentsContents2424Fourier transforms 1. The Fourier transform 2. Properties of the Fourier Transform 3. Some Special Fourier Transform Pairs Learning outcomes needs doing Time allocation You mathematical topics this time may vary considerably. 1 #12;The Fourier Transform 24.1 Introduction

  18. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

    SciTech Connect (OSTI)

    Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.; Chenna, Ahmed

    2010-06-14T23:59:59.000Z

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.

  19. Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon

    E-Print Network [OSTI]

    Raji Heyrovska

    2008-04-25T23:59:59.000Z

    Two dimensional layers of graphene are currently drawing a great attention in fundamental and applied nanoscience. Graphene consists of interconnected hexagons of carbon atoms as in graphite. This article presents for the first time the structures of graphene at the atomic level and shows how it differs from that of benzene, due to the difference in the double bond and resonance bond based radii of carbon. The carbon atom of an aliphatic compound such as methane has a longer covalent single bond radius as in diamond. All the atomic structures presented here have been drawn to scale.

  20. Characterization Of The Hydrogenation Products Of Bix (phenylethynyl) Benzene (DEB) Getter Using Combined GC/FTIR/MS, FT-Raman, and ATR Spectroscopies (U)

    SciTech Connect (OSTI)

    Smyrl, N. R.; Powell, G. L.

    2011-06-09T23:59:59.000Z

    Organic hydrogen getters are utilized to minimize hydrogen accumulation in sealed systems where such build up could produce either a safety problem from pressure build up or corrosion problem due the hydriding of metals contained in the sealed vessel. DEB (1,4 bis (phenyl ethynyl) benzene) is a hydrogen getter that is based on the palladium catalyzed hydrogenation of triple bonds to single bonds in aromatic aryl compound. DEB is a getter mixed with 25% carbon and 1% Pd and pressed into pellets with some porosity. The reaction mechanisms are complex involving solid state reactions with a heterogeneous catalyst leading to the many intermediates.

  1. FNANO12 Table of Contents Table of Contents

    E-Print Network [OSTI]

    Reif, John H.

    Bardram Software tools for automated design of dynamic nucleic acid systems Table of Contents In Silico Design, In Vitro Characterization and Ex-Vivo Studies of Functional RNA-based Nanoparticles

  2. Visual Analysis of Weblog Content

    SciTech Connect (OSTI)

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26T23:59:59.000Z

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  3. Mental content, holism and communication 

    E-Print Network [OSTI]

    Pollock, Joanna Katharine Mary

    2014-07-01T23:59:59.000Z

    In this project, I defend a holistic, internalist conceptual-role theory of mental content (‘Holism’, for short). The account of communicative success which must be adopted by the Holist is generally thought to be ...

  4. TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump QUARTZ CONTENT OF SEDIMENTARY ROCK LAYERS ........ 17 TABLE 10. PROPERTIES OF SEDIMENTARY ROCK LAYERS OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL

  5. An analysis of van der Waals density functional components: Binding and corrugation of benzene and C60 on boron nitride and graphene

    E-Print Network [OSTI]

    Berland, Kristian

    2013-01-01T23:59:59.000Z

    The adsorption of benzene and C60 on graphene and boron nitride (BN) is studied using density functional theory with the non-local correlation functional vdW-DF. By comparing these systems we can systematically investigate their adsorption nature and differences between the two functional versions vdW-DF1 and vdW-DF2. The bigger size of the C60 molecule makes it bind stronger to the surface than benzene, yet the interface between the molecules and the sheets are similar in nature. The binding separation is more sensitive to the exchange variant used in vdW-DF than to the correlation version. This result is related to the exchange and correlation components of the potential energy curve (PEC). We show that a moderate dipole forms for C60 on graphene, unlike for the other adsorption systems. We find that the corrugation is very sensitive to the variant or version of vdW-DF used, in particular the exchange. Further, we show that this sensitivity arise indirectly through the shift in binding separation caused by ...

  6. Assessing electronic structure approaches for gas-ligand interactions in metal-organic frameworks: The CO{sub 2}-benzene complex

    SciTech Connect (OSTI)

    Witte, Jonathon [Department of Chemistry, University of California, Berkeley, California 94720 (United States) [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States) [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-14T23:59:59.000Z

    Adsorption of gas molecules in metal-organic frameworks is governed by many factors, the most dominant of which are the interaction of the gas with open metal sites, and the interaction of the gas with the ligands. Herein, we examine the latter class of interaction in the context of CO{sub 2} binding to benzene. We begin by clarifying the geometry of the CO{sub 2}–benzene complex. We then generate a benchmark binding curve using a coupled-cluster approach with single, double, and perturbative triple excitations [CCSD(T)] at the complete basis set (CBS) limit. Against this ?CCSD(T)/CBS standard, we evaluate a plethora of electronic structure approximations: Hartree-Fock, second-order Møller-Plesset perturbation theory (MP2) with the resolution-of-the-identity approximation, attenuated MP2, and a number of density functionals with and without different empirical and nonempirical van der Waals corrections. We find that finite-basis MP2 significantly overbinds the complex. On the other hand, even the simplest empirical correction to standard density functionals is sufficient to bring the binding energies to well within 1 kJ/mol of the benchmark, corresponding to an error of less than 10%; PBE-D in particular performs well. Methods that explicitly include nonlocal correlation kernels, such as VV10, vdW-DF2, and ?B97X-V, perform with similar accuracy for this system, as do ?B97X and M06-L.

  7. Correlating Extent of Pt–Ni Bond Formation with Low-temperature Hydrogenation of Benzene and 1,3-butadiene over Supported Pt/Ni Bimetallic Catalysts

    SciTech Connect (OSTI)

    Lonergan, W.; Vlachos, D; Chen, J

    2010-01-01T23:59:59.000Z

    Low-temperature hydrogenation of benzene and 1,3-butadiene on supported Pt/Ni catalysts have been used as probe reactions to correlate hydrogenation activity with the extent of Pt-Ni bimetallic bond formation. Pt/Ni bimetallic and Pt and Ni monometallic catalysts were supported on {gamma}-Al{sub 2}O{sub 3} using incipient wetness impregnation. Two sets of bimetallic catalysts were synthesized: one set to study the effect of metal atomic ratio and the other to study the effect of impregnation sequence. Fourier transform infrared spectroscopy (FTIR) CO adsorption studies were performed to characterize the surface composition of the bimetallic nanoparticles, and transmission electron microscopy (TEM) was utilized to characterize the particle size distribution. Batch reactor studies with FTIR demonstrated that all bimetallic catalysts outperformed monometallic catalysts for both benzene and 1,3-butadiene hydrogenation. Within the two sets of bimetallic catalysts, it was found that catalysts with a smaller Pt:Ni ratio possessed higher hydrogenation activity and that catalysts synthesized using co-impregnation had greater activity than sequentially impregnated catalysts. Extended X-ray absorption fine structure (EXAFS) measurements were performed in order to verify the extent of Pt-Ni bimetallic bond formation, which was found to correlate with the hydrogenation activity.

  8. Synthesis and characterization of d{sup 10} metal complexes with mixed 1,3-di(1H-imidazol-4-yl)benzene and multicarboxylate ligands

    SciTech Connect (OSTI)

    Chen, Zhi-Hao; Zhao, Yue; Chen, Shui-Sheng; Wang, Peng; Sun, Wei-Yin, E-mail: sunwy@nju.edu.cn

    2013-06-15T23:59:59.000Z

    Seven new coordination polymers [Zn(H{sub 2}L)(mbdc)] (1), [Zn(H{sub 3}L)(btc)] (2), [Zn(H{sub 2}L)(Hbtc)] (3), [Zn(H{sub 2}L)(Hbtc)]·H{sub 2}O (4), [Zn{sub 2}(H{sub 2}L)(btc)(?{sub 2}-OH)] (5), [Cd(H{sub 2}L)(mbdc)] (6) and [Cd{sub 3}(H{sub 2}L){sub 2}(btc){sub 2}(H{sub 2}O)]·5H{sub 2}O (7) were synthesized by reactions of the corresponding metal salt with rigid ligand 1,3-di(1H-imidazol-4-yl)benzene (H{sub 2}L) and different carboxylic acids of 1,3-benzenedicarboxylic acid (H{sub 2}mbdc) and benzene-1,3,5-tricarboxylic acid (H{sub 3}btc), respectively. The results of X-ray crystallographic analysis indicate that complex 1 is 1D chain while 2 is a (3,3)-connected 2D network with Point (Schläfli) symbol of (4,8{sup 2}). Complexes 3 and 6 are 2D networks, 4 is a 3-fold interpenetrating 3D framework with Point (Schläfli) symbol of (6{sup 5},8) and 5 is a (3,8)-connected 2D network with Point (Schläfli) symbol of (3,4{sup 2}){sub 2}(3{sup 4},4{sup 6},5{sup 6},6{sup 8},7{sup 3},8), while 7 is a (3,10)-connected 3D net with Schläfli symbol of (3,4,5){sub 2}(3{sup 4},4{sup 8},5{sup 18},6{sup 12},7{sup 2},8). The thermal stability and photoluminescence of the complexes were investigated. Furthermore, DFT calculations were performed for 2–4 to discuss the temperature controlled self-assembly of the complexes. - Graphical abstract: Seven new coordination polymers with multicarboxylate and rigid ditopic 4-imidazole containing ligands have been obtained and found to show different structures and topologies. - Highlights: • Metal complexes with diverse structures of 1D chain, 2D network and 3D framework. • Mixed ligands of 1,3-di(1H-imidazol-4-yl)benzene and multicarboxylate. • Photoluminescence property.

  9. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed to reduce the weight of cars and trucks, innovative approaches for protecting fish as they navigate power- producing dams, and a discovery that makes it possible to turn...

  10. Contents

    E-Print Network [OSTI]

    Modeling the invasion and spread of contagious diseases in heterogeneous populations; Wayne M. Getz, James O. Lloyd-Smith, Paul C. Cross, Shirli Bar-

  11. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution And Bylaws |Contact UsContactsContemplating 10Program

  12. Contents

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs theFebruary09 FY1,The1,

  13. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r kiVP-^"^^?CONCEPTUALor.1,4,5,3,

  14. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r kiVP-^"^^?CONCEPTUALor.1,4,5,3,

  15. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r

  16. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 - HOISTING AND RIGGING IN HOSTILE

  17. Contents

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S. S p e c t® ALOHA A

  18. contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constant Ames

  19. Adsorption and Electronic States of Benzene on Ordered MgO and Al2O3 Thin Films S. C. Street, Q. Guo, C. Xu, and D. W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    Adsorption and Electronic States of Benzene on Ordered MgO and Al2O3 Thin Films S. C. Street, Q 77843-3255 ReceiVed: June 4, 1996; In Final Form: August 20, 1996X The adsorption and electronic to adsorption of the aromatic ring plane parallel to the surface at low coverages (e1 ML). Intermediate

  20. Table of Contents INTRODUCTION 2

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    #12;1 Table of Contents INTRODUCTION 2 SECTION ONE: PRINCIPLES OF GOOD PRACTICE 4 SECTION TWO, it offers a practical guide to staff and volunteers who work with children by outlining a number of fundamental principles of good practice, highlighting the key elements of each one and discussing the issues

  1. Benzene analogues of (quasi-)planar M@B{sub n}H{sub n} compounds (M = V{sup ?}, Cr, Mn{sup +}): A theoretical investigation

    SciTech Connect (OSTI)

    Li, Lifen; Xu, Chang; Jin, Baokang; Cheng, Longjiu, E-mail: clj@ustc.edu [Department of Chemistry, Anhui University, Hefei, Anhui 230039 (China)] [Department of Chemistry, Anhui University, Hefei, Anhui 230039 (China)

    2013-11-07T23:59:59.000Z

    The stability of M@B{sub n}H{sub n} (M = V{sup ?}, Cr, Mn{sup +}; n = 5–8) is investigated by density functional theory. For n = 6–8, the isomers possess (quasi-)planar local minima showed by geometry optimization at TPSSh/6-311+G{sup **} level. All the optimized structures are thermodynamics stable according to the large HOMO-LUMO gap, binding energy, vertical ionization potential, and vertical electron affinity analysis. The peripheral and central atomic radius fit each other best at n = 7 confirmed by the variation of the binding energy values. The availability of d atom orbitals in M for participation in the ?-delocalized bonding with the peripheral ring leads to the aromaticity of the (quasi-)planar structures and makes them the benzene analogues. This work establishes firmly the metal-doped borane rings as a new type of aromatic molecule.

  2. Application of binary parameters to the ternary cyclohexane/polybutadiene/benzene system using open tubular columns in gas chromatography

    E-Print Network [OSTI]

    Tsotsis, Thomas Karl

    1986-01-01T23:59:59.000Z

    Sanchez-Lacombe Lattice Fluid Model PERTURBATION CHROMATOGRAPHY 10 13 17 Application and Theory Open Tubular Column Comparison with Static Methods 17 19 19 vu TABLE OF CONTENTS (Continued) Page EXPERIMENTAL METHODS Static Measurement.../solvent behavior. Later workers made modifications to Flory's theory and, in the late 1970's, Sanchez and Lacombe'" ' developed a. La& tie&i Flu ?I &nodcl & o pr&dict poly&ner & s&ilvcni behavior. A more detailed discussion of' these ih&ori&s is presented later...

  3. Quantum effects and anharmonicity in the H{sub 2}-Li{sup +}-benzene complex: A model for hydrogen storage materials

    SciTech Connect (OSTI)

    Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: m.jordan@chem.usyd.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia)] [School of Chemistry, The University of Sydney, NSW 2006 (Australia)

    2013-12-21T23:59:59.000Z

    Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ?H{sub bind} (0 K), being 16.5 kJ mol{sup ?1} and 12.4 kJ mol{sup ?1}, respectively: 0.1 and 0.6 kJ mol{sup ?1} higher than harmonic values. Zero-point energy effects are 35% of the value of ?H{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ?H{sub bind} (0 K) by at least 6 kJ mol{sup ?1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} “helicopter” and “ferris wheel” rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.

  4. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    SciTech Connect (OSTI)

    Happel, A.M.; Rice, D. [Lawrence Livermore National Lab., CA (United States); Beckenbach, E. [California Univ., Berkeley, CA (United States); Savalin, L.; Temko, H.; Rempel, R. [California State Water Resources Control Board, Sacramento, CA (United States); Dooher, B. [California Univ., Los Angeles, CA (United States)

    1996-11-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites.

  5. Identification and separation of the organic compounds in coal-gasification condensate waters. [5,5 dimethyl hydantoin, dihydroxy benzenes, acetonitrile

    SciTech Connect (OSTI)

    Mohr, D.H. Jr.; King, C.J.

    1983-08-01T23:59:59.000Z

    A substantial fraction of the organic solutes in condensate waters from low-temperature coal-gasification processes are not identified by commonly employed analytical techniques, have low distriution coefficients (K/sub C/) into diisopropyl ether (DIPE) or methyl isobutyl ketone (MIBK), and are resistant to biological oxidation. These compounds represent an important wastewater-treatment problem. Analytical techniques were developed to detect these polar compounds, and the liquid-liquid phase equilibria were measured with several solvents. A high-performance liquid - chromatography (HPLC) technique was employed to analyze four condensate-water samples from a slagging fixed-bed gasifier. A novel sample-preparation technique, consisting of an azeotropic distillation with isopropanol, allowed identification of compounds in the HPLC eluant by combined gas chromatography and mass spectrometry. 5,5-dimethyl hydantoin and related compounds were identified in condensate waters for the first time, and they account for 1 to 6% of the chemical oxygen demand (COD). Dimethyl hydatoin has a K/sub D/ of 2.6 into tributyl phosphate (TBP) and much lower K/sub D/ values into six other solvents. It is also resistant to biological oxidation. Phenols (59 to 76% of the COD), dihydroxy benzenes (0.02 to 9.5% of the COD), and methanol, acetonitrile, and acetone (15% of the COD in one sample) were also detected. Extraction with MIBK removed about 90% of the COD. MIBK has much higher K/sub D/ values than DIPE for dihydroxy benzenes. Chemical reactions occurred during storage of condensate-water samples. The reaction products had low K/sub D/ values into MIBK. About 10% of the COD had a K/sub D/ of nearly zero into MIBK. These compounds were not extracted by MIBK over a wide range of pH. 73 references, 6 figures, 35 tables.

  6. Water on BN doped benzene: A hard test for exchange-correlation functionals and the impact of exact exchange on weak binding

    SciTech Connect (OSTI)

    Al-Hamdani, Yasmine S.; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne National Laboratories, 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)

    2014-11-14T23:59:59.000Z

    Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces, whereas the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we show that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. Meanwhile to predict correct absolute interaction energies an accurate description of exchange needs to be augmented by dispersion inclusive functionals, and certain non-local van der Waals functionals (optB88- and optB86b-vdW) perform very well for absolute interaction energies. Through a comparison with water on benzene and borazine (B{sub 3}N{sub 3}H{sub 6}) we show that these results could have implications for the interaction of water with doped graphene surfaces, and suggest a possible way of tuning the interaction energy.

  7. The use of acetylene and 1,3-butadiene as tracers for vehicular combustion in urban air and the estimation of the contributions of vehicular emissions to benzene, and alkane concentrations in the Edmonton industrial area

    SciTech Connect (OSTI)

    Bailey, R. [Environment Canada, Edmonton, Alberta (Canada). Prairie and Northern Region; Wong, R. [Alberta Environmental Protection, Edmonton, Alberta (Canada); Dann, T.; Wang, D. [Environment Canada, Gloucester, Ontario (Canada). Environmental Protection Service

    1998-12-31T23:59:59.000Z

    Acetylene, propylene and 1,3-butadiene concentrations at two downtown urban sites in Alberta, Canada were used to characterize an area dominated by vehicular emissions. The relationship of acetylene with 1,3-butadiene at the Edmonton industrial site was similar to that observed for the two downtown sites. This suggesting that these volatile organic compounds, VOCs, can be used as tracers for vehicular emissions for the Edmonton industrial area. The tracer VOCs were found to correlate with benzene, n-butane, iso-butane, n-pentane, iso-pentane, n-heptane and n-octane concentrations for the two Alberta downtown sites. The best fit lines from the downtown sites were used to predict daily concentrations of benzene and alkanes at the Edmonton industrial site. During the winter, when benzene levels are predicted to reach a maximum of 4.5 to 6.5 m g/m{sup 3}, it is estimated that industrial sources contribute < 1 m g/m{sup 3} to ambient levels at the Edmonton industrial site. During the summer, when predicted benzene levels are at a minimum of 1 to 2 m g/m{sup 3}, industrial area sources dominate the ambient benzene levels at the Edmonton industrial site, and can contribute up to 6 m g/m{sup 3}. For alkanes, such as butane and pentane, industrial area sources or evaporative storage tank emissions dominate throughout the year. This dominance of industrial sources is also observed for n-heptane and n-octane during summer months. During the winter when predicted n-heptane and n-octane concentrations reach a maximum, 11 to 100% of ambient daily levels can be attributed to vehicular emissions.

  8. Alexandria Digital Library Project Content Access Characterization

    E-Print Network [OSTI]

    Janée, Greg

    Alexandria Digital Library Project Content Access Characterization in Digital Libraries Greg Janée · James Frew · David Valentine University of California, Santa Barbara #12;Alexandria Digital Library environments e.g., GIS #12;Alexandria Digital Library Project Janée, Frew, Valentine · Content Access

  9. SOFA 2 Documentation Table of contents

    E-Print Network [OSTI]

    SOFA 2 Documentation Table of contents 1 Overview...................................................................................................................... 2 2 Documentation............................................................................................................. 2 3 Other documentation and howtos

  10. Optimal Rate Allocation in Overlay Content Distribution

    E-Print Network [OSTI]

    Li, Baochun

    Optimal Rate Allocation in Overlay Content Distribution Chuan Wu and Baochun Li Department. This paper addresses the optimal rate allocation problem in overlay content distribution for efficient, these scenarios reflect the contrast between elastic and streaming content distribution, with either per

  11. Content of system design descriptions

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all the attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.

  12. Content in physical education 1 The Contribution of Two Research Programs on Teaching Content

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : "Pedagogical Content Knowledge" and "Didactics of Physical Education" Chantal Amade-Escot, Toulouse University with pedagogical content knowledge; the other, in France, studying the didactics of physical education (didactics communities. Key-words Content in Physical Education, Pedagogical Content Knowledge, Didactics of Physical

  13. Adequacy of benzo(a)pyrene and benzene soluble materials as indicators of exposure to polycyclic aromatic hydrocarbons in a Sderberg aluminum smelter

    SciTech Connect (OSTI)

    Friesen, M.C.; Demers, P.A.; Spinelli, J.J.; Le, N.D. [University of British Columbia, Vancouver, BC (Canada). School of Occupational & Environmental Hygiene

    2008-07-01T23:59:59.000Z

    Occupational and environmental exposure to polycyclic aromatic hydrocarbons (PAHs) occurs as a complex mixture that is evaluated using specific components, such as benzo(a)pyrene (BaP) and benzene soluble materials (BSM). Factors that influence the relationship between BaP, BSM, and other PAHs within an aluminum smelter were investigated. Personal samples collected from 1978 to 2001 were used. Differences in the log-transformed ratios (PAH/BaP, BaP/BSM) due to anode paste composition, pot group, season, and job were examined using linear regression. In linear regression, 27% of the variability in the log-transformed BaP/BSM ratio was explained by coal tar pitch, work area, and job; no seasonal or pot group differences were observed. Within the potrooms, BaP was very strongly correlated with other PAHs (majority 0.9). Depending on the PAH, between 23% and 89% of the variability in the log-transformed PAH/BSM was explained by season, coal tar pitch, pot group, and job. The BaP toxic equivalency factors of the mixture varied more across job (2.1-3.5) than across coal tar pitch source (1.8-2.8) or pot group (2.3-2.5). Seasonal and work area differences in the relationship between BaP and other PAHs have not been reported previously.

  14. arrestin content studied: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Two Research Programs on Teaching Content: "Pedagogical Content Knowledge" and "Didactics of Physical Education" Chantal Amade-Escot, Toulouse University Abstract Content in...

  15. Standard Format and Content for Emergency Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume addresses recommended emergency plan format and content for Operational Emergency Base Programs and Operational Emergency Hazardous Material Programs. Canceled by DOE G 151.1-3.

  16. Peer Mentor Handbook Table of Contents

    E-Print Network [OSTI]

    Lin, Zhiqun

    Peer Mentor Handbook #12;Table of Contents Learning Communities Characteristics ..............................................................................................4 Skills for Effective Mentors ...............................................................................................................7 Ethical Considerations for the Peer Mentor

  17. TABLE OF CONTENTS NIST Map ...................................................................................................................................................3

    E-Print Network [OSTI]

    TABLE OF CONTENTS NIST Map the Power Grid PML TIME SPEAKER UNIVERSITY TITLE LAB 3:00P Brian Weinstein American University Temperature

  18. Network Coding for Large Scale Content Distribution

    E-Print Network [OSTI]

    Keinan, Alon

    Network Coding for Large Scale Content Distribution IEEE Infocom 2005 Christos Gkantsidis College propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks

  19. Milk dispenser for variable fat content

    E-Print Network [OSTI]

    Henion, Julie E

    2011-01-01T23:59:59.000Z

    This thesis describes the development of a new milk dispenser product that is designed to dispense milk with varying levels of milk fat content. The product contains two tanks of milk, one containing skim and one containing ...

  20. The Digital Divide: It's the Content Stupid 

    E-Print Network [OSTI]

    Guadamuz, Andres

    2005-01-01T23:59:59.000Z

    The article examines the notion of the digital divide, not purely from physical access to the Internet, but from availability to online content. It focusses particularly on concerns held by developing countries, and of ...